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Abstract

We examine a contest, modelled as an all-pay auction with incomplete in-
formation, in which a strong and a weak contestant compete. A contestant
may su¤er from a handicap or bene�t from a head start. The former reduces
the contestant�s score by a �xed percentage; the latter is an additive bonus.
The recipient of the e¤ort is better o¤ by giving the weak contestant a head
start. However, it may or may not be pro�table to handicap the strong contes-
tant. In general, when the contestants are su¢ ciently heterogeneous, the weak
contestant should be given a head start and a handicap. The e¤ort maximizing
head start and handicap may also improve the e¢ ciency of the contest.
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1 Introduction

Writing a grant proposal can involve a signi�cant investment of time and e¤ort.
However, this investment is not always rewarded. When several researchers compete
for limited funds, even good applications are often unsuccessful.
In Canada, two criteria are used for evaluating an application for a Standard

Research Grant submitted to the Social Sciences and Humanities Research Council
(SSHRC). Speci�cally, �the score on the record of research achievement accounts for
60 per cent of the overall score, and the score on the program of research accounts for
40 per cent of the overall score�.1 The implication is that an individual with a good
research record has a head start. That is, she will out-score a competing proposal by
a less successful scholar, even if the proposed programs of research are of comparable
quality.2

In contrast, if the applicant obtained his Ph.D. within the last �ve years of the
application deadline he will normally be considered a �new scholar�. In this case,
the two components are weighted �such that either a 60/40 or 40/60 ratio will apply,
depending on which will produce the more favorable overall score.�
Now, compare an established scholar and a new, unproven, scholar. The estab-

lished scholar has a head start due to her past research achievements. On the other
hand, she is handicapped in the sense that putting more e¤ort into the proposal
impacts her score less (the program of research accounts for only 40%) than a cor-
responding increase in e¤ort by the new scholar would increase his score (since the
program of research accounts for up to 60% for this applicant). At �rst sight, it may
appear that this design is self-contradictory; it is certainly unclear which scholar is
favoured.
There are numerous examples of contests in which head starts and/or handicaps

play important roles. Examples where they are imposed by a contest designer in-
clude sports (e.g. golf and horse racing), a¢ rmative action, and uneven treatment of
internal and external applicants for senior positions. They are sometimes exogenous
and �xed components of the competition, as in R&D races between �rms with dif-
ferent technologies and R&D procedures. Finally, they are sometimes created over
time in dynamic contests, such as in a R&D race where one �rm is �rst to make a
preliminary discovery that may function as a stepping stone.

1See http://www.sshrc.ca/web/apply/program_descriptions/standard_e.asp.
2We ignore the time element in this discussion, as well as in the model. In practice, there may

be an incentive to devote the time and e¤ort to building up the CV this year, in order to increase the
chances in next year�s competition. In other words, we consider the record of research achievement
to be �xed when the decision to write a grant proposal is made. See Konrad (2002) for a two-stage
model in which preliminary actions in the �rst stage a¤ects the contest, held in stage two.
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The topic of this paper is favoritism in contests in which contestants may be
heterogeneous. Given the numerous instances in which contests are manipulated, it
is surprising that favoritism has been subject to only limited formal study in the
standard models of contests. The main objective of the paper is to challenge some
common intuitions in a formal model. The following results are among the main
�ndings: (1) a contestant who is favoured does not necessarily �slack o¤�; he may
respond by working harder, (2) it may be pro�table to handicap the weak contestant,
and (3) it may be more pro�table still to combine various instruments in ways that
appear self-contradictory; speci�cally, to simultaneously give a contestant a head
start and a handicap. The emphasis in the paper is on the second and third point,
concerning the pro�tability of favoritism.
To begin, we posit that a statement such as �it is pro�table to favour the weak

contestant� is too simplistic and possibly even false, even though it is intuitively
compelling. Leveling the playing �eld may not be pro�table. First, di¤erent ways
of manipulating a contest may have di¤erent consequences. This paper illustrates
this point by distinguishing between two instruments: head starts and handicaps.3

These instruments a¤ect the contest di¤erently, so one is no a substitute for the other.
Giving a contestant a head start is not equivalent to handicapping his opponent.
Second, while it is true in the benchmark model that it is pro�table to favour

the weak contestant � if it is done with the right instrument � using the wrong
instrument to do so may back�re. In particular, it may be pro�table to handicap the
weak contestant in favour of the strong contestant. As a result, we will show that
the contest design implemented by SSHRC, involving a head start counteracted by
a handicap, may be very e¤ective at increasing the average quality of the program
of research.4,5 In particular, this design may be pro�table if a grant is more valuable
early in a scholars� career, such that new scholars are believed to value a grant
substantially more than established scholars.
The contest is modelled as an all-pay auction in which bidders are privately

3Head starts and handicaps are identity-dependent. Alternatively, the contest can be manip-
ulated by imposing restrictive rules that apply to all contestants. There are several papers on
caps in contests, i.e., an upper bound on how much e¤ort or money the contestants can expend.
Although the cap applies to all contestant, the strategic response may be di¤erent for weak and
strong contestants. See Che and Gale (1998), Gavious et al. (2002), and Sahuguet (2006). Caps
are brie�y discussed in Section 5.

4Incidentally, this work is not funded by SSHRC.
5There are at least two reasons for why it may be in the funding agency�s interest to increase

the quality of the proposed program of research. First, it is likely that there is a positive correlation
between how much e¤ort goes into the proposal and how well the money are spent. Second,
impressive and visionary applications may make it easier to justify the existence of the funding
agency to the government. In fact, SSHRC may make successful applications public.
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informed about either their valuation of the prize or their ability. Bidders are ex ante
heterogeneous, with one bidder perceived to be more likely to have high valuation
or ability than another. Since we wish to emphasize the role of this heterogeneity in
determining the optimal design features, we impose a few simplifying assumptions to
facilitate the analysis. As in most of the existing literature on asymmetric auctions,
we assume there are exactly two bidders, one �strong� and one �weak�. We also
assume that bidders are risk neutral and that the cost of bidding is linear in the bid.
These assumptions permit the use of powerful arguments from mechanism design.6

Extension are discussed in Section 4.
We examine two design features that imply that bidders do not necessarily com-

pete on even terms. A bidder has a head start if he would win the auction if both
bidders bid zero. In contrast, the bidder is handicapped if an increase in his bid has
a smaller impact on how his bid is evaluated compared to an equal-sized increase in
his competitor�s bid.7 Concretely, if bidder i bids b, his �score�is si = ai + rib. The
winner of the auction is the bidder with the highest score, not necessarily the bidder
with the highest bid. Bidder 1 has a head start if a1 > a2, and is handicapped if
r1 < r2.
A handicap has bearing on the marginal return of increasing the bid, while a head

start does not. Consequently, the two instruments a¤ect the auction in di¤erent ways.
Roughly speaking, a head start in�uences the decision to participate in the auction.
In contrast, a handicap in�uences the relative scores of bidders who have decided to
participate.
The literature on favoritism in all-pay auctions is small. Konrad (2002) examines

a two-bidder model with head starts and handicaps. However, he assumes the value
of the prize is known and that it is the same for both bidders. Moreover, Konrad
(2002) assumes the head start and handicap are exogenously given, whereas we allow
them to be determined by a third party. See also Siegel (2009). With incomplete
information, there appears to be no previous papers dealing with head starts, and
only three that examine handicaps. Lien (1990) and Feess et al (2008) assume the
two bidders are homogeneous.8 Clark and Riis (2000, henceforth C&R) allow the
two bidders to be heterogenous, but assume that types are drawn from uniform

6A few papers, including Moldovanu and Sela (2001) and Gavious, Moldovanu, and Sela (2002),
allow the cost of bidding to be non-linear in the bid. However, they assume that bidders are
homogeneous. Clark and Riis (2000) assume bidding costs are non-linear and that bidders are
heterogeneous, with types that are drawn from (di¤erent) uniform distributions.

