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Abstract

While monotonicity is a necessary and almost sufficient condition for Nash imple-

mentation and often a demanding one, almost any (non-monotonic, for instance) social
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information, Chung and Ely (2003) show that only monotonic social choice rules can

be implemented in the closure of the undominated Nash equilibrium correspondence.

In this paper, we show that only monotonic social choice rules can be implemented in
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1 Introduction

Suppose that the society has a social choice rule which associates with each environment

a subset of possible outcomes. The theory of implementation is concerned with charac-

terizing the relationship between the structure of the institution (or mechanism) through

which individuals interact and the outcome of that interaction, given a social choice rule

and a domain of environments.

Maskin (1999) shows a condition called monotonicity is necessary and almost sufficient

for Nash implementation. It turns out that monotonicity is quite a demanding condition

and the literature tried to obtain less restrictive characterizations using refinments of

Nash equilibrium. Using subgame perfect equilibrium, Moore and Repullo (1988) dispense

with monotonicity and provide a sufficient condition for subgame perfect implementation.

Abreu and Sen (1990) further refine the analysis of Moore and Repullo (1988) and obtain

a necessary and almost sufficient condition for subgame perfect implementation. Finally,

Vartiainen (2007) obtains its full characterization. In fact, Miyagawa (2002) shows that

while many axiomatic bargaining solutions are not monotonic, they can be implemented

in subgame perfect equilibrium by a four-stage sequential mechanism. As a different

refinement, Palfrey and Srivastva (1991) propose undominated Nash equilibrium and prove

that almost any social choice rule is implementable in undominated Nash equilibrium.

Therefore, allowing for the use of refinements of Nash equilibrium, one can significantly

expand the class of implementable social choice rules.

Chung and Ely (2003) investigate the robustness of undominated Nash implementation

to incomplete information.1 In so doing, they require that solution concepts have closed

graph in the limit of complete information. Then, Chung and Ely (2003) conclude that

when preferences are strict (or more generally hedonic), only monotonic social choice rules

can be implemented in the closure of the undominated Nash equilibrium correspondence.

Following the approach by Chung and Ely (2003), this paper investigates the robustness

of any subgame perfect implementing mechanism to incomplete information. We show

that only monotonic social choice rules can be implemented in the closure of the subgame

perfect/sequential equilibrium correspondence. Hence, our result implies that there might
1The type of perturbation used in Chung and Ely (2003) weakens common knowledge into common

p-belief with p close to 1. Common p-belief is introduced in Monderer and Samet (1989). This is a

“smaller”perturbation and less demanding than the one used for instance in Oury and Tercieux (2009).

See also Kunimoto (2008) for a characterization of the perturbation used in this paper.

2



be little difference between sequential mechanisms and static mechanisms, once we insist

on robustness. This is due to the fact that a small amount of incomplete information

opens up a plethora of sequential equilibria, some of which could be “bad” equilibria and

undermine the original implementing mechanism.

There is a closely related paper by Aghion, Fudenberg, and Holden (henceforth, AFH)

(2007). They also consider the question of subgame perfect implementation with almost

complete information. AFH (2007) focus on a particular mechanism in the spirit of the

one defined in Section 5 of Moore and Repullo (1988). Under the assumption of complete

information, given any social choice rule, Moore and Repullo (1988) provide a mecha-

nism in which telling the truth is the unique subgame perfect equilibrium. AFH (2007)

exhibit one social choice rule where telling the truth is not an (sequential) equilibrium

when introducing a small amount of incomplete information. On the contrary, our paper

shows that the introduction of a small amount of incomplete information may induce new

“bad” equilibria, i.e. equilibria that do not implement. When considering implementation

problems, we believe that this is a meaningful requirement that indeed follows previous

approaches (see Chung and Ely (2003)). While the motivation in AFH (2007) is similar

to the present paper in spirit, our “robustness tests” are different and the results are also

very different: (1) Our result is mechanism-free: we do not consider a fixed mechanism but

a very general class of mechanisms that contains the one studied by AFH (2007); (2) our

non-robustness result applies to any social choice rule that is not monotonic, while AFH

(2007) focus on a single non-monotonic social choice function that fails their robustness

test.

We put our result in a broader perspective. Since the early works of Grossman and

Hart (1986) and Hart and Moore (1988), the incomplete contracts literature often cites

indescribable contingencies as a major obstacle to the creation of complete contracts.

Maskin and Tirole (1999), however, argue that the literature’s justification for incomplete

contracts is conceptually problematic. Using the agents’ minimum foresight concerning the

possible payoff contingencies, they show that the inability to describe future contingencies

by itself places no constraints on contracting. This is the so-called irrelevance theorem.

To show this, Maskin and Tirole reduce their task to checking sufficient conditions for

subgame perfect implementation. Then, our result enables us to assess the robustness of

Maskin and Tirole’s irrelevance theorem. In fact, we can conclude that their implementing

mechanism is not robust because a small amount of incomplete information necessitates
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that we should focus only on monotonic social choice rules. 2

It is also not difficult to find many other applications of subgame perfect implementa-

tion in the literature. For example, Miyagawa’s (2002) mechanism to implement bargaining

solutions cannot also escape from our robustness argument. In sum, we view the current

paper as a first step towards understanding the robustness of sequential mechanisms.

The rest of the paper is organized as follows: In Section 2 we introduce the prelimi-

nary notation and definitions. Section 3 defines robust subgame perfect implementation.

Section 4 has two subsections: in Section 4.1, we state the main theorem and illustrate

the main idea of this paper through an example; and in Section 4.2, we prove the theorem.

Section 5 concludes.

2 Setting

There is a finite set N = {1, ..., n} of players, and a set A of social alternatives. There is

a finite set Θ of states of nature. Associated with each state θ is a preference profile �θ

which is a list (�θ
1, ...,�θ

n). Players do not observe the state directly, but are informed of

the state via signals. Player i’s signal set is Si which for simplicity we identify {sθ
i }θ∈Θ

with |Si| = |Θ| for each i. A signal profile is an element s = (s1, ..., sn) ∈ S ≡ ×i∈NSi.

When the realized signal profile is s, each player i observes only his own signal si. We

let μ denote the prior probability over Θ × S, and let P be the set of all such priors.

We note μ(· | si) for the probability measure over Θ × S conditional on si. Let sθ be

the signal profile in which each player’s signal is sθ
i . Complete information refers to the

environments in which μ(θ, s) = 0 whenever s �= sθ (μ will be then referred to as a complete

information prior). Under complete information, the state, and hence the full profile of

preferences is always common knowledge among agents. We will assume for each i and

θ : μ(sθ
i ) ≡ [margSi

μ](sθ
i ) > 0 so that Bayes rule is well-defined. Given a prior μ over

Θ × S, we will sometimes abuse notations and write μ(θ) for [margΘμ](θ). Besides, given

s−i ∈ S−i, we will also write μ(s−i) as [margS−i
μ](s−i). Finally, given some arbitrary

countable space X, δx will denote the probability measure that puts probability 1 on

{x} ⊂ X.

A social choice correspondence (SCC) is a mapping F which associates a subset of A
2In particular, the simple mechanism used in Section 4 of Maskin and Tirole (1999) is the most relevant

here.
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with each θ ∈ Θ. A single-valued social choice correspondence is a social choice function

denoted f . Hence, any selection of SCC F is a social choice function. A mechanism is an

extensive game form Γ = (H,M, g) where H is a set of histories h. M = M1 × · · · ×Mn

and Mi = ×h∈HMi(h) for all i. An element of M(h) = M1(h)× · · · ×Mn(h), say m(h) =

(m1(h), ...,mn(h)) is a message profile at h while mi(h) is i’s message at h. If #Mi(h) > 1

and #Mj(h) > 1 then agents i and j move simultaneously after history h, whereas if

#Mi(h) > 1 and #Mj(h) = 1 for all j �= i then agent i is the only one to move. Histories

and messages are tied together by the property that M(h) = {m : (h,m) ∈ H}. An

element of Mi is a pure strategy; and an element of M is a pure strategy profile. We

sometimes write m |h= (m1 |h, ...,mn |h) for the profile of pure strategies starting from

history h.

There is an initial history ∅ ∈ H, and each history ht is represented by a sequence

with finite length t : (∅,m1,m2, ...,mt−1) = ht where for each k : mk ∈ M(hk).3 If for

t′ ≥ t+1 : ht′ = (ht,m
t, ...,mt′−1), then ht′ follows history ht. As Γ contains finitely many

stages, there is a set of terminal histories4 HT ⊂ H such that HT = {h ∈ H :there is no h′

following h}. Given any strategy profile m and any history h, there is a unique terminal

history denoted hT [m,h]. Formally, let Z : M ×H → H be the mapping where

Z[m,h] =

{
(h,m(h)) if h /∈ HT

h otherwise

is the history that immediately follows h whenever possible given that strategy profile m

has been played; and so hT [m,h] = limk→∞Zk[m,h] where Zk[m,h] = Z[m,Zk−1[m,h]].

Finally, the outcome function g : HT → A specifies an outcome for each terminal history.

We will also note g(m;ht) for the outcome that obtains when agents use strategy profile

m starting from history ht i.e. g(m;ht) = g(hT [m,ht]).

Assumption 1 Mi(h) is countable for each i and h.

Remark: This assumption is useful when using sequential equilibrium and avoids

technical complications due to the use of measures over uncountable spaces. We, however,

do not believe that our results depend on the countability assumption. We refer the
3As Moore and Repullo (1988), we restrict ourselves to mechanisms with finitely many stages. We

allow agents to move simultaneously at some nodes, so mechanisms need not be with perfect information.

