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Been Down So Long It Looks Like Up to Me—Richard Fariña.

Abstract. We show that evolution may optimally design agents to have dif-
ferent decision and experienced utilities.
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The Evolutionary Optimality of Decision and Experienced Utilities

1 Introduction

People who contemplate living in California routinely report that they expect to
be significantly happier there, primarily on the strength of California’s blissful
climate. People who actually live in California are no happier than the rest of
us (Schkade and Kahneman [8]). Far from being a California quirk, this phe-
nomenon is sufficiently widespread as to prompt the conclusion that “Nothing
... will make as much difference as you think.” [8, p. 345]1

Psychologists interpret these findings by drawing a distinction between de-
cision utility and experienced utility (e.g., Kahneman and Thaler [3]). Decision
utilities are the utilities that determine (or at least describe, in a revealed-
preference interpretation) our choices. For Schkade and Kahneman [8], these
are the utilities people reveal when they contemplate living in California. Ex-
perienced utilities are the rewards we realize once the choices are made. For
Schkade and Kahneman, these are reflected in the satisfaction reports from
people living in California.

Experienced utilities are of no interest to a purely classical economist. De-
cision utilities suffice to describe the behavior that is the focus of economics.
However, if we venture beyond the narrow confines of classical economics to
consider the welfare of the individual, the difference is highly relevant. If expe-
rienced utilities do not match decision utilities, this casts doubt on the standard
economists’ presumption that decision utilities are an appropriate guide to well-
being. If there is such a difference, should we not exhort people to work more
diligently in discerning their future experienced utilities, and then use these
to override their decision utilities (as Schkade and Kahneman [8] hint)? Once
we have contending utilities (or contending selves, in the common parlance of
behavioral economics), such questions are both inevitable and vexing.

We adopt a positive perspective in this paper, answering the following ques-
tion: Why might we have both decision and experienced utilities in the first
place? We take an evolutionary approach. We assume that evolution has
equipped agents with utility functions designed to induce fitness-maximizing
choices. An agent in our model must make choices in each of two periods that
will (along with random events) determine his fitness. Moreover, these choices
give rise to an intertemporal trade-off, in the sense that the optimal second-
period choice depends upon the alternative chosen in the first period. The
first-period choice may determine the agent’s health or wealth or skill or status,
for example, which may in turn affect how aggressive the agent should be in seek-
ing second-period consumption. Evolution equips the agent with a first-period

1This phenomenon, often dubbed a “focusing illusion” (e.g., Loewenstein and Schkade
[4]), was thrust into the spotlight by Brickman, Coates and Janoff-Bulman’s [1] study of
lottery winners and paraplegics, and has become the subject of a large literature, much of
it in psychology. See Loewenstein and Schkade [4] for an introduction and Gilbert [2] for an
entertaining popular account.
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utility function providing the decision utilities shaping the first-period choice.
Evolution also equips the agent with a second-period utility function determin-
ing the utilities he experiences as a result of his first-period and second-period
choices. This latter function serves a dual role, being an experienced utility from
the point of view of the first-period choice while also providing the relevant de-
cision utility for the second period. We show that in general, the decision utility
shaping the first-period choice does not match the resulting second-period ex-
perienced utility. Evolution systematically misleads the agent as to the future
implications of his choices.

Why should evolution build an agent to do anything other than maximize
fitness, without resorting to conflicting utility notions? Evolution’s design prob-
lem is complicated by two crucial constraints. First, there are limits on how large
and how small are the utilities evolution can give us.2 By themselves, bounds
on utility pose no obstacles. All that matters is that better alternatives get
higher utilities, and we can accommodate this no matter how tight the range of
possible utilities. However, our second assumption is that the agent is likely to
make mistakes when utilities are too close. When alternative 1 provides only a
slightly higher utility than alternative 2, the agent may mistakenly choose al-
ternative 2. As a result, there is an evolutionary advantage to having the utility
function be as steep as possible, so that the agent is dealing with large utility
differences that seldom induce mistakes. This goal conflicts with the bounds on
utility. Evolution’s response is to make the utility function very steep in the
range of decisions the agent is most likely to face, where such steepness is partic-
ularly important in avoiding mistaken decisions, and relatively flat elsewhere.3

If this is to be effective, the steep spot of the utility function must be in the
right place. In the second period, the “right place” depends on what happens
in the first period, both in terms of what the agent chose and the realization of
first-period uncertainty. Evolution thus has a incentive to adjust second-period
or experienced utilities in response to first-period outcomes. But if this is to
be done without distorting first-period decisions, the agent must not anticipate
this adjustment—the experienced utilities guiding second-period decisions must
not match the decision utilities shaping first-period decisions.

