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Abstract

Even though people routinely ask experts for advice, they often have pri-

vate information as well. I study strategic communication when both the expert

and the decision maker have private information. In one-way communication,

non-monotone equilibria may arise (i.e., the expert conveys whether the state

is extreme or moderate instead of low or high), even if preferences satisfy the

single-crossing property. In two-way communication, the decision maker can-

not credibly reveal her information when communicating first to the expert

and hence benefits little from two-way sequential communication. This result

provides another explanation for the “bottom up” arrangement of information

flow in organizations.
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1 Introduction

Even though people routinely ask experts for advice when making decisions, they

often have their own private information as well. For example, homeowners consult

real estate agents to decide for what price to sell their houses, but they often do in-

dependent research to find out market conditions; congressional representatives hold

hearings to gather information on the consequences of certain policies, but they may

have experience with similar issues in past legislation; mangagers ask their subordi-

nates to evaluate workers to help with compensation and promotional decisions, but

they could have their own assessment of workers from occasional interaction with

them.

Because the expert’s and the decision maker’s interests are typically not perfectly

aligned, information transmission is a non-trivial problem. Although many papers in

the economics literature have analyzed the problem of strategic information transmis-

sion using sender-receiver games,1 the standard model typically used assumes that

only the sender has private information. So it leaves out one crucial aspect common

in the examples above — that the decision maker may be privately informed as well.

Interesting questions arise when the DM is privately informed. For example, how

does the decision maker’s private information affect the expert’s incentive to com-

municate? Does the transmission of information take a qualitatively different form?

Can the decision maker elicit more information from the expert by communicating to

him first? What are the implications for the arrangement of information flow?

To answer these questions, I introduce a simple model that incorporates two-sided

asymmetric information into communication. In my model, both sides — the expert

and the decision maker — have private information. In particular, I assume that the

expert privately observes the state of the world (t) and the decision maker privately

observes a noisy signal (s) of the state. I also assume that when the decision maker

observes a high (low) signal, she believes with a higher probability that the state

is high (low). (Formally, the random variables t and s are affliated.) The players’

conflict of interest in paramerized by the expert’s bias (b). Without loss of generality,

I assume that the expert has an upward bias (b > 0), which implies that the expert

always prefers a higher action than the decision maker does.

1The classic model of strategic information transmission by Crawford and Sobel (1982) has ap-

plications in many areas. Examples include Matthews (1989) and Austen-Smith (1990) in political

economy, Stein (1989) and Moscarini (2007) in macroeconomics and Morgan and Stoken (2003) in

financial economics.
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I start by looking at a simple game (ΓI) of one-way communication from the expert

to the decision maker when the decision maker cannot communicate to the expert

and hence keeps her signal private (this happens, for example, when the decision

maker’s signal arrives only after the expert’s report). A well-known result in the

literature of sender-receiver games is that if the players’ preferences satisfy the single-

crossing property, then all equilibria are “monotone.” That is, higher types of the

sender induce higher actions in equilibrium and only types next to one another pool

together. Strikingly, some equilibria lose such monotonicity when the receiver is

privately informed: it can happen in equilibrium that high and low types pool together

but are separated from middle types. So instead of conveying whether the state is

low or high through his messages, the expert conveys to the decision maker whether

the state is extreme or moderate. To apply this non-monotonicity result to concrete

situations of strategic communication, towards the end of section 4, I discuss an

example of the relation between a real estate agent (the expert) and a homeowner (the

decision maker) and illustrate when and how communication may be non-monotone.

Both the expert’s uncertainty over the decision maker’s information and the cor-

relation between the two players’ signals are essential to generate non-monotone equi-

libria. Since the decision maker’s action depends on both the expert’s message and

her own private signal, the expert’s message induces a distribution of actions by the

decision maker. In a non-monotone equilibrium, the high and low types send a mes-

sage that induces a distribution of “extreme” (either very low or very high) actions

and the middle types send a message that induces a distribution of moderate actions.

The expert’s incentive constraints are satisfied for the following reason. The high and

the low types have relatively skewed beliefs over the decision maker’s signal. So they

believe that with sufficiently high probability, the signal realization will be in their

favor, i.e., the decision maker will choose a favorable action. Hence they are willing to

induce a distribution of extreme actions. The middle types, on the other hand, have

more diffuse beliefs and it is in their interest to induce a distribution of moderate

actions rather than a distribution of extreme actions.