However, at each node, all agents are assumed to know the entire history of the play.
4Note that M(h) = {m : (h, m) ∈ H} = ∅ for any h ∈ HT .
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reader to Duggan (1997) for the treatment of the general (uncountable) message space. In

addition, in our setting where the set of states has been assumed to be finite, the famous

mechanism by Moore and Repullo (Section 5) uses only a finite set of messages.

A stage mechanism Γ together with a profile θ ∈ Θ defines an extensive game Γ(θ).

A (pure strategy) Nash equilibrium for the game Γ(θ) is an element m∗ ∈ M such that,

for each agent i, g(m∗; ∅) �θ
i g((mi,m

∗
−i); ∅) for all mi ∈ Mi. A (pure strategy) subgame

perfect equilibrium for the game Γ(θ) is an element m∗ ∈ M such that, for each agent i,

g(m∗;h) �θ
i g((mi,m

∗
−i);h) for all mi ∈ Mi and all h ∈ H\HT . Let SPE(Γ(θ)) denote

the set of subgame perfect equilibria of the game Γ(θ). Let also NE(Γ(θ)) denote the set

of Nash equilibria of the game Γ(θ).

Given a prior μ, the mechanism determines a Bayesian game Γ(μ) in which each player’s

type is his signal, and after observing his signal, player i selects a strategy from the set

Mi. A strategy profile σ = (σ1, ..., σn) lists a strategy for each player where σi : Si → Mi

and σi(ht, si) is the message in Mi(ht) given history ht and signal si. Alternatively, we

will sometimes let σi be a (mixed) behavior strategy i.e. a function that maps the set

of possible histories and signals into the set of probability distributions over messages:

σi(· | ht, si) ∈ Δ(Mi(ht)) is the probability distribution over Mi(ht) given history ht and

signal si.

An act is a mapping α : Θ×S → A. Let A be the set of acts. A belief is a probability β

on Θ×S. In order to analyze incomplete information games, we must extend the original

preferences to the ones under uncertainty. We assume that for each belief β each player i

has a preference relation �β
i over acts. We only make the following assumption (which is

obviously satisfied by expected utility models but much weaker than that) on this order:

Assumption 2 Let α and α̂ be two acts, and β a belief. Then

[α(θ, s) �θ
i α̂(θ, s) for all (θ, s) ∈ supp(β)] ⇒ α �β

i α̂,

where supp(β) denotes the support of β.

Let σ be a pure strategy profile. Given a profile of pure strategies σ = (σ1, ..., σn), we

will note g(σ;ht) for the act that obtains when each agent uses strategy σi starting after

history ht occurred, i.e. each pair (θ, s) is mapped to g(σ(s);ht) ∈ A. The act αΓ
σ induced

by σ under the mechanism Γ is defined by αΓ
σ(θ, s) = g(σ(s); ∅) for any (θ, s).
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We will also assume that in the game induced by a stage mechanism, for each player

best replies are always well-defined in the neighborhood of complete information when

the opponents are playing according to some Nash equilibrium. In general, best-responses

need not be well-defined since we allow Mi(h) to be countably infinite. For instance,

integer games are such an example with countably infinite message spaces in which best

replies need not be well defined.5 The next assumption ensures that in the neighborhood

of complete information, against any Nash equilibrium strategy of his opponents, player

i has a strategy that is optimal at histories in some given set H and equal to some fixed

strategy at every other histories.

Assumption 3 A sequential mechanism Γ has well-defined best replies: for any player

i, any set of histories H ⊆ H, any θ ∈ Θ, any (mi,m−i) ∈ NE(Γ(θ)), there exists

ξ̄(i,H, θ,mi,m−i) > 0 such that for any β(·|sθi ) ∈ Δ(Θ × S−i) with β(θ, sθ
−i|sθ

i ) ≥ 1 −
ξ̄(i,H, θ,mi,m−i), there exists σ∗i [i,H, θ,mi,m−i, β], or simply σ∗i , satisfying

h /∈ H ⇒ σ∗i (h; s
θ
i ) = mi(h);

h ∈ H ⇒ g((σ∗i , σ−i);h) �β
i g((σ

′
i, σ−i);h)

for any σ
′
i that differs from σ∗i only at h and any σ−i such that σ−i(s−i) = m−i for any

s−i with β(s−i) > 0.

Remark: This property is satisfied in any finite mechanism as for instance the simple

mechanism in Section 5 of Moore and Repullo (1988) that uses a finite set of messages.6

Note also that when the set of outcomes is finite, this assumption is trivially satisfied.

3 SPE-implementation

When we perturb a complete information situation introducing a slight incomplete infor-

mation, we must specify the equilibrium concept we use. In this paper we will focus on

sequential equilibrium. Since our result provides necessary conditions, it will hold for any

coarser equilibrium concept as for instance perfect Bayesian equilibrium, subgame perfect

equilibrium. We now recall the definition of sequential equilibrium as defined in Kreps

and Wilson (1982).
5If there is some player for whom there is no maximum with respect to his preference order at some

state of nature, then best-replies are indeed not well-defined at this state in standard integer games.
6Recall that we have assumed that the set of state of nature is finite.
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Sequential Equilibrium:

A system of beliefs of agent i is defined as a function φi : Si ×H → Δ(Θ × S−i). Let

φi[(θ, s−i) | si, ht] denote agent i’s belief that the state (θ, si, s−i) is realized when agent

i’s signal is si and the observed history is ht. We will henceforth abuse notations and

sometimes consider φi[(θ, s−i) | si, ht] as an element of Δ(Θ× S). We also say a vector of

beliefs φ = (φ1, . . . , φn) is Bayes consistent with a strategy profile σ if beliefs are updated

from one stage to the next using Bayes’ rule whenever possible (see Fudenberg and Tirole

(1991) for its precise definition). An assessment is a pair (φ, σ) consisting of a profile of

beliefs and a pure behavior strategy profile.

Definition 1 A sequential equilibrium is an assessment (φ, σ) that satisfies condition (S)

and (C):

(S) Sequential rationality: for all i ∈ N, si ∈ Si, ht ∈ H :

g(σ, ht) �φi[·|si,ht]
i g((σ′i, σ−i), ht)

for each σ′i.

(C) Consistency: there exists a sequence of totally mixed strategy profiles (σk
1 , ..., σ

k
n)

converging uniformly7 to (σ1, ..., σn) with Bayes consistent beliefs φk converging to φ. 8

Henceforth, we assume that A is an arbitrary topological space, and that A = AΘ×S is

endowed with the product topology. Given a mechanism Γ, we denote the sequential equi-

librium correspondence by ψSE
Γ : P → A where each element α of ψSE

Γ (μ) is an act (or out-

come) corresponding to some sequential equilibrium outcome of Γ(μ), which describes the

alternative α(θ, s) that will result for each (θ, s) (where SE stands for sequential equilib-

rium). Formally, ψSE
Γ (μ) ≡ {

α ∈ A : α = αΓ
σ where (φ, σ) is a sequential equilibrium for some φ

}
.

Let

graph ψSE
Γ ≡ {(μ,α) : α ∈ ψSE

Γ (μ)}.

The following notation will be convenient. If B is a set of acts such that for any (θ, s) ∈
supp(μ) and any a ∈ F(θ), there is α ∈ B for which α(θ, s) = a, then we will write

7Given that the set of messages can be countably infinite, two natural convergence notions can be

used: point-wise convergence or uniform convergence. The set of sequential equilibria is smaller when one

assumes uniform convergence. Hence, the use of uniform convergence strengthens our main result.
8See also Kreps and Wilson (1982) for the detail of the definition.
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B �μ F . Further, if B is a set of acts such that α(θ, s) ∈ F(θ) for each α ∈ B and any

(θ, s) ∈ supp(μ), then we will write B �μ F . If B �μ F and B �μ F , then we write

B =μ F .

Definition 2 A stage mechanism Γ SE-implements an SCC F : Θ → A under μ if

ψSE
Γ (μ) =μ F .

When μ is a complete information prior, the above definition is equivalent to the stan-

dard definition of subgame perfect implementation. The next lemma is its formalization.

We provide it with no proof.

Lemma 1 Let μ be a complete information prior. A stage mechanism Γ SE-implements

an SCC F : Θ → A under μ if and only if for each (θ, sθ) ∈ Θ × S with μ(θ, sθ) > 0, we

have g(SPE(Γ(θ)); ∅) = F(θ),

As in Chung and Ely (2003), we consider the “closure” of the solution correspondence

ψSE
Γ . Define

ψSE
Γ (μ) = {α : (μ,α) ∈ graph ψSE

Γ }.

Note that the topology used when we consider the closure is characterized by Kunimoto

(2008). Recall that (μ,α) ∈ graph ψSE
Γ if there exists a sequence {(μk, αk)}∞k=1 such that

(i) (μk, αk) ∈ graph ψSE
Γ for each k and (ii) (μk, αk) → (μ,α). The following is our

definition of robust implementation, denoted SPE implementation.

Definition 3 A mechanism Γ SE-implements an SCC F : Θ → A under μ if ψSE
Γ (μ) =μ

F . When μ is a complete information prior, we say that Γ SPE-implements F under μ.

Finally we say that an SCC F : Θ → A is SPE-implementable under complete information

if there exists a mechanism Γ that SE-implements F under some complete information

prior μ.