Section 2 presents the argument in a model that effectively isolates the key
features of our analysis, at the cost of a number of simplifications. Section 3
shows how the model can be extended to more realistic situations and discusses
its implications.

2Notice that in taking this position, we are explicitly adopting a view of utility maximiza-
tion as a neurological process by which we make choices, rather that simply a description of
consistent choices. This is the point of view of much of the current literature in behavioral
economics. In particular, our view is that utilities are induced by chemical processes within
our brains that are subject to physical constraints.

3Robson [7] argues that that utility bounds and limited discrimination between utilities
will induce evolution to strategically position the steep part of the utility function. (See also
Netzer [5].) Rayo and Becker [6] develop this idea in a model more closely related to that
here.
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2 Decision and Experienced Utility

2.1 The Evolutionary Environment

There are two periods. The agent makes a choice x1 in the first period and x2 in
the second. These choices would be multidimensional in a more realistic model,
but here are taken for simplicity to be elements of [0, 1]. Whenever it is helpful
in conveying intuition, we temporarily adopt particular interpretations of x1

and x2, such as levels of first-period and second-period consumption or income,
or as a decision to move to California (or not) and a subsequent decision of how
much time to spend surfing (whether in California or Iowa), or as an investment
in status and a subsequent decision of which mate to pursue.

The agent’s fitness is determined by his choices x1 and x2 as well as the
realization s2 of a random variable s̃2, reflecting environmental shocks in the
second period that may perturb the link between the agent’s actions and his
fitness. (We add a first-period shock in Section 3.) The agent’s health may
depend no only on effort he invests in procuring food, but also on random events
affecting the productivity of these efforts. We assume that s̃2 takes on values
on an interval [−S, S], and has mean zero and a strictly positive, symmetric,
quasiconcave, differentiable density function, with zero derivative only at 0. We
let g2 be the density of s2.

The agent’s choice must be made in ignorance of the realization of s̃2. The
second-period choice of x2 is made after observing the realization s1 of s̃1 (and
recalling the first-period choice of x1), but without observing the realization of
s̃2.

In the absence of any constraints, evolution’s task of designing an agent to
make fitness-maximizing choices would be trivial (and our assumptions about
the timing of the agent’s choices and the realizations of the random shocks
would be irrelevant). The agent’s fitness-maximization problem has a maximizer
(x∗1, x

∗
2). Evolution could then simply “hard-wire” agents to make this optimal

decision decision.
The point of departure for our analysis is the assumption that evolution

cannot simply hard-wire us to choose (x∗1, x
∗
2), as trivial as this sounds in the

context of this model. Our interpretation here is that what it means to choose
a particular value x1 or x2 changes with the context in which the decision is
made. The first-period choice may consist of an investment in status that some-
times involves hiding food or constructing a shelter, and other times acquiring
education, sometimes involves cultivating social relationships with others, and
other times driving others away. Similarly, the second-period choice may involve
consumption that sometimes calls for stalking food through the forest and other
times sitting at a desk. Moreover, the relevant context fluctuates too rapidly for
evolution to adapt. The dominant form of investment can change from clearing
fields to learning C++ too quickly for mutation and selection to keep pace. As
a result, evolution must recognize that the agent will frequently face problems
that are entirely novel from an evolutionary perspective.4

4Rayo and Becker [6] must similarly address the question of why evolution cannot hard-
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To capture this constraint, we assume that the agent’s fitness is given by

z1 + z2

where z1 and z2 determined by the agents actions and the random shocks via the
functions z̃1 and z̃2. We interpret z1 can z1 as intermediate goals that evolution
can identify and use as input in shaping the agent’s behavior, associating z1
with the first period and z2 with the second. The agents choices, along with
the random shocks s1 and s2, determine z1 and z2. For example, x1 may reflect
an investment in skills, and z1 the resulting skill level. Alternatively, x1 may
reflect actions taken in pursuit of status, and z1 the resulting status. In the
second period, x2 may be a choice of foraging strategy and z2 may indicate
how well nourished is the agent. The key distinction is that, while evolution
cannot attach utilities to x1 and x2, she can to z1 and z2. Times have changed
too quickly for evolution to attach utility to passing through the drive-through
coffee line in the morning, but she can reward the resulting feeling of alertness.
Evolution cannot tell whether status is acquired by amassing physical prowess
or wealth, but can reward the acquisition of status. The linear form of this
fitness assumption significantly simplifies the analysis. It would cost only extra
notation to incorporate a discount factor. The technology converting the agent’s
choices into evolutionary goals is given by

z1 = z̃1(x1) (1)
z2 = z̃2(z1, x2) + s2. (2)

