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Abstract.

Previous work shows that reputation results may fail in repeated games with long-run

players with equal discount factors. Attention is restricted to extensive-form stage games of

perfect information. One and two-sided reputation results are provided for repeated games

with two long-run players with equal discount factors where the first mover advantage is

maximal. If one of the players is a Stackelberg type with positive probability, then that

player receives the highest payoff, that is part of an individually rational payoff profile, in

any perfect equilibria, as agents become patient. If both players are Stackelberg types with

positive probability, then perfect equilibrium payoffs converge to a unique payoff vector;

and the equilibrium play converges to the unique equilibrium of a continuous time war of

attrition. All results generalize to simultaneous move stage games, if the stage game is a

game of strictly conflicting interest.
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1. Introduction and Related Literature

This paper proves one and two-sided reputation results when two players with equal

discount factors play a repeated game where the first mover advantage is maximal. The stage

game, which is repeated in each period, is an extensive-form game of perfect information.
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A Stackelberg strategy is a player’s optimal repeated game strategy, if the player could

publicly commit to this strategy ex-ante; and a Stackelberg type is a commitment type that

only plays the Stackelberg strategy. The first mover advantage is maximal for player 1 if

the repeated game Stackelberg strategy delivers player 1 his highest payoff, that is part

of an individually rational payoff profile, whenever player 2 best responds. Our first main

result shows that if there is one-sided incomplete information and player 1 is a Stackelberg

type with positive probability, then player 1 receives his highest possible payoff, in any

equilibrium, as the discount factor converges to one, and the probability of being any other

commitment type converges to zero. This one-sided reputation result extends to arbitrary

probability distributions over other commitment types if these other types are uniformly

learnable. Our second main result (two-sided reputation result) establishes that if there is

incomplete information about both players’ types and each player is a Stackelberg type with

positive probability, then all equilibrium paths of play resemble the unique equilibrium of

an appropriately defined continuous time war of attrition, as the time between repetitions

of the stage game shrinks to zero. Also, all equilibrium payoffs converge to the unique

equilibrium payoff of the war of attrition.

A one-sided reputation result was first established for finitely repeated games by Kreps

and Wilson (1982) and Milgrom and Roberts (1982); and extended to infinitely repeated

games by Fudenberg and Levine (1989). However, most reputation results in the literature

are for repeated games where a long-run player, that is possibly a Stackelberg type, faces

a sequence of short-run players (as in Fudenberg and Levine (1989, 1992)); or for repeated

games where the player building the reputation is infinitely more patient than his rival and

so the rival is essentially a short-run player, at the limit (for example, see Schmidt (1993b),

Celantani, Fudenberg, Levine, and Pesendorfer (1996), Battigalli and Watson (1997) or

Evans and Thomas (1997)). Also, previous research has shown that reputation results are

fragile in infinitely repeated games where long-run players with equal discount factors play

a simultaneous-move stage game. In particular, one-sided reputation results obtain only

if the stage game is a strictly conflicting interest game (Cripps, Dekel, and Pesendorfer
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(2005)), or if there is a strictly dominant action in the stage game (Chan (2000)).1 For

other simultaneous move games, such as the common interest game, a folk theorem by

Cripps and Thomas (1997) shows that any individually rational and feasible payoff can be

sustained in perfect equilibria of the infinitely repeated game, if the players are sufficiently

patient (also see the analysis in Chan (2000)).

Almost all the recent work on reputation has focused on simultaneous move stage games.

In sharp contrast, we restrict attention to extensive-form stage games of perfect information.

The stage games we allow for include common interest games, the battle of the sexes, the

chain store game as well as all strictly conflicting interest games (see section 2.1). For the

class of games we consider, without incomplete information, the folk theorem of Fudenberg

and Maskin (1986) applies, under a full dimensionality condition (see Wen (2002) or Mailath

and Samuelson (2006)). Also, if the normal form representation of the extensive form

game we consider is played simultaneously in each period, then under one-sided incomplete

information, a folk theorem applies for a subset of the class of games we consider (see Cripps

and Thomas (1997)). Consequently, our one-sided reputation result covers a significantly

larger class of games than those covered by previous reputation results.

Our two-sided reputation result is motivated by the approach in Kreps and Wilson (1982)

and is closely related to previous work by Abreu and Gul (2000) and Abreu and Pearce

(2007). Abreu and Gul (2000) show that in a two player bargaining game, as the frequency

of offers increases, the equilibria of the (two-sided) incomplete information game converges

to the unique equilibrium of a continuous time war of attrition. Their two-sided reputation

result builds on a one-sided reputation result for bargaining games due to Myerson (1991).

Likewise, our two-sided reputation result builds on our one-sided reputation result that

ensures that there is a unique equilibrium payoff in any continuation game with one-sided

incomplete information.

1A game has strictly conflicting interests (Chan (2000)) if a best reply to the commitment action of player
1 yields the best feasible and individually rational payoff for player 1 and the minimax for player 2.
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The only other two-sided reputation result for repeated games with long run players is by

Abreu and Pearce (2007). In this paper, the authors allow for multiple types and elegantly

show that the equilibrium payoff profile coincides with the Nash bargaining solution with

endogenous threats for any specification of the stage-game. However, their paper studies a

different economic environment than ours and is not directly comparable. Specifically, in

Abreu and Pearce (2007) agents write binding contracts and commitment types announce

their inflexible demands truthfully at the start of the repeated game. These enforceable

contracts uniquely determine payoffs in the continuation game with one-sided incomplete

information. In our paper, in contrast, continuation payoffs are unique as a consequence

of our one-sided reputation result and no extra communication is assumed. Uniqueness in

the one-sided incomplete information game is a key component for the two-sided reputation

result. Without uniqueness, many equilibria can be generated in the game with two-sided

incomplete information by leveraging the multiplicity in the continuation game with one-

sided incomplete information.

The paper proceeds as follows: section 2 describes the model and discusses some examples

that satisfy our assumptions; section 3 presents the main one-sided reputation result; and

section 4 outlines the continuous time war of attrition and presents the two-sided reputation

result as well as some comparative statics. All proofs that are not in the main text are in

the appendix.

2. The Model

The stage game Γ is a finite extensive-form game and the set of players in the game is

I = {1, 2}.

Assumption 1. The stage game Γ is an extensive-form game of perfect information, that

is, all information sets of Γ are singletons.

ΓN is the normal form of Γ. The finite set of pure stage game actions, ai, for player i

in the game ΓN is denoted Ai and the set of mixed stage game strategies αi is denoted
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Ai. The payoff function of player i for the game ΓN is gi : A1 × A2 → R. The minimax

for player i, ĝi = minαj
maxαi

gi(αi, αj). For games that satisfy Assumption 1 there exists

ap
1 ∈ A1 such that g2(a

p
1, a2) ≤ ĝ2 for all a2 ∈ A2.

2 The set of feasible payoffs F =

co{g1(a1, a2), g2(a1, a2) : (a1, a2) ∈ A1×A2}; and the set of feasible and individually rational

payoffs G = F ∩ {(g1, g2) : g1 ≥ ĝ1, g2 ≥ ĝ2}. The highest payoff that is part of an

individually rational payoff profile for player i, ḡi = max{gi : (gi, gj) ∈ G}. Also, let

M > maxg∈F |gi|.

Assumption 2 (Maximal First Mover Advantage for Player 1). The stage-game Γ satisfies

(i) (Genericity) For any payoff profile g ∈ G and g′ ∈ G, if g1 = g′1 = ḡ1, then g2 = g′2,

and either of the following

(ii) (Locally Non-Conflicting Interest) For payoff profile g ∈ G, if g1 = ḡ1, then g2 > ĝ2,

or

(iii) (Strictly Conflicting Interest) There exists (as
1, a

b
2) ∈ A1 ×A2 such that g1(a

s
1, a

b
2) =

ḡ1; and if a2 ∈ A2 is a best response to as
1, then g1(a

s
1, a2) = ḡ1 and g2(a

s
1, a2) = ĝ2.

Assumption 2 is defined symmetrically for player 2. Item (i) of Assumption 2, which is

met generically by all extensive-form games, requires that the payoff profile where player i

obtains ḡi is unique. For generic games, items (ii) and (iii) are mutually exclusive. Item

(ii) requires that the game have a common value component. In particular, in the payoff

profile where player 1 receives his highest possible payoff player 2 receives a payoff that

strictly exceeds her minimax value. In contrast, item (iii) requires Γ to be a game of

strictly conflicting interest. A generic extensive-form game of perfect information Γ does

not satisfy Assumption 2 for player 1 only if, (ḡ1, ĝ2) ∈ G and Γ is not a strictly conflicting

interest game. If a game satisfies (i) and (ii), then there exists (as
1, a

b
2) ∈ A1 × A2 such

that g1(a
s
1, a

b
2) = ḡ1.

3 Consequently, if Γ is a generic locally non-conflicting interest game

2Consider the zero sum game obtained from ΓN where player 1’s payoff is set equal to −g2(a1, a2). The
minimax of this game is (−ĝ2, ĝ2) by definition. Also, under Assumption 1, this game has a pure strategy
Nash equilibrium, (ap

1, a2) ∈ A1×A2, by Zermello’s lemma. Because the game is a zero sum game g2(a
p
1, a2) =

ĝ2.
3Note that ab

2 need not be a best response to as
1.
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for player 1 (satisfies (i) and (ii)), then there is a finite constant ρ ≥ 0 such that

(1)

∣

∣

∣

∣

g2 − g2(a
s
1, a

b
2)

ḡ1 − g1

∣

∣

∣

∣

≤ ρ

for any (g1, g2) ∈ F .4 Also, if Γ is a generic strictly conflicting interest game for player 1

(satisfies (i) and (iii)), then g2 − g2(a
s
1, a

b
2) ≤ ρ(ḡ1 − g1) for any (g1, g2) ∈ F .

In the repeated game Γ∞, the stage game Γ is played in each of periods t = 0, 1, 2, ....

Players have perfect recall and can observe past outcomes. H is the set of all possible

histories for the stage game Γ and Y ⊂ H the set of all terminal histories of the stage game.

Ht ≡ Y t denotes the set of partial histories at time t. A behavior strategy σi ∈ Σi is a

function σi :
⋃∞

t=0 Ht → Ai. A behavior strategy chooses a mixed stage game strategy given

the partial history ht. Players discount payoffs using their discount factor δ. The players’

continuation payoffs in the repeated game are given by the normalized discounted sum of

the continuation stage-game payoffs

ui(h−t) = (1 − δ)

∞
∑

k=t

δk−tg((ai, aj)k)

for history h = {ht, h−t} = {ht, (a1, a2)t, ...}.