4 Monotonicity as a Necessary Condition

4.1 Theorem and Illustration

We now recall the definition of monotonicity as defined in Maskin (1999).
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Definition 4 An SCC F is said to be monotonic if, for any θ, θ
′ ∈ Θ and any a ∈ F(θ),

(∗) ∀i ∈ N,∀b ∈ A, a �θ
i b =⇒ a �θ

′
i b,

we have a ∈ F(θ
′
).

We are now in a position to state our main Theorem.

Theorem 1 Suppose that Assumption 1, 2 and 3 are satisfied. If an SCC is SPE-

implementable under complete information, it is necessarily monotonic.

Remark: This result seems to contradict Proposition 2 of Kreps and Wilson (1982),

which shows that the sequential equilibrium correspondence is upper hemi-continuous.

This apparent inconsistency comes from the very fact that the sequential equilibrium

correspondence is upper hemi-continuous provided that μ has full support over Θ× S (as

is assumed in Kreps and Wilson (1982)). However – as shown in our illustration – when

μ assigns probability 0 to some profile (θ, s), upper hemi-continuity may not hold.

Let us illustrate the main idea of the proof of Theorem 1 through the simple mechanism

proposed in Section 5 of Moore and Repullo (1988). The set of payoff states is {θ, θ′}.
There are two agents, called 1 and 2. For each i = 1, 2, agent i’s preference relation in

state θ is given by �θ
i . The agents commonly observe the state, but the planer does not

observe it.

We extend the set of outcomes A to Ã ≡ A×R
2 and define extended preferences over

Ã as follows. An element of Ã is now a tuple (a, t1, t2) where a is an outcome while for each

player i : ti denotes the transfer to player i. Preferences over A are naturally extended

to preferences over Ã denoted by �θ̃
i i.e. given any transfer ti to agent i : a �θ̃

i b if and

only if (a, ti, ·)�θ̃
i (b, ti, ·). To fix ideas, one instance of this extension is the setting with

transfers and quasilinear preferences.

Since transfers to player −i do not affect player i’s ordering, throughout this exam-

ple, when considering i’s evaluations over outcomes, we ignore agent j(�= i)’s monetary

transfer from the expression, i.e. we will abuse notations and for instance, simply note

(a, ti)�θ
i (b, t

′
i) instead of (a, ti, ·)�θ

i (b, t
′
i, ·).

We assume that f(θ) �= f(θ′) and f : Θ → Ã is “non-monotonic” and therefore not

Nash implementable. With this, we must satisfy the following condition:

∀i,∀b ∈ Ã : f(θ)�θ
i b⇒ f(θ)�θ′

i b (∗∗)
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Following Section 5 of Moore and Repullo (1988), we argue that this non-monotonic f

can be implemented as the unique subgame perfect equilibrium outcome of the following

3-stage mechanism, under some assumptions that are naturally satisfied in a setting with

(large) transfers and quasi-linear preferences.

Stage 1: Agent 1 announces the state θ (resp., θ′). Then, the game moves to Stage 2.

Stage 2: If agent 2 agrees (i.e. announces the same state as agent 1), then the game

ends here and f(θ) (resp., f(θ′)) is chosen. If agent 2 challenges by announcing θ′ (resp.,

θ), the game moves to Stage 3.

Stage 3: Conditioning on agent 1’s announcement θ (resp., θ′) at Stage 1, agent 1 has

to choose between x(θ) (resp., x(θ′)) and y(θ) (resp., y(θ′)) such that

x(θ) �θ
1 y(θ), and

(resp., x(θ′) �θ′
1 y(θ′), and)

y(θ) �θ′
1 x(θ).

(resp., y(θ′) �θ
1 x(θ

′).)

Further, if agent 1 chooses x(θ) (resp., x(θ′)), then agent 1 receives (x(θ),−Δ) (resp.,

(x(θ′),−Δ)); agent 2 receives (x(θ),−Δ) (resp., (x(θ),−Δ)); and the planner nets 2Δ –

whereas if agent 1 chooses y(θ) (resp., y(θ′)), then agent 1 receives (y(θ),−Δ) (resp.,

(y(θ′),−Δ)); agent 2 receives (y(θ),+Δ) (resp., (y(θ′),+Δ)); and the planner breaks

even. 9 The game stops here. It is assumed that Δ is “large enough” i.e., Δ satisfies

(f(θ′), 0)�θ′
1 (y(θ),−Δ); (y(θ),+Δ)�θ′

2 (f(θ), 0); and (f(θ′), 0)�θ′
2 (x(θ′),−Δ). Similarly,

(f(θ), 0)�θ
1(y(θ

′),−Δ); (y(θ′),+Δ)�θ
2(f(θ′), 0); and (f(θ), 0)�θ

2(x(θ),−Δ). Note that

this implies in particular that (f(θ′), 0)�θ′
1 (x(θ),−Δ) and (f(θ), 0)�θ

1(x(θ
′),−Δ).

Denote by m∗
i (θ̃;h) agent i’s strategy in state θ̃ at history h. The strategy we focus

on here is given below:

• m∗
1(θ; ∅) = θ and m∗

1(θ
′; ∅) = θ′;

• m∗
2(θ; θ) = θ;m∗

2(θ
′; θ′) = θ′,m∗

2(θ; θ
′) = θ; and m∗

2(θ
′; θ) = θ′; and

• m∗
1(θ; (θ, θ

′)) = x(θ);m∗
1(θ; (θ

′, θ)) = y(θ′);m∗
1(θ

′; (θ′, θ)) = x(θ′); andm∗
1(θ

′; (θ, θ′)) =

y(θ).
9The existence of such x(·) and y(·) is guaranteed by the following weak domain restriction: for any

pair (θ, θ′) with θ �= θ′, there are a, b ∈ A and an agent i such that a �θ
i b and b �θ′

i a (preference reversal).
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We will show that m∗ constitutes the unique subgame perfect equilibrium. First, note

that m∗ prescribes the outcome where agent 1 will announce the true state and agent 2

will not challenge. Suppose that agent 1 announces the state θ (resp., θ′). If agent 1 lies,

then agent 2 can challenge her with the truth, and at stage 3 agent 1 will choose y(θ)

(resp., y(θ′)). This is so by construction. Given the choice of Δ, this must be worse for

agent 1 than whatever the social choice function f offers. Equally, given the definition

of Δ, agent 2 will be satisfied with his reward of Δ. On the other hand, if agent 1 tells

the truth, then agent 2 will not (falsely) challenge, since agent 1 would now choose x(θ)

(resp., x(θ′)) at Stage 3, which incurs a penalty of Δ for agent 2.

Suppose that the agents have a common prior that μ(θ, sθ
1, s

θ
2) = p and μ(θ′, sθ′

1 , s
θ′
2 ) =

1−p, where 0 < p < 1. 10 Now let us introduce the following perturbation of the complete

information structure νε.

νε sθ
1, s

θ
2 sθ

1, s
θ′
2 sθ′

1 , s
θ
2 sθ′

1 , s
θ′
2

θ p(1 − ε) pε/2 pε/2 0

θ′ 0 0 0 1 − p

Observe that νε → μ as ε → 0. In this perturbation, if agent i receives sθ
i , he knows

that the state is θ but does know which signal the other agent receives. We propose the

following strategy profile σ∗ of the game Γ(νε):

• σ∗1(s
θ
1, ∅) = σ∗1(s

θ′
1 , ∅) = θ;

• σ∗2(s2, θ̃) = θ for any θ̃ ∈ {θ, θ′} and any s2 ∈ {sθ
2, s

θ′
2 }; and

• σ∗1(sθ
1, (θ, θ

′)) = x(θ);σ∗1(sθ′
1 , (θ, θ

′)) = x(θ);σ∗1(sθ
1, (θ

′, θ)) = y(θ′); and σ∗1(sθ′
1 , (θ

′, θ)) =

x(θ′).

Note that, αΓ
σ∗ , the act induced by σ∗, is such that αΓ

σ∗(θ′, sθ′
1 , s

θ′
2 ) = f(θ). Hence, if

each player i receives a signal sθ′
i and plays according to σ∗i , the outcome provided is f(θ).

For each player i, his belief φ∗i is defined as follows:

• φ∗1
[·∣∣s1, (θ, θ′)] = δ(θ,sθ

2) for each s1 ∈ {sθ
1, s

θ′
1 }; and φ∗2[·|s2, θ′] = δ(θ,sθ

1) for each

s2 ∈ {sθ
2, s

θ′
2 };

• φ∗i [·|si, ∅] = νε(·|si) for each i = 1, 2 and each si ∈ {sθ
i , s

θ′
i };

10The common prior assumption is completely dispensable for the rest of arguments.
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• φ∗2[·|s2, θ] = νε(·|s2) for each s2 ∈ {sθ
2, s

θ′
2 }; and

• φ∗1[·|s1, (θ′, θ)] = νε(·|s1) for any s1 ∈ {sθ
1, s

θ′
1 }.

What we want to show is that the proposed assessment (φ∗, σ∗) constitutes a se-

quential equilibrium of the game Γ(νε) for any ε > 0 small enough. In this case, since

αΓ
σ∗(θ′, sθ′

1 , s
θ′
2 ) = f(θ) and νε(θ′, sθ′

1 , s
θ′
2 ) = 1 − p > 0, this shows that with probability

1−p, a bad outcome is provided (i.e. f(θ) instead of f(θ′)); this is indeed enough to show

that the mechanism provided in this section does not SPE-implements f .