The simple one-round game is appropriate for analyzing situations in which the

decision maker has no way to communicate, but there are settings in which the

decision maker has an opportunity to communicate to the expert first, before the

expert reports. For example, a manager can discuss a worker’s performance with the

worker’s supervisor before the supervisor submits his evaluations. To study two-way

sequential communication like this, I introduce a game (ΓII) in section 5. In this
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game, after the decision maker privately observes her signal, she sends a cheap-talk

message to the expert. After receiving the message and observing the state, the expert

reports back to the decision maker, who then chooses an action.

The central question of the analysis of two-way communication is whether the

decision maker can strategically exploit the communication opportunity. That is, can

talking to the expert first help her elicit more information from the expert? Note that

to elicit more information from the expert, the decision maker must reveal some of

her information in the first stage. My result finds that under some mild conditions,

no equilibrium exists in which the decision maker truthfully reveals her signal in the

first stage.

To gain some intuition, let’s imagine that the decision maker reveals her signal

truthfully in the first stage. Then, the decision maker no longer has any private

information in the second stage. In the continuation, the players will play a canonical

sender-receiver game a la Crawford and Sobel (1982) with appropriately updated

beliefs. If the decision maker reveals her signal to be Low (High), the players will

play a Crawford-Sobel game with common prior L (t) (H (t)). Under the assumption

on the information structure, the players’ belief on the state following the decision

maker’s revelation of a High signal is a monotone likelihood ratio (MLR) improvement

of the players’ belief following the decision maker’s revelation of a Low signal.

The decision maker’s incentive for truth telling in the first stage depends on the

information transmitted by the expert in the second stage. By comparing equilibria

in Crawford-Sobel (CS) games under different priors ranked by the MLRP, I find that

the decision maker’s preference over them is clear. If the decision maker has belief

H, then her expected payoff is higher in the most informative CS equilibrium under

prior H than under prior L. Under some mild conditions, the decision maker who

has belief L also has a higher expected payoff in the most informative equilibrium

under prior H than under L. So no matter what the realization of her private signal

is, the decision maker would rather the expert believe that her signal is High. This

immediately implies that it is impossible for the decision maker to reveal her signal

credibly in the first stage.

Although this result does not completely rule out the possibility that the first

round of communication can be partially informative,2 it illustrates that the benefit

2In section 5.3, I provide an example that shows that under certain restrictive conditions, the

decision maker partially reveals her information in the first stage and gets a higher expected payoff

than if she keeps her signal private.
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the decision maker gets from communicating to the expert first is limited. One

application of this result on two-way communication is the organizational structure

within firms. Scharfstein and Stein (1990) argue that “bottom up,” rather than “top

down” organization of information flow is advantageous because it lessens herding

behavior of managers who are motivated by reputational concerns. My result points

to another disadvantage of “top down” communication: when different levels of an

organization have different objectives, it may be difficult for managers at the top to

elicit information from lower levels by passing down their own ideas first. To the

extent that communication has cost, a “bottom up” arrangement results in higher

efficiency. (For simplicity my model assumes that communication is costless, but it

is easy to modify the model by adding a fixed cost of communication and the result

continues to hold.)

My result on two-way communication complements the findings in a small but

growing literature on multiple-stage communication. One main finding in this litera-

ture is that more elaborate communication often help improve information transmis-

sion than the one-way, one-shot protocol. For example, Krishna and Morgan (2004)

consider a simple two-stage game between an informed expert and an uninformed de-

cision maker. Strikingly, they find that adding only one round of simultaneous cheap

talk improves information transmission. Both Matthews and Postlewaite (1995) and

Aumann and Hart (2003) consider pre-play communication that can potentially last

for infinite rounds. Both papers find equilibrium outcomes with longer cheap talk

that improve information transmission than what is achievable by a single message.

A recent paper by Golosov, Skreta, Tsyvinski andWilson (2008) extend the Crawford-

Sobel model to a dynamic setting: the expert and the decision maker interact repeat-

edly — the expert’s information does not change over time, but the decision maker

chooses an action in each period. They also find that more information is revealed

by the expert in the dynamic setting than the static one. In contrast to these papers,

my result shows in a natural setting that communcation from the partially-informed

decision maker to the expert is often ineffective and at best limited.

