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Abstract

This paper embeds a repeated partnership game with imperfect monitoring into a
matching environment. We show that even though the underlying technology of produc-
tion exhibits no complementarities with respect to types of the partners, the presence of
imperfect monitoring leads to non-trivial matching predictions. In particular, if the agents’
effort is complementary to their own and their partners’ types (marginal products of ef-
fort are increasing in types), equilibrium matching structure is negative (i.e., the high-type
agents are matched with the low-type partners). If, on the other hand, effort and type are
(sufficiently) substitutable, the types are matched positively in the equilibrium.

1 Introduction

The question we ask in this paper is how equilibrium matchings are influenced by the presence
of moral hazard in the productive relationship ensuing the formation of a match. To answer
this question, we consider a model of a matching market, the participants of which are hetero-
geneous with respect to their levels of productivity. The productivity of each agent is public
information. Once a match is formed, the partners repeatedly choose unobservable effort lev-
els, which affect the probability of success in the current period. The outcome is publicly
observable. After the outcome is observed, the partners have the option to make transfers to
each other.

To isolate the affect of moral hazard, we assume that the underlying production technology
exhibits no complementarity. As is well-known (Becker (1973)), complementarity, by itself, has
implications for equilibrium matchings. Our assumption ensures that our model delivers no
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matching predictions when effort choices of partners are observable.
When imperfect monitoring (i.e. moral hazard) is introduced, it becomes necessary to en-

gage in inefficient punishments to induce effort by the partners. In Pareto optimal equilibria,
both the size and the frequency of these punishments are effected by the types of the matched
partners. This creates a non-additive interaction between the types and leads to complemen-
tarities in the amount of “efficiency loss” due to moral hazard. Since equilibrium matchings
maximize the total surplus and, hence, minimize the efficiency loss, this leads to non-trivial
matching predictions.

To better understand what drives the said complementarities, observe that in Pareto op-
timal equilibria punishments occur only after failure (low output). Therefore, it is always the
case that more productive agents (the ones who are more likely to produce successful output)
induce less frequent punishments. At the same time, the size of the punishment is related
to how much the deviation by one of the partners affects the probability of success: if the
change in this probability is small, the punishment should be big to deter the deviation. It
is important to note that this change in the probability of success measures the marginal
product of effort of the deviator. If it is increasing with the deviator’s productivity (i.e. the
agent’s effort and productivity are complementary), the matches of more productive agents
(who lead to smaller punishments) with the less productive ones (who punish more frequently)
would decrease the loss in the total surplus due to imperfect monitoring. This mechanism,
pushing towards negative assortative matching, would be reinforced further if the deviator’s
effort is also complementary to the partner’s productivity. This is because the less productive
partners, who, while playing the role of ‘monitors’, induce bigger punishments, should indeed
be matched with more productive agents, who punish more frequently, in order to minimize
inefficient punishments across the agents. Therefore, when agents’ effort is complementary to
their own as well as their partners’ types, equilibrium matching is negative assortative. Notice
that such complementarity would be a natural assumption if, for instance, ‘type’ stands for the
capital stock that an agent brings to a partnership, and ‘effort’ is the amount of (unobservable)
work hours put into operating the partnership’s capital.

Alternatively, it is possible that effort can be a substitute for the agent’s own as well his
partner’s type. This could occur if, for example, the ‘type’ measures experience and the more
experienced a partner the less important is his intensity of effort. In this case, higher type
agents induce larger size punishments (both as ‘monitors’ as well as potential deviators) and,
therefore, matching them with other higher type agents who punish less frequently, would help
reduce inefficient punishments across matches.

On the other hand, matching two high type agents together would increase the size of the
pair’s punishment in case of failure, thus making positive assortative matching less desirable.
We show that, when the noise is sufficiently small, the second effect is weak and substitutability
between effort and type leads to positive assortative matching. Intuitively, this is because the
effect on the size of the punishment alone would be important only if such punishment occurs
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frequently. The smaller the noise, the less frequent the occurrence of inefficient punishment is
and therefore the less important its size is.

The rest of this paper is organized as follows: Subsection 1.1 discusses the related litera-
ture, Section 2 introduces the model, Section 3 characterizes the Pareto frontier of the repeated
partnership game, Section 4 presents our main results concerning the matching implications of
moral hazard, Section 5 discusses the role of some our assumptions and possible alternatives
to them.

1.1 Related literature

Our paper contributes to the literature exploring the effects of frictions on patterns of match-
ing. This literature considers various departures from frictionless markets. For instance, it
is well-understood that in the presence of search frictions (introduced in Shimer and Smith
(2000)) complementarity in the underlying production technology is not sufficient for all equi-
librium matchings to be assortative. Similarly, coordination frictions (Shimer (2005)) weaken
Becker’s result (Becker (1973)) that complementarity in production technology leads to perfect
correlation between the types of matched pairs. In the presence of such frictions, there is posi-
tive but imperfect correlation. As studied in Legros and Newman (2002) market imperfections
such as borrowing constraints may also have an impact on the matching patterns.

Informational frictions also play a role in determining the equilibrium matching patterns.
In a dynamic model, Andersen and Smith (forthcoming) study the effect of symmetric but
incomplete information about productivity types on the patterns of matching and predict fail-
ure of assortative matching under certain conditions in spite of the complementarities in the
underlying production technology. Kaya (2008) shows that assortative matching fails in a
static two-sided matching market with two-sided asymmetric information. Another paper that
considers effect of private information on matching patterns is Damiano and Li (2007). Even
though the latter paper considers a mechanism design problem, similar forces lead the mech-
anism designer to induce a matching that involves a “coarser” assortative matching while the
underlying technology would imply that perfect assortative matching is optimal in the absence
of private information.

Another informational friction that may have an impact on equilibrium matching patterns
is unobservability of effort. This is the friction we focus on in this paper. A particularly related
paper is recent work by Franco et al. (2008) which studies the effect of moral hazard on how
a principal optimally allocates heterogenous agents into teams. Even though the details of
the two models differ1 the main message is similar: in an environment without inherent com-

1We are able to consider a wider range of technologies due to the simplification of having discrete effort
choice while they consider a specific technology with a continuum of effort levels. Also in Franco et al. (2008),
exogenous heterogeneity is in the cost of effort, while in our model, it is crucially in productivity. Since differing
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plementarities, moral hazard alone may lead to matching predictions. In both environments,
either positive or negative matching may occur, and both papers analyze which properties of
the underlying technology lead to each matching structure. One notable contrast between the
two papers is that the principal’s optimal matching pattern in Franco et al. (2008) differs from
the equilibrium matchings in our paper. In fact, it is easy to see that, in a given environment
where sufficient conditions for all equilibrium matchings to be positive assortative are satisfied,
the principal’s optimal matching is negative assortative and vice versa. This is due to the fact
that the principal, in choosing the matching pattern, minimizes the surplus accruing to the
agents which is the quantity that is maximized in an equilibrium in our sense.

Two other papers study the effects of moral hazard on matching patterns in a very dif-
ferent environment, where the entities matched together are not symmetric, and only one of
the matched partners exerts unobservable effort. Thiele and Wambach (1999) and Newman
(2007) study a problem of assigning heterogeneous in wealth, risk averse entrepreneurs to the
projects with different amount of risk. In the absence of frictions, wealthier (and hence less risk
averse) entrepreneurs would be assigned to riskier projects because they would require lower
compensation (which is independent of the project’s outcome when the effort is observable).
If, however, the entrepreneur’s effort cannot be observed, the opposite matching pattern may
arise if the utility is linear in effort. On the one hand, riskier projects - which reduce the prob-
ability of success - should now offer higher additional compensation for successful outcome in
order to induce a particular effort level. This extra compensation becomes even bigger if the
entrepreneur assigned to the riskier project has more wealth because richer agents have lower
marginal utility of income. Thus assigning richer entrepreneurs to riskier projects may become
too costly, and the frictionless assignment would not any more be sustained in the environ-
ment with unobservable effort.2 While our paper also emphasizes the role of moral hazard,
our question, as well as modeling environment, is very different from the ones studied in these
papers. In addition (and, perhaps, most importantly), the mechanism outlined in these papers
does not play any role in generating our results.