First, we will check sequential rationality of (φ∗, σ∗). At h3 = (θ, θ′), agent 1 has to

choose between x(θ) and y(θ). Due to the construction of φ∗1, regardless of the signal

received, agent 1 believes with probability one that the state is θ. Then, by construction

of x(θ) and y(θ), it is optimal for her to choose x(θ). Let h3 = (θ′, θ). Suppose agent 1

received sθ
1. In this case, by construction of φ∗1 and νε(·|sθ1), agent 1 knows that the state

is θ. Here, agent 1 has to choose between x(θ′) and y(θ′). By construction, it is optimal

for her to choose y(θ′), regardless of ε. Suppose that agent 1 received sθ′
1 . Our finite

setup guarantees that agent 1 always has a best reply in this perturbed environment. Due

to the construction of φ∗1 and small enough ε > 0, agent 1 believes with arbitrarily high

probability that the state is θ′. With an additional assumption of continuity of preferences,

we proceed to argue that it is optimal for her to choose x(θ′). 11

With this in mind, we move to Stage 2. Suppose that h2 = θ. In this case, if agent 2

chooses θ′, he knows that agent 1 will choose x(θ). Assume that agent 2 received sθ
2. In

this case, by construction of φ∗2 and νε(·|sθ2), agent 2 knows that the state is θ. But since

(f(θ), 0)�θ
2(x(θ),−Δ), by Assumption 2, we can conclude that it is optimal for agent 2 to

choose θ.

Assume that agent 2 received sθ′
2 . As we argued before, agent 2 knows that agent 1 will

choose x(θ). We also know that (f(θ), 0)�θ
2(x(θ),−Δ). By condition (∗∗), we can obtain

that (f(θ), 0)�θ′
2 (x(θ),−Δ) as well. Since νε(·|sθ′2 ) assigns strictly positive weights only to

(θ, sθ
1, s

θ′
2 ) and (θ′, sθ′

1 , s
θ′
2 ), by Assumption 2, we can conclude that it is again optimal for

agent 2 to choose θ.

Suppose that h2 = θ′. In this case, due to the construction of φ∗2, agent 2 believes

with probability one that the state is θ and agent 1 will choose y(θ′) at Stage 3. But
11As shown in the proof of Theorem 1, the same argument can go through even if (perhaps due to the

lack of continuity of preferences) y(θ′) is a best reply.
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we know that (y(θ′),+Δ)�θ
2(f(θ′), 0). Since φ∗2 assigns a strictly positive weight only to

either (θ, sθ
1, s

θ
2) if agent 2 received sθ

2 or (θ, sθ
1, s

θ′
2 ) if agent 2 received sθ′

2 . By Assumption

2 and the construction φ∗2, we can conclude that for any s2 ∈ {sθ
2, s

θ′
2 }, it is optimal for

agent 2 to choose θ.

Finally, we move to Stage 1. If agent 1 chooses θ, she knows that agent 2 will choose

θ so that f(θ) is chosen. On the other hand, suppose agent 1 chooses θ′. Assume also

that she received sθ
1. Then, she knows that the state is θ and that agent 2 will choose θ at

Stage 2. We know that (f(θ), 0)�θ
1(x(θ

′),−Δ) and (f(θ), 0)�θ
1(y(θ

′),−Δ). Since φ∗1[·|sθ1, ∅]
assigns strictly positive weights only to (θ, sθ

1, s
θ
2) and (θ, sθ

1, s
θ′
2 ), by Assumption 2, we can

conclude that it is optimal for her to choose θ.

Assume, on the contrary, that agent 1 received sθ′
1 . If agent 1 deviates to θ′, she knows

that agent 2 will choose θ at Stage 2 and she herself will choose either x(θ′) or y(θ′)

at Stage 3. As we argued above, we have chosen Δ > 0 so that (f(θ), 0)�θ
1(x(θ

′),−Δ)

and (f(θ), 0)�θ
1(y(θ

′),−Δ). By condition (∗∗), we also obtain (f(θ), 0)�θ′
1 (x(θ′),−Δ) and

(f(θ), 0)�θ′
1 (y(θ′),−Δ). Since φ∗1[·|sθ

′
1 , ∅] assigns strictly positive weights only to (θ, sθ′

1 , s
θ
2)

and (θ′, sθ′
1 , s

θ′
2 ), by Assumption 2, we can conclude that it is optimal for agent 1 to choose

θ at Stage 1.

We conclude that (φ∗, σ∗) so constructed satisfies sequential rationality.

Next we will check consistency of (φ∗, σ∗). Let {ηk}∞k=1 be a sequence such that ηk > 0

for each k and ηk → 0 as k → ∞. Let a sequence of totally mixed strategy profiles {σk}∞k=1

be defined as follows:

σk
1(sθ

1, ∅) =

{
θ w.p. 1 − ηk

θ′ w.p. ηk

σk
1(sθ′

1 , ∅) =

{
θ w.p. 1 − η2

k

θ′ w.p. η2
k

σk
2 (sθ

2, θ) = σk
2(sθ

2, θ
′) =

{
θ w.p. 1 − ηk

θ′ w.p. ηk

σk
2 (sθ′

2 , θ) = σk
2(sθ′

2 , θ
′) =

{
θ w.p. 1 − η2

k

θ′ w.p. η2
k
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σk
1(sθ

1, (θ, θ
′)) =

{
x(θ) w.p. 1 − ηk

y(θ) w.p. ηk

σk
1(sθ

1, (θ
′, θ)) =

{
x(θ′) w.p. ηk

y(θ′) w.p. 1 − ηk

σk
1 (sθ′

1 , (θ, θ
′)) (resp., σk

1 (sθ′
1 , (θ

′, θ)) =

{
x(θ) (resp., x(θ′)) w.p. 1 − η2

k

y(θ) (resp., y(θ′)) w.p. η2
k

Note that σk → σ∗ by construction. We can define a belief profile φk associated with

σk. We claim that φk → φ∗ as k → ∞. For simplicity, we only pay attention to checking

off the equilibrium beliefs. This can be done by explicitly computing the following:

φk
1 [(θ, s

θ′
2 )|sθ1, (θ, θ′)]

=
νε(θ, sθ

1, s
θ′
2 ) × σk

1(θ | ∅, sθ
1) × σk

2 (θ′ | θ, sθ′
2 )

νε(θ, sθ
1, s

θ′
2 ) × σk

1 (θ | ∅, sθ
1) × σk

2 (θ′ | θ, sθ′
2 ) + νε(θ, sθ

1, s
θ
2) × σk

1 (θ | ∅, sθ
1) × σk

2 (θ′ | θ, sθ
2)

=
(pε/2)(1 − ηk)η2

k

(pε/2)(1 − ηk)η2
k + p(1 − ε)(1 − ηk)ηk

=
pεηk/2

pεηk/2 + p(1 − ε)
→ 0 (as k → ∞)

φk
1 [(θ

′, sθ′
2 )|sθ′1 , (θ, θ′)] =

(1 − p)(1 − η2
k)η

2
k

(1 − p)(1 − η2
k)η

2
k + (pε/2)(1 − η2

k)(ηk)
=

(1 − p)ηk

(1 − p)ηk + pε/2
→ 0 (as k → ∞)

φk
2 [(θ, s

θ′
1 )|sθ2, θ′] =

(pε/2)η2
k

(pε/2)η2
k + p(1 − ε)ηk

=
pεηk/2

pεηk/2 + p(1 − ε)
→ 0 (as k → ∞)

φk
2 [(θ

′, sθ′
1 )|sθ′2 , θ′] =

(1 − p)η2
k

(1 − p)η2
k + (pε/2)ηk

=
(1 − p)ηk

(1 − p)ηk + pε/2
→ 0 (as k → ∞)

4.2 Proof of Theorem 1

Let μ be a complete information prior, and let F be a SPE-implementable SCC with

implementing mechanism Γ. Fix any θ, θ
′ ∈ Θ and any a ∈ F(θ). Suppose θ and θ′ are

two possible states satisfying (∗). We will show that a ∈ F(θ′).

Since Γ SPE-implements F , it must also SPE-implements F . Thus, by Lemma 1,

there exists a subgame perfect equilibrium m∗
θ in Γ(θ) such that g(m∗

θ) = a. Clearly, m∗
θ is

actually a Nash equilibrium of Γ(θ). From (∗), it follows thatm∗
θ is also a Nash equilibrium

of Γ(θ′). Recall that H denotes the set of all possible histories. For each t ≥ 0, let h∗t be

the history induced by m∗
θ up to date t and denote H∗ for the set of all such histories. In
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addition, for each player i, let H∗
−i be the set of histories h along which every player j �= i

has chosen the message m∗
θ,j(h

′); formally, H∗
−i ≡ {h ∈ H : h = (∅,m1,m2, ...,mt−1) for

some t and mt′
j = m∗,t′

j,θ for all t′ ≤ t− 1 and all j �= i}. Note that h∗t ∈ H∗
−i for each t ≥ 1.

Fix ε > 0 to be sufficiently small so that for each θ̃, we have νε((θ̃, sθ̃
−i) | sθ̃

i ) ≥
1 − ξ̄(i,H∗

−i\H∗, θ̃,m∗
−i,θ) where ξ̄(i,H∗

−i\H∗, θ̃,m∗
−i,θ) is in Assumption 3. Consider the

following family of information structure νε. For each player i, let τi represent the profile

of signals s = (s1, ..., sn) defined by si = sθ′
i and sj = sθ

j for all j �= i. For all i, νε describes

νε(θ, τi) =
ε

n
μ(θ, sθ);

νε(θ, sθ) = (1 − ε)μ(θ, sθ); and

νε(θ̃, sθ̃) = μ(θ̃, sθ̃) ∀θ̃ �= θ.