Notice that what matters for the second-period outcome is not the means by
which the first-period evolutionary goal z1 is achieved, but the goal itself. In
many cases, this seems quite natural. It matters how skilled or well-nourished or
prominent is the agent, not how he got that way. We assume that z̃2 is increasing
in z1, so that the first-period investment has salutary effects for second-period
fitness. To keep the analysis simple, we assume that z̃2 is strictly concave in x2

(for any z1). This ensures the existence of a unique maximizer x∗2(z1) of z̃2 for
any value z1 which, for ease of interpretation, we take to be interior. Similarly, in
the first period we assume that z̃1(x1) + z̃2(z̃1(x1), x∗2(z1)) is strictly concave in
x1, giving a unique first-period maximize maximizer that we take to be unique.

2.2 Utility Functions

Evolution can give the agent a first-period utility function V (z1 +z2), as well as
a second-period utility function V (z2|z2) regulating the choice of x2. Through

wire agents to make optimal choices. They assume that the evolutionarily optimal action
depends upon an environmental state, and that there are so many possible values of this state
that it is prohibitively expensive for evolution to hard-wire the agent to condition actions on
every value. Our assumption that the state is entirely novel simply takes this formulation to
a corner solution. Rayo and Becker explicitly include the state environmental within their
model, while we sweep it into the background, simply assuming that evolution cannot dictate
optimal choices. These accounts differ primarily in emphasis.
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the technology given by (1)–(2), these implicitly become utility functions on x1,
x2 and s2.5 Notice that we write the second-period utility function as V2(z2|z1).
In the second period, the agent’s task is to choose x2, and this choice of x2 and
the realization s2 then determine z1 and hence the agent’s utility. Our notation
emphasizes that this second-period utility function may depend on the agent’s
previous choice of x1 and realization of s1, through their determination of z1.
An agent rendered well-nourished and healthy by his first-period outcome may
have a different utility function than one famished and week. An agent who has
climbed to the top of the status order in the first period may have a different
utility function than a social outcast.

Evolution’s task is to design these utility functions so as to induce fitness-
maximizing choices. In the absence of any additional constraints (beyond the
inability to write utilities directly over x1 and x1), evolution’s utility-function
design problem is trivial. She need only give the agent the utility functions

V1(z1 + z2) = V2(z2|z1) = z1 + z2 = z̃1(x1) + z̃2(z̃1(x1), x2) + s2.

As straightforward as this result is, we believe it misses some important
evolutionary constraints that we introduce in two steps. Our first assumption is
that evolution faces limits on how large or small a utility she can induce. Our
view here is that utilities must be produced by physical processes, presumably
the flow of certain chemicals in the brain. The agent makes choices leading to
a fitness levels z1 and z2 (or perhaps imagines such choices when evaluating
them), and receives pleasure from the resulting cerebral chemistry. There are
then bounds on just how strong (or how weak) the resulting sensations can be.
Without loss, we assume that utilities must be drawn from the interval [0, 1].

These constraints alone pose no difficulties. Essentially, evolution need sim-
ply recognize that utility functions are unique only up to linear transformations.
In particular, in this case evolution need only endow the agent with the utility
function

V1(z1 + z2) = V2(z2|z1) = A+B[z1 + z2],

where A and B are chosen (in particular, with B sufficiently small) so as to
ensure that utility is drawn from the unit interval, no matter what the feasible
values of x1, x2, s2.6

5Notice that we are effectively acting “as if” the agent “knows” the functions z̃1 and z̃2.
We view this not literally as a cognitive understanding, but as the agent’s having effectively
learned which choices of x1 and x2 lead to high utilities. Who among us is sure we understand
the nuances o of the connection between diet and good nutrition? At the same time, who has
not learned which foods they like, and which they dislike?

6Our assumption that the random variable 2̃ has bounded support allows evolution to
keep utilities within [0, 1] via a linear transformation. Were these supports unbounded, the
corresponding transformation would have to be nonlinear. This would be immaterial in the
current example, where the relevant lotteries are ordered by first-order stochastic dominance,
ensuring that tradeoffs between risk and return do not arise, but this issue may reappear in
more general settings. We are not troubled by assumptions that s̃1 and s̃2 have bounded
support, on the strength of the belief that there are likely to be bounds on consumption. To
put it differently, we would be unconvinced by a divergence between decision and experienced
utility that depended crucially on the possibility of unbounded consumption.
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We now add a second constraint to evolution’s problem—there are limits to
the ability of the agent to perceive differences in utility. When asked to choose
between two alternatives whose utilities are very close, the agent may be more
likely to choose the alternative with the higher utility, but is not certain to do
so.7 This is in keeping with our interpretation of utility as reflecting physical
processes within the brain. A very slightly higher dose of a neurotransmitting
chemical may not be enough to ensure the agent flawlessly chooses the high-
utility alternative.8