2 Model

We consider a one-to-one matching market for partnerships with N participants. The partici-
pants are heterogeneous with types from Θ ⊂ R. Types are public. Once a match is formed,
the participants engage in a repeated partnership game which is described below. We assume

effort costs lead to differing effort levels in Franco et al. (2008), the realized marginal productivities endogenously
vary across types. This connects the results of the two papers.

2Thiele and Wambach (1999) and Newman (2007) show that the properties of the utility function (namely, the
relationship between prudence and risk aversion) determine whether or not the frictionless assignment remains
optimal in the moral mazard environment.
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that once a matching is formed it never breaks up, therefore the matching stage of the game
is static. We consider the stable matchings of the market where the payoff possibilities of each
match is given by the equilibrium payoffs of the ensuing partnership game. Formal description
of the environment and definitions follow.

2.1 Technology

The partnership game played by a matched pair of types n,m ∈ Θ is the infinite repetition of
the following stage game: at the beginning of each period each partner chooses an effort level
ei ∈ {E, S}, i = 1, 2, where E stands for “effort” and S stands for “shirk”. Then an output
y ∈ Y = {y, 0} is realized, with y > 0. The choice of ei = 1 entails a cost c while choosing
ei = S is costless.

Effort choices and output probabilities are linked as follows:

(1) Prob(y = y) =





p(n,m) if e1 = e2 = E

q1(m,n) if e1 = E, e2 = S

q2(m,n) if e1 = S, e2 = E

0 if e1 = e2 = S

We assume p(n,m) = p(m,n) and q1(m,n) = q2(n,m). We also assume that p(·, ·), and qi(·, ·)
are twice continuously differentiable.

We make the following assumptions:

A 1 For any n and m, (p(m,n)− qi(m,n))ȳ > c and p(m,n)ȳ > 2c, i = 1, 2.

A 2 qi(m, n) ȳ
2 < c, i = 1, 2.

A 3 c
p(m,n)−q1(m,n) + c

p(m,n)−q2(m,n) > ȳ.

A 4 p(n,m), qi(m,n) are (weakly) increasing in m and n, i = 1, 2.

Assumption A1 implies that exerting effort is socially optimal for each agent in any match.
Assumption A2 implies that without transfers, it is not incentive compatible for any partner
to unilaterally exert effort. Under assumption A3 the output cannot be split in such a way
that in the stage game it is incentive compatible for both partners to exert effort. Assumption
A4 says that an increase in the type of a partner raises the probability of high output for any
combination of efforts and that high types have lower cost of exerting effort.
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2.2 The partnership game

In the stage game, after the realization of the output ȳ, the partners simultaneously make
transfers t1, t2 ∈ [0, ȳ]. Here, ti represents the net transfer that player i receives. We assume
that no transfers are made when y = 0. This assumption is equivalent to limited liability:
transfers cannot exceed the total output a partner is entitled to in one period. We assume
that each partner is entitled to half the output. Therefore, when the output is ȳ, the total
payment to player i is ȳ

2 + ti. We also assume that t1 + t2 = 0 . That is, the sum of the ex-post
payments to each of the players is equal to the total output. Throughout e refers to an effort
profile (e1, e2) and t refers to a profile of contingent transfers t1, t2.

In the repeated game, each player discounts the future with a common discount factor δ.
Each period, the realized output y and the transfers ti are publicly observable while the choice
of effort by each player is not. The public outcome h(τ) in period τ consists of the realized
output y(τ) ∈ Y and transfers t1(τ), t2(τ) ∈ [−y

2 , y
2 ]× [−y

2 , y
2 ]. A public history of length τ is

therefore hτ = (h(1), ..., h(τ)). Let Hτ represent the set of all public histories of length τ and
H =

⋃∞
τ=1Hτ

⋃{h0} represent the set of all public histories. Here h0 is the null history. A
pure public strategy for player i is a map σi : H → {E,S}×R2 that maps each public history
to a stage game strategy of player i, consisting of effort choice and output-contingent transfers.
We focus on the pure strategy public perfect equilibria (PSPPE) of this game.3 A PSPPE is
a public strategy profile σ = (σ1, σ2) such that σ1 is a best response to σ2 and vice versa.

Let Wmn(δ) represent the set of PSPPE payoff vectors of the repeated partnership game for
discount factor δ when the partners have types m and n, respectively. Also define the Pareto
frontier of Wmn(δ) by

Wδ
mn(v) = sup{w|∃v′ ≥ v such that (v′, w) ∈ Wmn(δ)}

Let Wmn = limδ→1 Wmn(δ) where the limit is with respect to the Hausdorff distance. Finally,
define the Pareto frontier of Wmn by

Wmn(v) = sup{w|∃v′ ≥ v such that (v′, w) ∈ Wmn}

That is, Wmn(v) is the maximum payoff that player 2 can get among equilibria where player
1’s payoff is at least v as δ → 1.

3Allowing for mixed strategies complicates the characterization of the equilibrium payoff set because if
qi > p/2 then a randomization between effort 0 and 1 eases the incentive constraints of partner −i, while
reducing the expected output. How these effects balance out depends on the parameters.
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2.3 The matching game

The description of the matching game follows Legros and Newman Legros and Newman (2007).
As also described at the beginning of the section, the economy includes N agents who are
heterogeneous with types from a compact set Θ ⊂ R. Let κ : N → Θ be the type assignment;
i.e. κ(i) is the type of agent i. The type of each agent is publicly known. With an abuse of
notation we use N to refer to the set of agents as well as the number of agents. In our context,
a matching is a one-to-one map M : N → N such that for any i, j ∈ N , i = M(j) if and only
if j = M(i). Each matching induces a “matching correspondence” M : Θ ⇒ Θ defined by

M(m) = {n|∃i, j ∈ N with κ(i) = m,κ(j) = n, i ∈ M(j)}

By positive assortative matching (PAM) we mean a matching M that induces a matching
correspondence M that satisfies:

∀m,n, m′, n′ : if m > n; m′ ∈M(m); and n′ ∈M(n) implies m′ ≥ n′.

By negative assortative matching (NAM) we mean a matching M that induces a matching
correspondence M that satisfies:

∀m,n, m′, n′ : if m > n; m′ ∈M(m); and n′ ∈M(n) implies m′ ≤ n′.

The achievable utility pairs of a match between two agents of type n and m, respectively, is
described by the function Wδ

mn(·) introduced in the previous subsection. Therefore, the payoff
pair (v, w) is feasible for a pair i, j if w ≤ Wδ

κ(i)κ(j)(v).

An equilibrium of the matching game is a matching M and a payoff assignment v∗ : N → R
such that (1) for all i, j with i ∈ M(j), (v∗(i), v∗(j)) is feasible given their types; and (2)
the matching is stable: for any i, j ∈ N , there exists no feasible payoff vector w such that
w(i) > v∗(i) and w(j) > v∗(j).

2.4 Complementarity and matching patterns

It is well-known that complementarity properties of the payoff possibilities of matches have
implications for the patterns of matching that can obtain in equilibrium. In this subsection,
we review some of these results that we cite in the rest of the paper.

Firstly, assume that for all m,n, the Pareto frontier of the achievable payoffs is of the form

Wmn(v) = −v + f(m,n)
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This is the “transferable utility” environment where the sum of payoffs to a matched pair is
constant along the Pareto frontier. In this case, for all equilibrium matchings to be positive
(negative) assortative it is sufficient that the function f(·, ·) satisfies increasing (decreasing)
differencesBecker (1973):

Definition 1 A function f : Θ×Θ → R exhibits increasing (decreasing) differences if for all
m > m′, n > n′:

f(m,n) + f(m′, n′)− f(m,n′)− f(m′, n) > (<) 0

The following is a convenient characterization of increasing (decreasing) differences property.

Remark 1 Topkis (1978) proves the following result: A twice continuously differentiable func-
tion f : Θ×Θ → R exhibits increasing (decreasing) differences if and only if ∂2f(m,n)

∂m∂n > (<)0.