In this information structure when the state is anything other than θ or θ′, the state

is common knowledge. Furthermore, when a player observes θ, he knows that the state is

θ. Obviously, νε → μ as ε→ 0. 12 The support of νε is denoted

supp(νε) = {(θ̃, sθ̃) : θ̃ ∈ Θ} ∪ {(θ, τi) : i ∈ N}.

We build a sequential equilibrium (φ, σ) of Γ(νε) for any ε > 0 small enough where σ

induces an act αΓ
σ for which αΓ

σ(θ′, sθ′) = a. Hence, this will show that (νε, αΓ
σ) ∈ graph

ψSE
Γ for all ε > 0 small enough. Note that although σ depends on ε, the induced act αΓ

σ

does not. Hence, (νε, αΓ
σ) → (μ,αΓ

σ) ∈ graph ψSE
Γ as ε→ 0. Thus since Γ ψSE

Γ -implements

F under μ, we must have a = αΓ
σ(θ′, sθ′) ∈ F(θ′), which will complete the proof.

In the following lines, we define a strategy σ and a family of system of beliefs Φ so

that σ induces an act αΓ
σ for which αΓ

σ(θ′, sθ′) = a. In addition, we will show that (φ, σ) is

a sequential equilibrium of Γ(νε) for some φ ∈ Φ. Φ and σ are defined as follows:

Definition of Φ:

φ ∈ Φ if and only φ satisfies the following three properties.

Φ1. Fix any i ∈ N , any ht /∈ H∗
−i,

φi

[
·|sθ′

i , ht

]
= δ(θ,sθ

−i)

12We use exactly the same information structures as in Chung and Ely (2003).
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also

supp
(
φi

[
·|sθ

i , ht

])
⊆ supp

(
νε

[
·|sθ

i

])
and for all l with ht ∈ H∗

−l : (i.e., l has deviated)

φi[(θ, τl) | sθ
i , ht] = 0.

Φ2. For any i ∈ N , any ht ∈ H∗
−i, any si ∈ {sθ

i , s
θ′
i } :

φi[·|si, ht] = νε(·|si).

Φ3. For any i ∈ N , any ht ∈ H and any sθ̃
i /∈ {sθ

i , s
θ′
i }, we just assume that φi

[
· | sθ̃

i , ht

]
=

δ
(θ̃,sθ̃

−i)
where δx denotes the probability measure that puts probability 1 on {x}.

Definition of σ:

Σ1. For any player i and any ht ∈ H∗ or ht /∈ H∗
−i : σi(ht, s

θ′
i ) = m∗

θ,i(ht);

Σ2. For any player i and any ht ∈ H∗
−i\H∗, σi(ht, s

θ′
i ) = σ∗i (ht, s

θ′
i ) where σ∗i =

σ∗i [i,H∗
−i\H∗, θ′,m∗

i,θ,m
∗
−i,θ, ν

ε] as defined in Assumption 3 and so satisfies:

h ∈ H∗ or h /∈ H∗
−i ⇒ σ∗i (h, s

θ′
i ) = m∗

i,θ(h);

h ∈ H∗
−i\H∗ ⇒ g((σ∗i , σ̂−i);h) �νε(·|sθ

′
i )

i g((σ′i, σ̂−i);h)

for any σ
′
i that differs from σ∗i only at h (one-shot deviation) and any σ̂−i satisfying

σ̂−i(s−i) = m∗
θ,−i for any s−i with νε(s−i|sθ

′
i ) > 0. This is well-defined by Assump-

tion 3 because ε is small enough so that νε(θ
′
, sθ

′
−i|sθ

′
i ) ≥ 1−ξ̄(i,H∗

−i\H∗, θ′,m∗
i,θ,m

∗
−i,θ, ν

ε);

Σ3. For any player i and any ht ∈ H : σi(ht, s
θ
i ) = m∗

θ,i(ht);

Σ4. And for any ht ∈ H, σi(ht, s
θ̃
i ) = m∗

θ̃,i
(ht) for θ̃ �= θ, θ′ where m∗

θ̃
is an arbitrary

subgame perfect equilibrium of Γ(θ̃). This is well-defined since F is implementable

in subgame perfect equilibrium under complete information.

Note that hT [σ(sθ′), ∅] = hT [m∗
θ, ∅] and so, σ generates an act αΓ

σ for which αΓ
σ(θ′, sθ′) =

g(σ(sθ′); ∅) = g(m∗
θ ; ∅) = a. Hence, it only remains to show that (φ, σ) constitutes a se-

quential equilibrium for some φ ∈ Φ. In Section 4.2.1, we will show that (φ, σ) satisfies

sequential rationality for any φ ∈ Φ; and we will also establish that (φ, σ) satisfies consis-

tency for some φ ∈ Φ in Section 4.2.2.
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4.2.1 Sequential rationality

Fix any φ ∈ Φ. Sequential rationality of (φ, σ) will be proved by Claims 1 and 2 below.

Claim 1 For any i ∈ N, si �= sθ′
i , ht ∈ H :

g(σ;ht) �φi[·|si,ht]
i g((σ′i, σ−i);ht)

for each σ′i.

Proof of Claim 1: Fix any player i. It is obvious for sθ̃
i �= sθ

i because by Φ3,

φi

[
· | sθ̃

i , ht

]
= δ

(θ̃,sθ̃
−i)

and so state θ̃ is common knowledge. By Σ4, we can further

conclude that σ(sθ̃) = m∗
θ̃

is a subgame perfect equilibrium in the complete information

game Γ(θ̃). Hence, we focus on the case where si = sθ
i . By construction, νε(θ | sθ

i ) = 1

and so this player knows that his preference is given by �θ
i . The uncertainty he faces is

rather on the signals of his opponents, i.e. whether the profile of signals is sθ or τk for

some k �= i.

Let ht /∈ H∗
−i. By Σ3 we know that σ(sθ) = m∗

θ. Hence, hT [σ(sθ), ht] = hT [m∗
θ, ht] and

so

g(σ(sθ);ht) = g(m∗
θ;ht).

In addition, for each l �= i with ht /∈ H∗
−l, by Σ1 and Σ3 we know that σ−i(τl, ht) =

m∗
−i,θ(ht). 13 For any history ht′ that follows ht, we must have ht′ /∈ H∗

−l. By applying

again Σ1 and Σ3 we get that σ−i(τl) |ht= m∗
−i,θ |ht . Hence, we obtain hT [σ(τl), ht] =

hT [m∗
θ, ht] and so for each l �= i with ht /∈ H∗

−l, we have

g(σ(τl);ht) = g(m∗
θ;ht).

In case player i deviates to σ′i, he can induce the following terminal histories: hT [σ′i(s
θ
i ), σ−i(sθ

−i), ht] =

hT [m′
i,m

∗
−i,θ, ht] for some strategy m′

i and so

g(σ′i(s
θ
i ), σ−i(sθ

−i);ht) = g(m′
i,m

∗
−i,θ;ht).

In addition, for each l �= i with ht /∈ H∗
−l, we know that σ−i(τl) |ht= m∗

−i,θ |ht . Hence,

hT [σ′i(s
θ
i ), σ−i(τl), ht] = hT [m′

i,m
∗
−i,θ, ht] and so for each l �= i with ht /∈ H∗

−l, we have

g(σ′i(s
θ
i ), σ−i(τl);ht) = g(m′

i,m
∗
−i,θ;ht).

13We abuse the notation because we should use σ−i(τl\sθ
i , ht) instead of σ−i(τl, ht). This abuse will be

used everywhere.
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Since m∗
θ is a subgame perfect equilibrium in the complete information game Γ(θ), we

have g(m∗
θ;ht) �θ

i g(m
′
i,m

∗
−i,θ;ht). Thus, we get g(σ(sθ);ht) �θ

i g(σ
′
i(s

θ
i ), σ−i(sθ

−i);ht) and

for each l �= i such that ht /∈ H∗
−l : g(σ(τl);ht) �θ

i g(σ
′
i(s

θ
i ), σ−i(τl);ht). Because by Φ1,

we have φi[· | sθ
i , ht] assigns a strictly positive weight only to (θ, sθ

−i) and (θ, τl) for each

l �= i such that ht /∈ H∗
−l, we can conclude with Assumption 2

g(σ;ht) �φi[·|sθ
i ,ht]

i g((σ′i, σ−i);ht).

Let ht ∈ H∗
−i. Let us distinguish two cases. First, assume that ht ∈ H∗

−i\H∗. Since

ht ∈ H∗
−i and ht /∈ H∗, there must exist t′ < t such that σi(ht′ , s

θ
i ) �= m∗

i,θ(ht′) where ht′

is a truncation of history ht. Then, for any history ht′′ following ht′ (and so in particular,

following ht), we have ht′′ /∈ H∗
−k for each k �= i. By Σ1 and Σ3, we thus obtain σ(ht′′ , s

θ) =

σ(ht′′ , τk) = m∗
θ(ht′′) for each k �= i. Hence, for each k �= i we have hT [σ(sθ), ht] =

hT [σ(τk), ht] = hT [m∗
θ, ht], which further implies

g(σ(sθ);ht) = g(σ(τk);ht) = g(m∗
θ;ht).

Consider the case where player i deviates to σ′i. Here, Σ1 and Σ3 allow us to conclude that

for each k �= i, player i can induce the following terminal histories: hT [σ′i(s
θ
i ), σ−i(sθ

−i), ht] =

hT [σ′i(s
θ
i ), σ−i(τk), ht] = hT [m′

i,m
∗
−i,θ, ht] for some strategy m′

i, which implies

g(σ′i(s
θ
i ), σ−i(sθ

−i);ht) = g(σ′i(s
θ
i ), σ−i(τk);ht) = g(m′

i,m
∗
−i,θ;ht).