To make this restriction precise, we begin with the second period and assume
the individual cannot distinguish any pair of choices whose expected utility is
within ε2 > 0 of each other. Hence, instead of certainly choosing the maximizer
x∗2(z1) of V2(z2|z1) = V2(z̃2(z1, x2) + s2|z1) in the second period, the agent may
choose any x2 with the property that

Es̃2V2(z̃2(z1, x∗2(z1)) + s2|z1)− Es̃2V2(z̃2(z1, x2) + s2|z1) ≤ ε2.

To keep things simple, we assume the agent chooses uniformly over the resulting
satisficing set [x2(z1), x2(z1)], where x2(z1) < x∗2(z1) < x2(z1) and9

Es̃2V2(z̃2(z1, x2(z1)) + s2|z1) (3)
= Es̃2V2(z̃2(z1, x2)(z1) + s2|z1)
= Es̃2V2(z̃2(z1, x∗2(z1)) + s2|z1)− ε2. (4)

Evolution chooses the utility functions V2 to maximize fitness, subject to (3)–
(4), for each z1. Notice that we will then have z̃2(z1, x2(z1)) = z̃2(z1, x2(z1)),
and that maximizing fitness is equivalent to maximizing this value.

In the first period, the agent has utility function V1(z1 + z2). This utility is
again bounded, so that V1 ∈ [0, 1]. In addition, the individual cannot distinguish
any pair of choices whose expected utility is within ε1 > 0 of each other. This
again leads to a random choice from a satisficing set, whose specification we
delay until Section 2.4.

2.3 The Second Period

Consider now the solution to Nature’s optimization problem in the second
period. The agent’s fitness will be higher the smaller is the satisficing set

7We might also introduce some friction into the agent’s learning of the functions z̃1 and z̃2

transforming x1 and x2 into fitnesses. We put aside such frictions here to concentrate on the
optimal shape of the utility function.

8Very small utility differences pose no problem for classical economic theory, where differ-
ences in utility indicate that one alternative is preferred to another, with a small difference
serving just as well as a large one. However, it is a problem when utilities are induced via
physical processes. The psychology literature is filled with studies documenting the inability
of our sense to reliably distinguish between small differences If the difference between two
chemical flows is arbitrarily small, we cannot be certain that the agent will invariably choose
the larger.

9We could work with a more general assumption about how the choice from the satisficing
set is made, but must preclude the possibility that an attempt by evolution to improve the
agent’s decisions by increasing x2(z1) and decreasing x2(z1) is thwarted by agent’s pushing
more and more of her choice probability toward these boundaries.
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[x2(z1), x2(z1)], and hence the larger are the fitnesses z̃2(z1, x2(z1)) = z̃2(z1, x2(z1)).
Consider the task of maximizing z̃2(z1, x2(z1)) = z̃2(z1, x2(z1)), subject to

the constraints given by (3)–(4). A change of variable allows us to rewrite the
constraints in (3)–(4) as∫

V2(z̃2(z1, x∗2(z1)) + s2|z1)g2(s2)ds2 −
∫
V2(z̃2(z1, x2(z1)) + s2|z1)g2(s2)ds2 (5)

=
∫
V2(z̃2(z1, x∗2(z1)) + s2|z1)g2(s2)ds2 −

∫
V2(z̃2(z1, x2(z1)) + s2|z1)g2(s2)ds2 (6)

=
∫
V2(z2|z1)[g2(z2 − z̃2(z1, x∗2(z1)))− g2(z2 − z̃2(z1, x2(z1)))]dz2 (7)

=
∫
V2(z2|z1)[g2(z2 − z̃2(z1, x∗2(z1)))− g2(z2 − z̃2(z1, x2(z1)))]dz2 (8)

= ε2.

The difference given by (5) is decreasing in z̃2(z1, x2(z1)), as is (6) decreasing in
z̃2(z1, x2(z1)). As a result, the optimal utility function must maximize (7) (sub-
ject to maintaining the value of (8)) and maximize (8) (subject to maintaining
the value of 7)), for the optimal z̃2(z1, x2(z1)) and z̃2(z1, x2(z1)).10 However, (7)
and (8) are both increased by setting the utility V2(z2|z1) as small as possible
when g(z2 − z̃2(z1, x∗2(z1))) − g(z2 − z̃2(z1, x2(z1))) = g(z2 − z̃2(z1, x∗2(z1))) −
g(z2−z̃2(z1, x2(z1))) < 0; and by setting the utility V2(z2|z1) as large as possible
when this inequality is reversed.