7In the SSHRC example, the �bid� is the program of research. A better program is costly to
the bidder, since it requires more time and e¤ort.

8Lien (1990) proves that the handicapped bidder wins less often than is e¢ cient if types are
drawn from a uniform distribution. Feess et al (2008) show that this result holds for any distribution.
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distributions. In their model, it is pro�table to handicap the strong bidder, and they
claim the reason is that it �evens up�the contest.
The current paper is the �rst to examine head starts in contests with incomplete

information. It is also the �rst to attempt to study handicaps in a more general
setting than the uniform model. The former is considerably easier than the latter.
Thus, the results concerning head starts are quite general. In this regard, one of the
contributions of the paper is to establish a general class of models which encompasses
the uniform model, and for which the analysis of the all-pay auction is particularly
straightforward.9

The impact of handicaps on expected revenue is non-trivial. However, we identify
a trade-o¤ which makes it impossible to generalize the result of C&R that it is the
strong bidder who should be handicapped. The trade-o¤ is explained in more detail
below. We then consider two special models for which it is possible to determine
whether it is the weak or the strong bidder who should be handicapped. These
models are special in the sense that mass points are introduced into the distribution
function of at least one of the bidders.10

The theoretical analysis is concluded by examining the simultaneous use of head
starts and handicaps. The main objective in this part is to establish that the weak
bidder may be given a head start and a handicap, even when it would be optimal
to handicap the strong bidder if head starts are ruled out. The uniform model has
this property when the asymmetry is su¢ ciently large. However, a generalization
is di¢ cult. Nevertheless, we identify a set of su¢ cient conditions (satis�ed by the
uniform model) for which the result holds.
The trade-o¤ associated with a handicap can be explained as follows. Without

the handicap, the weak bidder tends to �overcompensate� for his weakness if his
type is high. Consequently, he wins too often in the all-pay auction compared to
the revenue maximizing mechanism when his type is high. Handicapping the strong
bidder only makes this worse. On the other hand, the weak bidder wins less often in
the all-pay auction compared to the revenue maximizing mechanism when his type is

9The weak bidder�s distribution function is a �scaled down� version of the strong bidder�s
distribution function. This class of models does not appear to have been studied before in the
auction literature. As mentioned, the uniform model is a special case. Alternatively, the uniform
model is also a special case of the general class of models in which the weak bidder�s distribution
function is a truncation of the strong bidder�s distribution function. The latter class of models is
sometimes considered in the literature on asymmetric �rst price auctions; see e.g. Maskin and Riley
(2000). However, the �rst class of models is more tractable in all-pay auctions.

10This part of the paper follows the tradition of Maskin and Riley (2000). They show that a
second price auction may dominate a �rst price auction in terms of revenue if the weak bidder�s
distribution function has a mass point at the lowest end-point of the support.
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low. Handicapping the strong bidder alleviates this problem. In the C&R model, it
happens to be the case that handicapping the strong bidder is optimal, on balance.
However, this result is not robust.
A head start a¤ects the allocation only if bidders� types are low. Giving the

weak bidder a head start allows him to win more often when his type is low. Thus,
the allocation is closer to the optimal allocation. In addition, there is less reason to
handicap the strong bidder when the weak bidder has a head start. If the asymmetry
among bidders is su¢ ciently large, it is optimal to give a head start to the weak
bidder, and then handicap him as well.
The remainder of the paper is organized as follows. The benchmark model is

introduced in Section 2, and equilibrium strategies are derived. Optimal head starts
and handicaps are considered in Section 3. Section 4 discusses the results and possible
extensions. Section 5 concludes.

2 Model and Equilibrium

We model the contest as an all-pay auction. There are two bidders.11 Each bidder
is characterized by a privately known type which captures the value the bidder puts
on winning the auction. Bidder i draws his type from the continuously di¤erentiable
distribution function Fi with support [0; vi], i = 1; 2. Unless explicitly stated other-
wise, the distribution functions have no mass points. The density, fi(v) = F 0i (v), is
bounded above as well as bounded below, away from zero.
The two bidders are heterogeneous. Bidder 1 is more likely to have a low valuation

than bidder 2, f1(0) > f2(0). He is also less likely to have a high valuation, v1 < v2.
Hence, it is helpful to think of bidder 1 as the �weak�bidder and bidder 2 as the
�strong�bidder.12

In a standard all-pay auction bidder i must decide whether to participate in the
auction, and, if so, which non-negative bid, bi, to submit, i = 1; 2. The bidder with
the highest bid would then be the winner. Here, however, we assume bidders receive
di¤erential treatment. It is convenient to think of bidder i as accumulating a �score�,
si. If bidder i bids b, his score is si = ai + rib, where ai � 0, ri > 0. The winner
is then the bidder with the highest score.13 Hence, bidder i must decide whether to

11See Parreiras and Rubinchik (2006) for an analysis of aspects of all-pay auctions with many
heterogenous bidders.

12Many of the formal results and insights depend only on how the distribution fucntions compare
at the endpoints of their supports. First order stochastic dominance need not be imposed at this
point.

13If ai > aj and s1 = s2 = ai, we assume that bidder j wins. This assumption ensures the
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participate, and, if so, which score to aim for.
We say that bidder 1 has a head start if a � a1�a2 > 0, in which case he wins the

auction if both bidders bid zero. Moreover, bidder 1 is handicapped if r � r1=r2 < 1,
while bidder 2 is handicapped if r > 1. The handicapped bidder�s score responds
less to an increase in the bid than is the case for the other bidder.
Turning to payo¤s, we assume that bidders are risk neutral and that the true cost

of a bid of b is in fact b. These assumptions are standard in the auction literature, but
a more general treatment would allow for risk aversion and costs that are non-linear
in the bid. The cost of obtaining a score of s � ai for bidder i is

ci(s) =
s� ai
ri

: (1)

2.1 Equilibrium allocation

We let 'i(s) denote bidder i�s inverse strategy, i.e. bidder i scores s in equilibrium
if his type is 'i, i = 1; 2. Assuming that strategies are strictly increasing in type
among the set of types that participate in the auction, the probability that bidder
i�s score is at or below s is Fi('i(s)).
Given the rival�s strategy, bidder i with type v maximizes his expected payo¤.