In a more general environment, where the sum of payoffs to a matched pair may vary along
the Pareto frontier of achievable payoffs (non-transferable utility case), Legros and Newman
(2007) introduce the following generalization of increasing (decreasing) differences property.
Analogously, in such an environment, this property is sufficient for all equilibrium matchings
to be positive (negative) assortative.

Definition 2 A type-dependent utility possibilities frontier Wδ
mn : R→ R satisfies generalized

increasing (decreasing) differences if for all m > m′ and n > n′

∀v, v′ : Wδ
m,n′(v) = Wδ

m′,n′(v
′) ⇒Wδ

m,n(v) > Wδ
m′,n(v′)

3 Characterization of equilibrium payoffs of the partnership

game

Once a matching is formed, the partners in a match play a repeated partnership game de-
scribed in the previous section. As is well-known in this setting, the set of equilibrium payoff
vectors is difficult to characterize. However, it is possible to bound the equilibrium payoff set
using techniques introduced in Fudenberg et al. (1994). The following proposition is a direct
application of Fudenberg et al. (1994)’s result to our setting:

Proposition 1 Define

(2) η(m, n) = ȳ − c

p(m,n)− q2(m,n)
− c

p(m,n)− q1(m,n)
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For any m ≥ n, let Wmn(v) = −v + S(m,n) where

S(m, n) =p(m,n)ȳ − 2c−
min {(1− p(m, n))η(m,n), (p(m,n)− q1(m,n))ȳ − c}(3)

For any ε > 0 there exists δ̄mn(ε) < 1 such that for any δ > δ̄mn(ε) and for all v:

Wδ
mn(v) ∈ (Wmn(v)− ε,Wmn(v)]

Proof: See appendix.

Proposition 1 first introduces the Pareto frontier (W(·)) of a set that bounds the equilib-
rium payoff vectors and states that the true Pareto frontier of the equilibrium payoff vectors
converges to this bound as the discount factor δ approaches 1. The derivation of this frontier
is included in the Appendix. The proof of the convergence result follows from Fudenberg et al.
(1994) with minor modifications.

Note that for any pair of types m,n, the limit frontier Wmn has slope -1. Therefore, the
sum of payoffs for the two players for any payoff vector on the Pareto frontier is fixed. The
quantity S(m,n) introduced in (3) is the limit as δ → 1 of the maximum surplus obtainable
in a match between two partners of types m and n.

Each value pair in the set of equilibrium payoff vectors, including on the Pareto frontier,
is associated with a current action profile and outcome contingent continuation values. In
general, the associated current action profile may vary along the frontier. In our case, the
current action profile consists of an effort profile (e1, e2) ∈ {EE, ES, SE, SS} and a transfer
profile t1, t2. It turns out that, in our case, the current effort profile used to achieve the value
pairs on the Pareto frontier is fixed while the transfers vary. In fact, it is the possibility of
making transfers that leads to a Pareto frontier with slope -1.4 For a given matched pair, which
effort profile in the current period will be associated with value pairs on the frontier depends
on the monitoring technology which is associated with the conditional (on effort) probability
distribution of output.

Firstly, for comparison, note that if there were no moral hazard (perfect monitoring) it
would be possible to use trigger strategies to implement effort by both agents at no cost and
therefore all payoffs would be obtained with the current effort profile EE. In that case, the
total surplus would be given by:

(4) S∗(m, n) = p(m, n)ȳ − 2c

4Note that our limited liability assumption makes this outcome non-trivial. Without limited liability, the
monetary transfers would immediately imply a Pareto frontier of slope -1.
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When monitoring is imperfect, having EE as the first period effort profile entails an in-
centive cost in terms of continuation values. This is because the technology of production
does not allow for separately identifying deviators from the effort profile EE and therefore
giving incentives to both players to exert effort requires inefficient punishments. The size of
the expected inefficient punishment is given by (1− p(m,n))η(m,n).

The expression (1 − p(m,n))η(m,n) has a very intuitive interpretation, as suggested by
Abreu et al. (1991). It is the “expected monitoring cost”: inefficient punishments of size
η(m,n) occur when low output is realized, i.e. with frequency (1− p(m,n)). The size of the
punishment η(m,n) is the sum of the punishments required to satisfy the incentive constraints
of each agent. For instance, if there are no transfers, the size of the punishment for agent of
type m is

η1(m,n) =
c− (p(m,n)− q2(m,n))ȳ/2

p(m,n)− q2(m, n)

The expression in the numerator is the instantaneous gain obtained by agent type m from
deviating. On the other hand, the denominator measures by how much the frequency of
punishment increases in case of deviation. Therefore, the optimal punishment is such that
the expected cost of punishment is equalized with the expected gain. Therefore, the highest
surplus S(m,n)EE that can be achieved with effort profile EE in the first period is

SEE(m,n) = S∗(m,n)− (1− p(m,n))η(m, n)

On the other hand, if ES is the first period effort profile, incentives to the partner that
is supposed to exert effort can be given via transfers between the partners without reducing
the total surplus. However, in this case, the effort profile in the first period is not efficient
and therefore leads to a reduction of (p(m,n)− q1(m,n))ȳ − c in expected surplus relative to
the first best. Therefore, the highest surplus SES(m,n) that can be obtained, when the first
period effort level is ES is

SES(m,n) = S∗(m,n)− (p(m,n)− q1(m,n))ȳ − c

And similarly, the analogous expression for SE is

SSE(m,n) = S∗(m,n)− (p(m,n)− q2(m,n))ȳ − c

Clearly, if m ≥ n then SES(m,n) ≥ SSE(m,n). Then, the level of the Pareto frontier is
S(m, n) = max{SEE(m, n), SSE(m,n)}, which is the expression given in (3).

10



4 Equilibrium matching patterns

4.1 Convergence

While the limit frontier Wmn(·) of equilibrium payoffs of the repeated partnership game has
slope -1 (and, therefore, utility is transferable), this is not necessarily the case for the Pareto
frontiers when δ < 1. In this Section we first establish that if the limit frontier Wmn(·) satisfies
increasing (decreasing) differences, then the frontier Wδ

mn(·) satisfies generalized increasing
(decreasing) differences for large enough δ.

Lemma 1 Assume S(m,n) exhibits (decreasing) differences. Then there exists δ̄ < 1 such
that for all δ > δ̄, Wδ

mn(·) exhibits generalized increasing (decreasing) differences.

Proof: Let T = {κ(i)|i ∈ N}. That is T is the set of types of the N agents in the economy.
First assume increasing differences, i.e.

(S(m,n)− S(m,n′))− (S(m′, n)− S(m′, n′)) > 0

Let ε = inf{S(m, n) + S(m′, n′)− S(m,n′)− S(m′, n′)|m > m′, n > n′ ∈ T} and ε∗ = 1
4ε. For

each m, n there exists δmn(ε∗), such that for all δ > δmn(ε∗), supv |Wδ(v)−W(v)| < ε∗. Now,
let δ̄ = max{δ̄mn(ε∗)|m,n ∈ T}. Since T is finite, ε∗ > 0 and δ̄ < 1.

Take δ > δ̄, m > m′, n > n′ and v, v′ such that

Wδ
mn′(v) = Wδ

m′n′(v
′)

Then,
Wmn′(v)−Wm′n′(v′) > −2ε∗

Moreover,
Wδ

mn(v)−Wδ
m′n(v′) > Wmn(v)−Wm′n(v′)− 2ε∗

Also,

(Wmn(v)−Wm′n(v′))−(Wmn′(v)−Wm′n′(v′)) = (S(m,n)−S(m′n))−(S(m,n′)−S(m′, n′)) ≥ 4ε∗

The last three inequalities together imply

Wδ
mn(v)−Wδ

m′n(v′) > 0
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which establishes generalized increasing differences. The proof for generalized decreasing dif-
ferences is analogous.2

4.2 Matching predictions

In what follows, to ensure that there is no inherent positive or negative complementarity in the
production technology which would bias equilibrium outcomes towards assortative matching,
we make the following assumption:

A 5 ∂2p(m,n)
∂m∂n = 0, ∂2q1(m,n)

∂m∂n = 0 and ∂2q2(m,n)
∂m∂n = 0

Remark 2 Recall that in the model with perfect monitoring the total surplus is given by (4).
Therefore, Assumption A5 implies that the model with perfect monitoring would not generate
any matching predictions; i.e. in the model without moral hazard any matching can be an
equilibrium matching.