As mentioned earlier, only a few papers in the literature have explicitly modeled

informed receivers. An early reference is Seidmann (1990), who gives examples to

illustrate how the receiver’s private information facilitates communication. In Wat-

son (1996), the sender’s and the receiver’s private information are complementary. In

Olszewski (2004), the sender is concerned with his reputation of being honest. Both

papers find conditions on the information structure under which a fully revealing
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equilibrium exists. A recent paper by Lai (2008) looks at communication from an

expert to an “amateur.” The amateur can tell whether the state is “low” or “high”

depending on the true state and a cutoff point that is his private information. Lai

(2008) shows that because the expert may become less helpful in providing informa-

tion, being partially informed does not necessarily benefit the amateur. Although

not the focus of this paper, a similar result on the value of the decision maker’s

information holds in my model as well. I discuss it in Remark 3 in section 4.

2 The Model

There are two players in the game, the expert and the decision maker (DM).3

The expert privately observes the state of the world, or his type, t, which is

a random variable distributed on the interval [0, 1]. The common prior on t has

distribution function G (·) ∈ C1 and density function g (·). The DM privately observes

a signal s ∈ S = {sL, sH} with sH > sL. Let the conditional distribution functions

of t, G (t|s = sH) and G (t|s = sL) be denoted by H (t) and L (t). Suppose they

have continuous density functions g (t|s = sH) and g (t|s = sL), denoted by h (t) and

l (t) . Suppose they satisfy the condition that h(t)
l(t)

is strictly increasing in t, i.e., the

monotone likelihood ratio property (MLRP) holds. (Or, the random variables t and

s are affiliated.) Statitiscally, when the DM sees the signal sH , she believes that t is

more likely to be high than when she sees the signal sL. Assume also that h (t) > 0,

l (t) > 0 for all t ∈ [0, 1] , which implies that the support of the DM’s belief does not
change with the realization of her signal. If H (t) = L (t) for t ∈ [0, 1], we are back to
the standard model in which the decision maker is uninformed. (Assuming that the

DM’s signal has two realizations is only for notational simplicity. The results will go

through even if s has more than two realizations, as long as the assumptions of full

support and MLRP hold.)

In both games ΓI and ΓII analyzed in this paper, only the DM takes an action

that affects the players’ payoffs directly. Both players maximize their expected util-

ities. The DM’s twice continuously differentiable von Neumann-Morgenstern utility

function is denoted by UDM(a, t), where a ∈ R is the action taken by the DM. The
expert’s twice continuously differentiable von Neumann-Morgenstern utility function

is denoted by UE(a, t, b). Assume UDM(a, t) = UE (a, t, 0). So b measures the diver-

gence of interests between the players. (For simplicity, when it is clear that b is fixed,

3I use the pronoun “he” for the expert and the pronoun “she” for the decision maker.
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sometimes I just write UE (a, t).) Without loss of generality, assume that b > 0.4 Also

assume that, for each t and for i = E,DM , denoting partial derivatives by subscripts

in the usual way, U i
1(a, t) = 0 for some a, and U i

11(a, t) < 0, so that U
i has a unique

maximum in a for each t. Assume U i (a, t) is supermodular in (a, t), i.e., U i
12(a, t) > 0.

(This implies that the single crossing property holds.) For each t and i = E,DM ,

ai(t) denotes the unique solution to maxa U i(a, t). Assume UE
13 (a, t, b) > 0. Since

b > 0, this implies that aE(t) > aDM(t) for all t. So the expert’s ideal action is

always higher than the DM’s. Fix a distribution function F . For 0 ≤ t0 < t00 ≤ 1,
let āF (t0, t00) be the unique solution to maxa

R t00
t0 UDM(a, t)dF (t). So āF (t

0, t00) is the

DM’s optimal action when he believes that t has support on [t0, t00] with distribution

F . By convention, āF (t, t) = aDM(t).5

I analyze the following two games.

ΓI : The expert and the DM privately observe their signals. The expert sends

a message to the DM while the DM keeps her signal private. After receiving the

expert’s message, the DM chooses an action. Call this one-way communication.

ΓII : The expert and the DM privately observe their signals. The DM sends a

message to the expert before the expert reports to her. Then the DM chooses an

action. Call this two-way communication.

Throughout the analysis, I use m to denote the message that the expert sends

to the DM and z to denote the message that the DM sends to the expert in ΓII .

Without loss of generality, I assume that the expert’s message space is the same as

his type space: M = T = [0, 1] and the DM’s message space is the same as her signal

space: Z = S. Both m and z are cheap talk.