That is, he solves the problem

max
s�ai

vFj('j(s))� ci(s);

or, equivalently,
max
s�ai

rivFj('j(s))� s (2)

where j 6= i is bidder i�s competitor. Other things being equal (in particular 'j(s)),
the size of ri directly a¤ects the return of scoring higher. Consequently, it should
be no surprise that ri will in�uence the relative scores of the two bidders, and thus
the probabilities of winning. In contrast, given the assumptions of risk neutrality
and linear costs, ai is signi�cant only in that it determines the lowest feasible and
rational score. If ai is very high, bidder j may decide to stay out if his type is low
since a strictly positive bid cannot be rationalized if it leads to a score below ai.
However, among the types that do participate, ai does not distort the allocation.
In other words, ai will have a level e¤ect on the scores, and may force out some of
bidder j�s types.

existence of an equilibrium. The tie-breaking rule is inconsequential in all other cases.
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Assuming, for now, that the solution is interior, the �rst order condition is

rivfj('j(s))
d'j(s)

ds
= 1:

In equilibrium, bidder i with type v obtains a score of s, meaning that v = 'i(s),
and the �rst order condition can be written as

d'j(s)

ds
=

1

ri'i(s)fj('j(s))
: (3)

As in Amann and Leininger (1996), dividing the two �rst order condition yields

d'1(s)

d'2(s)
= r

'1(s)f2('2(s))

'2(s)f1('1(s))
: (4)

To continue, de�ne k(v) as the type of bidder 1 who obtains the same score as
bidder 2 with type v. In other words, bidder 2 with type v wins if bidder 1�s type
is below k(v). Since bidder 2 of type '2(s) = v achieves the same score as bidder 1
with type '1(s) = k(v), (4) can be rewritten as

dk(v)

dv
= r

k(v)f2(v)

vf1(k(v))
: (5)

To solve the di¤erential equation we make use of the boundary condition that
k(v2) = v1. That is, the two bidders must share a commonmaximal score. Otherwise,
the bidder with the highest possible score could reduce his bid without reducing the
probability that he wins. With this boundary condition, (5) is then su¢ cient to
completely determine k(v). In particular, k(v) must satisfyZ v1

k(v)

f1(x)

x
dx = r

Z v2

v

f2(x)

x
dx: (6)

The right hand side is �nite for any v > 0, while the left hand side is 0 if k = v1 but
increases and goes to in�nity as k approaches 0 from above. Hence, for any v > 0,
there exists some k which satis�es (6), and this k is unique. Since the right hand side
approaches in�nity as v approaches 0, it must also be the case that k(0) = 0. The
implication is that k(0) = 0 and k(v2) = v1 regardless of r. However, k(v) depends
on r for any v 2 (0; v2).
Although k(v) depends or r it is independent of a1 and a2. This con�rms that a1

and a2 does not a¤ect the relative bids of the bidders (among the active types), since
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k by de�nition reveals who bidder 2 ties with. However, we have not yet determined
how the entry decision and the level of the bids is a¤ected by changes in a1 and a2.14

To do so, we assume for the sake of exposition that bidder 1 is the bidder with the
head start, a � 0. As we will see in the next section, this is indeed pro�table.
Since bidder 1 has a head start, bidder 2 may decide not to enter the auction

at all. In particular, bidder 2 realizes that any score below a1 will fail to win him
the auction. Hence, bidder 2 either decides that it is too costly to participate and
thus stays out if his type is su¢ ciently small, or he submits a bid of at least c2(a1).
Thus, no score below a1 will be observed in the auction. It will never be pro�table
for bidder 2 to participate if c2(a1) � v2. In the following we therefore focus on the
case where c2(a1) 2 [0; v2).
To �nd the critical type of bidder 2 who is indi¤erent between staying out of the

auction and entering the auction with a score of a1, we solve

vF1(k(v))� c2(a1) = 0: (7)

Let the solution be denoted by vc2, and de�ne v
c
1 � k(vc2). Clearly, vc1 and vc2 depend

directly on a and r2. However, they also depend on r1, since k depends on r1.

v2

v1

vc1

vc2

k(v)

v2F1(v1)� c2(a1) = 0

Figure 1: The equilibrium allocation. Bidder 2 wins below k(v), to the right of vc2.
Bidder 1 wins everywhere else.

14In particular, k was derived under the assumption that the �rst order conditions are satis�ed,
i.e. that the solution is interior. However, this is not a valid assumption for low types when a 6= 0.
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We are now ready to outline the main properties of the equilibrium. In (v2; v1)
space, Figure 1 depicts v1 = k(v2) (as de�ned by (6)) as well as the level curve on
which v2F1(v1) is constant and equal to c2(a1). Note that the former is increasing,
by (5) or (6), while the latter is decreasing. The intersection of the two satis�es (7)
and thus de�nes vc1 and v

c
2.

In equilibrium, bidder 2 stays out of the auction if his type if strictly below vc2,
and enters with a bid of c2(a1) (score of a1) if his valuation is precisely vc2. If his
valuation is higher, he enters the auction and obtains a score equal to that obtained
by bidder 1 with type k(v). Bidder 1 enters the auction regardless of his type, but
he submits a bid of zero, thereby obtaining a score of a1, if his type is vc1, or below.
If his type is higher he achieves a score to rival that of bidder 2 with type k�1(v).
Figure 1 also illustrates who wins the auction as a function of the bidders�types.

The central point is (vc2; v
c
1). To the left of this point, v2 < v

c
2, bidder 2 stays out of

the auction, meaning that bidder 1 wins regardless of his type. To the south-east of
(vc2; v

c
1), bidder 1 bids zero (scores a1), while bidder 2�s type is so high that he decides

to be active in the auction (score above a1). Hence, bidder 2 wins. Both bidders are
active to the north-east of (vc2; v

c
1), but bidder 1 wins if the combination of types is

above the v1 = k(v2) curve, while bidder 2 wins below it.
The allocation in the auction can be manipulated by manipulating the two curves

in Figure 1. The �level curve�can be moved to the right by increasing a or decreasing
r2, while k can be made to move down by increasing r.
In Figure 1, an increase in a corresponds to shifting the level curve de�ned by

(7) to the north-east. Since k(v) remains unchanged, vc1 and v
c
2 must increase.

On the other hand, an increase in r leads k to move downwards, in the interior
(at the end-points, k(0) = 0 and k(v2) = v1 regardless of r). The right hand side of
(6) is increasing in r for any v 2 (0; v2). Hence, when r increases the left hand side
must increase as well, to maintain the equality. This necessitates that k declines.
However, since k(v) decreases when r increases, it must also be the case that vc1

and vc2 change. If the increase in r comes from an increase in r1, the level curve in
Figure 1 is unchanged. As seen from Figure 1 or (7), vc2 increases while v

c
1 decreases

whenever a > 0. Hence, bidder 2 is more likely to stay out, while bidder 1 is less
likely to be satis�ed with a bid of zero. The reason for the latter is that bidder 1
will exploit his increasingly advantageous position; he is more likely to be active and
press his advantage.
In summary, changing a has no e¤ect on the allocation among the types that

continue submitting strictly positive bids. Hence, the head start a¤ects the allocation
only at �the bottom�(low types). In contrast, rewarding bidder 1 by increasing r1
a¤ects the allocation everywhere else. Thus, the two ways of favouring a bidder lead
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to very di¤erent outcomes. Below, we summarize the discussion thus far.

Proposition 1 vc1 and v
c
2 are increasing in a. The former is (weakly) decreasing in

r1, while the latter is (weakly) increasing in r1. Finally, k(v) is independent of a,
but decreasing in r, for all v 2 (0; v2).

The �nal possibility is that r increases due to a decrease in r2. This has two
partially confounding e¤ects. First, k shifts down. Second, the cost of obtaining a
score of a1 increases for bidder 2, meaning that the level curve in Figure 1 shifts
to the right. Thus, vc2 increases, but v

c
1 may increase or decrease. To avoid this

complication we will �x the values of a2 and r2 by normalizing

a2 = 0; r2 = 1:

In the following, when we increase a or r it should be understood that we refer to
an increase in a1 or r1, respectively. The choice of a is a choice of where to locate
the level curve, while the choice of r is a choice only of how much to manipulate k.

2.2 Equilibrium strategies

For the purposes of this paper, the equilibrium strategies themselves are of limited
interest. For completeness, the following Proposition describes how a and r impact
the equilibrium bids. Since this will not be used in the rest of the paper, the proof
is in the Appendix.

Proposition 2 Increases in a and r change equilibrium bids in the following way:

1. If a increases, bidder 1 bids less aggressively. Bidder 2 is more likely to stay out
of the auction, but if he does participate he participates with a more aggressive
bid.