In the light of Lemma 1, it is sufficient to analyze whether S(m,n) has increasing or decreasing
differences in order to understand the equilibrium matching patterns. Recall that, when m ≥ n

S(m, n) =p(m,n)ȳ − 2c−
min {(1− p(m, n))η(m,n), (p(m,n)− q1(m,n))ȳ − c}

where
η(m, n) = ȳ − c

p(m,n)− q2(m,n)
− c

p(m,n)− q1(m,n)

When characterizing the equilibrium matching patterns, it is useful to distinguish between
two cases5:

1. (low precision monitoring) ∀m,n: (1− p(m,n))η(m,n) > (p(m,n)− q1(m,n)

2. (high precision monitoring) ∀m,n: (1− p(m,n))η(m,n) < (p(m,n)− q1(m, n)

As discussed in Section 3, under the first case the first period effort profile for any matched
pair will be ES, while under the second case, it will be EE. The first case will occur when

1−p(m,n)
p(m,n)−qi(m,n) is large enough for each m,n and i = 1, 2. Notice that 1 − p(m,n) is the
probability of inefficient punishment if both partners follow their first period equilibrium effort
level E. Also, p(m,n)−qi(m,n) is by how much this probability increases if partner −i shirks.

5We do not analyze the cases where different pairs of types may fall under different cases.
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Therefore, 1−p(m,n)
p(m,n)−qi(m,n) is the inverse of the percentage change in the probability of inefficient

punishment in case of deviation by one of the partners from EE. When this change is small,
i.e. 1−p(m,n)

p(m,n)−qi(m,n) is large, the partners are willing to deviate from EE and therefore, incentive
costs associated with EE in the first period (i.e. size of the inefficient punishment) has to
be large. When it is large enough, this loss of efficiency is larger than the loss of efficiency
from choosing the sub-optimal effort profile ES in the first period. By the same token, when

1−p(m,n)
p(m,n)−qi(m,n) is large enough for each m,n and i = 1, 2, the second case will occur.

4.2.1 Low precision monitoring

In this case,
S(m,n) = max{q1(m,n), q2(m,n)}ȳ/2−min{c, c}

It is easy to see that in this case, positive assortative matching cannot be an equilibrium
matching. To see this consider four participants of the matching market. If the top two types
are matched with each other, one of them will be idle. Instead, one of the bottom two types
will exert effort. On the other hand, if each of the top two types is matched with one of the
bottom two types only the bottom two types will be idle. This arrangement will maximize the
total surplus and hence will be stable, while positive assortative matching will not. In fact, it
is possible to show that, any matching where the top half of the types are randomly matched
with the bottom half of the types will be an equilibrium outcome.

4.2.2 High precision monitoring

Throughout this subsection we assume that

A 6 For all m ≥ n :
[
−ȳ +

c

p(m, n)− q2(m,n)
+

c

p(m, n)− q1(m, n)

]
< p(m,n)− q1(m,n) + c

In this case,

S(m,n) = p(m,n)− 2c︸ ︷︷ ︸
S∗(m,n)

− (1− p(m,n))︸ ︷︷ ︸
frequency

[
−ȳ +

c

p(m, n)− q2(m, n)
+

c

p(m,n)− q1(m, n)

]

︸ ︷︷ ︸
size

As remarked above, S∗(m,n) exhibits no complementarities under our assumption. There-
fore, the possibility of complementarity lies in the potential interaction of types of the two
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partners via the monitoring technology which determine the frequency and size of the ineffi-
cient punishment. In this subsection we take a closer look at this interaction.

First notice that by assumption A4, the frequency of inefficient punishment— which occurs
only when the output is low—is decreasing in the types of both partners. The effect of a change
in a partner’s type on the size of the punishment is less straightforward. To see how this effect
transpires, it is sufficient to analyze the term c

p(m,n)−q2(m,n) . This term determines the size of
the punishment that will accrue to partner 1 in case of low output, i.e. this is the surplus loss
to ensure partner 1 has incentive to exert effort. Therefore, in relation to this term, partner 1
of type m is “being monitored” while partner 2 of type n is “monitoring” him. The case where
partner 1 is a monitor and and partner 2 is being monitored can be analyzed analogously.

How this term responds to changes in the type of the partners is determined by how the
term p(m,n)− q2(m,n) responds to such changes. Notice that, the latter term is the marginal
product of effort for partner 1 when partner 2 is exerting effort. If this term is increasing in
type we say that type and effort are complements. If it is decreasing we say that type and
effort are substitutes. Next, we take up these two cases separately.

Effort and type are complements:

In this part we make the following assumption:

A 7 For any m, n, ∂p(m,n)
∂n − ∂q1(m,n)

∂n > 0 and ∂p(m,n)
∂m − ∂q1(m,n)

∂m ≥ 0.

Under assumption A7, effort is complementary to type: it is more productive when the agent
is of higher type or is matched with a higher type partner. In this case, one can interpret
‘type’ as capital that the agent brings to the match and effort is labor (where capital and labor
have some degree of complementarity, as in Cobb-Douglas production function). In general,
any production function (determining expected output as a function of effort and types) of the
form Fmn(e1, e2) = F0(e1, e2) + mF1(e1, e2) + nF2(e1 + e2), where F1 and F2 are increasing in
both arguments satisfies this assumption. In particular, a canonical technology that fits in this
framework is where

p(m,n) = m + n + a0; q1(m,n) = m + a1 q2(m,n) = n + a2

The following proposition establishes that when the first period effort profile is EE, the
equilibrium matching is positive assortative under the additional assumption A7.

Proposition 2 Suppose that assumptions A1-A7 hold. Then, there exists δ̄ < 1 such that for
all δ > δ̄, all equilibrium matchings are negative assortative.
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Proof: By Lemma 1, it suffices to show that Wmn(v) has strictly decreasing differences in
(m,n). First, recall that

Wmn(v) = −v + p(m,n)ȳ − 2c− (1− p(m, n))η(m, n)

whenever (p(m,n)−q1(m,n))ȳ−c < (1−p(m,n))η(m,n). Thus, by Assumption A5, it suffices
to verify that

(5)
∂2(1− p(m,n))η(m,n)

∂m∂n
> 0 for all m and n.

Recall that

η(m, n) =
c(m)− (p(m,n)− q2(m,n))ȳ/2

p(m,n)− q2(m,n)
+

c(n)− (p(m,n)− q1(m,n))ȳ/2
p(m,n)− q1(m,n)

,

which can be simplified as

η(m, n) =
c(m)

p(m,n)− q2(m,n)
+

c(n)
p(m,n)− q1(m,n)

− ȳ

Since p(m,n) = p(n, m) and q2(m,n) = q1(n,m), (5) holds when 1−p(m,n)
p(m,n)−q1(m,n)c(n) satisfies

strict increasing differences. For brevity, drop the reference to m and n, the subindex in q1

and denote the corresponding partial derivatives by pm, pn, qm and qn. Then

∂2 1−p
p−q c

∂m∂n
=

1
(p− q)3

[
pm(pn − qn) + pn(pm − qm) + 2(pm − qm)(pn − qn)

1− p

p− q

]
c+

+
1− p

(p− q)2

[
qm − pm

1− q

1− p

]
c′(n)

(6)

The above expression is strictly positive since, pn − qn > 0 and pm − qm ≥ 0 (by assumption
A7), c′(n) < 0 (by assumption A4) and p > q implying that 1−q

1−p > 1. Hence, Wmn(v) has
strictly decreasing differences in (m,n). 2

The intuition behind Proposition 2 is as follows. Equilibrium matching pattern max-
imizes the total surplus. Hence, it minimizes the sum of the costs of incentive provision
(1− p(n,m))η(m,n) across matched pairs. On the one hand, the frequency of inefficient pun-
ishments 1 − p(n,m) is decreasing in the types of both partners. On the other hand, the
size of the punishment η(m,n) is inversely related to p(m, n) − q1(m,n), which is increasing
in m and n by assumption A7. The monotonicity in n means that higher types are “better
monitors” because the deviations of their partners have larger effects on the probability of
success and, therefore, are more easily detectable. By the same token, the monotonicity of
p(m,n)− q1(m,n) in m implies that higher types are easier to monitor.
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Since the frequency and the size of the punishments are simultaneously influenced by the
types of both partners, the effect of the interaction of the two types on S(m,n) can be decom-
posed into four parts:

• First, the types that are harder to monitor (i.e. needing larger size punishments) should
be matched with the types that lead to less frequent punishments. This is the effect of
the monitored agent’s own type on η(m, n) and his partner’s type on (1− p(m,n)).