There will then exists a threshold ẑ2(z1), satisfying

g(ẑ2(z1)− z̃2(z1, x∗2(z1)))− g(ẑ2(z1)− z̃2(z1, x2(z1)))
= g(ẑ2(z1)− z̃2(z1, x∗2(z1)))− g(ẑ2(z1)− z̃2(z1, x2(z1)))
= 0

such that11

V2(z2|z1) = 0, for all z2 < ẑ2(z1)
V2(z2|z1) = 1, for all z2 > ẑ2(z1).

Moreover, in the limit as ε2 → 0, we have

ẑ2(z1) = z̃2(z1, x∗2(z1)).

10Otherwise, one could (for example) find a different utility function that gives a larger
value for (7) while preserving (8) and holding z̃2(z1, x2(z1)) = z̃2(z1, x2(z1)) constant at their
candidate optimum values, introducing slack into the constraint given by (5). But then the
value of z̃2(z1, x2(z1)) that induces equality in (5) would have to be higher than the candidate
optimum value, a contradiction.

11Our unimodality assumption on the distribution g ensures, for example, that g(z2 −
z̃2(z1, x∗2(z1)))− g(z2 − z̃2(z1, x2(z1))) is negative for small z and positive for large z, with a
unique zero identified by ẑ2(z1).
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2.4 The First Period

Attention now turns to the first period. For simplicity, we take the limit ε2 → 0
before considering the optimal first-period utility function. While not essential
to the results, this allows us to avoid a host of technical issues. In particular,
the satisficing set of first-period choices will then be of the form [x1, x1] where

Es̃2V1(z̃1(x1) + z̃2(z̃1(x1), x∗2(z̃1(x1)) + s2) (9)
= Es̃2V1(z̃1(x1) + z̃2(z̃1(x1), x∗2(z̃1(x1)) + s2)
= Es̃2V1(z̃1(x∗1) + z̃2(z̃1(x∗1), x∗2(z̃1(x∗)) + s2)− ε1. (10)

Notice that z̃(x1) = z̃(x1). In the first period, the individual randomizes uni-
formly over the set [x1, x1]. Evolution chooses the utility function V1(z1 + z2)
to maximize fitness, subject to (9)–(10).

In the first stage, evolution thus increases fitness by increasing x1 and de-
creasing x1, with x1 ≤ x∗ ≤ x1, subject to the constraints given by (9)–(10).
As with the second period, we can execute a change of variable to rewrite the
constraints as∫

V1(z̃1(x∗1) + z̃2(z̃1(x∗1), x∗2(z̃1(x∗1))) + s2)g2(s2)ds2

−
∫
V1(z̃1(x1) + z̃2(z̃1(x1), x∗2(z̃1(x1))) + s2)g2(s2)ds2 (11)

=
∫
V1(z̃1(x∗1) + z̃2(z̃1(x∗1), x∗2(z̃1(x∗1))) + s2)g2(s2)ds2

−
∫
V1(z̃1(x1) + z̃2(z̃1(x1), x∗2(z̃1(x1))) + s2)g2(s2)ds2 (12)

=
∫
V1(z1 + z2)[g2(z1 + z2 − z̃1(x∗1)− z̃2(z̃1(x∗1), x∗2(z̃1(x∗1))))

− g2(z1 + z2 − z̃1(x1)− z̃2(z̃1(x1), x∗2(z̃1(x1))))]dz2 (13)

=
∫
V1(z1 + z2)[g2(z1 + z2 − z̃1(x∗1)− z̃2(z̃1(x∗1), x∗2(z̃1(x∗1))))

− g2(z1 + z2 − z̃1(x1)− z̃2(z̃1(x1), x∗2(z̃1(x1))))]dz2 (14)
= ε1.

Analogously to our argument for the second period, we note that the difference
in (11) is decreasing in x1 and the difference in (12) is increasing in x2. The
optimal utility function must then maximize (13) and maximize the left side of
(14), each subject to maintaining the value of the other, for the optimal values
of x1 and x1. This allows us to conclude that there is a value Ẑ1 satisfying

g2(Ẑ1 − z̃1(x∗1)− z̃2(z̃1(x∗1), x∗2(z̃1(x∗1))))− g2(Ẑ1 − z̃1(x1)− z̃2(z̃1(x1), x∗2(z̃1(x1))))
g2(Ẑ1 − z̃1(x∗1)− z̃2(z̃1(x∗1), x∗2(z̃1(x∗1))))− g2(Ẑ1 − z̃1(x1)− z̃2(z̃1(x1), x∗2(z̃1(x1))))

= ε1
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with the property that

V (z) = 0, for all z < Ẑ1

V (z) = 1, for all z > Ẑ1.