2. If r increases, bidder 1 bids more aggressively if his type is low but less aggres-
sively if his type is high. If bidder 2 continues to participate when r is increased,
then he submits a less aggressive bid if his type is low, but a more aggressive
bid if his type is high. However, when a > 0, bidder 2 participates for fewer
types the higher r is.

Proof. See the Appendix.
Since bidder 2 participates less often but bids more when he does participate, the

e¤ect of an increase in a on the ex ante expected payment of bidder 2 is ambiguous.
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However, when a is small the latter e¤ect can be shown to dominate and a slight
increase in a will increase the expected payment of bidder 2. In contrast, the ex
ante expected payment from bidder 1 unambiguously declines.15 Thus, if a head
start is to increase expected revenue, it must be because it spurs the disadvantaged
bidder to bid more aggressively, and this must outweigh the declining payment from
the advantaged bidder. When the problem is phrased this way, it appears the seller
faces a trade-o¤. In the next section we rephrase the problem and show that the
seller bene�ts from introducing a small head start to bidder 1.
An increase in r leads bidder 1 to become active for more types. That is, he

submits positive bids for more types. In other words, he will start bidding more
aggressively if his type is close to vc1. Hence, contrary to the case of a head start, a
bidder will not necessarily lower his bid or e¤ort when he is favoured more. He may
be enticed to increase his bid or e¤ort.

3 Revenue maximization

Assuming the seller�s objective is to maximize expected revenue (the expected sum
of payments or bids), we now discuss the optimal choice of a and r.16

We emphasize the signi�cance of the fact that the two instruments change the
allocation in di¤erent ways. To highlight why this is important, it is useful to follow
Myerson (1981) in calculating expected revenue. He de�nes

Ji(v) � v �
1� Fi(v)
fi(v)

, v 2 [0; vi] ,

as bidder i�s virtual valuation. We will assume that Ji(v) is strictly increasing, and
we de�ne v�i as the unique value of v for which Ji(v) = 0, i = 1; 2.

17 Let �(v) denote
the strictly increasing function satisfying J1(�) = J2(v). Since f1(0) > f2(0) implies
that J1(0) > J2(0), it must be the case that �(v) = 0 for some v > 0. Moreover,
since J2(v2) = v2 > v1 = J1(v1), �(v) = v1 for some v < v2.
Myerson (1981) shows that revenue in any mechanism can be written as the

expected value of the virtual valuation of the winner. To calculate this, we need

15However, in Section 4 it is observed that this result is not robust if more than two bidders
participate in the auction.

16In this paper the seller can use no other instruments, such as minimum bids or caps. In many of
the contests mentioned in the introduction, a winner must be found. In such situations, a minimum
bid is not credible. Caps are brie�y discussed in Section 4.

17Note that v�i = argmaxv v(1� Fi(v)).
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bidder i�s winning probability, qi(v); i = 1; 2,

q1(vja; r) =
�
F2(v

c
2) if v 2 [0; vc1)

F2(k
�1(v)) otherwise

;

and

q2(vja; r) =
�
0 if v 2 [0; vc2)
F1(k(v)) otherwise

;

respectively. Recall that k(v), vc1, and v
c
2 depend on a and r. Since any bidder with

valuation zero has zero payo¤ in the mechanisms considered here, expected revenue
can now be written as

ER(a; r) =

Z v1

0

J1(v)q1(v)f1(v)dv +

Z v2

0

J2(v)q2(v)f2(v)dv: (8)

As a point of comparison to the all-pay auction, consider the revenue maximizing
mechanism (among mechanism where the good is sold with probability one). In
an optimal mechanism, the seller would maximize the expected value of the virtual
valuation of the winner. Consequently, bidder 1 should win the auction if his type
exceeds � when his rival has type v, since it would then be the case that J1 > J2.
Otherwise he should lose. Such a rule maximizes the expected value of the virtual
valuation of the winner by ensuring that the winner is the bidder with the highest
virtual valuation.
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Figure 2: The optimal mechanism (�(v)) versus the all-pay auction (k(v)).
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Figure 2 compares an optimal mechanism an the standard all-pay auction. The
standard all-pay auction is not optimal; k(v) does not coincide with �(v). In par-
ticular, bidder 2 wins more often than is optimal �near the bottom� (when both
bidders have low types), while bidder 1 wins more often than is optimal �near the
top� (when both bidders have high types). Changing a and r can be seen as an
exercise in manipulating the allocation to bring it as close to the optimal allocation
as possible. As mentioned earlier, an increase in a corresponds to pushing the level
curve to the north-east, while an increase in r is equivalent to pushing down k(v).
For future reference, de�ne � i(v) as the type that satis�esZ � i

0

Ji(x)
fi(x)

Fi(� i)
dx = Jj(v); (9)

for i; j = 1; 2, i 6= j. Contingent on having a type below � 1(v), bidder 1�s expected
virtual valuation is equal to bidder 2�s virtual valuation when bidder 2 has type
v. � 1(0) = �(0), but � 1(v) > �(v) whenever v > 0 and � 1 is de�ned. Likewise,
� 2(v) > �

�1(v) whenever both are de�ned. Finally, � i(v�j ) = vi since the left hand
side of (9) is zero when � i = vi. Figure 2 illustrates �, � 1, and (the inverse of) � 2.
We are now ready to examine the optimal choices of a, of r, and of a and r jointly.

3.1 Head starts

In this subsection, the handicap is assumed to be exogenous or �xed.
Compared to the optimal mechanism, one of the drawbacks of the all-pay auction

is that bidder 2 wins too often near the bottom-left corner (when types are small). A
head start to bidder 1 addresses this problem, as it leads bidder 1 to win when both
bidders have low types. Hence, the allocation will move closer to what is optimal.

Theorem 1 It is pro�table to give bidder 1 a head start, regardless of r. The optimal
head start to bidder 1 is such that � 1(vc2) = k(v

c
2).

Proof. Given (8), we observe that

@ER(a; r)

@a
= f2(v

c
2)F1(v

c
1)
@vc2
@a

�Z vc1

0

J1(v)
f1(v)

F1(vc1)
dv � J2(vc2)

�
; (10)

the sign of which is determined by the term in parenthesis (vc2 is increasing in a). As
a approaches 0, vc1 and v

c
2 approaches 0 and this term converges to

� 1

f1(0)
+

1

f2(0)
;
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by L�Hôpital�s rule. This is positive, by assumption. Hence, ER(a; r) is strictly
increasing in a when a is small. The �rst order condition is satis�ed when the term
in parenthesis is zero, which occurs if and only if vc1 = � 1(v

c
2).

Consider a marginal increase in bidder 1�s head start. If the allocation changes,
it is because bidder 2 won before, but now loses. Bidder 2�s type in this event is
vc2, while bidder 1 has a type below k(v

c
2). Thus, the virtual valuation of the winner

changes from J2(v
c
2) to the expected value of J1, given bidder 1�s type is below

k(vc2). The optimal head start ensures the marginal loss and gain are equated, which
necessitates that � 1(vc2) = k(v

c
2). In Figure 2, the intersection of � 1 and k (the point

A) thus determines vc2, which in turn allows the determination of a.
Although it is pro�table to give a head start to the weak bidder, Theorem 1

does not claim that it is optimal or that a head start to the strong bidder is not
pro�table. If we are looking for the optimal head start to bidder 2, there are two
points, B and C, in Figure 2 where the �rst order conditions are satis�ed. Point B,
which would require the smallest head start, is a local minimum, while point C is
a local maximum. At �rst, expected revenue is decreasing in bidder 2�s head start.
Thus, if a head start to bidder 2 is pro�table, it must be a large head start. In
contrast, any small head start to bidder 1 is pro�table. Arguably, the seller needs
less information about the distribution functions to pro�t from a head start to the
weak bidder compared to a head start to the strong bidder. See Section 3.3 for a
related discussion.
The leading example in the literature on all-pay auctions (and all other auctions)

is the uniform model, in which both bidders draw types from uniform distributions.
C&Rmaintain this assumption throughout their paper. The following class of models
encompasses the uniform model as a special case.