Because the DM’s payoff function is strictly concave in a, she never mixes over

actions in equilibrium. I will also restrict attention to pure strategies for the players’

communication strategies.6

In ΓI , the expert does not observe s when sending a message to the DM. So the

expert’s strategy is mI : T → M . The DM’s action depends on both the expert’s

message and her signal. So the DM’s strategy is aI :M × S → R.
In ΓII , the DM’s strategy has two parts: communication and action. Let zII :

S → Z denote her communication strategy. The expert sends a message to the DM

after observing his type t and receiving the DM’s message z. So the expert’s strategy

4I preclude the degenerate case in which b = 0, i.e., the two players’ interests coincide.
5The leading example of the Crawford-Sobel model, the uniform-quadratic case, satisfies these

assumptions. In that case, UE = − (a− t− b)
2 and UDM = − (a− t)

2.
6Similar to Crawford and Sobel (1982), this restriction does not change the results.
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is mII : T × Z → M . The DM’s action can depend on her signal s, her message z

and the message sent by the DM m. So her action strategy is aII : S × Z ×M → R.
The solution concept I use is Perfect Bayesian Equilibrium (PBE).

3 Benchmark: Uninformed Decision Maker

For comparison, let us first review briefly the equilibrium characterization in the

Crawford-Sobel game in which the DM is uninformed. The setup is the same as

described in section 2, except that the DM does not observe an informative signal.

Suppose the players’ common prior is that t has distribution function F and

density f . Suppose m (t) is the expert’s strategy and a (m) is the DM’s strategy in a

Perfect Bayesian Equilibrium.

Crawford and Sobel (1982) find that all equilibria take a simple form: an equilib-

rium is characterized by a partition of the set of types, t(N) = (t0(N), . . . , tN(N))

with 0 = t0(N) < t1(N) < . . . < tN(N) = 1, and messages mi, i = 1, . . . , N . The

types in the same partition element send the same message, i.e., m(t) = mi for t ∈
(ti−1, ti]). The DM best responds, i.e., a(mi) = āF (ti−1, ti). The boundary types are

indifferent between pooling with types immediately below or immediately above. So

the following “arbitrage” condition holds: for all i = 1, ..., N − 1,

UE(āF (ti, ti+1), ti))− UE(āF (ti−1, ti), ti)) = 0, (A)

Crawford and Sobel (1982) make a regularity assumption that allows them to

derive certain comparative statics. For ti−1 ≤ ti ≤ ti+1, let

V (ti−1, ti, ti+1) ≡ UE(āF (ti, ti+1), ti)− UE(āF (ti−1, ti), ti).

A (forward) solution to (A) of lengthK is a sequence {t0, . . . , tK} such that V (ti−1, ti, ti+1) =
0 for i = 1, ..,K − 1.

Definition 1 The Monotonicity (M) Condition is satisfied if for any two solutions
to (A), t̂ and t̃ with t̂0 = t̃0 and t̂1 > t̃1, we have t̂i > t̃i for all i ≥ 2.

Note that an equilibrium partition of size K satisfies (A) with t0 (K) = 0 and

tK (K) = 1. Crawford and Sobel prove that if Condition (M) is satisfied, then there

is exactly one equilibrium partition for each N = 1, . . . , N∗. The equilibrium with

the highest number of steps, N∗, is commonly referred to as the “most informative”

equilibrium. Chen, Kartik and Sobel (2008) provide a condition (“No Incentive to
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Separate”) that selects the equilibrium with N∗ steps when condition (M) holds. For

the rest of this paper, I assume that (M) holds and focus on the equilibrium with the

highest number of steps in a Crawford-Sobel game.

4 One-way Communication (ΓI): the DecisionMaker

Keeps Her Signal Private

Suppose the DM privately observes an informative signal and her signal is kept private

when the expert reports. This happens, for example, when the DM’s private signal

arrives after the expert reports. Since the DM’s action depends on her signal as well

as the expert’s message, the expert is not certain what action the DM will choose in

response to his message. So the expert’s message induces a distribution of actions by

the DM. Since the expert’s type t is correlated with the DM’s signal s, the expert’s

belief over the distribution of actions that a particular message induces varies with

the expert’s own type t.7

The correlation gives rise to equilibria that are qualitatively different from equi-

libria in games where the DM is uninformed. As we have seen in the Crawford-Sobel

model, the single-crossing property of the players’ payoff functions implies monotonic-

ity in equilibrium outcome: higher types induce higher actions and the set of types

that send the same equilibrium message forms an interval. In such an equilibrium,

the boundary types are indifferent between the actions induced in the intervals im-

mediately above and immediately below. These indifference conditions are necessary

and sufficient for the expert’s message strategy to be a best response.