A Stackelberg strategy for player 1, denoted σ1(s) plays as
1, if the action profile in the

previous period was (as
1, a2) and g1(a

s
1, a2) = g1(a

s
1, a

b
2) = ḡ1; and plays ap

1, i.e., minimaxes

player 2, for np − 1 periods and plays as
1 in the npth period, if the action profile in the

previous period was (as
1, a2) and g1(a

s
1, a2) < ḡ1. Also, in period zero, the Stackelberg

strategy plays as
1. Intuitively, the Stackelberg strategy punishes player 2 for np − 1 periods

if the opponent does not allow player 1 to get ḡ1 in any period. The number of punishment

periods np
1 − 1 is the smallest integer such that

(2) g2(a
s
1, a2) − g2(a

s
1, a

b
2) < (np

1 − 1)(g2(a
s
1, a

b
2) − ĝ2)

4If Γ satisfies Assumption 2 (i) and (ii), then ḡ1 = max{g1 : (g1, g2) ∈ F}. Consequently, the Lipschitz
condition given in Equation (1) holds for all g ∈ F and not just for g ∈ G.
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for any a2 ∈ A2 such that g1(a
s
1, a2) < g1(a

s
1, a

b
2). A Stackelberg type for player 2 is defined

symmetrically. Note that if Γ satisfies Assumption 2 for player 1, then np
1 ≥ 1 exists. Also

observe that, for sufficiently high discount factor, whenever player 2 best responds to σ1(s),

player 1’s repeated game payoff is equal to ḡ. Consequently, if the stage game Γ satisfies

Assumption 2 for player 1, then player 1’s first mover advantage is maximal in the repeated

game.5

Let Ω denote the countable set of types and let µ = (µ1, µ2) denote a pair of probability

measures over Ω. Before time 0 nature selects player i as a type ω with probability µi(ω).

Ω contains a normal type denoted ωN . The normal type maximizes expected normalized

discounted utility. Ω also contains a Stackelberg type denoted s that plays according to the

Stackelberg strategy σi(s). Let Ω− = Ω\({ωN}∪Ωs). In words, Ω− is the set of types other

than the Stackelberg types and the normal type.6

Player j’s belief over player i’s types, µi :
⋃∞

t=0 Ht → ∆(Ω) is a probability measure over

Ω after each partial history ht. A strategy profile σ : Ω1 ×Ω2 → Σ1 ×Σ2 assigns a repeated

game strategy to each type of each player. A normal player i’s expected continuation utility,

following a partial history ht, given that strategy profile σ is used, is

Ui(σ|ht) = µj(ωN |ht)E(σi(ωN ),σj(ωN ))[ui(h−t)|ht]+µj(Ωs|ht)E(σi(ωN ),σj(s))[ui(h−t)|ht]

+
∑

ω∈Ω−

µj(ω|ht)E(σi(ωN ),σj(ω))[ui(h−t)|ht]

where E(σj ,σi)[ui(h−t)|ht] denotes the expectation over continuation histories h−t with re-

spect to the probability measure generated by (σi, σj) given that ht has occurred. Also, let

Ui(σ|ht, ωj = ω) = E(σi(ωN ),σj(ω))[ui(h−t)|ht].

5Suppose that the extensive-form stage-game of perfect information Γ is generic. There exists a repeated
game strategy σ1, and a δ∗ < 1 such that, for all δ > δ∗ whenever player 2 best responds to σ1(s), player
1’s repeated game payoff is equal to ḡ, if and only if, Γ satisfies Assumption 2 for player 1.
6A few comments on notation: the analysis proceeds as if there is only one Stackelberg action as

1, only
one punishment action a

p
1 and consequently a unique Stackelberg strategy σ1(s). This is without loss of

generality, if there is more, name one arbitrarily as the Stackelberg action or the punishment action. Also,
the subscript i is suppressed in Ωsi

and ωNi
to avoid clutter. The expression µ1(Ωs) should be interpreted as

the probability that player 1 is a type in the set Ωs1
where s1 is the Stackelberg type for player 1. Likewise,

µ2(Ωs) denotes µ2(Ωs2
).
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The repeated game where the initial probability over Ω is µ and the discount factor is

δ is denoted Γ∞(µ, δ). The analysis in the paper focuses on Bayes-Nash as well as perfect

Bayesian equilibria of the game of incomplete information Γ∞(µ, δ). In equilibrium, beliefs

are obtained, where possible, using Bayes’ rule given µi(·|h0) = µi(·) and conditioning on

players’ equilibrium strategies. If µ2(ωN ) = 1 and µ1(Ωs) > 0, then belief µ1(·|ht) is well

defined after any history where player 1 has played according to σ1(s) in each period. Also,

if µ1(Ωs) > 0 and µ2(Ωs) > 0, then beliefs are well defined after any history where both

players have played according to σi(s) in each period.

2.1. Examples. Theorem 1 and Theorem 2 provide one and two-sided reputation results for

the following examples that satisfy Assumption 2. In these examples, if the repeated game is

played under complete information, then the usual folk theorems apply and any individually

rational payoff can be sustained in perfect equilibria for sufficiently high discount factors

(see Wen (2002) or Mailath and Samuelson (2006) section 9.6). Also, the examples are

not strictly conflicting interest games for player 1, so previous findings preclude reputation

results, if the normal form representation of any of these games is played simultaneously

and player 1 is building a reputation.

2.1.1. Common interest games. Consider the sequential-move common interest game de-

picted on the right in Figure 1. Assume that there is a (possibly small) probability that

one of the two players is a Stackelbeg type that always plays the Stackelberg action (action

U at any information set for 1 and L for 2). Theorem 1 implies that the player who is

potentially a Stackelberg type can guarantee a payoff arbitrarily close to 1 in any perfect

equilibrium of the repeated game, for sufficiently high discount factors.

2.1.2. Battle of the sexes. Theorem 1 and 2 provide one and two sided reputation results for

the battle of the sexes game depicted in Figure 2. In particular, if each of the two players

is a commitment type with probability zi > 0, then Theorem 2 implies that the equilibrium

path of play for this game resembles a war of attrition. During the “war” player 1 insists

on playing R while player 2 insists on playing L and both receive per period payoff equal
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RL

Player 2

D

(ǫ, 0)

U

(1, 1)

D

(0, 0)

U

(0, 0)

Player 1
RL

Player 2

D

(ǫ, 0)

U

(1, 1)

P1

D

(0, 0)

U

(0, 0)

P1

Figure 1. A simultaneous-move common interest game that does not satisfy
Assumption 1 on the left and a sequential-move common interest game that
satisfies Assumption 1 on the right (ǫ < 1). For this game np

1 = np
2 = 1.

to 0. The “war” ends when one of the players reveals rationality by playing a best reply

and accepting a continuation payoff equal to 1, while the opponent, who wins the war of

attrition, receives continuation payoff equal to 2.

RL

Player 2

R

(0, 0)

L

(2, 1)

P1

R

(1, 2)

L

(0, 0)

P1

Figure 2. Battle of the sexes. In this game as
1 = R, as

2 = L. The minimax
is 1 for player 1 and 0 for player 2. The game is a strictly conflicting interest
game for player 2 and locally non-conflicting interest game for player 1. For
this game np

1 = np
2 = 1.

2.1.3. Stage game with a complex Stackelberg type. In the previous two examples, the Stack-

elberg type was a simple type who played as
i in each period. In the example depicted in

Figure 3 the Stackelberg type of player 1 minimaxes player 2 by playing R for two periods

if player 2 plays R against L.

RL

Player 1

R

(0, 2)

L

(3, 1)

P2

R

(0, 0)

L

(0, 0)

P2

Figure 3. Stage-game with a complex Stackelberg type. For this game np
1 = 3.
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3. One-Sided Reputation

The central finding of this section, Theorem 1, establishes a one sided reputation result.

The theorem maintains Assumption 1 and Assumption 2, and shows that if the probability

that player 1 is a Stackelberg type is positive while the probability that player 2 is a

commitment type is zero, then player 1 can guarantee a payoff close to ḡ1, when the discount

factor is sufficiently high, and the probability that player 1 is another commitment type is

sufficiently low. Consequently, a generic extensive-form game of perfect information Γ is

not covered by Theorem 1 only if (ĝ1, ĝ2) ∈ G and Γ is a strictly conflicting interest game.

This section also presents two corollaries to Theorem 1. Corollary 1 shows that the one-

sided reputation result can also be established without Assumption 1 even under the weaker

Bayes-Nash equilibrium concept, if the stage game is a strictly conflicting interest game, that

is, satisfies Assumption 2 (i) and (iii). Corollary 2 extends the one-sided reputation result to

the case where the probability that player 1 is another commitment type is arbitrary. This

corollary maintains Assumptions 1 and 2 and, in addition, assumes that the commitment

types in the support of µ1 are all uniformly learnable. Under these assumptions the corollary

shows that player 1 can guarantee a payoff close to ḡ1, if the discount factor is sufficiently

high, by mimicking the Stackelberg type.

In order to provide some intuition for Theorem 1 and to establish the contrast with

previous literature suppose, in contrast to Assumption 1, the extensive-form is as in Figure

1 (left). Also, suppose that player 1 is a Stackelberg type that plays U in every period of

the repeated game, with probability z. Cripps and Thomas (1997) have shown that there

are many perfect equilibrium payoffs in this repeated game. In particular, they construct

equilibria where players’ payoffs are close to 0 when z is close to 0 and δ is close to 1.

In their construction, in the first K periods player 2 plays R. As δ converges to 1, K

increases to ensure that the discounted payoffs converge to 0. To make K large, Player 1’s

equilibrium strategy is chosen to be similar to the commitment type strategy; this ensures

that player 1 builds a reputation very slowly. If this strategy exactly coincided with the
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commitment strategy, player 2 would not have the incentives to play R. Therefore this

strategy is a mixed strategy that plays D with small probability. To ensure that player

2 has an incentive to play R, she is punished when she plays L. Punishment entails a

continuation payoff for player 2 that is close to 0, if player 2 plays L and player 1 plays

D (thus revealing rationality). Player 1 is willing to mix between U and D in the first K

periods since player 2 only plays R on the equilibrium path. Also, the punishment that

follows (D,L) is subgame perfect since, after such a history, the players are in a repeated

game of complete information and any continuation payoff between 0 and 1 can be sustained

in equilibrium, by a standard folk theorem.

Instead suppose that Assumption 1 is satisfied and player 1 moves after player 2, i.e.,

Figure 1 (right). When players move sequentially, the “follower” (player 1) observes the

outcome of the behavior strategy used by his opponent. For the payoff of player 1 to be low,

there should be many periods in which player 2 plays R. To give her an incentive to play

R, player 1 must punish player 2 if she plays L. After any history where player 1 has not

revealed rationality yet, punishing player 2 is also costly for player 1. Following a play of L

by player 2, in order for player 1 to punish player 2, he must be indifferent between U and

D. However, this is not possible since playing U gives player 1 a payoff of 1 for the period

and improves his reputation. On the other hand, a play of D gives a payoff of zero for the

period and moves the game into a punishment phase. Consequently, subgame perfection

rules out player 1 punishing player 2 for playing L.

If the players move simultaneously in the stage game, then subgame perfection has no

“bite” within the stage game. In the Cripps and Thomas (1997) construction because player

1 does not observe that player 2 has deviated and played L, and this never happens on the

equilibrium path in the first K periods, player 1 is willing to randomize between U and D,

and so, the required (off equilibrium-path) punishments can be sustained. Consequently,

their construction avoids the logic outlined in the previous paragraph.
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3.1. The Main One-Sided Reputation Result. Theorem 1 considers a repeated game

Γ∞(µ, δ) where µ1(Ωs) > 0 and µ2(ωN ) = 1, that is, player 2 is known to be the normal

type and player 1 is potentially a Stackelberg type. For the remainder of this section assume

that µ2(ωN ) = 1. Attention is restricted to perfect information stage games (Assumption

1) and to repeated games with maximal first mover advantage (Assumption 2). Within

this class of games, the theorem demonstrates that a normal type for player 1 can secure

a payoff arbitrarily close to ḡ1 by mimicking the commitment type, in any equilibrium of

the repeated game, for a sufficiently large discount factor (δ > δ) and for sufficiently small

probability mass on other commitment types (µ1(Ω−) < φ̄).