De�nition 1 F1 is a scaled down version of F2 if Fi(v) = F ( vvi ), v 2 [0; vi], i = 1; 2,
and v1 < v2, where F is some distribution function with support [0; 1].

If F1 is a scaled down version of F2, then it optimal to give the head start to the
weak bidder, unless r is su¢ ciently greater than one. The �rst step in the proof of
this property is to �quantify�k(v). In comparison, de�ne

�(v) =
v1
v2
v; v 2 [0; v2] :

Lemma 1 If F1 is a scaled down version of F2, then

r 7 v2
v1
=) k(v) ? �(v) for all v 2 (0; v2) :
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Proof. From (5),

k0(v) = r
v1
v2

k(v)f( v
v2
)

vf(k(v)
v1
)
:

Since k(v2) = v1,

k0(v2) =

�
r
v1
v2

�
v1
v2
=

�
r
v1
v2

�
�0(v2): (11)

Assume now that the term in parenthesis is less than one, in which case k0(v2) <
�0(v2). Since k(v2) = �(v2), the former must therefore be above the latter immedi-
ately to the left of v2. Should k(v) intersect �(v) as we move to the left it necessitates
that the k is steeper than �. However, if k = �, then, by de�nition of �,

k0(v) = r
v1
v2

�(v)f( v
v2
)

vf(�(v)
v1
)
=

�
r
v1
v2

�
�0(v) < �0(v);

which yields a contradiction. Thus, if r < v2
v1
then k(v) > �(v) for all v 2 (0; v2).

The proof that r > v2
v1
implies k(v) < �(v) for all v 2 (0; v2) is analogous.

The second step is to �quantify�� 2(v).

Lemma 2 If F1 is a scaled down version of F2, then ��12 < � whenever ��12 is
de�ned.18

Proof. Recall that � 2 is an increasing function and that � 2(v�1) = v2. Hence,
��12 � v�1. Likewise, � is an increasing function and �

�1
2 < � whenever both are

de�ned. Moreover, since

Ji(v) = v �
1� F ( v

vi
)

1
vi
f( v

vi
)
= vi

 
v

vi
�
1� F ( v

vi
)

f( v
vi
)

!

and �
v1
= v

v2
, it holds that J1(�) = v1

v2
J2(v). As virtual valuations are strictly increas-

ing and J1(�) = J2(v), �(v) = �(v) if and only if v = v�2, in which case �(v
�
2) = v

�
1.

For any v 2 [0; v�2], �(v) < �(v). Thus, for any v 2 [0; v�2] where ��12 is de�ned,
��12 < �(v) < �(v). For any v 2 (v�2; v2], ��12 � v�1 < �(v). Consequently, ��12 < �.

Combining Lemma 1 and Lemma 2 produces the result.

Theorem 2 Assume that F1 is a scaled down version of F2 and r < v2
v1
. Then, any

head start to the strong bidder lowers expected revenue.

18In Figure 2, Lemma 2 implies that ��12 is below the diagonal, �.
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Proof. By Lemma 1, k(v) > �(v) for all v 2 (0; v2), while Lemma 2 states that
�(v) > ��12 (v), whenever the latter is de�ned. Thus, k(v) > �

�1
2 (v) (the two never

intersect). Switching the roles of bidders 1 and 2 in (10) then proves that expected
revenue is decreasing in bidder 2�s head start.

3.2 Handicaps

In this subsection, the head start is assumed to be exogenous or �xed.
Bidder 1 wins too often when his type is high, but not often enough when his type

is low in the standard all-pay auction compared to the optimal mechanism. Now,
consider the e¤ect of increasing r, i.e. handicapping bidder 2 further. k(v) moves
down, in the interior. Consequently, in the absence of a head start, bidder 1 wins
more often, regardless of his type. This moves the allocation closer to the optimal
allocation if his type is low, but farther away if his type is high. Hence, a trade-o¤
exists, and it is not obvious that handicapping the strong bidder is optimal.
The trade-o¤ disappears if the weak bidder has a very large head start. In this

case, the weak bidder should also be handicapped.

Proposition 3 It is optimal to handicap the weak bidder if his head start is su¢ -
ciently large.

Proof. Assume that a � bv2, where J2(bv2) = v1. Since J2(0) < 0 and J2(v2) = v2 >
v1, such a bv2 exists. Then, regardless of r, bidder 2 will never participate if his type
is below bv2. If he participates, his virtual valuation is therefore at least v1, which
is higher than bidder 1�s virtual valuation with probability one. Bidder 2 should
be made to win more often, which occurs if the weak bidder is handicapped. If the
handicap changes the allocation, it is because bidder 2, with virtual valuation above
v1, now wins over bidder 1 with a virtual valuation below v1. Thus, the expected
value of the virtual valuation increases. Figure 3 illustrates; the shaded area captures
the combination of types for which the allocation changes in bidder 2�s favor.
Assume now that a = 0. C&R have proven that it is optimal to handicap the

strong bidder (r > 1) when types are drawn from di¤erent uniform distributions and
head starts are not allowed.19 In general, however, the trade-o¤ makes it di¢ cult
to predict which bidder should be handicapped. In the following, we present two
special models in which it is possible to determine how the optimal handicap should

19They argue that the reason is that handicapping the strong encourages the weak to bid more.
While Clark and Riis (2000) only examine the aggregate revenue, it can in fact be shown that the
seller earns more on the strong bidder (in expectation). However, the seller may or may not earn
more on the weak bidder (depending on how heterogeneous the bidders are).
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be implemented. Both models di¤er from the benchmark model studied thus far,
since distributions are allowed to have mass points. The �rst class of models is
inspired by Maskin and Riley�s (2000) proof that a second price auction may be
more pro�table than a �rst price auction.
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- -
- -
- -
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Figure 3: It is optimal to handicap the weak bidder if a is large.

3.2.1 Bidder 1 is potentially uninterested

Assume bidder 1 is potentially uninterested in the prize.

De�nition 2 Bidder 1 is potentially uninterested if,

F1(v) = 1� �+ �F2(v), v 2 [0; v2] ;

for some � 2 (0; 1).

Thus, bidder 1 is believed to be like bidder 2 with probability �, but to be unin-
terested in the prize with probability 1�� > 0. Although F2 �rst order stochastically
dominates F1, f1(0) < f2(0). It is readily checked that J1(v) = J2(v), or �(v) = v,
when bidder 1 is potentially uninterested. This is the critical feature of the perturbed
model.
The derivation of equilibrium in Section 2 remains valid, meaning that

�

Z v2

k(v)

f2(x)

x
dx = r

Z v2

v

f2(x)

x
dx:
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When r = 1, k(v) < v for v 2 (0; v2). Thus, in the absence of head starts and
handicaps, bidder 1 is more aggressive than bidder 2 for comparable types. However,
this outcome is unequivocally negative in the current model, since it implies that
k(v) < v = �(v), for all v 2 (0; v2). Hence, bidder 1 wins too often compared to
what is optimal, regardless of his type. However, by setting r = � < 1, we obtain
k(v) = v = �(v). In other words, it is pro�table to handicap the weak bidder. There
is no trade-o¤ by doing so.