When the DM is privately informed, however, the indifference conditions of the

boundary types (now between distributions of actions) are no longer sufficient for the

message strategy to be a best response. Furthermore, equilibria exist in which the

expert of types t1 and t2 send the same message but some type t ∈ (t1, t2) sends a
different message. I will refer to these equilibria as non-monotone equilibria.

Let’s first look at the failure of sufficienty. Take a partition of size K: (t0 =

0, t1, ..., tK−1, tK = 1), ti−1 < ti for i = 1, ...,K. Suppose the expert’s strategy is

mI (t) = mi for t ∈ (ti−1, ti], i = 1, ...,K and the DM’s strategy aI (m, s) is a best

response to mI (t). That is, aI (mi, sL) = āL (ti−1, ti) and aI (mi, sH) = āH (ti−1, ti).

Also, suppose the boundary type ti satisfy the following indifference condition:

7In Seidmann (1990), the sender’s and the receiver’s private signals are independent. So the

results derived in this section do not apply in his setting.
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p (sL|ti)UE (āL (ti−1, ti) , ti) + p (sH |ti)UE (āH (ti−1, ti) , ti) (1)

= p (sL|ti)UE (āL (ti, ti+1) , ti) + p (sH |ti)UE (āH (ti, ti+1) , ti) .

To simplify notation, let pL (t) = p (sL|t), pH (t) = p (sH |t), x (t) = UE (āL (ti, ti+1) , t)

−UE (āL (ti−1, ti) , t) and y (t) = UE (āH (ti, ti+1) , t)−UE (āH (ti−1, ti) , t). So type ti’s

indifference condition is pL (ti)x (ti) + pH (ti) y (ti) = 0.

Proposition 1 The indifference conditions of the boundary types ti (i = 1, ..., K−1)
are not sufficient for the expert’s message strategy mI (t) to be a best response to

aI (m, s).

All proofs of propositions and lemmas are in the appendix.

Here is some intuition for Proposition 1. To see whether mI (t) is a best response,

let’s look at different types’ preference over the distribution of actions induced. In

particular, let ∆UE (t) = pL (t)x (t) + pH (t) y (t). It measures the difference in type

t’s expected payoff by sending message mi+1 and by sending message mi.

As t increases, there are two distinct contributions to the change in ∆UE. One

is the change in the preference over actions: as t increases, higher actions become

more favorable to the expert, and this makes sending mi+1 more attractive relative

to sending mi. The other is the change in the expert’s belief over the distributions of

induced actions: as t increases, the expert believes with higher probability that the

DM’s private signal is sH and this makes mi+1 less attractive relative to mi. (This is

because the indifference of type ti implies that x (ti) > 0 and y (ti) < 0. Continuity

implies that x (t) > 0 and y (t) < 0 for t close to ti.) So ∆UE (t) is not necessarily

increasing in t. So roughly, if the expert’s preference over actions changes little with

t but his belief over the DM’s signal changes with t dramatically, then the sufficiency

of the boundary types’ indifference conditions fails.8

The indifference condition between the actions induced in adjacent intervals are

not necessary for equilibrium in ΓI either. To illustrate, I construct a non-monotone

equilibrium below.

Consider the following strategies. Let 0 < t1 < t2 < 1. The expert’s strategy sat-

isfies mI (t) = m1 if t ∈ [0, t1) ∪ (t2, 1] and mI (t) = m2 if t ∈ [t1, t2] (m1 6= m2).

8Although not presented in the paper, one can easily construct an example in which the expert’s

strategy is not a best response although the indifference conditions of the boundary types hold.
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The DM’s strategy aI (m, s) satisfies aI (m1, sF ) = argmax(
R t1
0
UE (a, t) dF (t) +R 1

t2
UE (a, t) dF (t)) for F = L,H and aI (m2, sF ) = argmax

R t2
t1
UE (a, t) dF (t) for

F = L,H.9 So aI (m, s) is a best response to the expert’s strategy mI (t).

To simplify notation, let aFi = aI (mi, sF ) for i = 1, 2 and F = L,H. Also, let

x (t) =
¡
UE

¡
aL2 , t

¢
− UE

¡
aL1 , t

¢¢
, y (t) =

¡
UE

¡
aH2 , t

¢
− UE

¡
aH1 , t

¢¢
and ∆UE (t) =

pL (t)x (t)+pH (t) y (t). If type-t1 and type-t2 experts are indifferent between sending

m1 and m2, then ∆UE (t1) = ∆UE (t2) = 0. If ∆UE (t) < 0 for t ∈ [0, t1) ∪ (t2, 1]
and ∆UE (t) > 0 for t ∈ (t1, t2), then mI (t) is a best response to aI (m, s). These

conditions can be satisfied for certain parameter values. Below is an example.