Theorem 1. Posit Assumption 1, and Assumption 2 for player 1. For any z and γ > 0,

there exists a δ < 1 and φ̄ > 0 such that, for any δ ∈ (δ, 1), any µ with µ1(Ωs) ≥ z and

µ1(Ω−) < φ̄ and any perfect Bayesian equilibrium strategy profile σ of Γ∞(µ, δ), U1(σ) >

ḡ1 − γ.

The discussion that follows presents the various definitions and intermediate lemmas

required for the proof Theorem 1. The proof of the Theorem is presented after all the

intermediate results are established. First some preliminaries: Let g1(a
s
1, a

b
2) = ḡ1 for

(as
1, a

b
2) ∈ A1 × A2. Normalize payoffs, without loss of generality, such that:

(i) ḡ1 = 1,

(ii) g1(a1, a2) ≥ 0 for all a ∈ A,

(iii) g2(a
s
1, a

b
2) = 0,

(iv) There exists l > 0: g2(a
s
1, a2) + (np

1 − 1)g2(a
p
1, a

′
2) ≤ −2l for any a2 ∈ A2 such that

g1(a
s
1, a2) < 1 and a′2 ∈ A2.

Condition (iv) implies that there exists a δ∗ < 1 such that, for all δ > δ∗,

g2(a
s
1, a2) +

np−1
∑

k=1

δkg2(a
p
1, a

′
2) < −l
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for any a2 ∈ A2 such that g1(a
s
1, a2) < 1 and a′2 ∈ A2. For the remainder of the discussion

we assume that δ > δ∗.

The main focus of analysis in the proof of Theorem 1 is player 2’s resistance against a

Stackelberg type. Intuitively, resistance is the expectation of the normalized discounted

sum of the number of periods in which player 2 does not acquiesce to the demand of the

Stackelberg type, in a particular equilibrium. Formally, the definition is as follows:

Definition 1 (Resistance). Let i(a) = 1 if a1 = as
1 and g1(a

s
1, a2) < g1(a

s
1, a

b
2), and i(a) =

0, otherwise. Let i(δ, h−t) = (1 − δ)
∑∞

k=t δk−ti(ak). Player 2’s continuation resistance,

R(δ, σ2|ht) = E(σ1(s),σ2)[i(δ, h−t)|ht]. Also, let R(δ, σ2) = R(δ, σ2|h0).

The payoff to player 1 of using the Stackelberg strategy is at least 1− np
1R(δ, σ2), by the

definition of resistance and normalization (i) and (ii). Also, after any history ht, the payoff

to player 1 of using the Stackelberg strategy is at least 1− np
1R(δ, σ2|ht)− (1− δ)np

1.
7 This

trivially implies the following lemma.

Lemma 1. In any Bayes-Nash equilibrium σ of Γ∞(µ, δ), U1(σ) ≥ 1 − np
1R(δ, σ2) and

U1(σ|ht) ≥ 1−np
1(R(δ, σ2|ht)+(1−δ)) for any ht that has positive probability under σ. Also,

in any perfect Bayesian equilibrium σ of Γ∞(µ, δ), U1(σ|ht) ≥ 1 − np
1(R(δ, σ2|ht) + (1 − δ))

for any ht.

The goal is to show that R(δ, σ2) is bound by C max{1 − δ, φ}, for some constant C, in

any equilibrium σ of Γ∞(µ, δ) where µ1(Ωs) ≥ z and µ1(Ω−)
µ1(Ωs) ≤ φ. Thus, if max{1 − δ, φ} is

close to zero, then R(δ, σ2) is close to zero and U1(σ) is close to 1, in any equilibrium σ of

Γ∞(µ, δ). The following definition introduces some reputation thresholds, denoted zn for a

given resistance level Kn max{1 − δ, φ}.

7The extra term (1 − δ)np appears since Player 1 may first have to endure a punishment stage.
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Definition 2 (Reputation Thresholds). Fix δ < 1, K > 1 and φ ≥ 0. Let ǫ = max{1−δ, φ}.

For each n ≥ 0, let

zn = sup{z : ∃ perfect Bayesian equilibrium σ of Γ∞(µ, δ),(3)

where µ1(Ωs) = z and
µ1(Ω−)

µ1(Ωs)
≤ φ, such that R(δ, σ2) ≥ Knǫ}.

Also, define qn such that

(4)
zn

1 − qn
= zn−1.

In words, zn is the highest reputation level of player 1 for which there exists an equilibrium

of Γ∞(µ, δ) in which player 2’s resistance exceeds Knǫ. The definition and Kn > Kn−1

implies that zn ≤ zn−1. The qn’s are real numbers that link the thresholds zn. To interpret

qn, suppose that player 2 believes player 1 to be the Stackelberg type with probability

zn. Also, suppose that the total probability that any of player 1’s types plays an action

incompatible with σ1(s) at least once over the next M periods is qn. Consequently, if player

1 plays according to the Stackelberg strategy σ1(s) in each of the M periods, then the

posterior probability that player 2 places on player 1 being the Stackelberg type is zn

1−qn
.

The development that follows will establish that qn ≥ q > 0 for all n such that zn ≥ z,

and all δ and φ. If qn ≥ q, then starting from z0 ≤ 1, there exists a n∗ such that zn∗ ≤ z.

Since zn∗ ≤ z, if the initial reputation level is z, then the maximal resistance of player 2 is

at most Kn∗

ǫ, which is of the order of max{1 − δ, φ}. The following lemma formalizes this

discussion.

Lemma 2. Suppose that qn ≥ q > 0 for all δ, φ and all n such that zn ≥ z. There exists n∗

such that if max{1 − δ, φ} < γ

n
p
1Kn∗ , then U1(σ) > 1 − γ for all perfect Bayesian equilibria

σ of Γ∞(µ, δ) with µ1(Ωs) ≥ z and µ1(Ω−)
µ1(Ωs) ≤ φ.

Proof. Let n∗ be the smallest the integer such that (1−q)n
∗

< z. Since q > 0 such an integer

exists. For all δ and φ such that z0 ≥ z we have zn∗ < z. Consequently, by Definition 2,
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R(δ, σ2) < Kn∗

ǫ in any equilibrium σ of Γ∞(µ, δ) with µ1(Ωs) ≥ z and µ1(Ω−)
µ1(Ωs) ≤ φ. For any

δ and φ where z0 < z, by Definition 2, R(δ, σ2) < ǫ < Kn∗

ǫ in any equilibrium σ of Γ∞(µ, δ)

with µ1(Ωs) ≥ z and µ1(Ω−)
µ1(Ωs) ≤ φ. Consequently, by Lemma 1, U1(σ) > 1 − np

1K
n∗

ǫ. So, if

ǫ = max{1 − δ, φ} < γ

n
p
1Kn∗ , then U1(σ) > 1 − γ. �

In order to show that qn ≥ q > 0 lower and upper bounds are established for player 2’s

payoffs. The argument hinges on the tension between player 2’s magnitude of resistance

and the speed at which player 1 builds a reputation. If player 2 resists the Stackelberg

type of player 1, then player 2 must be doing so in anticipation that player 1 deviates

from the Stackelberg strategy. Otherwise player 2 could do better by best responding

to the Stackelberg strategy. The more player 2 resists player 1, the more player 2 must

be expecting player 1 to deviate from the Stackelberg strategy. However, if player 1 is

expected to deviate from the Stackelberg strategy with high probability, then the normal

type of player 1 can build a reputation rapidly by imitating the Stackelberg type.

The upper bound for player 2’s payoff is calculated for a reputation level z close to the

reputation threshold zn in an equilibrium where player 2’s resistance is approximately equal

to the maximal resistance possible given the reputation level. The following formally defines

maximal resistance for player 2.8

Definition 3 (Maximal Resistance). For any ξ > 0, let zξ = zn − ξ and

Kξ = sup{k : ∃ perfect Bayesian equilibrium σ of Γ∞(µ, δ), where(5)

µ1(Ωs) = z and
µ1(Ω−)

µ1(Ωs)
≤ φ, such that R(δ, σ2) ≥ kǫ for some z ∈ [zξ, zn]}.

Also, define qξ such that

(6)
zξ

1 − qξ
= zn.

8This further definition is required since it is not guaranteed that when µ1(Ωs) = zn, there exists a perfect
equilibrium where resistance equals Knǫ. However, by the definition of the threshold zn, for z close to zn

there exists a perfect equilibrium where resistance is close to Knǫ.
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Observe that by the definition of Kξ, there exists z ∈ [zξ, zn] and an equilibrium strategy

profile σ such that R(δ, σ2) ≥ (Kξ − ξ)ǫ. Also, by the definition of Kξ and the definition

of zn, Kξ ≥ Kn. The definition of zn and Kξ ≥ Kn implies that for any zn ≥ z ≥ zξ,

R(δ, σ2) ≤ Kξǫ in any perfect Bayesian equilibrium strategy profile σ of Γ∞(µ, δ) where

µ1(Ωs) = z and µ1(Ω−)
µ1(Ωs) ≤ φ. The following lemma establishes an upper bound on Player 2’s

payoff in any equilibrium where the resistance is at least (Kξ − ξ)ǫ.

Lemma 3. Posit Assumption 1, and Assumption 2 for player 1. Pick any zn ≥ z ≥ zξ

and perfect Bayesian equilibrium σ of Γ∞(µ, δ) with µ1(Ωs) = z and µ1(Ω−)
µ1(Ωs) ≤ φ, such that

R(δ, σ2) ≥ (Kξ − ξ)ǫ. For the chosen equilibrium profile σ,

U2(σ) ≤ ρǫnp
1(qξKξ + (qn + qξ)K

n + Kn−1 +
5(1 − δ)

ǫ
) − z(Kξ − ξ)ǫl + (1 − δ + φ)M.

(UB)

Proof. Assumption 1 implies that there exists ap
1 ∈ A1 such that g2(a

p
1, a2) ≤ ĝ2 for any

a2 ∈ A2. This is the only use of Assumption 1 in the proof of this lemma. Consequently,

Assumption 1 is redundant for generic strictly conflicting interest games for this lemma.

Pick zn ≥ z ≥ zξ and fix a perfect Bayesian equilibrium σ = (σ1, σ2) = ({σ1(ω)}ω∈Ω, σ2)

of the game Γ∞(µ, δ) with µ1(Ωs) = z and µ1(Ω−)
µ1(Ωs) ≤ φ, such that R(δ, σ2) ≥ (Kξ−ξ)ǫ. Let σ∗

2

denote a pure repeated game strategy for player 2 in the support of player 2’s equilibrium

strategy σ2. For any strategy σ∗
2 in the support of σ2 perfect equilibrium implies that

U2(σ1, σ
∗
2 |ht) = U2(σ1, σ2|ht) for any ht. Let

(7) T = min{T : Pr(σ1,σ∗

2){∃t ≤ T : (a1)t 6= σ1(s|ht)} > qξ},

where (a1)t 6= σ1(s|ht) denotes the event that player 1 plays an action that differs in outcome

from the action played by the Stackelberg strategy given ht and the probability Pr(σ1,σ∗

2)

is calculated assuming that player 2 uses pure strategy σ∗
2 , player 1’s types play according

to profile σ1 and the measure over player 1’s types is given by µ. In words, T is the first

period t such that, the total probability with which player 1 is expected to deviate from the
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Stackelberg strategy σ1(s|ht) at least once, in any period t ≤ T , exceeds qξ. By definition,

for any T ′ < T , Pr(σ1,σ∗

2 ){∃t ≤ T ′ : (a1)t 6= σ1(s|ht)} ≤ qξ. Also, let

(8) Tn = min{T : Pr(σ1,σ∗

2 ){∃t ≤ T : (a1)t 6= σ1(s|ht)} > qn + qξ}.