Proposition 4 Assume that a = 0. The seller pro�ts from handicapping the weak
bidder (r < 1) if he is potentially uninterested. The optimal value of r is r� = �.

Proof. In the text.
In this model, the economic environment may appear to be more uneven when

the weak bidder is handicapped, but the outcome actually becomes more �even�,
at least in the sense that the bidder with the highest valuation wins. That is, it is
e¢ cient to handicap the weak bidder.
The next example is an �approximation�of the model just discussed, but with

no mass points.

Example 1: The strong bidder draws a type from the uniform distribution F2(v) =
v, with density f2(v) = 1, v 2 [0; 1]. In contrast, bidder 1�s type is drawn from a
distribution function with density

f1(v) =

�
1
2
+ 100

�
1
10
� v
�
if v 2

�
0; 1

10

�
1
2

if v 2
�
1
10
; 1
� :

The optimal value of r is approximately 0:61 (when a = 0), meaning that it is the
strong bidder who should be favoured.20 �

3.2.2 Complete information

Next, assume that bidder i�s type is vi with probability one, i = 1; 2, with v2 >
v1 > 0.21 As long as bidder 2 is not handicapped too much (in particular, as long as

20The details of the example are omitted, but are available upon request. In this example, J1(v)
is not monotonic.

21Konrad (2002) considers a model with exogenous head starts and handicaps in which the value
of the prize is the same for both bidders. Siegel (2009) analyzes a very general model of contests
that encompasses complete information, all-pay auctions with exogenous head starts and handicaps.
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rv1 < v2), it is easily veri�ed that the two bidders use mixed strategies, picking bids
according to the distribution functions

P1(b) =
v2 � rv1
v2

+
r

v2
b, b 2 [0; v1]

P2(b) =
1

rv1
b, b 2 [0; rv1];

for bidder 1 and 2, respectively. If r decreases both bid distributions become sto-
chastically �weaker�, meaning that bidders are more likely to submit low bids.22

Thus, expected revenue unambiguously decreases if the weak bidder is handicapped.
Instead, it is pro�table to handicap the strong bidder.

Proposition 5 Assume that a = 0. The seller pro�ts from handicapping the strong
bidder (r > 1) under complete information.

Proof. Both bid distributions become stochastically �stronger�when r increases
(for rv1 < v2).

3.3 Head starts and handicaps

Let a� denote the optimal value of a when handicaps are ruled out (r = 1), and let r�

denote the optimal value of r when head starts are ruled out (a = 0). Let a�� and r��

denote the optimal values of a and r, respectively, when head starts and handicaps
are determined jointly.
In Section 3.1 it was established that it is pro�table to give the weak bidder a

head start for any �xed handicap. However, when r is large, it may be even more
pro�table to give the strong bidder a head start. For instance, in the uniform model,
it is optimal to give the strong bidder a head start if he is severely handicapped. We
�rst show that when a and r are determined jointly, it is the weak bidder who will
receive a head start in the uniform model.

Lemma 3 Assume that Fi(v) = v
vi
, v 2 [0; vi], i = 1; 2. Then, k intersects � and � 1

exactly once, regardless of r.

Proof. When both distributions are uniform, it is easily veri�ed that � is linear. It
ranges from 0 to v1 on a domain that does not include 0 or v2. k also ranges from 0

22In the benchmark model with incomplete information, a change in r does not lead to a stochas-
tic deterioration or improvement in the bid distributions (Proposition 2). The comparative statics
are sensitive to the assumptions regarding the information structure.
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to v1 but on the larger domain [0; v2]. Thus, k and � must intersect. Regarding the
curvature of k, (5) implies

k00(v) = r
k0(v)v � k(v)

v2
v1
v2
= r

r v1
v2
� 1
v2

v1
v2
k(v):

Thus, k is strictly concave when r < v2
v1
, strictly convex when r > v2

v1
, and linear

when r = v2
v1
. It follows that k and � intersect only once. The proof that k intersects

� 1 exactly once is identical.

Proposition 6 Assume that k and � intersect exactly once, regardless of r. Then,
a�� > 0.

Proof. Theorem 1 implies that a�� 6= 0. It remains to show that a�� � 0. Following
the argument in the proof of Theorem 1, any a < 0 that is a candidate for a maximum
must produce a (vc2; v

c
1) pair at the intersection of �

�1
2 and k in Figure 2 (where k

implicitly depends on r). We next show that a more pro�table combination of head
starts and handicaps exists. Since ��12 is below �, any intersection of ��12 and k takes
place in the region below �. Since k(0) = 0 but �(v) = 0 for some v > 0, it also
follows that the unique (by assumption) intersection of k and � must occur to the
left of any intersection between ��12 and k. In other words, k and � do not insect to
the right of the intersection between ��12 and k, which means that k is below � from
this point on. In this region, below �, expected revenue increases if bidder 2 wins
more often. This can be achieved by lowering r (shifting k upwards) while at the
same time adjusting a to keep vc1 constant. The shaded area in Figure 4 captures
the combinations of types for which the object is awarded to bidder 2 with the new
mechanism but not the old mechanism. Since bidder 2�s virtual valuation exceeds
that of bidder 1 in this region, expected revenue has increased.
The advantage of handicapping the strong bidder is that it leads the weak bidder

to win more often if his type is low. However, this could also be achieved by giving
the weak bidder a head start. The latter option would not su¤er the drawback that
is associated with a handicap, namely that the weak bidder would win even more
often if his type is high.
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Figure 4: The weak bidder gets the head start, a�� > 0.

Once a head start is used to bring the allocation near the bottom closer to what
is optimal, there is less of an incentive to handicap the strong bidder. Instead, it
may be better to use the handicap as an instrument to bring the allocation closer to
what is optimal near the top. To illustrate this most forcefully, consider once again
the model studied by C&R. Recall that a� > 0 (Theorem 2) and r� > 1 (C&R).
However, when a and r are chosen jointly to maximize revenue, we see that if the
asymmetry is su¢ ciently large, the weak bidder is simultaneously given a head start
(a�� > 0) and a handicap (r�� < 1).

Example 2: Assume that Fi(v) = v
vi
, v 2 [0; vi], i = 1; 2; with v2 > v1 = 1. If

v2 = 2 then a�� < a� and r�� > 1. However, if v2 = 3 then a�� > a� > 0 but r�� < 1.23

�

Assume now that a� > 0 (see Section 3.1). When a and r are determined jointly,
Example 2 illustrates that the weak bidder is either given a large head start and
a handicap, or the double advantage of a moderate head start and a handicapped
opponent. This result holds for any combination of distributions that share the
features of the uniform model identi�ed in Lemma 3.

Proposition 7 Assume that a� > 0 and that k intersects � and � 1 exactly once,
regardless of r. Then, either (i) a�� > a� and r�� < 1 or (ii) 0 < a�� � a� and
r�� � 1.

23The details of the example are omitted, but are available upon request.
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Proof. By Proposition 6, a�� > 0, which implies that (vc2; v
c
1) is determined by the

intersection of k and � 1. By assumption, this intersection is unique for any r. Hence,
if r < 1 then k shifts up, and k must intersect � 1 to the right of the intersection for
r = 1. Consequently, if r�� < 1 then vc2 increases, which necessitates that a

�� > a�.
A similar argument proves that if r�� � 1 then vc2 decreases, which necessitates that
a�� � a�.
To appreciate the advantages of handicapping the weak bidder while simultane-

ously giving him a head start, note that in the limit as r ! 0, the weak bidder is
handicapped so much that he will not submit positive bids. Thus, he will score a.
Then, from the strong bidder�s point of view, a functions as a reserve price. The
strong bidder would then win if his type is above a, and otherwise the weak bidder
wins. If a is chosen judiciously, then this mechanism maximizes the payment that
is obtainable from the strong bidder.24 If he is very strong compared to the weak
bidder, it is intuitive that it is worthwhile sacri�cing revenue on the weak bidder
(who pays nothing in the limiting case) to get more out of the strong bidder.