Moreover, in the limit as ε1 → 0, we have

Ẑ1 = z̃1(x∗1) + z̃2(z̃1(x∗1), x∗2(z̃1(x∗1))).

2.5 Decision and Experienced Utility

Now let us compare the agent’s decision and experienced utilities. Suppose
the agent considers the possible outcome (x1, x2, s2). Reinterpreting the model
a bit to match the motivating psychology literature, the agent may consider
moving to California (the choice of x1), learning to surf once there (the choice
of x2), and enjoying a certain amount of sunshine (the realization of s̃2). Let
us assume the agent anticipates choosing x2 optimally in the second period, so
that x2 = x∗2(z1). We thus disregard cases in which agents do not correctly
anticipate future utilities because they do not anticipate their future optimal
choices. For example, the agent may understand that he will spend a great deal
more time outdoors in California, but he also understand that he will not go
surfing 365 days a year.

If the outcome considered by the agent gives z̃1(x1) + z̃2(z̃1(x1), x2) + s2 >
z̃1(x∗1) + z̃2(z̃1(x∗1), x∗2) = Ẑ1, then she anticipates the maximal utility of one,
since

z̃1(x1)+z̃2(z̃1(x1), x2)+s2 > Ẑ1 = z̃1(x∗1)+z̃2(z̃1(x∗1), x∗2) =⇒ V1(z1+z2) = 1.

However, if the scenario contemplated by the agent at the same time involves
a value s2 < 0 (the agent is sufficiently exited about the impending move to
California even though anticipating mediocre weather), then his realized expe-
rienced utility will be zero, since then

z2 = z̃2(z1, x∗2(z1)) + s2 < z̃2(z1, x∗2(z1)) =⇒ V2(z2|z1) = 0.

The agent’s decision utility of one thus gives way to an experienced utility of
zero.

Alternatively, if the agent considers a situation where z̃1(x1) + z̃2(z1, x2) +
s2 > z̃1(x∗1) + z̃2(z1, x∗2) < 0, then this generates a decision utility level of zero.
However, if, at the same time s2 > 0, her experienced utility will be one.

The agent’s decision and experienced utilities will thus sometimes agree, but
the agent will sometimes believe he will be (maximally) happy, only to end up
miserable, and sometimes he will believe at the start that he will be miserable,
only to turn out happy. The agent will be mistaken about his experienced
utility whenever his utility projection depends importantly on the realization of
the first-period choice than second-period uncertainty (i.e., anticipating a good
outcome because he is moving to a great location, despite mediocre weather;
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or anticipating a bad outcome because his location is undesirable, despite good
weather). The agent’s decision utilities fail to take into account that once the
first-period choice has been realized, his utility function will adjust to focus on
the second period, bring second-period realizations to heightened prominence.

More generally, if we compare the decision utility an agent derives from an
arbitrary consumption level z with the expected experienced utility that would
arise for z, we have that

V1(z1 + z2) 6= Es̃2V2(z2|z1) = Pr {V2(z2|z1) = 1} = Pr {s̃2 ≥ 0} . (15)

In this constrained utility-design problem, it is efficient to dissociate the V1

function, or decision utility, from the expectation of the V2(z2|z1) functions,
or experienced utilities. Indeed, the optimal decision utility V1 exaggerates
the consequences of the first period choice and so is steeper than is expected
experienced utility. Figure ?? illustrates.

2.6 Sophisticated Agents?

Evolution here has designed the agent to be naive. Why not make the agent
sophisticated? Why not simply let the agent make decisions on the basis of ex-
perienced utilities? To gain some insight into this question, consider the agent’s
first-period choice of z1. Evolution induces the agent to make an appropriate
choice of z1 by designing the agent to maximize the decision utility V (z1 + z2),
and hence calling on the agent to maximize expected utility, given by12

Es̃2V (z1 + z2) = Es̃2 [1z1≥z̃1(x∗1) + s2] = 1z1≥z̃1(x∗1).

This utility function induces fitness-maximizing choices of z1.
Suppose that instead, evolution designed the agent to maximize the expected

value of the correctly anticipated, expected experienced utility produced by the
sum z1 + z2. To examine this possibility, we first note that the second-period
utility function, given a value of z1, is given by (cf. (15))13

Es̃2V2(z̃2(z1, x2)|z1) = Pr[z̃2(z1, x2) + s2 > z̃2(z1, x∗2(z1))]
= Pr[s2 > z̃2(z1, x∗2(z1))− z̃2(z1, x2)]
= 1− g2(z̃2(z1, x∗2(z1))− z̃2(z1, x2))

When choosing x1, and anticipating an optimal choice of x∗2(z̃1(x)1)) in the
second period, the agent then has utility

Es̃2V2(z2|z1) = 1− g2(0) =
1
2
.