Example 1 Suppose the common prior on t is uniform on [0, 1] and the conditional

probabilities for the DM’s signal are prob (s = sL|t) = 3
4
− 1

2
t and prob (s = sH |t) =

1
4
+ 1

2
t. So g (t|sL) = 3

2
− t and g (t|sH) = 1

2
+ t and the conditional distribution

functions are L (t) = 3
2
t − 1

2
t2 and H (t) = 1

2
t + 1

2
t2. Suppose the players’ payoff

functions are UDM (a, t) = − (a− t)2 and UE (a, t, b) = − (a− t− b)2. Let b = 0.15.

Using the indifference conditions ∆UE (t1) = ∆UE (t2) = 0, I find that t1 = 0.109,

t2 = 0.905. Simple calculation shows that aL1 = 0.276, aH1 = 0.679 , aL2 = 0.454 ,

aH2 = 0.56.

10.750.50.250

0.0375

0.025

0.0125

0

-0.0125

-0.025

Figure 1: Difference in type t’s payoff

To check whether the incentive constraints for every type is satisfied, I plot∆UE (t) =

pL (t)x (t) + pH (t) y (t) in figure 1. When ∆UE (t) < 0, type t gets a higher payoff by

sending m1; when ∆UE (t) > 0, type t gets a higher payoff by sending m2.

9For m 6= m1,m2, let aI (m, sF ) ∈ {aI (m1, sF ) , aI (m2, sF )}, F = L,H.
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The inverse-U shape of the plot shows that ∆UE (t) < 0 for t ∈ [0, t1)∪ (t2, 1] and
∆UE (t) > 0 for t ∈ (t1, t2). So for t ∈ [0, t1) ∪ (t2, 1], it is a best response for the
expert to send m1 and for t ∈ (t1, t2), it is a best response for the expert to send m2.

How are the incentive constraints satisfied in a non-monotone equilibrium? By

sending m1, the expert induces a distribution over actions aL1 and aH1 ; by sending

m2, the expert induces a distribution over actions aL2 and aH2 . As the example above

shows, aL1 < aL2 < aH2 < aH1 . So message m1 induces actions that are “extreme”

— either low or high depending on the realization of the DM’s signal. Message m2,

on the other hand, induces intermediate actions. For a low-type expert, aL1 is the

best and aH1 is the worst among the actions that she can possibly induce the DM

to choose. If the expert believes with sufficiently high probability that the DM’s

signal realization is sL (this happens when t < t1), sending m1 (and inducing aL1 with

sufficiently high probability) is better than sending m2 and inducing the intermediate

actions. Conversely, for a high-type expert, the action aH1 is the best and the action

aL1 is the worst among the actions that she can possibly induce the DM to choose. If

the expert believes with sufficiently high probability that the DM’s signal realization

is sH (this happens when t > t2), sending m1 is better than sending m2. For a

middle-type expert (t1 < t < t2), his belief of the DM’s signal distribution is more

diffuse. Because of the concavity of his payoff function, inducing a distribution of

intermediate actions is better than inducing a distribution of extreme actions.

The non-monotonicity in the expert’s reporting strategy has applications in real

life communication. For instance, homeowners often hire real estate agents when

selling houses because the agents have superior information on the local market con-

ditions and hence the value of the house. Because the agent’s commission is only a

fraction of the selling price, however, he has an incentive to persuade the owner to

sell too cheaply and too quickly than is ideal for the owner herself (see Levitt and

Syverson (2008)). So one can model the communication between the agent and the

owner as a sender-receiver game with partially aligned incentives. If the homeowner

has no private information on how much the house could sell for, then communication

from the agent to the homeowner must be monotone in equilibrium. For example,

the agent suggests “accept” if an offer is above a cutoff (which depends on the agent’s

private information) and “reject” if it is below the cutoff. If the owner has private

information, however, it may emerge in equilibrium that the agent follows a non-

monotone strategy. For example, if an offer is especially low or high (below a low

cutoff or above a high cutoff with the cutoffs depending on the agent’s private in-
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formation), then the agent may say “it is up to you,” (or choose to be “silent,”10)

expecting the owner to use her own information to make the right choice. If an offer

is in the intermediate range (between the cutoffs), then the agent tries to persuade

the owner to sell, and the owner decides to accept, or reject, or make a counter-offer,

using the information conveyed by the agent (that the offer is neither especially low

or high) and her own private information on the value of the house.