Example 3: Assume that Fi(v) = v
vi
, v 2 [0; vi], i = 1; 2; with v2 = 5, v1 = 1. In

this case, when a and r are chosen simultaneously, a�� = 2:5 and r�� = 0 (corner
solution). Expected revenue is 1:25, all of it from the strong bidder, which exceeds
what the weak bidder is willing to pay. �

Example 3 and the preceding intuition suggests that the weak bidder should
be given a head start and a handicap when the asymmetry is su¢ ciently large or
the strong bidder su¢ ciently strong. The next results formalizes this intuition in a
special model where bidder 2 is very strong.

Proposition 8 Assume that bidder 2�s type is v2 � v1 with probability one. Then,
a�� = v2, and r�� = 0.

Proof. When r�� = 0 the weak bidder has no incentive to bid. Hence, he will
score a�� = v2. It is then optimal for the strong bidder to bid a�� = v2 and win
with probability one (given the tie-breaking rule). Social surplus is maximized, but
bidders obtain zero payo¤. Hence, there is no better mechanism from the seller�s
point of view.
As with Examples 2 and 3, comparing Propositions 4 and 8 produces another

illustration of the potential consequences of allowing head starts and handicaps to
be determined simultaneously.

24This occurs when a = v�2 . In this case, the strong bidder wins if, and only if, his virtual
valuation is non-negative.
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4 Discussion

In the following we ask how head starts and handicaps impacts the e¢ ciency of
the auction. Then, we discuss the intuition in language familiar from the standard
monopoly problem. Finally, we consider an alternative interpretation of the model,
another way of manipulating the contest, and the consequences of allowing more
bidders in the auction.

4.1 E¢ ciency

Thus far, the objective of the contest designer has been assumed to be revenue
maximization. Depending on the context, many other objectives are possible. Here,
we brie�y consider the e¢ ciency implications of head starts and handicaps.
When bidders are homogeneous, Lien (1990) and Feess et al (2008) prove that

any handicap leads to a loss of e¢ ciency. The reason is that the favoured bidder may
win even when his valuation is the lowest. When bidders are heterogeneous, C&R
prove that handicapping the strong bidder lowers the e¢ ciency of the auction in the
uniform model. E¢ ciency would be improved by handicapping the weak contestant.
The intuition is that this makes it more likely that the winner is the bidder who is
the most likely to have the highest valuation, namely the strong bidder.
To pursue revenue maximization, the objective is to get the allocation as close to

� as possible. To pursue e¢ ciency, the objective is to get the allocation as close to
the 45� line as possible. It can be shown that k(v) generally crosses not only � but
also the 45� line (the strong bidder is more aggressive than the weak bidder when
types are low). Thus, handicapping any bidder involves a trade-o¤ in the sense that
k moves closer to the 45� for some values of v but further away for others. In the
C&R model, the trade-o¤ could be quanti�ed. However, Proposition 4 establishes
that there is not necessarily a con�ict between revenue maximization and e¢ ciency
when bidders are heterogeneous.
In addition, Proposition 8 proves that if the seller uses handicaps and head starts

simultaneously, he may in fact cause social surplus to increase in his pursuit of higher
revenue.

4.2 Monopoly pricing

Bulow and Roberts (1989) argued that the problem facing an auction designer with
weak and strong bidders is similar to the problem facing a monopolist with a weak
and a strong market and a random capacity. Recall that in the all-pay auction, the
weak bidder wins relatively often if types are high, but less often when types are low.
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This outcome roughly corresponds to the following policy by a monopolist: In the
event capacity is low, sell at a discount on the weak market, but if capacity is large,
sell at a discount on the strong market. Given the familiar textbook explanation of
third degree price discrimination, this policy is suspect.
First, if capacity is large, it is inoptimal to give a discount to the strong market.

It would be better to commit to not selling too much on the strong market, which
can be achieved by dumping goods on the weak market. This is essentially what the
head start to the weak bidder achieves in the context of the all-pay auction, since it
rules out that bidder 2 with type below vc2 wins.
Second, if capacity is low, it is actually not optimal to give a discount to the

weak market, since this consists of consumers with low willingness-to-pay. Rather,
the monopolist should sell exclusively on the strong market (remember that marginal
revenue on the �rst unit coincides with the willingness-to-pay of the most eager
consumer in the market; J2(v2) > J1(v1) if v2 > v1). When the auctioneer handicaps
the weak bidder, this is the direction in which he moves since it makes it less likely
that the weak bidder wins if both have high types.

4.3 Head starts and participation fees

A head start to bidder 1 is isomorphic to bidder 2 having to pay a �xed fee, a, to
be allowed to participate or bid.25 In this interpretation, it is perhaps less surprising
that the jointly optimal (a; r) pair may satisfy a > 0, r < 1. In particular, this would
mean bidder 2 has to pay an up-front fee, but in exchange he is rewarded on the
margin; additional payments are viewed more favorably.
Moreover, note that demanding a participation fee from bidder 2 eliminates the

equilibrium selection problem that arises in the perturbed model when a head start
is extended to bidder 1. If bidder 2 does not pay the fee, the prize is simply given to
bidder 1 (even if he is uninterested).

4.4 Caps on bids

We have shown that head starts and handicaps a¤ect the auction di¤erently. A head
start changes the allocation at the bottom, whereas a handicap�s impact is global.
There are other ways of manipulating an all-pay auction. For example, the possibility
of imposing a cap on bids has been widely studied. This instruments changes the
allocation in yet another way, since it is relevant only to bidders with high types.

25The bidders�scores would be s1 = rb1 and s2 = maxfb2 � a; 0g, where bi is bidder i�s expen-
diture, i = 1; 2. Bidder 2 wins if b2 > a+ rb1, just as in the original model.
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Che and Gale (1998) consider heterogenous contestants whose valuations are
common knowledge (complete information). Gavious et al (2002) assume contestants
are ex ante homogenous, but that valuations are private information and that costs
are non-linear in the bid. In both models, caps may bene�t the recipient of the
e¤ort. Sahuguet (2006) complements the two papers by extending the result to the
case with ex ante heterogenous contestants, where valuations are private information.
However, for tractability, it is assumed that there are exactly two contestants who
draw valuations from di¤erent uniform distributions, as in the C&R model.
Maintaining the assumption of uniform distributions, it can easily be checked

that imposing a cap on bids is not pro�table in the perturbed model of Section 4
when � is high (the bidders are almost symmetric), although it may be pro�table
when � is low. Thus, starting from the symmetric uniform model, the pro�tability
of a cap depends on how the asymmetry is modelled.