Since m∗
θ is a subgame perfect equilibrium in the complete information game Γ(θ), we al-

ready have g(m∗
θ ;ht) �θ

i g(m
′
i,m

∗
−i,θ;ht). Thus, we also get g(σ(sθ);ht) �θ

i g(σ
′
i(s

θ
i ), σ−i(sθ

−i);ht)

and g(σ(τk);ht) �θ
i g(σ

′
i(s

θ
i ), σ−i(τk);ht) for each k �= i. Now, since by Φ2 we know that

φi[· | sθ
i , ht] assigns a strictly positive weight only to (θ, sθ

−i) and (θ, τk) for each k �= i, we

can conclude with Assumption 2

g(σ, ht) �φi[·|sθ
i ;ht]

i g((σ′i, σ−i);ht).

Consider now the second case where ht ∈ H∗. Note that ht+1 = (ht, σ(ht, s
θ)) =

(ht, σ(ht, τk)) = (ht,m
∗
θ(ht)) = h∗t+1 ∈ H∗ where the second and third equalities are

assured by Σ1 and Σ3 and we use the fact that ht ∈ H∗. Similar argument can be made

inductively so that any subsequent history also falls into H∗. Because hT [σ(sθ), ht] =

hT [σ(τk), ht] = hT [m∗
θ, ht], we obtain

g(σ(sθ);ht) = g(σ(τk);ht) = g(m∗
θ;ht).
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Now consider that player i deviates to σ′i. Let t̂ ≥ t be the first date at which σ′i(ht̂, s
θ
i ) �=

σi(ht̂, s
θ
i ); or equivalently, σ′i(ht̂, s

θ
i ) �= m∗

i,θ(ht̂). As above, one can inductively show that as

long as t′ < t̂, we obtain ht′+1 = (ht′ , σ
′
i(ht′ , s

θ
i ), σ−i(ht′ , s

θ
−i)) = (ht′ , σ

′
i(ht′ , s

θ
i ), σ−i(ht′ , τk)) =

(ht′ ,m
∗
i,θ(ht′),m∗

−i,θ(ht′)) ∈ H∗ for each k �= i where the second and third equalities are

assured by Σ1 and Σ3 and we use the fact that ht′ ∈ H∗. In addition, ht′+1 /∈ H∗
−k

for each k �= i and t′ ≥ t̂. Hence, t′ ≥ t̂ for ht′+1 = (ht′ , σ
′
i(ht′ , s

θ
i ), σ−i(ht′ , s

θ
−i)) =

(ht′ , σ
′
i(ht′ , s

θ
i ), σ−i(ht′ , τk)) = (ht′ , σ

′
i(ht′ , s

θ
i ),m

∗
−i,θ(ht′)) for each k �= i where the second

and third equalities are assured by Σ1 and Σ3 and we use the fact that ht′ /∈ H∗
−k for

each k �= i. So we get hT [σ′i(s
θ
i ), σ−i(sθ

−i), ht] = hT [σ′i(s
θ
i ), σ−i(τk), ht] = hT [m′

i,m
∗
−i,θ, ht]

for some strategy m′
i, which implies

g(σ′i(s
θ
i ), σ−i(sθ

−i);ht) = g(σ′i(s
θ
i ), σ−i(τk);ht) = g(m′

i,m
∗
−i,θ;ht).

Here again, since m∗
θ is a subgame perfect equilibrium in the complete information game

Γ(θ), we have g(m∗
θ;ht) �θ

i g(m
′
i,m

∗
−i,θ;ht). Thus, we get g(σ(sθ);ht) �θ

i g(σ
′
i(s

θ
i ), σ−i(sθ

−i);ht)

and g(σ(τk);ht) �θ
i g(σ

′
i(s

θ
i ), σ−i(τk);ht) for each k �= i. Now since by Φ2, φi[· | sθ

i , ht]

assigns a strictly positive weight only to (θ, sθ
−i) and (θ, τk) for each k �= i, we can conclude

with Assumption 2

g(σ;ht) �φi[·|sθ
i ,ht]

i g((σ′i, σ−i);ht).

This completes the proof. �

Claim 2 For any i ∈ N, si = sθ′
i , and ht ∈ H :

g(σ, ht) �φi[·|si,ht]
i g((σ′i, σ−i), ht)

for each σ′i.

Proof of Claim 2: This claim will be proved by studying three different cases depend-

ing on the type of history we consider: (1) ht /∈ H∗
−i; (2) ht ∈ H∗; and (3) ht ∈ H∗

−i\H∗.

Let us first consider the case (1) ht /∈ H∗
−i. By Σ3 we know that σ−i(sθ

−i) = m∗
−i,θ.

In addition, for any history ht′ following ht, we have ht′ /∈ H∗
−i. Thus, by Σ1, we ob-

tain σi(ht′ , s
θ′
i ) = m∗

i,θ(ht′) for any subsequent history ht′ . This further implies that

hT [σ(sθ′
i , s

θ
−i), ht] = hT [m∗

θ, ht] and so we obtain

g(σ(sθ′
i , s

θ
−i);ht) = g(m∗

θ;ht).
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Consider that player i deviates to σ′i. Then, we have hT [σ′i(s
θ′
i ), σ−i(sθ

−i), ht] = hT [m′
i,m

∗
−i,θ, ht]

for some strategy m′
i. Hence, we obtain

g(σ′i(s
θ′
i ), σ−i(sθ

−i);ht) = g(m′
i,m

∗
−i,θ;ht).

Since m∗
θ is a subgame perfect equilibrium in the complete information game Γ(θ), we have

g(m∗
θ;ht) �θ

i g(m
′
i,m

∗
−i,θ;ht). Thus, we also get g(σ(sθ′

i , s
θ
−i);ht) �θ

i g(σ
′
i(s

θ′
i ), σ−i(sθ

−i);ht).

Because by Φ1, φi[(θ, sθ
−i) | sθ′

i , ht] = 1, we can conclude with Assumption 2

g(σ;ht) �φi[·|sθ′
i ,ht]

i g((σ′i, σ−i);ht).

Consider now the case (2) ht ∈ H∗. Note that ht+1 = (ht, σ(ht, s
θ′
i , s

θ′
−i)) = (ht, σ(ht, s

θ′
i , s

θ
−i)) =

(ht,m
∗
θ(ht)) = h∗t+1 ∈ H∗ where the second and third equalities are assured by Σ1

and Σ3 and we use the fact that ht ∈ H∗. Similar argument can be made inductively

so that any subsequent history also falls into H∗. Hence we have hT [σ(sθ′
i , s

θ′
−i), ht] =

hT [σ(sθ′
i , s

θ
−i), ht] = hT [m∗

θ, ht], which implies

g(σ(sθ′
i , s

θ′
−i);ht) = g(σ(sθ′

i , s
θ
−i);ht) = g(m∗

θ;ht).

Now consider that player i deviates to σ′i. Let t̂ ≥ t be the first date at which σ′i(ht̂, s
θ′
i ) �=

σi(ht̂, s
θ′
i ); or equivalently, σ′i(ht̂, s

θ′
i ) �= m∗

i,θ(ht̂). As above, similar argument would show

that as long as t′ < t̂, we have ht′+1 = (ht′ , σ
′
i(ht′ , s

θ′
i ), σ−i(ht′ , s

θ′
−i)) = (ht′ , σ

′
i(ht′ , s

θ′
i ), σ−i(ht′ , s

θ
−i)) =

(ht′ ,m
∗
i,θ(ht′),m∗

−i,θ(ht′)) ∈ H∗ where the second and third equalities are assured by Σ1

and Σ3 and we use the fact that ht′ ∈ H∗. In addition, ht̂+1 = (ht̂, σ
′
i(ht̂, s

θ′
i ), σ−i(ht̂, s

θ′
−i)) =

(ht̂, σ
′
i(ht̂, s

θ′
i ), σ−i(ht̂, s

θ
−i)) = (ht̂, σ

′
i(ht̂, s

θ′
i ),m∗

−i,θ(ht̂)) where the second and third equal-

ities are assured by Σ1 and Σ3 and we use the fact that ht̂ ∈ H∗. Note that ht′ /∈
H∗

−k for each k �= i and for t′ ≥ t̂ + 1. Therefore, using an inductive argument, one

can show that ht′+1 = (ht′ , σ
′
i(ht′ , s

θ′
i ), σ−i(ht′ , s

θ′
−i)) = (ht′ , σ

′
i(ht′ , s

θ′
i ), σ−i(ht′ , s

θ
−i)) =

(ht′ , σ
′
i(ht′ , s

θ′
i ),m∗

−i,θ(ht′)) where the second and third equalities are assured by Σ1 and

Σ3 and we use the fact that ht′ /∈ H∗
−k for each k �= i. So we get hT [σ′i(s

θ′
i ), σ−i(sθ

−i), ht] =

hT (σ′i(s
θ′
i ), σ−i(sθ′

−i), ht] = hT [m′
i,m

∗
−i,θ, ht] for some strategy m′

i, which implies

g(σ′i(s
θ′
i ), σ−i(sθ

−i);ht) = g(σ′i(s
θ′
i ), σ−i(sθ′

−i);ht) = g(m′
i,m

∗
−i,θ;ht). (1)

Here again, since m∗
θ is a subgame perfect equilibrium in the complete information game

Γ(θ), we have g(m∗
θ ;ht) �θ

i g(m
′
i,m

∗
−i,θ;ht). Thus, we also get

g(σ(sθ′
i , s

θ
−i);ht) �θ

i g(σ
′
i(s

θ′
i ), σ−i(sθ

−i);ht). (2)
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The above preference relation together with (1) also implies

g(σ(sθ′
i , s

θ′
−i);ht) �θ

i g(σ
′
i(s

θ′
i ), σ−i(sθ′

−i);ht).