Remark 1 There is an interesting link between the non-monotone equilibrium found
in ΓI and the counter-signaling equilibrium in Feltovich, Harbaugh and To (2002).

They look at a costly signaling model in which the receiver has private and noisy

information on the sender’s type and find that “counter-signaling” equilibria emerge:

the medium types acquire costly signals to separate from the low types, but the high

types, like the low type, choose not to signal (or counter-signal).

Remark 2 Proposition 1 points out the failure of the indifference conditions to guar-
antee best response. It does not, however, imply that monotone equilibrium does

not exist when the DM is privately informed. Indeed, in Example 1, there exists a

monotone equilibrium with the partition (0, 0.183, 1).11

Remark 3 Although the DM directly benefits from having an informative signal, the

welfare implication is ambiguous in a strategic setting. It is straightforward to show

that because the information transmitted from the expert to the DM can be less valuable

when the DM is known to be privately informed, the DM may be worse off overall.

10As we know, silence can speak volumes in equilibrium. It is especially likely that the expert uses

silence in equilibrium when communication is not free of cost. For simplicity, my model assumes

that communication is costless, but it is easy to incorporate a fixed cost of communication and it

does not change the results.
11Like other cheap-talk games, ΓI has multiple equilibria. One selection criterion is Farrell’s

(1993) "neologism-proofness." A well-known problem with this criterion is that it may result in non-

existence. In fact, it is straightforward to show that neither the non-monotone equilibrium found in

Example 1 or the monotone equilibrium with the partition (0, 0.183, 1) is "neologism-proof."

One can also adapt the “no incentive to separate” condition (Chen, Kartik and Sobel (2008)) to

ΓI . The condition requires that the type-0 expert’s equilibrium payoff is at least as high as the

payoff he would get if the DM knew that he was type 0 and responded optimally. It is easy to verify

that the non-monotone equilibrium found in Example 1 violates the condition, while the monotone

equilibrium with the partition (0, 0.183, 1) satisfies it. However, in general, the “no incentive to

separate” condition does not necessarily rule out a non-monotone equilibrium in ΓI .
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For instance, in Example 1, if the DM is uninformed, then the corresponding

Crawford-Sobel game has an informative equilibrium with partition (0, 0.2, 1) and the

DM has a higher expected payoff in this equilibrium than in either the monotone or

the non-monotone equilibrium found when the DM is informed. This implies that if

the DM can choose to acquire a private signal before the expert reports and if this

information acquisition decision cannot be covert, then the DM may optimally choose

to be “ignorant.”

5 Two-way Sequential Communication (ΓII)

Is it possible for the DM to exploit her private information strategically? Can she

extract more information from the expert by communicating to him first? In this

section, I enrich the communication environment by allowing communication to go in

both direction.

In ΓII , after the DM privately observes s, she sends a message z to the expert.

After receiving z and privately observing t, the expert sends a message m to the DM,

who then chooses an action a. Both z and m are cheap-talk messages.

Of course, an equilibrium exists in which the DM babbles in the first stage and in

effect keeps her signal private. If the DM were to extract more information from the

expert than if she keeps s private, she must reveal some of her information through

her messages. The main question is whether she can do so credibly in equilibrium.

To answer this question, we’d like to first see whether an equilibrium exists in

which the DM truthfully reveals her signal to the expert in the first stage. Suppose

such an equilibrium exists. Then, after the first round of communication, the DM

no longer has any private information. In the continuation, the players will play a

Crawford-Sobel game with appropriately updated beliefs. So it is useful to first study

the comparative statics of the Crawford-Sobel equilibria with respect to the players’

prior.

5.1 Comparative Statics of the Crawford-Sobel Equilibria

w.r.t. the Prior

If the DM reveals that s = sL(s = sH), the players play a CS game with common

prior L (t) (H (t)) in the continuation. Recall that H (t) is a monotone likelihood

ratio (MLR) improvement of L (t). The following lemma is a standard result in
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monotone comparative statics under uncertainty. (See, for example, Ormiston and

Schlee (1993).)

Lemma 1 āH(t
0, t00) > āL(t

0, t00), ∀ 0 ≤ t0 < t00 ≤ 1.

This lemma says that if the DM believes that t ∈ (t0, t00), then her optimal action
under belief H is higher than her optimal action under belief L.

Let tF (K) = (tFi (K))i=0,...,K with tFi (K) < tFi+1 (K) for i = 0, ...,K − 1 be a
partial partition of size K satisfying the “arbitrage” condition (A) (page 8) when the

players’ prior over t is F . I will sometimes use the notation t = (ti) when it is clear

what the players’ prior is and what the size of the partition is.