12Notice that this is a strictly increasing, continuous function of z1 on [0, 1]. Hence, while
the underlying rewards with which evolution motivates the agent are generated by a step
function taking only values 0 and 1, the induced expected utility is continuous.

13This is again a function that increases strictly and continuously in c.
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Expected experienced utility is thus independent of z1. Making the agent so-
phisticated, i.e., allowing the agents to make decisions on the basis of expected
experienced utility, leaves the agent with no first-period incentives at all.

Why does making the agent sophisticated destroy incentives? The naive
agent understands that a suboptimal choice of z1 will decrease utility. Should
such a suboptimal choice z1 be made, however, the agent’s second-period util-
ity function will adjust to the first-period choice z1 to still yield an expected
experienced utility of 1

2 . From evolution’s point of view, this adjustment plays
the critical role of enhancing second-period incentives. Should the agent be
sophisticated enough anticipate it, however, first period incentives evaporate,
with expected utility now being independent of the first-period choice.

The intuition behind this result is straightforward. Evolution must create
incentives in the first period, and naturally constructs decision utilities to pe-
nalize suboptimal choices. However, once a first-period alternative is chosen,
evolution must now induce the best possible second-period choice. She accord-
ingly adjusts the agent’s utility function in response to the first-period choice,
causing the optimal second-period choice to induce the same expected utility,
regardless of its first-period predecessor. Suboptimal first-period choices thus
lead to the same experienced utility in the second period as do optimal ones.
The decision-utility penalty attached to suboptimal choices in the first period
is removed in the second in order to construct better second-period incentives.

3 Discussion

3.1 Uncertainty

This section discusses the effect of having a random variable s̃1 in the first period
as well. The key to getting nice results is that z1 + z2 in the first period satisfy
a monotone likelihood ratio property with respect to x1.

3.2 Nonlinearity

What if, for example, the distribution of s2 depends on x1 (it may be sunnier
in California than Indiana), or a host of other complications?

3.3 Smooth Utility Functions

Consider now how it is possible to generate a more plausible logistic-shaped
utility function, with the addition of a new random shock that is known by the
individual, but cannot be conditionned upon by Nature. This shock is perhaps
too recently realized for utility adaptation to occur. For simplicity, we revert to
a linear formulation.

There are two periods 1, 2. In the first period, the individual must choose
b ∈ [0, 1] and, in the second, she must choose c ∈ [0, 1]. The first period choice
must be made in ignorance of a real valued random variable, r̃, which can be
decomposed into the sum of two further random variables as r̃ = s̃ + η̃. In the
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second period, the choice is made after the realization of s̃ is known, but still in
ignorance of η̃. Both r̃ and η̃ are symmetric and unimodal, with mode and mean
zero, for simplicity. The cdf’s of r̃ and η̃ are F and G, respectively, with pdf’s
f and g. Furthermore, r̃ has support contained in [−γ, γ] and η̃ has support
contained in [−δ, δ].

In addition, there is a further random shock t̃ which is identically and in-
dependently distributed across the two periods. It is assumed that t̃ has a dis-
tribution given by (t1, ..., tN ; p1, ..., pN ). Each realization of this shock is known
to the individual, but does not lead to utility adaptation. Perhaps the shock s̃,
which is adapted to, is realized substantially sooner than is the second period
shock t̃, which is not adapted to.

In the second period, the agent is endowed with a hedonic Bernoulli utility
function which conditions on the realizations s of the random variable s̃ and
on the realized choice of b. Suppose this utility is then Vs,b(u), which is strictly
increasing in fitness u. As before, Vs,b(u) ∈ [0, 1]. There is again a satisficing set
of the form [ĉ, 1] where

Eη̃Vs,b (b+ 1 + s+ η̃ + t)− Eη̃Vs,b (b+ ĉ+ s+ η̃ + t) = ε2. (16)

The individual randomizes uniformly over the satisficing set [ĉ, 1].
In the first period, the agent has hedonic Bernoulli decision utility function

V (u), which is strictly increasing in fitness u, where V (u) ∈ [0, 1]. The satisficing
set of choices will then be of the form [b̂, 1] where

Eη̃V (1 + c+ s+ η̃ + t)− Eη̃V (b̂+ c+ s+ η̃ + t) = ε1. (17)

In the first period, the individual randomizes uniformly over [b̂, 1].
Consider now the solutions to Nature’s optimization problems. For the sec-

ond period, we rewrite (16) as∫
Vs,b(b+ 1 + s+ η + t)g(η)dη −

∫
Vs,b(b+ ĉ+ s+ η + t)g(η)dη = (18)∫

Vs,b(u) (g(u− b− 1− s− t)− g(u− b− ĉ− s− t)) du = ε2

Define now ĉn = ĉ(tn) and un(s, b) (temporarily abbreviated to un) by the
requirement that

g(un − b− 1− s− tn) = g(un − b− ĉn − s− tn).