• Second, the types that are better monitors (i.e. who reduce the size of necessary inefficient
punishment) should be matched with the types that lead to more frequent punishments.
This is the effect of the monitored agent’s own type on (1 − p(m,n)) and his partner’s
type on η(m,n).

• Third, the types that are harder to monitor should be matched with better monitors.
This is the effect of both types on η(m,n).

• Fourth, the types that lead to more frequent punishments should be matched with types
that lead to less frequent punishments. This is the effect of both types on 1− p(m,n).

Under assumption A7, the first three effects simultaneously push the equilibrium matching
towards negative assortative, because higher types are better monitors, are easier to monitor
and lead to less frequent punishments. The fourth effect, however, does not play any role
because, by assumption A5, there is no complementarity in p(m,n).6

Effort and type are substitutes

In this part, we make the following assumption:

A 8 For any m, n, ∂p(m,n)
∂n − ∂q1(m,n)

∂n < 0 and ∂p(m,n)
∂m − ∂q1(m,n)

∂m ≤ 0.

If assumption A8 holds, effort substitutes for the agent’s type. This could happen, for instance,
if ‘type’ represents the amount of accumulated knowledge, effort is exerted to generate more
knowledge accumulation and the probability of success is a decreasing returns to scale function
of total knowledge. Notice that for the result in Proposition 2 to obtain it is crucial that
higher types are better monitors and are easier to monitor. If, however, this assumption
is reversed (i.e., A7 is replaced with A8), the first and second effects push towards positive
assortative matching while the third effect continues to push towards negative assortative

6In the proof of Proposition 2 the first three effects correspond (in the same order) to the three terms in the
right hand side of (6).
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matching. Therefore, if the degree of substitutability between effort and type is sufficiently
large, positive assortative matching could obtain in equilibrium. Proposition 3 gives sufficient
conditions for this to happen.

Proposition 3 Suppose that assumption A1-A6 and A8 hold. Then, there exists δ̄ < 1 such
that for all δ > δ̄, all equilibrium matchings are positive assortative if and only if the following
two condition holds for any m and n:

2∂(p(m,n)−q1(m,n))
∂m

∂(p(m,n)−q1(m,n))
∂n

1−p(m,n)
p−q1(m,n) < −∂p(m,n)

∂m
∂(p(m,n)−q1(m,n))

∂n −∂p(m,n)
∂n

∂(p(m,n)−q1(m,n))
∂m

Proof: By Lemma 1, it suffices to verify that Wmn(v) has strictly increasing differences in
(m,n), which is true when (1− p(m,n))η(m,n) has strictly decreasing differences. Condition

(ii) in the Proposition stipulates that
∂2 1−p

p−q

∂m∂n defined in (6) is strictly negative, implying strict
decreasing differences of (1− p(m,n))η(m,n). 2

Observe that condition (3) in Proposition 3 holds if the ratio 1−p(m,n)
p−q1(m,n) is sufficiently close

to 0, i.e. when the amount of noise is sufficiently small.

Remark 3 If the cost of effort is type-dependent, with lower types having higher costs of
effort, the results of the case when type and effort are complementary are strengthened. This
is because the size of the punishment in this case decreasing even faster with the type of
the monitored partner. On the other hand, when type and effort are substitutes, the effect
of differing costs in this manner goes the opposite direction. In this case, for the results to
continue to hold it is necessary that the cost is decreasing sufficiently slowly with type.

5 Discussion

Our model features dynamic interaction and allows the agents to transfer utility either through
transfers of the current-period output or through implementation of asymmetric effort. In this
section we investigate how each of these features affects matching predictions. In short, we
find that (a) all our results would hold in a static model, in which the partners can commit
to money burning, (b) if the utility cannot be transferred at all (i.e. neither through output
sharing nor through asymmetric effort assignment) then the equilibrium matching structure is
positive, (c) if the utility can be transferred only using the transfers of instantaneous output
then all our results hold, implying that the matching predictions in our model are not driven by
the possibility of exerting different efforts (neither in the current nor in the future periods), and
(d) if instantaneous output cannot be transferred from one agent to another but asymmetric
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actions can be taken, then the equilibrium matching structure can switch from negative to
positive, implying that non-transferability of output favors positive matching.

5.1 The role of dynamic interaction

As emphasized repeatedly, the limit Pareto frontier of the payoff set of the repeated partnership
game has a very simple form, namely Wmn(v) = −v + S(m,n). In this section, we introduce
an alternative game, which leads to the same Pareto frontier of payoffs (and therefore same
matching predictions) while also preserving the underlying intuition regarding the monitoring
technology.

Consider a model in which once a match is formed the partners play a static game. In this
game, they simultaneously choose to exert effort or shirk. The production technology is as in
the stage game of the repeated partnership game. Assume also that the agents can commit
to output-contingent compensation profiles, but effort choices are not contractible. Finally
assume that the compensation schedules need not be “budget balancing”: the partners can
make transfers to a third party (in other words “burn money”).

It is worth making a couple remarks before establishing the equivalency of this model to
the repeated partnership game:

• Firstly, if the agents cannot commit to any transfers, under assumptions A2 and A3,
the unique equilibrium of this game involves both partners choosing to shirk. Therefore,
in that case there are no matching predictions.

• Secondly, if the agents can commit to transfers but cannot commit to money burning,
then the equilibrium set expands. However, due to assumption A3, independent of the
monitoring technology, effort combination EE is never part of an equilibrium. In this
case, the Pareto frontier for this game is identical to the Pareto frontier of the repeated
partnership game with “imprecise monitoring” technology.

Let r̄i, ri (for i = 1, 2) be the total payment (output he is entitled to and transfers) to
partner i when the output is ȳ and 0, respectively. First, note that in the one-shot game, it is
obvious that the Pareto frontier has slope -1. What remains to do is to compute the maximal
total payoff.

18



Consider the following problem:

SEE(m,n) = max
r1,r2,r1,r2

p(m,n)(r1 + r2) + (1− p(m,n))(r1 + r2)− 2c

s.t. (p(m,n)− q1(m,n))(r2 − r2) ≥ c

(p(m,n)− q2(m,n))(r1 − r1) ≥ c

r1 + r2 ≤ y

r1 + r2 ≤ 0

(7)

Here the first and second constraints are the incentive constraints for both partners, and the
last two conditions state that the total compensation cannot exceed the realized output.
It is straightforward to verify that the solution to (7) satisfies the first three constraints with
equality, which implies that

r1 + r2 = y − c

p(m,n)− q1(m,n)
− c

p(m,n)− q2(m,n)
< 0

where the last inequality holds by A3. Therefore the last constraint in (7) remains slack,
meaning that it is necessary for the partners to commit to burning money. It follows that the
maximal surplus obtained from (7) is given by

SEE(m, n) = y − 2c− 1− p(m,n)
p(m,n)− q1(m,n)

c− 1− p(m,n)
p(m,n)− q2(m,n)

c,

which obviously coincides with SEE(m,n) derived for the repeated partnership game..
Similarly, if only the more productive partner works (m ≥ n) then the maximum sum of

the equilibrium payoffs is given by

SES(m,n) = max
r1,r2,r1,r2

q1(m,n)(r1 + r2) + (1− q1(m,n))(r1 + r2)− c

s.t. (p(m,n)− q1(m,n))(r2 − r2) ≤ c

q2(m,n)(r1 − r1) ≥ c

r1 + r1 ≤ y

r1 + r2 ≤ 0

(8)

Obviously, in this case the incentive constraints will be slack, but the last two conditions will
be satisfied with equality. Therefore, the value function of this problem is

SES(m,n) = q1(m,n)ȳ − c

which coincides with the corresponding surplus derived for the repeated partnership game.
This observation is arguably not very surprising. The money burning in this model corre-
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sponds to moving to sub-optimal equilibria as a punishment in the repeated partnership game.
Also, the dynamics of the repeated partnership game provides incentives for the partners to
make transfers, which would not be possible in the one-shot version without the assumption
of explicit commitment. It is also important to note that the frontier obtained for the game
introduced in this section is identical only to the limiting frontier of the repeated partnership
game as δ → 1. For δ < 1 the frontier for the repeated partnership game will be different due
to the impossibility of giving incentives to the partners to make transfers when their promised
value is low enough.