The definition implies that Tn ≥ T . Also, trivially,
zξ

1−qn−qξ
>

zξ

(1−qn)(1−qξ) .

Suppose µ1(Ωs) = z and µ1(Ω−)
µ1(Ωs) ≤ φ. If player 1 has played according to σ1(s) in any

history ht that is consistent with σ∗
2, then for any t < T , µ1(Ωs|ht) ≥ z and µ1(Ω−|ht)

µ1(Ωs|ht)
≤ φ;

for any t ≥ T , µ1(Ωs|ht) ≥ zn and µ1(Ω−|ht)
µ1(Ωs|ht)

≤ φ; for t ≥ Tn, µ1(Ωs|ht) ≥ zn−1 and

µ1(Ω−|ht)
µ1(Ωs|ht)

≤ φ.

For some period t < T , suppose that player 1 has always played an action compatible

with σ1(s) in history ht. After history ht, µ1(Ωs|ht) ≥ z and µ1(Ω−|ht)
µ1(Ωs|ht)

≤ φ. So, player

2’s resistance after ht is at most Kξǫ, by Definition 3. So, by Lemma 1, U1(σ|ht) ≥

1−np
1(Kξǫ+(1−δ)). Note that, (U1(σ|ht), U2(σ|ht, ω = ωN)) ∈ F , so player 2’s continuation

payoff after history ht conditional on player 1 being the normal type, U2(σ|ht, ω = ωN),

is at most ρ(1 − U1(σ|ht)), by Assumption 2 and Equation (1). Also, player 2’s payoff in

periods 0 through t − 1 is at most (1 − δ)M since player 1 has always played an action

compatible with σ1(s) in history ht. Consequently, player 2’s repeated game payoff, if she

is facing a normal type of player 1, and player 1 deviates from the Stackelberg strategy for

the first time in period t < T is as follows:

(9) U2(σ, ht|ω = ωN ) ≤ (1 − δ)M + ρ(1 − U1(σ|ht)) ≤ (1 − δ)M + ρnp
1(Kξǫ + (1 − δ)),

where

U2(σ, ht|ω = ωN ) =
t−1
∑

k=0

(1 − δ)δkg2((a1, a2)k) + δtU2(σ|ht, ω = ωN ),

and {(a1, a2)0, ..., (a1, a2)t−1} = ht.

Suppose in hT player 1 has not deviated from the Stackelberg strategy, then player 1’s

equilibrium continuation payoff U1(σ|hT ) must be at least as large as δn
p
1(1−np

1(K
nǫ+(1−

δ)). This is because player 1 can mimic σ1(s) for the next np
1, receive at least zero in these
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periods by normalization (ii), increase his reputation to at least zn and thereby guarantee a

continuation payoff of at least 1− np
1(K

nǫ + (1− δ)) by Lemma 1. This implies that player

2’s continuation payoff is at most ρ(1 − (1 − np
1(K

nǫ + 2(1 − δ))). So, if player 2 is facing

the normal type of player 1, and player 1 deviates from the Stackelberg strategy in period

t = T , then player 2’s repeated game payoff

(10) U2(σ, ht|ω = ωN ) ≤ (1 − δ)M + ρnp
1(K

nǫ + 2(1 − δ)).

For any period, T < t < Tn, suppose in ht player 1 has not deviated from the Stackelberg

strategy. If player 2 is facing the normal type of player 1, and player 1 deviates from

the Stackelberg strategy in period T < t < Tn, then player 2’s repeated game payoff

U2(σ, ht|ω = ωN ) ≤ (1 − δ)M + ρnp
1(K

nǫ + (1 − δ)).

Suppose in history hTn player 1 has not deviated from the Stackelberg strategy. In period

Tn, if player 1 plays according to σs
1, then his reputation will exceed zn−1 in the next period.

Consequently, by the same reasoning as in period T , if player 2 is facing the normal type of

player 1, and player 1 deviates from the Stackelberg strategy in period t = Tn, then player

2’s repeated game payoff

(11) U2(σ, ht|ω = ωN ) ≤ (1 − δ)M + ρnp
1(K

n−1ǫ + 2(1 − δ)).

For any period, t > Tn, suppose in ht player 1 has not deviated from the Stackelberg

strategy. If player 2 is facing the normal type of player 1, and player 1 deviates from the

Stackelberg strategy in period t > Tn, then player 2’s repeated game payoff, U2(σ, ht|ω =

ωN ) ≤ (1 − δ)M + ρnp
1(K

n−1ǫ + 1 − δ).

Player 2 can get at most M against any other commitment type and this happens with

probability φz ≤ φ. Since player 2’s resistance is (Kξ − ξ)ǫ in the equilibrium under

consideration, she loses (Kξ − ξ)ǫl against the Stackelberg type, and this happens with

probability z. The probability that player 1 is a normal type and takes action a1 6= σ1(s|ht)

for the first time in any period t < T is at most qξ; and an upper-bound on player 2’s
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repeated game payoff, conditional on this event, is given by Equation (9). The probability

that player 1 is a normal type and takes action a1 6= σ1(s|ht) for the first time in any period

T ≤ t < Tn is at most qξ +qn; and an upper-bound on player 2’s payoff is given by Equation

(10). Finally, the probability that player 1 is a normal type and takes action a1 6= σ1(s|ht)

for the first time in any period Tn ≤ t is at most 1 − z < 1; and an upper-bound on player

2’s payoff is given by Equation (11). Consequently,

U2(σ) ≤ qξρnp
1Kξǫ + (qξ + qn)ρnp

1K
nǫ + ρnp

1K
n−1ǫ − z(Kξ − ξ)ǫl + 5ρnp

1(1 − δ) + (1 − δ + φ)M

delivering the required inequality. Observe that if T = ∞, then the bound is still valid. �

Although the previous lemma was stated for perfect Bayesian equilibria, since all con-

sidered histories were on an equilibrium path, perfection was not needed for the result. In

contrast, in the following lemma, which establishes a lower bound for player 2’s equilibrium

payoffs, both perfection and Assumption 1 are crucial. In order to bound payoffs in a par-

ticular equilibrium, the lemma considers an alternative strategy for player 2 that plays ab
1,

as long as Player 1 plays according to the Stackelberg strategy, and reverts back to playing

according to the equilibrium strategy once Player 1 deviates from the Stackelberg strategy.

The argument then finds a lower bound for player 1’s payoff, using Lemma 1, and converts

this into a lower bound for player 2. Since the alternative strategy considered for player 2

may generate a history that has zero probability on the equilibrium path, the argument for

player 1’s lower bound hinges on both perfection and perfect information (Assumption 1).

Lemma 4. Posit Assumption 1 and Assumption 2 for player 1. Suppose that zn ≥ z ≥ zξ

and that µ1(Ωs) = z and µ1(Ω−)
µ1(Ωs)

≤ φ. In any perfect Bayesian equilibrium σ of Γ∞(µ, δ),

(LB) U2(σ) ≥ −ρǫnp
1(qξKξ + (qξ + qn)Kn + Kn−1 +

6(1 − δ)

ǫ
) − φM.

Proof. Fix a perfect Bayesian equilibrium σ of Γ∞(µ, δ) where zn ≥ z ≥ zξ, µ1(Ωs) = z and

µ1(Ω−)
µ1(Ωs) ≤ φ. If Γ is a generic game of strictly conflicting interest for player 1 (Assumption
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2 (i) and (iii)), then U2(σ) ≥ ĝ2 = g2(a
s
1, a

b
2) = 0 in any Bayes-Nash equilibrium which

exceeds the right-hand side of Equation (LB).

Posit Assumption 1 and Assumption 2 (i) and (ii) for player 1. We calculate the payoff

of player 2 if she deviates and uses the following alternative repeated game strategy σ∗
2 .

Suppose that player 2 always plays ab
2, a pure action, if player 1 has played the Stackelberg

strategy σ1(s) in every prior node of the repeated game and plays according to the equi-

librium strategy σ2 if player 1 has deviated from the Stackelberg strategy σ1(s) in a prior

node of the repeated game. Using this strategy player 2 will receive payoff equal to zero in

any period where player 1 plays a1(s). Let strategy profile σ∗ = (σ1, σ
∗
2).

Suppose that, T and Tn are defined as in Lemma 3, given that player 2 uses strategy σ∗
2 .

If player 1 has played according to σ1(s) in any history ht compatible with σ∗
2, then for any

t < T , µ1(Ωs|ht) ≥ z and µ1(Ω−|ht)
µ1(Ωs|ht)

≤ φ; for any t ≥ T , µ1(Ωs|ht) ≥ zn and µ1(Ω−|ht)
µ1(Ωs|ht)

≤ φ;

for t ≥ Tn, µ1(Ωs|ht) ≥ zn−1 and µ1(Ω−|ht)
µ1(Ωs|ht)

≤ φ.

For period t < T , suppose that player 1 has always played an action compatible with

σ1(s) and player 2 has played ab
2 in history ht and player 1 deviates from the Stackelberg

strategy in period t. At any information set where player 1 deviates from the Stackelberg

strategy in period t, he can instead play according to σ1(s) for np
1 periods, get at least zero

in these periods, and receive 1− np
1(Kξǫ + (1 − δ)) as a continuation payoff from period np

onwards by Lemma 1. Consequently, Eσ∗ [(1− δ)g1(a1, a2) + δU1(σ|ht, a1, a2)|ht, a1 6= as
1] ≥

δn
p
1(1 − np

1(Kξǫ + (1 − δ))) where the expectation is taken with respect to (a1, a2) using

repeated game strategy profile σ∗ conditioning on player 1 deviating from the Stackelberg

strategy in period t.9 Perfection is required for this inequality because the history ht is not

necessarily on the equilibrium path. Perfect information (Assumption 1) is also required

here since Player 2 may have played ab
2 in period t and this may have probability zero on

the equilibrium path.10 If player 1 is the normal type and deviates from the Stackelberg

9(a1)t 6= as
1 denotes the event that player 1 plays an action that differs in outcome from the action played

by the Stackelberg strategy, i.e., as
1.