It is assumed now that δ is small enough that there is at most one value of tn
giving rise to nonzero terms of the form g(un−b−1−s−tn) or g(un−b−ĉn−s−tn)
in each range of fitness u. It is clear then that the optimal choice of Vs,b is
constant on [un−1, un), then jumps and is again constant on [un, un+1). Suppose
these values are Vn and Vn+1, respectively. It is also clear that optimal choice
of V1 = 0 and VN+1 = 1.
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The constraints in (18) become

G(un − b− ĉn − s− tn)−G(un − b− 1− s− tn) =
ε2

Vn+1 − Vn
.

Nature’s problem is to choose {Vn}N+1
n=1 so as to maximize

∑N
n=1 pnĉn. Notice

that ĉn depends only on Vn+1 and Vn and so is written ĉn(Vn+1, Vn). The first-
order conditions for Nature’s problem are then

pn
∂ĉn
∂Vn

+ pn−1
∂ĉn−1

∂Vn
= 0, n = 2, ..., N.

Using the envelope theorem, we have

∂ĉn
∂Vn

=
−ε2

g(un − b− ĉn − s− tn)(Vn+1 − Vn)2

∂ĉn−1

∂Vn
=

ε2
g(un−1 − b− ĉn−1 − s− tn−1)(Vn − Vn−1)2

so the first-order conditions become

pn
g(un − b− ĉn − s− tn)(Vn+1 − Vn)2

=
pn−1

g(un−1 − b− ĉn−1 − s− tn−1)(Vn − Vn−1)2
,

for n = 2, ..., N.
In the limit as ε2 → 0, we have ĉn → 1 and un(s, b)→ b+ 1 + s+ tn. In this

limit, we then have
Vn+1 − Vn
Vn − Vn−1

=
√

pn
pn−1

.

It follows that

∆Vn = Vn+1 − Vn = K
√
pn

and so Vn =
n−1∑
m=1

∆Vm = K

n−1∑
m=1

√
pm

where K =
1∑N

n=1

√
pn
.

For simplicity, we take this limit as ε2 → 0 before considering first stage choices.
Considering now the first stage, we rewrite (17) as follows—∫

V (2 + r + t)f(r)dr −
∫
V (b̂+ 1 + r + t)f(r)dr =∫

V (u)
(
f(u− 2− t)− f(u− 1− b̂− t)

)
du = ε1.

Define then b̂n = b̂(tn) and un by the requirement that

f(un − 2− tn)− f(un − 1− b̂n − tn).
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By an entirely analogous argument to that used for the second stage problem,
under the assumption that γ is sufficiently small relative to the gaps between
the {tn}Nn=1, it follows that the optimal choice of V is constant, with value Vn
on each interval [un−1, un), for n = 1, ..., N. In the limit as ε1 → 0, it follows
that b̂n → 1 and un → 2 + tn. Since it again follows that

Vn =
n−1∑
m=1

∆Vm =
∑n−1
m=1

√
pm∑N

n=1

√
pn

,

second period utility is simply first period utility translated horizontally by s.
This generalization also then preserves the key features of the original linear

case, as outlined at the end of Section 2. It is optimal to dissociate decision util-
ity V (u) from expected experienced utility Es̃Vs̃,1(u). Indeed, the present case
highlights a feature of all three cases considered. That is, decision utility V (u)
is a steeper function of fitness u than is expected experienced utility Es̃Vs̃,1(u).
This is a consequence of the optimal adaptation of utility. It is then advanta-
geous to exaggerate the actual consequences of the first period choice when this
choice is before you. Thus, the “focussing illusion” of Schkade and Kahneman
(1998) arises as evolutionarily optimal. At the same time, there is no necessary
loss from this “illusion”—the only loss of evolutionary efficiency derives from a
limited ability to discriminate. In the limit, as this discrimination error tends
to zero and evolutionary optimality obtains, the focussing illusion remains.

3.4 More Periods

This allows us to tell richer stories.

3.5 More Dimensions

Also good for telling richer stories.

3.6 Implications

The punchline goes here.
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