5.2 The role of transferability

So far, we have been considering the case where asymmetric effort choices are possible and
monetary transfers between partners are allowed. Both of these aspects can be considered
as contributing to the degree of transferability of utility. On the one hand, asymmetric effort
choices allows utility to be transferred through moving to equilibria that has one partner work-
ing more than the other. On the other hand, with quasilinear preferences as here, monetary
transfers are obvious channels for utility transfers.

We have so far been assuming full transferability through both of these channels. In this
section we explore how the results are effected when transferability is restricted. We first
consider the extreme case where no transfers are allowed and the partners play a strongly
symmetric equilibrium (after any history they choose identical effort levels). Then we consider
the cases where only transfers through output sharing are allowed and where only transfers
through asymmetric effort levels are allowed.

5.2.1 Non-transferable utility

First, consider a team of partners of the same type. The equilibrium is obtained by trigger
strategies: the agents play (E, E) and if low output is realized, they switch to (S, S) forever
with probability α. Identical partners obtain the same equilibrium payoff v∗ which satisfies

(9) v∗ = p
y

2
− c− δ

1− δ
(1− p)αv∗

The incentive constraint for each partner is

(10) v∗ ≥ q
y

2
− δ

1− δ
(1− q)αv∗
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Obviously, α is chosen to make the incentive constraints bind, and the equilibrium value v∗ is
found by substituting this value of α into (9):

(11) v∗ =
y

2
− c− 1− p

p− q
c and α =

1− δ

δ

c− (p− q)y
2

(p− q)y
2 − (1− q)c

Clearly, v∗ is decreasing in q and positive value v∗ cannot be sustained in the equilibrium if q

is sufficiently close to p. Also, the probability of inefficient punishment α increases with q (as
monitoring technology becomes weaker).

Similarly, in a team where partners have different types, the equilibrium values (v∗, w∗) must
satisfy:

v∗ = p
y

2
− c− δ

1− δ
(1− p)αv∗

w∗ = p
y

2
− c− δ

1− δ
(1− p)αw∗

(12)

subject to the incentive constraints

v∗ ≥ q2
y

2
− δ

1− δ
(1− q2)αv∗

w∗ ≥ q1
y

2
− δ

1− δ
(1− q1)αw∗

(13)

Note that in this case one of the incentive constraints would be left slack. For example, if
q1 < q2 then the second agent is a weaker monitor, hence the incentive constraint for the first
agent binds, and the incentive constraint for the second agent remains slack. In this case,

v∗ = w∗ =
y

2
− c− 1− p

p−min(q1, q2)
c

Correspondingly, the value of the high productivity agent decreases if he is matched with the
less productive partner, implying that the equilibrium matching is positive assortative.

If, on the other hand, there are no differences in productivity (i.e. q1 = q2 and p is the same
across matches), but there is heterogeneity in costs of effort, then the incentive constraint for
the agent with higher cost binds, and the one for the agent with the lower effort cost holds with
strict inequality. Correspondingly, if c1 > c2 then v∗ is exactly the same as the one obtained
in a homogeneous partnership of type c1, but w∗ is lower than what the partners of type c2

would have achieved had they formed a match with each other. In this case in the equilibrium
agents are also sorted positively, thereby avoiding unnecessary losses in the value for c2-type
agents.

To sum up, if the utility cannot in any way be transferred from one partner to another (as
in a strongly symmetric equilibrium above), the positive assortative matching would be the
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Figure 1: The shape of the limit Pareto frontier Wmn(v) without monetary transfers under
imprecise (left) and precise (right) monitoring

property of the equilibrium.

5.2.2 Utility transferable through asymmetric effort assignment

Now suppose that the agents cannot implement monetary transfers (i.e. the total output must
be equally shared in every period) but can choose asymmetric effort assignments. In this case,
we can use the methodology in Fudenberg, Levine and Maskin (1994) to characterize the limit
Pareto frontier Wmn(v) of the dynamic game.

Figure 1 illustrates the possible shapes of Wmn(v). First, observe that in the absence
of moral hazard any convex combination of the stage game payoffs could be achieved in the
equilibrium. Thus the set of equilibria would be given by a subset of a positive quadrangle
bounded by the red dashed lines. When monitoring is imperfects and δ is large, (E, S) and
(S, E) can still be sustained in the equilibrium because they require incentive provision for
only one of the partners. However, the payoffs associated with the current action (E, E) would
move inside the first best equilibrium set. Namely, the payoffs in this case are given by

vEE = p
y

2
− c

︸ ︷︷ ︸
first best

−(1− p)
(

c

p− q2
− y

2

)

wEE = p
y

2
− c

︸ ︷︷ ︸
first best

−(1− p)
(

c

p− q1
− y

2

)
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When monitoring is imprecise (either p − q1 or p − q2 is sufficiently small), the cost of
providing incentives to both agents is too large, and in all the equilibria on the limit Pareto
frontier only one of the partners exerts effort in the current period (see left plot of Figure 1).
Note that the slope of the limit frontier in this case is different from -1 if the partners are of
different types, implying that the utility is not fully transferable. It turns out, however, that
the generalized increasing differences condition (introduced in Legros and Newman 2007) is
satisfied if there are only two possible types of agents (high and low).7 This implies that the
high types would be matched with each other.8 In contrast, in our main model where monetary
transfers are possible, the high types are matched with the low types if the monitoring is
sufficiently noisy.

If however, the monitoring is sufficiently precise (as on the right plot of Figure 1), the equi-
libria on the limit Pareto frontier are obtained by randomizing between (E, S) and (E, E) (the
left branch) or between (E,E) and (S, E) (the right branch) in the current period. Unfortu-
nately, in this case we were not able to derive the set of conditions under which the limit frontier
satisfies generalized increasing/decreasing differences. Thus we performed a series of numerical
exercises and found that non-transferability of monetary payoffs may change the equilibrium
matching structure from negative to positive. For example, this occurs in the model with two
types and additive productivity (q1(m,n) = αm, q2(m,n) = αn and p(m, n) = αm +αn) for all
the parameter values we tried. At the same time, we were not able to construct an example
for which positive matching occurs in the benchmark model, but the generalized increasing
differences condition is violated after the monetary transfers are removed. This suggests that
shutting down monetary transfers in our main model makes positive assortative matching more
likely, though of course more rigorous analysis is required to claim it with certainty.

5.2.3 Utility transferable through output sharing

In this subsection we characterize the frontier of the game when attention is restricted to
strategies that lead to the same effort level by both partners after any history, while still
allowing monetary transfers. We show that this frontier also converges to a limiting frontier
with slope −1 with level equivalent to the level SEE(m,n) derived for the repeated partnership
game with asymmetric strategies. Recall that this is the maximum level of surplus achievable

7So far we have not been able to prove that the generalized increasing differences condition holds for more
than two types, though we were not able to find a counterexample in which it is not satisfied.

8Notice also that, under imprecise monitoring, the frontier becomes steeper as the type of the first partner
(whose value v is on the horizontal axis) increases. This means that higher types are more capable to transfer
utility to their partners. Legros and Newman (2007) derive the set of conditions sufficient for generalized
increasing differences to hold. One of them requires that the degree of transferability is increasing in type. Thus
it is not surprising that we find that generalized increasing differences is satisfied in this case.
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when the first period effort combination is EE.
We do this by establishing that for each κ > 0 the set

Ω(κ) = {v, w|v + w < SEE(m,n)}
⋃
{v, w|v + w = SEE(m,n); v, w ≥ κ}

is self-generating for large enough δ. Moreover, we show that the set can be obtained using
symmetric effort levels only.