Since g(σ(sθ′
i , s

θ′
−i);ht) = g(m∗

θ;h
∗
t ) = a and we have assumed that θ and θ′ are two states

satisfying (∗), we get that

g(σ(sθ′
i , s

θ′
−i);ht) �θ′

i g(σ′i(s
θ′
i ), σ−i(sθ′

−i);ht). (3)

Now since by Φ2, φi[· | sθ′
i , ht] assigns a strictly positive weight only to (θ, sθ

−i) and (θ′, sθ′
−i),

Assumption 2 together with (2) and (3) yields:

g(σ, ht) �φi[·|sθ′
i ,ht]

i g((σ′i, σ−i), ht).

Finally consider the case (3) ht ∈ H∗
−i\H∗. Since ht ∈ H∗

−i and ht /∈ H∗ (only i

has deviated up to t), there must exist t′ < t such that σi(ht′ , s
θ′
i ) �= m∗

i,θ(ht′) where

ht′ is a truncation of history ht. Then, for any history ht′′ following ht′ (and so, in

particular, following ht), we have ht′′ /∈ H∗
−k for each k �= i. Moreover, by Σ1 and Σ3 we

have σ−i(ht′′, s
θ
−i) = σ−i(ht′′, s

θ′
−i) = m∗

−i,θ(ht′′). Otherwise stated, we have σ−i(sθ
−i) |ht=

σ−i(sθ′
−i) |ht= m∗

−i,θ |ht . By Φ2 we know that φi[· | sθ′
i , ht] = νε(· | sθ

′
i ) assigns a strictly

positive weight only to (θ, sθ
−i) and (θ′, sθ′

−i). In addition, we have just shown that for any

h ∈ H∗ or h /∈ H∗
−i : σi(h, sθ′

i ) = m∗
i,θ(h, s

θ′
i ). Since ht ∈ H∗

−i\H∗, we conclude with Σ2

g((σi, σ−i);ht) �νε(·|sθ
′

i )
i g((σ′i, σ−i);ht)

for any σ
′
i that differs from σi only at ht. By the one-shot deviation principle for sequential

equilibria14, the above is equivalent to

g((σi, σ−i);ht) �νε(·|sθ
′

i )
i g((σ′i, σ−i);ht)

for any σ
′
i. This completes the proof. �

4.2.2 Consistency

In this section, we show that for some φ ∈ Φ, (φ, σ) satisfies consistency.
14See for instance, Hendon, Jacobsen and Sloth (1996).
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To show this part, we first fix σ as defined above and consider the following sequence

{(φk, σk)}∞k=0 of assessments. Let ηk > 0 for each k and ηk → 0 as k → ∞. For each player

i, ht ∈ H, and signal si, let ξi(ht, si, ·) be any strictly positive prior overMi(ht)\{σi(si, ht)}
and define σk

i as

σk
i (mt

i | ht, s
θ′
i ) =

{
1 − ηt×n

k if mt
i = σi(ht, s

θ′
i );

ηt×n
k × ξi(ht, s

θ′
i ,m

t
i) otherwise

and for any signal si �= sθ′
i :

σk
i (mt

i | ht, si) =

{
1 − ηk if mt

i = σi(ht, si);

ηk × ξi(ht, si,m
t
i) otherwise

.

Let φk be the unique Bayes consistent belief associated with each σk. It is easy to check

that σk converges uniformly to σ and we also have that φk converges15. Let φ ≡ limk→∞ φk.

In the sequel, we show that φ satisfies Φ1, Φ2 and Φ3. This will show that (φ, σ) satisfies

consistency, and φ ∈ Φ as claimed.

To do so, we explicitly compute each φk and study its limit as k tends to infinity. In

general for each (θ̃, s̃−i) ∈ Θ × S−i, each ht = (m1, ...,mt−1) ∈ H, and each s̃i ∈ Si, we

have

φk
i [(θ̃, s̃−i) | s̃i, ht] =

νε(θ̃, s̃−i, s̃i) ×
∏t−1

t′=1

[
σk(mt′ | ht′ , s̃)

]
∑

(θ′,s′−i)

νε(θ′, s′−i, s̃i) ×
∏t−1

t′=1

[
σk(mt′ | ht′ , s

′
−i, s̃i)

] .

In the above formula for each t′ ≤ t, ht′ stands for the truncation of ht to the first t′

elements i.e., ht′ = (m1, ...,mt′−1).

Claim 3 φ satisfies Φ1.

Proof of Claim 3: Consider player i, ht /∈ H∗
−i. First, we will establish the following

lemma.

Lemma 2 Fix player i and assume that ht = (∅,m1, ...,mt−1) /∈ H∗
−i. For all j �= i, let

sj ∈ {sθ
j , s

θ′
j }.

(1) There exists ĵ �= i and t̂ ≤ t− 1 such that σĵ(ht̂, sĵ) �= mt̂
ĵ;

(2) If ht ∈ H∗
−l for some l �= i, then there exists t̂ ≤ t− 1 such that σl(ht̂, sl) �= mt̂

l .

15As will become clear from the proof, the sequence {φk}k does converge.
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Proof of Lemma 2: (1) Assume, on the contrary, that σ−i(ht′ , s−i) = mt′
−i for all

t′ ≤ t − 1. We then show by induction that for all t′ ≤ t, ht′ ∈ H∗
−i, which yields a

contradiction. Let t′ = 1; in this case, h1 = ∅ ∈ H∗ ⊆ H∗
−i. Now, toward an induction,

assume that ht′−1 ∈ H∗
−i and let us show that ht′ ∈ H∗

−i. It is easy to show that ht′−1 ∈ H∗
−i

implies that either ht′−1 ∈ H∗ (i.e., no player has deviated) or ht′−1 /∈ H∗
−j for all j �= i

(i.e., only i has deviated). However, in either case, σ−i(ht′−1, s−i) = m∗
−i,θ(ht′−1) is

obtained by Σ1 and Σ3. Since we have assumed that σ−i(ht′−1, s−i) = mt′−1
−i , we get

mt′−1
−i = m∗

−i,θ(ht′−1), which proves that ht′ = (ht′−1, (m̃i(ht′−1),m∗
−i,θ(ht′−1)) for some

strategy m̃i and so ht′ ∈ H∗
−i. This is a contradiction as desired. (2) Since ht ∈ H∗

−l, we

have that, for all j �= l and all t′ ≤ t− 1, mt′
j = m∗

j,θ(ht′). Since ht /∈ H∗
−i, we must have

that ht ∈ H∗
−l\H∗. Let t̃ ≤ t−1 be the first date at which mt̃

l �= m∗
l,θ(ht̃). By construction,

we have that for all t′ ≤ t̃, ht′ ∈ H∗ while for all t′ > t̃, ht′ /∈ H∗
−j for all j �= l. This

implies that for all j �= l and t′ ≤ t−1, we have σj(ht′ , sj) = m∗
j,θ(ht′) by Σ1 and Σ3. This

further implies that for all j �= l and t′ ≤ t− 1, σj(ht′ , sj) = mt′
j . As we already proved in

(1), we must have the existence of t̂ ≤ t− 1 such that σl(ht̂, sl) �= mt̂
l , as claimed. �

The rest of the proof is reduced to checking the following two cases:

Case 1: si = sθ′
i . Recall that νε(·, sθ′

i ) assigns a weight strictly positive only to

(θ′, sθ′
−i) and (θ, sθ

−i). Hence,

φk
i [(θ, s

θ
−i) | sθ′

i , ht]

=

νε(θ, sθ
−i, s

θ′
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]

νε(θ, sθ
−i, s

θ′
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]
+ νε(θ′, sθ′

−i, s
θ′
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j , ht′ , s
θ′
j )

]

=
νε(θ, sθ

−i, s
θ′
i )

νε(θ, sθ
−i, s

θ′
i ) + νε(θ′, sθ′

−i, s
θ′
i ) ×

∏
j �=i

[
�t−1

t′=1
σk

j (mt′
j |ht′ ,sθ′

j )]

∏
j �=i

[�t−1
t′=1

σk
j (mt′

j |ht′ ,sθ
j )]

We now show that the ratio
∏
j �=i

[
∏t−1

t′=1 σ
k
j (mt′

j | ht′ , s
θ′
j )]

/ ∏
j �=i

[
∏t−1

t′=1 σ
k
j (mt′

j | ht′ , s
θ
j)] tends

to 0 as k tends to infinity. This will show that φk
i [(θ, s

θ
−i) | sθ′

i , ht] → 1 and φk
i [(θ

′, sθ′
−i) |

sθ′
i , ht] → 0.
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By construction of σk, Lemma 2 (1) implies that for some ĵ �= i and t̂ ≤ t− 1 :

σk
ĵ (mt̂

ĵ | ht̂, s
θ′
ĵ ) = ηt×n

k ξĵ(ht̂, s
θ′
ĵ ,m

t̂
ĵ). (4)

Now, we have:

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ′
j )

]
∏
j �=i

[∏t−1
t′=1 σ

k
j (mt′

j | ht′ , s
θ
j )

] ≤ ηt×n
k × ξĵ(ht̂, s

θ′
ĵ ,m

t̂
ĵ) × 1∏

j �=i

[∏t−1
t′=1 ηkξj(ht′ , s

θ
j ,m

t′
j )

]

≤ ηt×n
k

η
(t−1)(n−1)
k

× ξĵ(ht̂, s
θ′
ĵ ,m

t̂
ĵ)∏

j �=i

[∏t−1
t′=1 ξj(ht′ , s

θ
j ,m

t′
j )

] = ηt+n−1
k × ξĵ(ht̂, s

θ′
ĵ ,m

t̂
ĵ)∏

j �=i

[∏t−1
t′=1 ξj(ht′ , s

θ
j ,m

t′
j )

] → 0 (as k → ∞).