10Observe that in the Common Interest game example discussed at the beginning of this section, without
the perfect information assumption, this bound on Player 1’s payoffs is not valid. This is because in the first
K periods, Player 1 does not expect to see action L on the equilibrium path. So, the continuation payoff
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strategy for the first time in period t, then player 2’s continuation payoff

U2(σ
∗|ht, a1 6= as

1, ω = ωN) = Eσ∗ [(1 − δ)g2(a1, a2) + δU2(σ|ht, a1, a2)|ht, a1 6= as
1]

≥ −ρ(1 − U1(σ
∗|ht, a1 6= as

1))

because (Eσ∗ [(1− δ)g1(a1, a2) + δU1(σ|ht, a1, a2)|ht, a1 6= as
1], U2(σ

∗|ht, a1 6= as
1, ω = ωN)) ∈

F and Equation (1). Player 2’s payoff for periods 0 through t−1 is at least zero since player

1’s action in each of these periods is as
1 in history ht and player 2 plays ab

2. Consequently,

if player 2 is facing a normal type of player 1, and player 1 deviates from the Stackelberg

strategy for the first time in period t < T , then her repeated game payoff U2(σ
∗, ht|ω =

ωN ) ≥ −ρ(1 − U1(σ|ht)) ≥ −ρnp
1(Kξǫ + 2(1 − δ)).

For any period, T ≤ t < Tn, suppose in ht player 1 has not deviated from the Stack-

elberg strategy and deviates from the Stackelberg strategy in period t, then player 2’s

repeated game payoff U2(σ
∗, ht|ω = ωN ) ≥ −ρnp

1(K
nǫ + 2(1 − δ)). For any period,

t ≥ Tn, suppose in ht player 1 has not deviated from the Stackelberg strategy and de-

viates from the Stackelberg strategy in period t, then player 2’s repeated game payoff

U2(σ
∗, ht|ω = ωN ) ≥ −ρnp

1(K
n−1ǫ + 2(1 − δ)).

Player 2 can get at least −M against any other commitment type with probability at

most φ, gets zero against the Stackelberg type with probability at most z. Following an

identical reasoning as in Lemma 3 for the events that player 1 is a normal type and deviates

from the Stackelberg type for the first time at time t < T or time T ≤ t < Tn or time t ≥ Tn

implies that

U2(σ) ≥ U2(σ
∗) ≥ −ρnp

1Kξǫqξ − ρnp
1K

nǫ(qξ + q1) − ρnp
1K

n−1ǫ − 6ρnp
1(1 − δ) − φM

delivering the required inequality. Observe that if T = ∞ the bound is still valid �

after (D, L) can be arbitrarily chosen since Player 1 has revealed rationality. With perfect information, in
contrast, player 1 knows that player 2 has played L, and so the continuation payoff associated to revealing
rationality must be greater than always playing U .



22 ATAKAN AND EKMEKCI

Lemma 5. Let q = z( l
2ρn

p
1
− 7

zK
− 2M

zρn
p
1K

) and pick K such that q > 0. If zn ≥ z, then

qn ≥ q, for all δ and φ.

Proof. Combining the lower bound for U2(σ), given by Equation (LB) established in Lemma

4, and the upper bound for U2(σ), given by Equation (UB) established in Lemma 3, and

simplifying by canceling ǫ delivers

z(Kξ − ξ)l ≤ 2ρnp
1(qξKξ + (qξ + qn)Kn + Kn−1 +

6(1 − δ)

ǫ
) +

2(1 − δ + φ)M

ǫ
.

Taking ξ → 0 implies that z → zn, qξ → 0. Also, Kξ ≥ Kn for each ξ implies that

limξ→0(Kξ − ξ) = limξ→0 Kξ ≥ Kn. Consequently,

znKnl ≤ 2ρnp
1(qnKn + Kn−1 +

6(1 − δ)

ǫ
) +

2(1 − δ + φ)M

ǫ
.

Rearranging, qn ≥ znl
2ρn

p
1
− 1

K
− 6(1−δ)

ǫKn − (1−δ+φ)M
ǫρn

p
1Kn . Recall that ǫ = max{1− δ, φ} and zn ≥ z

so

qn ≥ z(
l

2ρnp
1

−
7

zK
−

2M

zρnp
1K

) = q > 0

delivering the required inequality. �

Given Lemma 5, Lemma 2 can be applied to complete the proof of Theorem 1.

Proof of Theorem 1. Pick 1−δ < γ

Kn∗
n

p
1

and pick φ̄ < γ

Kn∗
n

p
1
z. By Lemma 5 if zn ≥ z, then,

for all δ, φ, qn ≥ q. Consequently, by Lemma 2, max{1 − δ, µ1(Ω−)
µ1(Ωs) } < γ

Kn∗
n

p
1

implies that

U1(σ) > 1−γ for all perfect Bayesian equilibria σ of Γ∞(µ, δ) with µ1(Ωs) ≥ z, µ1(Ω−) < φ̄

and δ > δ. �

As first demonstrated by Cripps, Dekel, and Pesendorfer (2005), it is possible to obtain

reputation results for simultaneous-move strictly conflicting interest stage games, i.e., games

that do not satisfy Assumption 1. The following corollary to Theorem 1 maintains Assump-

tion 2 (i) and (iii), and shows that Player 1 can guarantee a payoff arbitrarily close to ḡ1

even without Assumption 1. Consequently, this corollary provides an alternative argument

for Cripps, Dekel, and Pesendorfer (2005).
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Corollary 1. Posit Assumption 2 (i) and (iii) for player 1. For any z and γ > 0, there

exists a δ < 1 and φ̄ > 0 such that, for any δ ∈ (δ, 1), any µ with µ1(Ωs) ≥ z and µ1(Ω−) < φ̄

and any Bayes-Nash equilibrium strategy profile σ for the repeated game Γ∞(µ, δ), U1(σ) >

ḡ1 − γ.

Proof. Redefine zn and qn in Definition 2 and zξ, Kξ and qξ in Definition 3 using Bayes-Nash

equilibrium instead of perfect Bayesian Equilibrium. The upper-bound given by Equation

(UB) established in Lemma 3 remains valid for Bayes-Nash equilibria. This is because all

the arguments were constructed on an equilibrium path without any appeals to perfection.

Also, U2(σ) ≥ ĝ2 = 0 in any Bayes-Nash equilibrium, by Lemma 4. Consequently, Lemma

2, which also holds in Bayes-Nash equilibria, implies the result. �

3.2. Uniformly Learnable Types. The analysis in this subsection restricts the set of

commitment types to learnable types, and shows that player 1 can guarantee payoff close

to ḡ1, for arbitrary probability distributions over commitment types, if the discount factor

is sufficiently large. The intuition for the result (Corollary 2) is as follows: if the other

commitment types are uniform learnable, then player 1 can repeatedly play the Stackelberg

action and ensure that player 2’s posterior belief that player 1 is a type in Ω− is arbitrarily

small in finitely many periods (Lemma 7). However, if player 2’s posterior belief that player

1 is a type in Ω− is small, then Theorem 1 implies that player 1’s payoff is close to ḡ1 = 1

for sufficiently large discount factors.

If a uniformly learnable type is not the Stackelberg type, then that type must reveal

itself not to be the Stackelberg type, at a rate that is bounded away from zero, uniformly in

histories, by the definition given below. The restriction to uniformly learnable types rules

out perverse types that may punish player 2 for learning. For example, consider a type

that always plays according to the Stackelberg strategy, if player 2 plays an action a2 in

period where as
1 is played such that g1(a

s
1, a2) < g1(a

s
1, a

b
2); and minimaxes player 2 forever,

if player 2 plays an action a2 in a period where as
1 is played such that g1(a

s
1, a2) = g1(a

s
1, a

b
2).

This perverse type is not uniformly learnable because after any history where player 1 has
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played the Stackelberg strategy, and player 2 has played an action different than ab
2, the

perverse type never reveals and so the revelation rate is not bounded away from zero. The

following is the formal definition of uniformly learnable types.

Definition 4 (Uniformly Learnable Types). A type ω is uniformly learnable with respect

to s if there exists εω > 0 such that, after any history hl where σ1(s|hl)l = as
1, either

Prσ1(ω)((a1)l 6= as
1|hl) > εω; or there is an ht = {hl, (a

s
1, a2)l, ..., (a1, a2)t−1}, where l < t ≤

l + np
1 − 1, (a2)l 6= ab

2 and (a1)k = ap
1 for l < k < t, such that Prσ1(ω)((a1)t 6= ap

1|ht) > εω;

or Prσ1(ω)((a1)t 6= σ1(s|ht)t|ht) = 0 for all t ≥ l.

After any history, a uniformly learnable type deviates from the Stackelberg strategy

with probability εω either during the phase where as
1 is played or during the np

1 − 1 period

punishment phase that potentially follows; or always plays according to the Stackelberg

strategy. Lemma 7, established in the Appendix, shows under the uniformly learnable

types assumption there exists a period T such that if player 1 repeatedly plays according

to σ1(s) in history hT , then the probability that player 1 is a type that is different than the

Stackelberg type is small, with high probability. Applying the lemma delivers the following

corollary to Theorem 1.

Corollary 2. Posit Assumption 1 and Assumption 2 for player 1. Assume that each ω ∈ Ω−

is uniformly learnable. For any z and γ > 0, there exists a δ < 1 such that, for any

δ ∈ (δ, 1) and any perfect equilibrium strategy profile σ for the repeated game Γ∞(µ, δ) with

µ1(Ωs) ≥ z, U1(σ) > ḡ1 − γ.

Proof. Pick φ such that np
1K

n∗

φ + φ < γ where K and n∗ are defined as in Theorem 1. By

Lemma 7 there exists T such that µ1(Ω−(hT )|hT )
µ1(Ωs(hT )|hT ) < φ with probability 1−φ if player 1 played

according to σ1(s) in history hT and there were N periods in which (as
1, a2) where a2 6= ab

2

was played. Consequently, by Theorem 1, U1(σ|hT ) > 1− np
1(K

n∗

max{1− δ, φ}+ (1− δ)),

with probability 1 − φ. Suppose that player 1 plays according to σ1(s) and let τ denote

the first (random) time such that in history hτ there are N periods in which (as
1, a2) where
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a2 6= ab
2 was played. If player 1 uses strategy σ1(s), then before time τ there are N periods

in which (as
1, a2 6= ab

2) is played, after time τ , Theorem 1 and Lemma 7 imply that, with

probability 1 − φ, there are at most Kn∗

max{1 − δ, φ} periods in which (as
1, a2 6= ab

2) is

played. Because strategy σs
1 is available to player 1,

U1(σ) ≥ (1 − δτ ) − np
1N(1 − δ) + δτ (1 − φ)(1 − np

1(K
n∗

max{1 − δ, φ} + (1 − δ))

≥ 1 − np
1(K

n∗

max{1 − δ, φ} + (N + 1)(1 − δ)) − φ

So, if δ > δ = max{
γ−n

p
1Kn∗

φ−φ

(N+1)np
1

, 1 − φ}, then U1(σ) > 1 − γ. �

3.3. Examples with no Reputation Effects. In the non-generic version of the common

interest game outlined in Figure 4 (left) suppose that player 2 is building a reputation and

µ2(Ωs) < ǫ. Suppose that the Stackelberg type of player 2 always plays L. Consider the

following equilibrium construction: on the equilibrium path player 1 plays R and the normal

type of player 2 plays L for K periods. After period K they play (L,L). Choose K such

that both players receive 1/2. Notice that no reputation is built on the equilibrium path.

Also, suppose that the normal type of player 2 always plays R if player 1 deviates from R

on the equilibrium path. Once player 2 plays R she is known to be the normal type and

the stage-game equilibrium (L,R) is played forever. Consequently, player 1 receives ǫ if he

deviates from the equilibrium strategy which is less than 1/2.11 In the game depicted in

Figure 4 (right) suppose that player 1 is building a reputation. Player 2 always playing R

is a dominant action and so is a best response to any type of player 1.