To see this take v, w ∈ Ω. Choose continuation values x̄1, x1, x̄2, x2 such that the following
incentive compatibility and promise keeping constraints are satisfied with equality. These will
fully determine the continuation values as a function of t:

PK1 v = (1− δ)[12 ȳ − t− c] + δ[px̄1 + (1− p)x1]

PK2 w = (1− δ)[12 ȳ + t− c] + δ[px̄2 + (1− p)x2]

IC1 v = (1− δ)[12 ȳ − t] + δ[q2x̄1 + (1− q2)x1]

IC2 w = (1− δ)[12 ȳ + t] + δ[q1x̄2 + (1− q1)x2]

The continuation values are:

x1 = v
δ + 1−δ

δ [c− p
p−q2

c]

x̄1 = v
δ + 1−δ

δ [c + 1−p
p−q2

c− ȳ
2 − t]

x2 = w
δ + 1−δ

δ [c− p
p−q1

c]

x̄2 = w
δ + 1−δ

δ [c + 1−p
p−q1

c− ȳ
2 + t]

It remains to show that for some t these continuation values are from the set Ω(κ). First
we note that

x̄1 − x1 =
[

1−δ
δ

c
p−q2

− ȳ
2 + t

]

x̄2 + x2 =
[

1−δ
δ

c
p−q1

− ȳ
2 − t

]

Therefore,

[x̄1 + x̄2]− [x1 − x2] =
1− δ

δ

[
c

p− q2
+

c

p− q1
− ȳ

]

By assumption A3, this quantity is strictly positive. Second we note that

x̄1 + x̄2 = w+v
δ − 1−δ

δ

[
ȳ − 2c− 1−p

p−q1
c− 1−p

p−q2
c
]

= v+w
δ − 1−δ

δ K ≤ K

Therefore, if v + w < K, then we are done. Assume that v + w = K. Then x̄1 + x̄2 = K.
Therefore, we need to argue that for some t, x̄1 ≥ κ and x̄2 ≥ κ. But this follows from the

24



fact that v, w ≥ κ and by appropriate choice of t x̄1 ≥ v and x̄2 ≥ w.
The argument so far ignores the incentives to make the observable transfers t. However,

for large enough δ any such transfer will be incentive compatible.

6 Appendix: Characterizing the Pareto frontier of the repeated

partnership game payoffs

In what follows, for economy of notation we drop reference to types m,n when obvious from
context.

6.1 Bounding the equilibrium payoff set: methodology

In the Fudenberg et al. (1994) characterization, the bounding set that is shown to be the
limit of the set of equilibrium value vectors is the intersection of the largest half-spaces in
each direction whose boundary values can be decomposed on these hyperplanes. A half space
H(λ, k) with direction (λ, 1− λ) and level k is the set {v ∈ R2|λv1 + (1− λ)v2 ≤ k}. Also for
brevity, define ui(e, t) = −ciei + E{y

2 + ti(y)|e} where E{·|e} represents the expectation taken
with respect to y using the distribution induced by the effort profile e.

The following definition is adopted from Abreu et al. (1990) and Fudenberg et al. (1994)
for our setting:

Definition 3 A value vector v = (v1, v2) is decomposable on a set W ∈ R2 if there exists an
effort profile e, transfers t and continuation value vectors γ(y) ∈ W for each y ∈ {ȳ, y} such
that

(PK) vi = (1− δ)[ui(e, t) + δE{γ(y)|e}

(IC) vi ≥ (1− δ)[ui(e′i, e−i, t) + δE{γi(y)|e′i, e−i} for any e′i ∈ {0, 1}

The first condition is the promise keeping condition: it guarantees that the current payoff
and the expected continuation payoff average to v. The second condition is the standard
incentive compatibility condition. Strictly speaking, the definition should also include the
conditions stipulating that the transfers are also incentive compatible. That is,

(14) ∀y : (1− δ)ti(y) + δγi(y) ≥ 0
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The constraint takes this form because the transfers are observable and deviations can be
punished by switching to the worst equilibrium with payoffs (0, 0). Notice that as δ → 1, (14)
becomes γi(y) ≥ 0. Since we are characterizing the limit case, in what follows, we ignore this
constraint keeping in mind that v, w ≥ 0.

The largest half-space in direction λ whose boundary values can be decomposed on itself
by effort profile e and transfers t is H(λ, k∗(λ, e, t)) where k∗(λ, e, t) is characterized by the
following linear programming problem:

(15) k∗(λ, e, t) = max
x

λ[u1(e, t) + Ey{x1(y)|e}] + (1− λ)[u1(e, t) + Ey{x2(y)|e}]

subject to

u1(e, t) + Ey{x1(y)|e}] ≥ ui(e′i, e−i, t) + Ey{xi(y)|e′i, e−i}

λx1(y) + (1− λ)x2(y) ≤ 0

This can be seen by noting that if the continuation values xi(y) are obtained via the
normalization xi(y) = (γi(y) − v) δ

1−δ from unnormalized continuation values γi(y), the first
constraint is equivalent to the condition (IC), the objective function is nothing but λv1 +(1−
λ)v2 for some v = (v1, v2) for which (PK) is satisfied. Finally, the last constraint guarantees
that the unnormalized continuation values γ come from the hyperplane H(λ, k∗(λ, e, t)). Define

k∗(λ) = max
e,t

k∗(λ, e, t)

Therefore, H(λ, k∗(λ)) is the largest half space in direction λ. Now, define the set

W =
⋂

λ

H(λ, k∗(λ))

The rest of this section is devoted to characterizing the set W for our repeated partnership
game.
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6.2 Characterizing k∗(λ,EE, t)

The linear programming problem described in the previous section becomes:

k∗(λ, EE, t) = max
x1,x2

λ
(pȳ

2
− c + pt1 + px1(y) + (1− p)x1(y)

)
+ ...

... + (1− λ)
(pȳ

2
− c + pt2 + px2(y) + (1− p)x2(y)

)

subject to:
1

p− q2

(
c− (p− q2)ȳ

2

)
− t1 ≤ x1(y)− x1(y)

1
p− q1

(
c− (p− q1)ȳ

2

)
− t2 ≤ x2(y)− x2(y)

λx1(y) + (1− λ)x2(y) ≤ 0 for all y ∈ Y

Denote the left hand side of the IC constraint for agent i by Li. That is,

L1 =
1

p− q2

(
c1 − (p− q2)ȳ

2

)
− t1.

L2 =
1

p− q1

(
cn − (p− q2)ȳ

2

)
− t2.

To characterize the solution to this problem, it is convenient to distinguish between two
separate cases,

(16) λL1 + (1− λ)L2 ≤ 0

and

(17) λL1 + (1− λ)L2 > 0.

If λ and t satisfy the first inequality then it is possible to choose x1(·), x2(·) in such a way
that λx1(ȳ) + (1− λ)x2(ȳ)=λx1(y) + (1− λ)x2(y) = 0 and incentive constraints are satisfied.
If (16) holds with strict inequality, at least one of the incentive constraints will be slack.
Therefore, in this case

(18) k∗(λ,EE, t) = λ
(pȳ

2
− c + pt1

)
+ (1− λ)

(pȳ

2
− c + pt2

)

Thus (16) implies that orthogonal implementation is possible.
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On the other hand, if λ and t are such that (17) holds, then

λx1(y) + (1− λ)x2(y) < λx1(ȳ) + (1− λ)x2(ȳ)

and it would be optimal to choose a combination of x1(ȳ) and x2(ȳ) that satisfies λx1(ȳ) +
(1 − λ)x2(ȳ) = 0. Obviously, λx1(y) + (1 − λ)x2(y) = 0 is not feasible any more, and in the
optimal solution both incentive constraints must bind. Therefore

(19) k∗(λ,EE, t) = λ
[pȳ

2
− c + pt1 − (1− p)L1

]
+ (1− λ)

[pȳ

2
− c + pt2 − (1− p)L2

]
.

Note that if (16) holds with equality then both incentive constraints must bind and therefore
equations (19) and (18) deliver the same value.