Where the first inequality is assured by (4) and (assuming wlog that ηk is small) we use

the very construction that, for all j and t′ ≤ t− 1, σk
j (mt′

j | ht′ , s
θ
j) ≥ ηk × ξj(ht′ , s

θ
j ,m

t′
j ).

Case 2: si = sθ
i . Recall that νε(·, sθ

i ) assigns a weight strictly positive only to

(θ, sθ
−i) and (θ, τl) for each l �= i. Hence,

φk
i [(θ, τl) | sθ

i , ht]

=

νε(θ, τl) ×
∏
j �=l,i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]
×

[
t−1∏
t′=1

σk
l (mt′

l | ht′ , s
θ′
l )

]
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
z �=i

νε(θ, τz) ×
∏

j �=z,i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]
×

[
t−1∏
t′=1

σk
z (mt′

z | ht′ , s
θ′
z )

]

+νε(θ, sθ
−i, s

θ
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j , ht′ , s
θ
j)

]
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
νε(θ, τl)

∑
z �=i

νε(θ, τz) × cz + νε(θ, sθ
−i, s

θ
i ) ×

t−1�

t′=1

σk
l (mt′

l ,ht′ ,sθ
l )

t−1�

t′=1

σk
l (mt′

l |ht′ ,sθ′
l )

for some positive numbers cz. We now show that if ht ∈ H∗
−l, then the ratio∏t−1

t′=1 σ
k
l (mt′

l , ht′ , s
θ
l )

/ ∏t−1
t′=1 σ

k
l (mt′

l | ht′ , s
θ′
l ) tends to ∞ as k tends to infinity. This will

show that φk
i [(θ, τl) | sθ

i , ht] → 0 for all l such that ht ∈ H∗
−l; and hence that φ satisfies

Φ1. Assume that ht ∈ H∗
−l for some l, by construction of σk, Lemma 2 (2) implies that

there exists t̂ ≤ t− 1 such that σl(ht̂, sl) �= mt̂
l and so:

σk
l (mt̂

l | ht̂, s
θ′
l ) = ηt̂×n

k ξl(ht̂, s
θ′
l ,m

t̂
l). (5)
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Now, we have
t−1∏
t′=1

σk
l (mt′

l , ht′ , s
θ
l )

t−1∏
t′=1

σk
l (mt′

l | ht′ , s
θ′
l )

≥
ηt−1

k

t−1∏
t′=1

×ξl(ht′ , s
θ
l ,m

t′
l )

ηt×n
k ξl(ht̂, s

θ′
l ,m

t̂
l) × 1

=
1

η
t(n−1)+1
k

×

t−1∏
t′=1

ξl(ht′ , s
θ
l ,m

t′
l )

ξl(ht̂, s
θ′
l ,m

t̂
l)

→ ∞ (as k → ∞).

Where the first inequality is assured by (5) and (assuming wlog that ηk is small) we use

the fact that by construction: for all t′ ≤ t− 1 : σk
l (mt′

j , ht′ , s
θ
l ) ≥ ηk × ξl(ht′ , s

θ
l ,m

t′
l ). �

Claim 4 φ satisfies Φ2.

Proof of Claim 4: Consider player i, ht ∈ H∗
−i. The following lemma will be useful.

Lemma 3 Fix player i and assume that ht = (∅,m1, ...,mt−1) ∈ H∗
−i. For all j �= i, let

sj ∈ {sθ
j , s

θ′
j }. For all j �= i and t′ ≤ t− 1 : σj(ht′ , sj) = mt′

j .

Proof of Lemma 3: Pick any t′ ≤ t− 1 and note that ht′ ∈ H∗
−i. Hence, it must be

that either ht′ ∈ H∗ or ht′ /∈ H∗
−j for all j �= i. In each of these cases, by Σ1 and Σ3, we

have for all j �= i : σj(ht′ , sj) = m∗
j,θ(ht′). Since ht′ ∈ H∗

−i, we have that, for all j �= i,

mt′
j = m∗

j,θ(ht′), which completes the proof. �
Here again, the rest of the proof is reduced to checking the following two cases.

Case 1: si = sθ′
i . Recall that νε(·, sθ′

i ) assigns a weight strictly positive only to

(θ′, sθ′
−i) and (θ, sθ

−i). Hence,

φk
i [(θ

′, sθ′
−i) | sθ′

i , ht]

=

νε(θ′, sθ′
−i, s

θ′
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ′
j )

]

νε(θ′, sθ′) ×
∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ′
j )

]
+ νε(θ, sθ

−i, s
θ′
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]

=
νε(θ′, sθ′

−i, s
θ′
i )

νε(θ′, sθ′) + νε(θ, sθ
−i, s

θ′
i ) ×

∏
j �=i

[
�t−1

t′=1
σk

j (mt′
j |ht′ ,sθ

j )]

∏
j �=i

[�t−1
t′=1

σk
j (mt′

j |ht′ ,sθ′
j )]
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We now show that the ratio
∏
j �=i

∏t−1
t′=1 σ

k
j (mt′

j | ht′ , s
θ
j)

/ ∏
j �=i

∏t−1
t′=1 σ

k
j (mt′

j | ht′ , s
θ′
j ) tends to

1 as k tends to infinity. This will show that φk
i [(θ

′, sθ′
−i) | sθ′

i , ht] → νε((θ′, sθ′
−i) | sθ′

i ) and

φk
i [(θ, s

θ
−i) | sθ′

i , ht] → νε((θ, sθ
−i) | sθ′

i ).

By construction of σk, Lemma 3 implies that for all j �= i and t′ ≤ t− 1 :

σk
j (mt′

j | ht′ , s
θ
j) = 1 − ηk and σk

j (mt′
j | ht′ , s

θ′
j ) = 1 − ηt×n

k

Thus,

∏
j �=i

t−1∏
t′=1

σk
j (mt′

j , ht′ , s
θ′
j )

/ ∏
j �=i

t−1∏
t′=1

σk
j (mt′

j , ht′ , s
θ
j) → 1 as k → ∞

Case 2: si = sθ
i . Recall that νε(·, sθ

i ) assigns a weight strictly positive only to

(θ, sθ
−i) and (θ, τl) for l �= i. Hence,

φk
i [(θ, s

θ
−i) | sθ

i , ht]

=

νε(θ, sθ
−i, s

θ
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

νε(θ, sθ
−i, s

θ
i ) ×

∏
j �=i

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]

+
∑
l �=i

νε(θ, τl) ×
∏
j �=i,l

[
t−1∏
t′=1

σk
j (mt′

j | ht′ , s
θ
j)

]
×

[
t−1∏
t′=1

σk
l (mt′

l | ht′ , s
θ′
l )

]
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=
νε(θ, sθ

−i, s
θ
i )

νε(θ, sθ
−i, s

θ
i ) +

∑
l �=i

νε(θ, τl) ×
�t−1

t′=1
σk

l (mt′
l |ht′ ,sθ′

l )
�t−1

t′=1
σk

l (mt′
l |ht′ ,sθ

l )

We now show that for each l �= i, the ratio
∏t−1

t′=1[σ
k
l (mt′

l | ht′ , s
θ′
l )]

/ ∏t−1
t′=1[σ

k
l (mt′

l | ht′ , s
θ
l )]

tends to 1 as k tends to infinity. This will show that φk
i [(θ, s

θ
−i) | sθ

i , ht] → νε((θ, sθ
−i) | sθ

i )

and similar reasoning shows that for each l �= i : φk
i [(θ, τl) | sθ

i , ht] → νε((θ, τl) | sθ
i ); and

hence, φ satisfies Φ2.

By construction of σk, Lemma 3 implies that for all l �= i and t′ ≤ t− 1 :

σk
l (mt′

l | ht′ , s
θ
l ) = 1 − ηk and σk

l (mt′
l | ht′ , s

θ′
l ) = 1 − ηt×n

k

Thus,

t−1∏
t′=1

σk
l (mt′

l | ht′ , s
θ′
l )

/
t−1∏
t′=1

σk
l (mt′

l | ht′ , s
θ
l ) → 1 as k → ∞
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�
Finally, observing that for sθ̃

i /∈ {sθ
i , s

θ′
i }, νε(·, si) assigns a weight one to (θ̃, sθ̃

−i), we

establish the claim below:

Claim 5 φ satisfies Φ3.

5 Concluding Remarks

In this paper, we prove a necessary condition result analogous to Chung and Ely (2003) fo-

cusing on subgame perfect implementation while Chung and Ely (2003) focused on undom-

inated Nash implementation. It is natural to check what strengthening of Maskin’s mono-

tonicity would ensure SPE-implementation. Given that we will have to assume mono-

tonicity, there is probably very little gain to build a sequential mechanism, a static one

would most likely be enough. We conjecture that a simple condition of continuity on pref-

erences as well as the usual no-veto-power condition would ensure SPE-implementation

of any monotonic social choice function with more than two players (in one stage). More

generally, we believe that full-implementation in (strict) Nash equilibrium together with

some continuity requirement on preferences is enough for SPE-implementation (in one

stage).
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