4. Two-Sided Reputation and a War of Attrition

The main finding presented in this section, Theorem 2, establishes a two-sided reputation

result. Throughout the discussion assume that µ1(Ωs) = z1 > 0, µ2(Ωs) = z2 > 0 and

µi(Ω−) = 0, that is, for both players, the probability of being the Stackelberg type is

positive and the probability of being another commitment type is zero. Set δ = e−r∆.

11If player 2’s Stackelberg type always plays R, then the normal type reveals by playing L and then switches
to the equilibrium where player 1 receives ǫ.
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RL

Player 1

R

(ǫ, 1)

L

(1, 1)

P2

R

(0, 0)

L

(0, 0)

P2
RL

Player 1

R

(0, 0)

L

(1, 0)

P2

R

(0, 0)

L

(0, 0)

P2

Figure 4. On the left is a non-generic common interest game. This game
satisfies Assumption 2 (i) and (iii) or (iv) but does not satisfy (ii) (gener-
icity). On the right is a conflicting interest game. This game satisfies As-
sumption 2 (i) and (ii) but does not satisfy (iii) or (iv).

The focus of analysis is on sequences of repeated games Γ∞(µ,∆n) parameterized by the

time ∆n between repetitions of the stage game. Theorem 2 maintains Assumption 1 and

Assumption 2 for both players and demonstrated that as ∆n → 0, any sequence of perfect

equilibrium payoff profiles {(U1(σn), U2(σn))} of the repeated game Γ∞(µ,∆n) converges

to a unique limit. This unique limit is the unique equilibrium payoff profile of a continuous

time war of attrition which is outlined below. Corollary 3 shows that the perfect information

assumption (Assumption 1) can be discarded if the stage game is a generic game of strictly

conflicting interest (Assumption 2 (i) and (iii)).

In what follows we assume that σ1(s) is not a best response to σ2(s).
12 This assumption is

maintained out of convenience in order to focus attention on the interesting cases. If σ1(s)

is a best response to σ2(s), then Theorem 1 immediately implies that (U1(σn), U2(σn))

converges to the unique payoff profile (ḡ1, g2) for any sequence of perfect equilibria σn

of Γ∞(µ,∆n).13 For the remainder of the discussion normalize payoffs, without loss of

generality such that,

(i) ḡ = ḡ1 = ḡ2

(ii) g1(a
b
1, a

s
2) = g2(a

s
1, a

b
2) = 0

12For games that satisfy Assumption 2, σ1(s) is a best response to σ2(s) if and only if σ2(s) is a best response
to σ1(s).
13Observe that given the definition of resistance, the lower bound for player 1’s payoff in Lemma 1 is valid.
This is because the Stackelberg type of Player 2 best responds to the Stackelberg strategy of Player 1. Also,
the Equations (LB) and (UB) are unchanged. So, the theorem implies that R(δ, σ2) converges to zero. So,
(U1(σn), U2(σn)) → (ḡ1, g2).
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The Stackelberg types under consideration are np
i state automatons. To deal with this we

introduce the following device: Let np denote the smallest common multiple of np
1 and np

2;

and let

l1 = −
1

np

np−1
∑

t=0

g1(σ1(s)t, σ2(s)t).

where (σ1(s)t, σ2(s)t) is the action profile in period t if the players use strategy profile

(σ1(s), σ2(s)) starting from period 0. Also, define l2 symmetrically. So li is the average loss

incurred from playing the Stackelberg strategy against the Stackelberg strategy.14 Note

that for np > 1, the difference between using the time average instead of li is bounded as

follows:

(12) |

np−1
∑

t=0

e−r∆tli −

np−1
∑

t=0

e−r∆tg1(σ1(s)t, σ2(s)t)| ≤ Mnp(1 − e−r∆(np−1)).

Consequently, the error from using li as the cost of employing the Stackelberg strategy

against the Stackelberg strategy converges to zero as ∆ → 0.

4.1. The War of Attrition. The War of Attrition is played over continuous time by the

two players. At time zero, both players simultaneously choose either to concede or insist.

If both players choose to insist, then the continuous time war ensues. The game continues

until one of the two players concedes. Each player can concede at any time t ∈ [0,∞]. If

player i concedes at time t ∈ [0,∞] and player j continues to play insist through time t, then

player i’s payoff is −li
(

1 − e−rt
)

and player j’s payoff is e−rtḡ−lj
(

1 − e−rt
)

. If both players

concede concurrently at time t, then they receive payoff e−rtgi(t) −li
(

1 − e−rt
)

and e−rtgj(t)

−lj
(

1 − e−rt
)

where (gi(t), gj(t)) ∈ G, and consequently, −ρ(ḡ−gj(t)) ≤ gi(t) ≤ ρ(ḡ−gj(t)).

Before the game begins at time 0, nature chooses a type for each player independently. A

player is chosen as either a Stackelberg type that never concedes, with probability zi > 0,

or a normal type, with probability 1 − zi.

This War of Attrition is closely related to the repeated game Γ∞(µ,∆) for ∆ ≈ 0:

Insisting corresponds to playing according to the Stackelberg strategy in each period, and

14To be exact l1 = − 1
np g1(a

s
1, a

s
2) + (np

n
p
1

− 1)g1(a
s
1, a

p
2) + (np

n
p
2

− 1)g1(a
p
1, a

s
2) + (np + 1 − np

n
p
1

− np

n
p
2

)g1(a
p
1, a

p
2).
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conceding corresponds deviating from the Stackelberg strategy. Players incur cost li from

insisting on the Stackelberg strategy against the Stackelberg strategy. They insist on the

Stackelberg strategy hoping that their rival will deviate. If one of the players deviates from

the Stackelberg strategy and the other does not, then the player that deviated is known to

be the rational type with certainty. After such a history, Theorem 1 implies that the player

known as normal receives a payoff of zero and the rival receives payoff ḡ. This corresponds

exactly to the payoffs when one of the players conceding at time t in the War of Attrition.

Both players incur the cost li for t units of time, i.e., li
(

1 − e−rt
)

; the conceding player

receives continuation payoff of zero; and the player that wins receives continuation payoff

of ḡ, i.e., e−rtḡ. If both players reveal rationality concurrently in period t, that is, if both

players play concede in the War of Attrition in period t, then Theorem 1 puts no restrictions

on continuation payoffs. So, agents receive an arbitrary payoff from the set of individually

rational and feasible repeated game payoffs.

The War of Attrition outlined above differs from the game analyzed in Abreu and Gul

(2000). In the War of Attrition presented here, the payoffs that the players receive, if

they concede concurrently, depend on t and are potentially non-stationary. In contrast,

in Abreu and Gul (2000) concurrent concessions involve stationary payoffs. Nevertheless,

the argument below (for condition (i)) shows that the non-stationarity of payoffs does not

introduce any new complications and Abreu and Gul (2000) ’s analysis applies without

alteration. In particular, the unique equilibrium of the War of Attrition satisfies three

conditions: (i) at most one agent concedes with positive probability at time zero, (ii) after

time zero each player concedes with constant hazard rate λi, (iii) the normal types finish

conceding at some finite time T . Consequently, at time T the posterior probability that an

agent faces a Stackelberg type equals one.

In order to provide a rationale for condition (i) suppose that both players were to concede

with positive probability at time t. If they concede concurrently, then player 1’s payoff is

g1(t) and player 2’s payoff is g2(t). By Assumption 2, gi(t) ≤ ρ(ḡ − gj(t)). Consequently,

for one of the two players gi(t) < ḡ. But for this player i waiting to see whether player j
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quits at time t and then quitting immediately afterwards does strictly better than quitting

at time t. Consequently, both players cannot concede with positive probability at any time

t; and in particular, at most one of the players can concede with positive probability at

time zero.

For some insight into condition (ii) note that player i cannot concede with certainty at

any time. If player i were to concede with certainty at time t, then by not conceding player i

would ensure that player j believes that player i is the Stackelberg type with probability one.

But this would induce player j to concede immediately improving i’s payoff. Consequently,

condition (ii) implies that the hazard rate λi must leave j indifferent between conceding

immediately and waiting for an additional △ units of time and then conceding. Conceding

immediately guarantees player j zero. By waiting for △ units of time player j incurs cost

lj(1 − e−r△), but receives ḡ if i quits which happens with probability △ λi. Consequently,

0 = lim△→0 △ λiḡ − lj(1 − e−r△) and so λi = lim△→0
(1−e−r△)lj

ḡ△
=

rlj
ḡ

.

Once one of the players’ normal type has finished conceding and the player is known as

the Stackelberg type with certainty, then the normal type of the other player should also

concede immediately. Because a Stackelberg type never concedes, the normal player has no

incentive to insist. Consequently, condition (iii) holds and both players complete conceding

by the same finite time T . Conditions (i) through (iii) imply the following lemma:

Lemma 6. Let Fi(t) denote the cumulative probability that player i concedes by time t, that

is, Fi(t) is 1− zi multiplied by the probability that the normal type of player i quits by time

t. Let λi =
rlj
ḡ

, Ti = − ln zi

λi
, T = min{T1, T2} and ci ∈ [0, 1], then

Fi(t) = 1 − cie
−λit for all t ≤ T < ∞, and Fi(T ) = 1 − zi,

where 1 − ci is the probability that player i concedes at time 0, and 1 − ci > 0 if and only

if Ti > Tj. The unique sequential equilibrium of the War of Attrition is (F1, F2). Also, the

unique equilibrium payoff vector for the War of Attrition is ((1 − c2)ḡ, (1 − c1)ḡ).



30 ATAKAN AND EKMEKCI

Proof. Observe if F1 jumps at time t, then F2 does not jump at time t. This follows from

the argument provided for condition (i). The rest of the argument in Abreu and Gul (2000)

applies verbatim. Thus F1 and F2 comprise the unique equilibrium for the War of Attrition.

Suppose that player 1 is the player that concedes with positive probability at time zero.

Since player 1 concedes with positive probability at time zero, he is indifferent between

conceding immediately and receiving a payoff equal to zero and continuing. Consequently,

player 1’s equilibrium payoff must equal zero. Player 2 is also indifferent between quitting

and conceding at any time after time zero. This implies that player 2’s expected payoff at

time t > 0, conditional on neither player conceding by time t, is equal to zero. Consequently,

player 2’s equilibrium payoff at the start of the game must equal (1 − c1)ḡ. �

4.2. The Main Two Sided Reputation Result. Let Gn
1 (t) denote the cumulative prob-

ability that player 1 reveals that he is rational by time t, if he is playing against the

Stackelberg type of player 2, in an equilibrium σ of the repeated game Γ∞(µ,∆n). The-

orem 2 demonstrates that the distributions Gn
i have a limit and proves that this limiting

distribution solves the War of Attrition and is thus equal to Fi. The Theorem then proceeds

to show that convergence of Gn
i to Fi implies that the equilibrium payoffs in the repeated

game also converge to the unique equilibrium payoff for the War of Attrition.

Theorem 2. Suppose that σ1(s) is not a best response to σ2(s). Also, Γ satisfies Assumption

1 and Assumption 2 for both players. For any z = (z1 > 0, z2 > 0) and any ǫ > 0, there

exists a ∆∗ > 0 such that, for any ∆ < ∆∗, any equilibrium strategy profile σ for the

repeated game Γ∞(µ,∆) with µi(Ωs) = zi and µi(Ω−) = 0, |U1(σ) − (1 − c2)ḡ| < ǫ and

|U2(σ) − (1 − c1)ḡ| < ǫ.