4.5 Many bidders

When there are two bidders, a bidder who is given a head start responds by lowering
his bid. We next present an example designed to show that this prediction is not
robust. That is, when there are many heterogeneous bidders it is possible that the
bidder who is given a head start will in fact increase his bid. We also argue that
head starts may be pro�table for more reasons when there are several bidders.
To illustrate this outcome in an extreme case, the following example takes as its

starting point the observation by Parreiras and Rubinchik (2006) that when there
are many heterogeneous bidders some of them may never participate.
Consider the case where there are 3 bidders. The �rst bidder is �weak�, and

characterized by the distribution function F1(v), v 2 [0; v1]. The remaining bidders
are homogeneous, with types drawn from F2(v), v 2 [0; v2], with v2 > v1. For
concreteness, assume F2(v) = v2, v 2 [0; 1]. The important property is that F2(v)=v
is increasing.
Intuitively, it is possible that the strong bidders compete so hard that it is not

worthwhile for the weak bidder to enter the auction. If the weak bidder does not
compete, the bidding strategy of the strong bidders (when a = 0, r = 1) is

b2(v) =
2

3
v3:

Obviously, this equilibrium hinges on the weak bidder having no incentive to enter.
This condition is hardest to satisfy for type v1. If the weak bidder has type v1 his
expected payo¤ from bidding b2(v), and thereby winning if both rivals have type
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below v, would be

v1v
4 � 2

3
v3 = v3

�
v1v �

2

3

�
:

We assume that v1 < 2
3
, in which case there is no incentive for the weak bidder to

enter the auction, since he would earn negative payo¤ from doing so.
Now, if the weak bidder is given a small head start, he still has no incentive

to submit positive bids. Nevertheless, expected revenue will increase. The reason is
that the weak bidder scores a, meaning that a minimum bid is essentially imposed on
the strong bidders. In this model, it is well known that minimum bids are pro�table.
The reason is that it excludes bidders with negative virtual valuation; J2(v) < 0
when v is small, while bidder 1�s expected virtual valuation is zero.
Consider next what would happen if the weak bidder is given a large head start.

If he continues to bid zero, a still functions as a minimum bid. In this case, the
strong bidders�bidding strategy is

b2(v) =
2

3
v3 +

1

3
a;

when v 2
h
a
1
3 ; 1
i
. To win the auction with probability one, the weak bidder with

type v1 would have to bid b2(1), less a. The resulting payo¤ is

v1 �
2

3
(1� a) ;

while the payo¤ from bidding zero (scoring a) is v1a
4
3 , since he would win if both

competitors have type below a
1
3 . The former exceeds the latter if a is su¢ ciently

high and v1 > 1
2
. Thus, if v1 = :6, for example, it is not an equilibrium for the weak

bidder to bid zero. Athey (2001) establishes that an equilibrium exists in a large
class of games encompassing the current game. Consequently, an equilibrium exists
and it must involve positive bids by the weak bidder. In other words, in the current
example, the weak bidder increases his bid when he is given a su¢ ciently large head
start.

4.6 Favoritism by excluding rivals

Consider the previous example, but assume now that there are many weak bidders.
In the benchmark auction, where the weak bidders stay out, expected revenue is
8
15
� 0:533. The maximal expected revenue that can be obtained from a mechanism

where only the two strong bidders are active is approximately 0:585. However, if all
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the weak bidders are given very large head starts, say a > 1, the strong bidders will
never �nd it pro�table to enter the auction. The auction will therefore be a standard
all-pay auction among a large set of weak bidders (their head starts cancel out). As
the number of weak bidders grow, however, expected revenue converges to v1, which
may very well exceed 0:585. In this example, the primary role of the head start is
to exclude the strong bidders. Baye, Kovenock, and de Vries (1993) were �rst to
prove that this may be pro�table in an all-pay auction with complete information.
Of course, excluding the strong bidders can be seen as a (somewhat extreme) way of
favouring the weak bidders.

5 Conclusion

We considered contests or all-pay auctions with head starts and handicaps. It was
pointed out that they a¤ect the auction in di¤erent ways. Thus, one is not a sub-
stitute for the other, and it is generally pro�table to use both instruments. In the
benchmark model, the intuitive results holds that it is optimal to give the weak
bidder a head start. However, it is not generally true that the seller pro�ts from
handicapping the strong bidder. The use of a handicap entails a trade-o¤, and we
showed it can go both ways. Thus, it is possible that it is the weak bidder who
should be handicapped. This is even more likely to be the case when head starts and
handicaps can be used simultaneously. In this case, the weak bidder may be given
a head start and a handicap. We also considered a perturbed model where there is
no trade-o¤ associated with using a handicap. In this model it is unambiguously the
weak bidder who should be handicapped.
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Appendix: Proof of Proposition 2.

Preliminary step: Scores and Bids. To derive the score obtained by bidder 2
with valuation v > vc2, using the inverse function theorem on (3), for j = 2, yields

ds2
dv

= rk(v)f2(v):

Since s2(vc2ja; r) = a, it follows that

s2(vja; r) = a+
Z v

vc2

rk(x)f2(x)dx; (12)

for v 2 [vc2; v2]. Bidder 2�s bid, b2(vja; r), equals his score (recall the normalization
a2 = 0, r2 = 1). If bidder 2�s type is below vc2 he stays out of the auction or scores
zero.
As mentioned, in equilibrium bidder 1 with type v scores the same as bidder 2

with valuation k�1(v). Alternatively, we can derive s1(v) in the same manner s2(v)
was derived,

s1(vja; r) = a+
Z v

vc1

k�1(x)f1(x)dx; (13)

for v 2 [vc1; v1]. Given (1), bidder 1�s bid is

b1(vja; r) =
�
0 if v 2 [0; vc1]R v
vc1

1
r
k�1(x)f1(x)dx otherwise : (14)

Proof of part 1: When a increases, vc2 increases as well, meaning that bidder 2
stays out for more types. To see how his bid changes for the active types, note that

@b2(vja; r)
@a

=
@s2(vja; r)

@a
= 1� rvc1f2(vc2)

dvc2
da
:

Moreover,

dvc2
da

=
1

F1(vc1) + v
c
2f1(v

c
1)k

0(vc2)

=
1

F1(vc1) + rv
c
1f2(v

c
2)
; (15)
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where the �rst equality follows from (7) and the second from (5). Hence,

@b2(vja; r)
@a

=
F1(v

c
1)

F1(vc1) + rv
c
1f2(v

c
2)
� 0 (16)

for v 2 (vc2; v2]. Thus, the active types responds by bidding more aggressively. Al-
though the bid (or score) increases, it increases by less than a increases, as the deriv-
ative is strictly less than 1. Bidder 1 bids less aggressively, which follows directly
from (14) when we recall that vc1 increases and r and k

�1 are unchanged.

Proof of part 2: If a = 0, note that implicit di¤erentiation of (6) reveals that

dk

dr
= � k

f1(k)

Z v2

v

f2(x)

x
dx = � k

f1(k)

1

r

Z v1

k

f1(x)

x
dx;

where (6) was used to obtain the last equality. It follows that

drk

dr
= k + r

dk

dr
= k

�
1� 1

f1(k)

Z v1

k

f1(x)

x
dx

�
:

This is negative if k is small since the term in the bracket goes to �1 as k ! 0.
Consequently, bidder 2�s bid, s2(vj0; r), decreases in r for small types. The fact that
bidder 1 bids more aggressively for small types can be proven in a similar manner. If
a > 0, the result follows from (12) and (14) coupled with the fact that vc1 is decreasing
in r, while vc2 is increasing in r.
Turning to high types, the highest score submitted by bidder 2 is

s2 = s2(v2ja; r) = a+
Z v2

vc2

rk(x)f2(x)dx:

Since the bidders share the same maximal score, s1 = s2, we infer that bidder 1�s
maximal bid is

b1 = c1(s2) =
s2 � a
r

=

Z v2

vc2

k(x)f2(x)dx:

This is decreasing in r since vc2 is increasing in r and k is decreasing in r. Hence,
bidder 1 bids less aggressively if his type is close to v1. In a similar manner we can
calculate bidder 2�s maximal bid, b2,

b2 = s1 = s1(v1ja; r) = a+
Z v1

vc1

k�1(x)f1(x)dx:

This increases in r since vc1 decreases and k
�1 increases. Thus, bidder 2 bids more

aggressively if his type is high.
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