The next step is to choose the transfer profile t∗(λ) that maximizes the level of the hyper-
plane in the direction λ when EE is the effort profile. This is done in the following Lemma.

Lemma 2 Define

(20) t∗1(y) = −t∗2 =





ȳ
2 if λ ≥ 1

2

− ȳ
2 if λ < 1

2

Then t∗ ∈ argmaxtk
∗(λ,EE, t).

Proof: The result follows from observing that t∗ defined in (2) maximizes (18) and minimizes
the left hand side of (16). 2

This Lemma implies that for large δ and when v, w is on the frontier, one of the agents
receives all of the current output if both agents work. Therefore, k∗(λ, EE) can be expressed
as follows:

(21) k∗(λ,EE) =





λ(pȳ − c) + (1− λ)(−c)− (1− p)max{0, η1(λ)} if λ > 1
2

λ(−c) + (1− λ)(pȳ − c)− (1− p)max{0, η2(λ)} if λ ≤ 1
2

where
η1(λ) = λ

c− (p− q2)ȳ
p− q2

+ (1− λ)
c

p− q1

and
η2(λ) = λ

c

p− q2
+ (1− λ)

c− (p− q1)ȳ
p− q1

Note that η1(λ) and η2(λ) are the values of λL1 +(1−λ)L2 evaluated at the corresponding
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optimal t’s. The term max{0, η1(λ)} in equation (21) becomes positive when the condition
(17) holds: ICs are binding and orthogonal implementation is not possible.

Correspondingly, the hyperplane associated with the optimal transfer schedule for λ ≥ 1
2

[the hyperplane λv + (1 − λ)w = k∗(λ,EE)] passes through either A1 or B1 defined below—
namely the one which delivers a lower level in this direction λ.9

A1 : (pȳ − c,−c)

B1 :
(

pȳ − c− 1− p

p− q2
(c− (p− q2)ȳ),−c− 1− p

p− q1
c

)(22)

For λ ≤ 1
2 the corresponding hyperplane passes through the lower one of the following two

points:

A2 : (−c, pȳ − c)

B2 :
(
−c− 1− p

p− q2
c, pȳ − c− 1− p

p− q1
(c− (p− q1)ȳ)

)(23)

6.3 Characterizing k∗(λ,ES) and k∗(λ, SE)

For the effort profile ES and transfers t, the linear programming problem (15) can be written
as

k∗(λ,ES, t) = argmaxx λ[q1(ȳ + t1)− c + q1x1(ȳ) + (1− q1)x1(y)] + ...

...(1− λ)[q1(ȳ + t2) + (1− q1)t2 + qnx2(ȳ) + (1− qn)x2(y)]
(24)

subject to

x1(ȳ)− x1(y) ≥ 1
q1

(
c− q1ȳ

2

)
− t1

x2(ȳ)− x2(y) ≤ 1
p− q1

(
c− (p− q1)ȳ

2

)
− t2

λx1(y) + (1− λ)x2(y) ≤ 0; y ∈ {y, ȳ}

If there were no incentive constraints, it would always be possible to enforce (ES, t) or-
thogonally, which would deliver

(25) k∗(λ,ES, t) = λ[−c + q1(ȳ + t1)] + (1− λ)[q1(ȳ + t1)].
9By this we mean, the inner product (λ, 1− λ)× (v, w) is minimized.
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Since the incentive constraints in (24) bound x1(ȳ)−x1(y) from below and x2(ȳ)−x2(y) from
above, it is always possible to choose such x that λx1(y)+ (1−λ)x2(y) = 0 for any y and both
incentive constraints are satisfied.10 Thus (25) is also a solution to the linear program (24).

To maximize k∗(λ,ES, t) with respect to t we need to set t1 = −t2 = − ȳ
2 if λ < 1

2 and
t1 = −t2 = ȳ

2 otherwise. Therefore,

k∗(λ,ES) =





λ[q1ȳ − c] if λ ≥ 1
2

λ(−c) + (1− λ)q1ȳ otherwise
.

The level of the largest half-space in direction λ decomposed on itself by SE can be straight-
forwardly determined in a similar way:

k∗(λ, SE) =





λq2ȳ + (1− λ)(−c) if λ ≥ 1
2

(1− λ)[q2ȳ − c] otherwise
.

6.4 Characterizing k∗(λ)

For each λ the level of largest half space in the direction λ is found as

(26) k∗(λ) = max{k∗(λ,EE), k∗(λ,ES), k∗(λ, SE)}

It is convenient to first characterize max{k∗(λ,ES), k∗(λ, SE)} and then compare it with
k∗(λ,EE).

For λ ≥ 1
2 the hyperplane λv + (1 − λ)w = k∗(λ,ES) passes through D1 and hyperplane

λv + (1− λ)w = k∗(λ, SE) passes through G1 defined as follows:

D1 : (q1ȳ − c, 0))

G1 : (q2ȳ,−c))
(27)

For λ ≤ 1
2 the corresponding hyperplanes pass through D2 and G2:

D2 : (−c, q1ȳ))

G2 : (0, q2ȳ − c))
(28)

It is easy to see that for m > n the points G1, G2 lie below the line connecting the points D1

10We only need to make sure that x1(ȳ)− x1(y) and x2(ȳ)− x2(y) are sufficiently far away from each other.
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and D2.11 Therefore, for λ ≥ 1
2 , the hyperplane passing through D1 should be chosen and

for λ ≤ 1
2 the hyperplane passing through D2 should be chosen. This is intuitive because it

implies that whenever only one of the agents works it is the more efficient one.

In the light of this discussion, we get that whenever m > n:

k∗(λ) = max{k∗(λ,EE), k∗(λ,ES)}.

6.5 Characterization of W(·)

Recall that
W =

⋂

λ

{(v, w)|λv + (1− λ)w ≤ k∗(λ)}

Proposition 4 Define

η =
c− (p− q2)ȳ/2

p− q2
+

c− (p− q1)ȳ/2
p− q1

Then,
W(v) = −v + pȳ − 2c−min{2(1− p)η, (p− q1)ȳ − c}

Proof: First, notice that A1A2, B1B2 and D1D2 all have slopes -1. Also, all points A1, A2, B1, B2,
D1, D2 lie outside of the positive orthant. Next, observe that A1A2 lies above B1B2 by as-
sumption A3, and by assumption A1, A1A2 lies above D1D2. Finally, observe that pȳ−2c−2η

and q1ȳ − c are the levels of B1B2 and D1D2, respectively. 2

6.6 Proof of Proposition 1

The following proposition reproduces the result of FLM Fudenberg et al. (1994) that W is the
limit of the equilibrium payoff set as δ converges to 1.

Proposition 5 (FLM Fudenberg et al. (1994)) Let V ⊂ intW be smooth12 and convex. Then
there exists δ̄ such that for any δ > δ̄, V ⊂ W (δ).

11To see this note that the line connecting D1 and D2 has slope -1 and level f(1, 0)−c while the lines through
G1 and G2 with slope -1 have levels f(0, 1)− c < f(1, 0)− c.

12A smooth set is closed, with non-empty interior and its boundary is twice continuously differentiable.
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Proof: We note that the Pareto frontier of the repeated partnership game is obtained using
(t1, t2) ∈ {(−ȳ/2, ȳ/2), (ȳ/2,−ȳ/2)}. That is, restricting attention to equilibria that use only
these transfers does not shrink the equilibrium set. Therefore, the proof directly follows from
Fudenberg et al. (1994).2

Corollary 1 (Proposition 1) Define

η(m,n) =
c− (p(m,n)− q2(m,n))ȳ/2

p(m,n)− q2(m,n)
+

c− (p(m, n)− q1(m, n))ȳ/2
p(m,n)− q1(m,n)

For any m ≥ n, let

Wmn(v) =− v + p(m,n)ȳ − 2c

−min{ (1− p(m,n))η(m,n) , (p(m,n)− q1(m,n))ȳ − c }

For any ε > 0 there exists δ̄mn(ε) < 1 such that for any δ > δ̄mn(ε) and for all v:

Wδ
mn(v) ∈ (Wmn(v)− ε,Wmn(v)]
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