4.2.1. Comparative Statics. The unique limit equilibrium payoff for the repeated game is

(1−c2)ḡ and (1−c1)ḡ, by Theorem 2. Suppose that 1−c2 = 0 hence T1 > T2. Since player 2

never concedes at time zero, player 1’s payoff is equal to zero, and player 2’s payoff is equal

to (1− c1)ḡ. Hence, player 1 is the weaker player. The identity of the agent who quits with

positive probability at time zero, player 1 in this case, is determined by the quitting time
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if the agent was not expected to quit at time zero (T1). The time zero quitting probability

c1 ensures that F1(T2) = 1− z1. Consequently, player 2’s payoff is decreasing in λ1 and z1;

and increasing in λ2 and z2. The concession rate of player 2, in turn, is increasing in player

1’s cost of resisting the Stackelberg action, l1. Thus, player 2’s payoff is increasing in l1 and

z2; and decreasing in l2 and z1. Also note that because c1 > 0, player 2’s payoff is strictly

less than ḡ and so the limit equilibrium payoff is inefficient.

4.2.2. Proof of Theorem 2. Suppose in partial history ht player i has played according to

σs
i and player j has deviated from σs

j , then µi(Ωs|ht) > zi and µj(Ωs|ht) = 0. Consequently,

Theorem 1 implies that Ui(σ|ht) ≥ ḡ − K(∆) where K(∆) = (1 − e−r∆)npKn∗

+ np(1 −

e−r∆)M and K and n∗ are independent of ∆. Also, let M(∆) = 2Mnp(1 − e−r∆np

) which

converges to zero when ∆ goes to zero. Take ∆ sufficiently small so that ρK(∆)+2M(∆) < li

and ḡ − K(∆) > 0.

Step 1. Let the set Ri(n) denote all pure repeated game strategies σi such that: if σi is played

against the opponents Stackelberg strategy σj(s), then in all periods l < n the strategy picks

an action compatible with the Stackelberg strategy σi(s); in period n, the strategy picks an

action which generated an outcome incompatible with σi(s) at some decision node.

Observe that the sets Ri(n) are disjoint and their union
⋃

n Ri(n) gives all pure repeated

game strategies excluding the set of strategies Ni that never deviate from σi(s), if played

against σj(s). Let

Gi(t) = (1 − zi)
∑

∆n≤t

σi(Ri(n)),

where, for mixed repeated game strategy σi, σi(R) denotes the probability that a pure

strategy in the set R is played. Gi(t) is the probability that player i will reveal rationality

by playing an action incompatible with the Stackelberg type by time t. Step 4 given below

shows that for all equilibria σ of the repeated game Γ∞(µ,∆), there exists a time T such

that Gi(T ) = 1−zi, that is, every normal player eventually reveals rationality, if faced with
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a sufficiently long history of play compatible with the Stackelberg type. Consequently, for

any equilibrium σ, σi(Ni) = 0.

If σi(Ri(n)) > 0, then let Ui(σ|Ri(n)) denote the expected repeated game payoff for

player i, under mixed strategy profile σ, conditional on player i having picked a strategy in

the set Ri(n). If σi(Ri(n)) = 0, then let Ui(σ|Ri(n)) = supσ′

i
∈Ri(n) Ui(σ

′
i, σj). Also, for any

real number t, let Ui(σ|Ri(t)) = Ui(σ|Ri(n̄)) where n̄ = maxn{∆n ≤ t}. Observe that for

any equilibrium mixed strategy profile σ ,

Ui(σ) =

∞
∑

n=0

σi(Ri(n))Ui(σ|Ri(n)) + σi(Ni)Ui(σ|Ni) =
1

1 − zi

∫ ∞

t=0
Ui(σ|Ri(t))dGi(t).

Step 2. Define

Ūi(t, k) = e−r min{t,k}ḡ − li(1 − e−r min{t,k}) if t ≥ k

= −li(1 − e−r min{t,k}) if t < k.

In this definition t, k ∈ R+. For any equilibrium profile σn for Γ∞(µ,∆n)

Ui(σ
n) ≤

1

1 − zi

∫

t

∫

k

Ūi(t, k)dGn
j (k)dGn

i (t) + ρK(∆) + M(∆).

Proof of Step 2. Fix an equilibrium strategy profile σ. Pick t such that ∆n = t for some

n. We bound Ui(σ|Ri(t)). If j does not reveal rationality in any period k ≤ t, then player

i will reveal rationality. Consequently, the continuation utility, by Theorem 1, for player j

will be at least ḡ − K(∆). This implies that player i’s continuation utility after period t is

at most ρK(∆). Also, player i will incur −(1−e−rt)li since both players will play according

to the Stackelberg action up to period t. This event occurs with probability 1 − Gj(t). If

player j reveals rationality at any time ∆m = k ≤ t, then player 1 will receive payoff at
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most ḡ from that period onwards and will incur −(1 − e−rk)li up to time k. Consequently,

Ui(σ|Ri(t)) ≤

∫

{t≥k}
(e−rk ḡ − li(1 − e−rk))dGj(k) + (1 − Gj(t))(ρK(∆) − li(1 − e−rt)) + M(∆)

Ui(σ|Ri(t)) ≤

∫

Ūi(t, k)dGj(k) + ρK(∆) + M(∆)

where the factor M(∆) corrects for revelations that occur during punishment phases as well

as the inaccuracy of using li as the cost of resisting the Stackelberg strategy. Hence,

Ui(σ) ≤
1

1 − zi

∫ ∫

Ūi(t, k)dGj(k)dGi(t) + ρK(∆) + M(∆)

�

Step 3 (The proof is in the Appendix). Define

U i(t, k) = e−r min{t,k}ḡ − li(1 − e−r min{t,k}) if t > k

= −li(1 − e−r min{t,k}) if t ≤ k

In this definition t, k ∈ R+. For any equilibrium profile σn for the repeated game Γ∞(z,∆n)

Ui(σ
n) ≥

1

1 − zi

∫ ∫

U i(t, k)dGn
j (k)dGn

i (t) − K(∆)ρ − M(∆)

Step 4 (The proof is in the Appendix). There exists a T such that Gn
i (T ) = 1 − zi.

Step 5. There exists a subsequence {nk} ⊂ {n} such that (Gnk

1 (t) , Gnk

2 (t)) → (Ĝ1 (t) , Ĝ2 (t)).

Proof of Step 5. Since Gn
1 and Gn

2 are distribution functions, by Helly’s theorem they have

a (possibly) subsequential limit Ĝ1 (t) , Ĝ2 (t). Also, since the support of the Gn
1 and Gn

2 ’s

is uniformly bounded by the previous lemma, the limiting functions Ĝ1 (t) , Ĝ2 (t) are also

distribution functions. �

Step 6 (The proof is in the Appendix). The distribution functions Ĝ1 (t) and Ĝ2 (t) do not

have any common points of discontinuity.
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Step 7 (The proof is in the Appendix). If (Gn
1 (t) , Gn

2 (t)) → (Ĝ1 (t) , Ĝ2 (t)), then

lim Ui(σ
n)(1 − zi) =

∫ ∫

Ūi(t, k)dĜj(k)dĜi(t) =

∫ ∫

U i(t, k)dĜj(k)dĜi(t).

Step 8 (The proof is in the Appendix). The distribution functions (Ĝ1 (t) , Ĝ2 (t)) solve the

War of Attrition and consequently (Ĝ1 (t) , Ĝ2 (t)) = (F1 (t) , F2 (t)).

Step 9. Observe that lim Ui(σ
n) = 1

1−zi

∫ ∫

Ūi(t, k)dFj(k)dFi(t). However, 1
1−zi

∫ ∫

Ūi(t, k)dFj(k)dFi(t)

is just the expected utility of player i from playing the War of Attrition. Consequently,

1
1−zi

∫ ∫

Ūi(t, k)dFj(k)dFi(t) = (1 − cj)ḡ thus completing the argument.

Assumption 1 and Assumption 2 were used for two purposes in the previous Theorem.

First, to bound the continuation payoff of the two agents. Second, to show that the two

agents never concede concurrently, at the limit. Both of these can be achieved if we drop

Assumption 1, but assume Assumption 2 (i) and (iii). The bound on continuation payoffs

continue to hold due to Corollary 1. Also, to prove that the two players never concede

concurrently, only the bound of continuation payoffs and the Lipschitz given by Equation

1, which also holds under Assumption 2 (i) and (iii), is required.

Corollary 3. Suppose that ΓN satisfies Assumption 2 (i) and (iii) for both players. For

any z = (z1 > 0, z2 > 0) and any ǫ > 0, there exists a ∆∗ such that, for any ∆ < ∆∗,

any equilibrium strategy profile σ for the repeated game Γ∞(µ,∆) with µi(Ωs) = zi and

µi(Ω−) = 0, |U1(σ) − (1 − c2)ḡ| < ǫ and |U2(σ) − (1 − c1)ḡ| < ǫ.

Appendix A. Omitted Proofs

A.1. Omitted Steps in the Proof of Corollary 2.

Lemma 7 (Uniform Learning). Suppose player 1 has played according to σ1(s) in history

ht, and let Ωs(ht) ⊃ Ωs denote the set of types that behave identical to a Stackelberg type

given ht and let Ω−(ht) ⊂ Ω− denote the set of commitment types not in Ωs(ht). Assume



REPUTATION 35

that µ1(Ωs) = z > 0 and all ω ∈ Ω− are uniformly learnable. For any φ > 0, there exists a

T such that, Pr(σ1(s),σ2){h : µ1(Ω−(hT )|hT )
µ1(Ωs(hT )|hT ) < φ} > 1 − φ, for any strategy σ2 of player 2.

Proof. We show that for each finite subset W ⊂ Ω− and any ε > 0, there exists a T such

that, Pr(σ1(s),σ2){h : µ1(W ∩ Ω−(hT )|hT ) < ε} > 1 − ε, for any strategy σ2 of player 2.

Proving this is sufficient for the result since W can be picked such that µ1(W ) is arbitrarily

close to µ1(Ω−).

Step 1. Let Lω
t (h) =

Prσ(ω)((a1)t=σ1(s|ht)|ht)

Prσ(s)((a1)t=σ1(s|ht)|ht)
Lω

t−1(h) and Lω
0 (h) = µ1(ω)

µ1(Ωs) . By Fudenberg

and Levine (1992) Lemma 4.2, Lω
t (h) = µ1(ω|ht)

µ1(Ωs|ht)
and (Lω

t ,Ht) is a supermartingale, under

Pr(σ1(s),σ2). Observe Pr(σ1(s),σ2)((a1)t = σ1(s|ht)|ht) = 1 for Pr(σ1(s),σ2) −a.e. history. Let

Lω(K, ε) denote the set of histories such that either Lω
T (h) < ε or 1−Prσ(ω)((a1)t = σs

1|ht) <

ε in all but K periods for any T > K. Fudenberg and Levine (1992) Theorem 4.1 implies

that there exists a Kω independent of σ2 such that Pr(σ1(s),σ2){L
ω(Kω, ε)} > 1 − ε.

Step 2. Let ξ = minω∈W εω where εω is the uniform probability, implied by uniformly

learnable types. For each ω ∈ W , after any history hT where there has been N periods where

player 2 has played an action different than ab
2 against as

1, either Prω((a1)t 6= σ1(s|ht)|ht) > ξ

at least N times or ω ∈ Ωs(hT ).

Step 3. Pick ε
|W | < ξ. Pick N such that N > Kω and Pr(σ1(s),σ2){L

ω(Kω, ε
|W |)} >

1 − ε
|W | for all ω ∈ W . Consequently, Pr(σ1(s),σ2){∩ω∈W Lω(Kω, ε

|W |)} > 1 − ε. For any

h ∈ ∩ω∈W Lω(Kω, ε
2|W |)) where there has been N periods where player 2 has played an

action different than ab
2 against as

1 in hT , by Step 2, either Lω
T (h) < ε

|W | or |Prσ(ω)((a1)t =

σ1(s|ht)|ht) − 1| < ε
|W | < ξ all but T times. However, by the definition of ξ in Step 2,

either Lω
T (h) < ε

2|W | or for any ω with Lω
T (h) > ε

2|W | by Step 2 ω ∈ Ωs(hT ). That is, either

Lω
T (h) < ε

2|W | or ω ∈ Ωs(hT ). So all ω ∈ W with µ1(ω|hT ) > ε
2|W | are in Ωs(hT ). Hence

µ1(W ∩ Ω−(hT )|hT ) < ε for any h ∈ ∩ω∈W Lω(Kω, ε
2|W |) delivering the result. �

A.2. Omitted Steps in the Proof of Theorem 2.
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Proof of Step 3. Statement. Let

U i(t, k) = e−r min{t,k}ḡ − li(1 − e−r min{t,k}) if t > k

= −li(1 − e−r min{t,k}) if t ≤ k

For any equilibrium profile σn for Γ∞(µ,∆n)

Un
i (σn) ≥

1

1 − zi

∫ ∫

U i(t, k)dGn
j (k)dGn

i (t) − K(∆)(1 + ρ) − 2M(∆)

proof. Fix an equilibrium strategy σ and suppose that j behaves according to σj . Fix an

equilibrium strategy profile σ. Pick t such that ∆n = t for some n. We bound Ui(σ|Ri(t)).

If j reveals rationality in any period ∆m = k < t, then player i incurs −li up to that time,

and receives continuation payoff ḡ−K(∆). This exceeds −(1−e−rk)li +e−rk(ḡ−K(∆)). If

player i reveals rationality first in period t, then she receives as a continuation −ρK(∆) ≤ 0.

If player j reveals first in period t, then player i receives in continuation ḡ − K(∆) > 0.

Consequently,

Ui(σ|Ri(t)) ≥

∫

k<t

(e−rkḡ−(1−e−rk)li)dGj(k)−(1−Gj(t
−))(1−e−rt)li−(1+ρ)K(∆)−M(∆)

where 1−Gj(t
−) denotes the probability that player j reveals at a time k ≥ t. This implies

that

Ui(σ|Ri(t)) ≥

∫

U i(t, k)dGj(k) − (1 + ρ)K(∆) − M(∆)

Hence,

Ui(σ) ≥
1

1 − zi

∫ ∫

U i(t, k)dGj(k)dGi(t) − (1 + ρ)K(∆) − M(∆)

proving the result. �

Proof of Step 4. Statement. There exists a T such that Gn
i (T ) = 1 − zi.

proof. For some time s suppose that (σi(s), σj(s)) has been played in all periods ∆k < s

and consider the strategy of i that continues to play σi(s) for all periods n such that

∆n ∈ [s, s + t], given that (σi(s), σj(s)) has been played in all prior periods. For this
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strategy to be considered, it must do better for player i than revealing rationality which

guarantees her −ρK(∆) by loosing at most M(∆). For this strategy to do better than

revealing rationality for i, the probability with which player j plays σj(s) in all periods

{n : ∆n ∈ [s, s + t]}, given that (σi(s), σj(s)) has been played in all prior periods, P{an,j =

σj(s) ∀∆n ∈ [s, s + t]|ak<n = (σi(s), σj(s))}, must satisfy the following:

−ρK(∆) − M(∆) ≤ P{an,j = σj(s) ∀∆n ∈ [s, s + t]|hn}(ḡe−rt − li(1 − e−rt) + M(∆))

+(1 − P{an,j = σj(s) ∀∆n ∈ [s, s + t]|hn})ḡ

where play is according to (σi(s), σj(s)) in all histories hn under consideration. Conse-

quently,

P{an,j = σj(s) ∀∆n ∈ [s, s + t]|hn} ≤
ḡ + ρK(∆) + M(∆)

(ḡ + li)(1 − e−rt)

Observe that for t large, ḡ+ρK(∆)+M(∆)
(ḡ+li)(1−e−rt)−M(∆) < 1. This implies that for i to be willing to

play σi(s) for all ∆n ∈ [0, tk]

zj ≤ P{σj(s) ∀tk} =
k

∏

s=0

P{an,j = σj(s) ∀∆n ∈ [s, s + t]|hn}

≤

(

ḡ + ρK(∆) + M(∆)

(ḡ + li)(1 − e−rt)

)k

However for t and k sufficiently large this is not possible. �

Proof of Step 6. Statement. The distribution functions Ĝ1 (t) and Ĝ2 (t) do not have any

common points of discontinuity.

proof. Assume that Ĝ1 and Ĝ2 have a common point t where they are both discontinuous.

Let J1 = Ĝ1(t)− limsրt Ĝ1(s) and let J2 = Ĝ2(t)− limsրt Ĝ2(s). We can pick ζ, arbitrarily

close to t, such that both Ĝ1 and Ĝ2 are continuous at t + ζ and t − ζ. This implies that

for each ǫ > 0, there is a N such that the game is played at least once in each interval of

length 2ζ and Gn
i [t − ζ, t + ζ] = Gn

i (t + ζ) − Gn
i (t − ζ) ≥ Ji − ǫ > 0, for all n ≥ N . In
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words, the probability that 1 plays an action different than ai(s) in the interval [t− ζ, t+ ζ]

is greater than J1 − ǫ. Also, pick N such that the value to any player after she has played

an action other than the commitment action is less than ǫ, the payoff to any player who

has not played an action different than the commitment action against an opponent known

to be rational is greater than ḡ − ǫ, and M(∆n) < ǫ . Pick the first period k such that

∆nk ∈ [t−ζ, t+ζ] and P{ak1 6= σ1(s)} > 0 or P{ak2 6= σ2(s)} > 0. Since Gn
i [t−ζ, t+ζ] > 0

such a period exists for all n > N .

Without loss of generality assume that P{ak1 6= σ1(s)} > 0. The payoff that player 1

receives from deviating from σ1(s) in period k must be at least as well as playing σ1(s)

throughout the interval [t − ζ, t + ζ]. Let Ui denote the payoff that player i receives in

equilibrium conditional on both players not playing σi(s) in period k. Consequently,

P{ak2 6= σ2(s)}U1 + (1 − P{ak2 6= σ2(s)})ǫ ≥ e−r4ζ(ḡ − ǫ)Gn
2 [t − ζ, t + ζ] − l(1 − e−r4ζ) + ǫ

Redefine ǫ′ = ǫ + ǫ
e−r4ζ(Ji−ǫ)

+ l(1−e−r4ζ)−ǫ

e−r4ζ(Ji−ǫ)
and rewrite the above equation as follows:

P{ak2 6= σ2(s)}U1 ≥ e−r4ζ(ḡ − ǫ′)Gn
2 [t − ζ, t + ζ].

For ǫ and ζ sufficiently small, the right hand side of the equation is approximately J2ḡ

and the left hand side is P{ak2 6= σ2(s)}U1. Consequently, for this inequality to hold,

P{ak2 6= σ2(s)} > 0. Also, by definition, P{ak2 6= σ2(s)} ≤ Gn
2 [t−ζ, t+ζ], and consequently,

U1 ≥ e−r(4ζ)(ḡ − ǫ′).

P{ak2 6= σ2(s)} > 0 implies, by a symmetric argument as in the case of player 1, that

P{ak1 6= σ1(s)}U2 ≥ e−r4ζ(ḡ − ǫ′)Gn
1 [t − ζ, t + ζ]



REPUTATION 39

Consequently, U2 ≥ e−r4ζ(ḡ−ǫ′). However, U1 ≥ e−r4ζ(ḡ−ǫ′), implies that U2 ≤ ρ(ḡ−U1) =

ρ(ḡ(1 − e−r4ζ) + ǫ′e−r4ζ). So,

ρ(ḡ(1 − e−r4ζ) + ǫ′e−r4ζ) ≥ e−r4ζ(ḡ − ǫ′)

Taking the limit first with respect to ǫ and then with respect to ζ gives 0 ≥ ḡ, which is a

contradiction. �

Proof of Step 7. Statement. If (Gn
1 (t) , Gn

2 (t)) → (Ĝ1 (t) , Ĝ2 (t)), then

lim Ui(σ
n)(1 − zi) =

∫ ∫

Ūi(t, k)dĜj(k)dĜi(t) =

∫ ∫

U i(t, k)dĜj(k)dĜi(t).

proof. If Gn
1 converges to Ĝ1 and Gn

2 converges to Ĝ2, then the product measure Gn
1 × Gn

2

converges to Ĝ1 × Ĝ2, see Billingsley (1995), Page 386, Exercise 29.2. Observe that the

functions Ū1(t, k) and U1(t, k) are continuous at all points except on the set {t = k}. By

the previous lemma,
∫

R2 1{t=k}d(Ĝ1 × Ĝ2) = 0. Consequently, the Ĝ1 × Ĝ2 measure of the

points of discontinuity of Ū1(t, k) and U1(t, k) is zero. Billingsley (1995), Theorem 29.2,

shows that if the set of discontinuities of a measurable function h, Dh, has µ measure zero,

i.e., µ(Dh) = 0 and µn → µ, then
∫

hdµn →
∫

hdµ. So,

lim
n

∫

t1

(
∫

t2

Ū1(t1, t2)dGn
2 (t2)

)

dGn
1 (t1) = lim

n

∫

R2

Ū1d(Gn
1 × Gn

2 ) =

∫

R2

Ū1d(Ĝ1 × Ĝ2)

and similarly for U1. Also, since Ū1 and U1 differ only on a set of zero measure,
∫

R2 Ū1d(Ĝ1×

Ĝ2) =
∫

R2 U1d(Ĝ1 × Ĝ2). �

Proof of Step 8. Statement. The distribution functions (Ĝ1 (t) , Ĝ2 (t)) solve the War of

Attrition and consequently (Ĝ1 (t) , Ĝ2 (t)) = (F1 (t) , F2 (t))

proof. In the continuous time war of attrition, if player 1 is behaving according to Ĝ1,

then for each ǫ, there is a N such that for all n > N , Gn
2 is an ǫ best response to Ĝ1 and

consequently, since ǫ is arbitrary Ĝ2 is a best response to Ĝ1. Also, the symmetric argument
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is true for player 2 showing that Ĝ1 is a best response to Ĝ2. Proving that Ĝ1 and Ĝ2 form

an equilibrium for the continuous time war of attrition. Since the war of attrition has a

unique equilibrium Ĝ1 = F1 and Ĝ2 = F2. This argument is identical to Abreu and Gul

(2000), proof of Proposition 4, on page 114 where a more detailed proof may be found. �
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