Lemma 2 If tH0 (K) = tL0 (K) and tHK (K) = tLK (K) , then tHi (K) > tLi (K) for

i = 1, 2, ..., K − 1.

Lemma 2 applies to all (partial) partitions that have the same endpoints. If

tL0 = tH0 = 0 and t
L
K = tHK = 1, then t

L (K) is an equilibrium partition of size K under

prior L and tH (K) is an equilibrium partition of size K under prior H. So Lemma

2 implies that for a fixed equilibrium size, the boundary types in the equilibrium

partition under prior H are to the right of those under L, pointwise.

To gain some intuition, let’s look at the simple case of an equilibrium partition of

size two. Suppose (0, tL1 , 1) is an equilibrium partition under prior L, and āL
¡
0, tL1

¢
and āL

¡
tL1 , 1

¢
are the DM’s best responses. The expert of type tL1 is indifferent

between āL
¡
0, tL1

¢
and āL

¡
tL1 , 1

¢
where āL

¡
0, tL1

¢
is lower than his ideal point and

āL
¡
0, tL1

¢
is higher than his ideal point. If we keep the partition but change her

belief to H, then, by Lemma 1, the DM’s best responses will shift to the right. That

is, āH
¡
0, tL1

¢
> āL

¡
0, tL1

¢
and āH

¡
tL1 , 1

¢
> āL

¡
tL1 , 1

¢
. Since his payoff function is

single peaked in a, the expert of type tL1 strictly prefers āH
¡
0, tL1

¢
to āH

¡
tL1 , 1

¢
. So

tL1 cannot be an equilibrium boundary type under H. The regularity condition (M)

implies that the equilibrium boundary type under H must be to the right of tL1 .

Induction on equilibrium size shows that the result holds for partitions of larger sizes

as well.

Let N∗ (F ) be the maximum number of steps in an equilibrium when the players’

prior on t is F . Combined with the condition (M), Lemma 2 also implies the following.

Corollary 1 N∗ (H) ≥ N∗ (L).
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Corollary 1 says that the most informative equilibrium under priorH has a weakly

higher number of steps than the most informative equilibrium under prior L.

Remark 4 It is instructive to compare this section’s comparative statics result with
respect to the players’ prior and Crawford and Sobel’s (1982) comparative statics result

with respect to the players’ preferences. Crawford and Sobel find that for equilibrium

partitions of the same size, the partition associated with the players’ preferences closer

together (i.e., smaller b) begins with larger steps (Lemma 6) and that the maximum

possible equilibrium size is nonincreasing in b (Lemma 5). So the two sets of com-

parative static results are parallel to each other. The following discusses how they are

related.

Take an equilibrium partition of size K under prior F and bias b. If we fix F but

lower b, the DM’s optimal actions associated with the steps in the original equilib-

rium partition remain the same but the expert’s preference changes. The indifference

conditions of the boundary types no longer hold because with a lower b, a boundary

type now strictly prefers the action associated with the step immediately below to the

action associated with the step immediately above. Under condition (M), in the new

equilibrium partition the boundary types must all shift to the right.

Alternatively, if we fix b but change F with an MLR improvement, the expert’s

preference remains the same but the DM’s optimal actions change. With the MLR

improvement of her belief, the DM’s optimal actions associated with the steps in the

original equilibrium partition all shift to the right. The indifference conditions for

the boundary types no longer hold because a boundary type now prefers the action

associated with the step immediately below to the action associated with the step im-

mediately above. An analyous change in the equilibrium partition follows. That is,

all boundary types shift to the right in the new equilibrium partition.

Next, I use the comparative statics results to show that under mild conditions,

the DM cannot truthfully reveal s through cheap talk.

5.2 The Decision Maker Cannot Reveal Her Signal Truth-

fully in Equilibrium

Suppose the DM reports s truthfully, i.e., zII (sL) = z1 and zII (sH) = z2 with z1 6= z2.

Then, following the message z1 (z2), the expert believes that the DM’s belief on t is

L (t) (H (t)). Whether the DM has an incentive to deviate from zII (·) depends on
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her preference over the CS equilibrium paritions associated with the priors L (t) and

H (t).

Fix the DM’s belief F . Take a partial partition of size K, t = (ti)i=0,...,K . The

DM’s expected payoff on [t0, tK ] when she faces the partition (ti)i=0,...,K is given by

EUDM =
PK

i=1

R ti
ti−1

UDM (āF (ti−1, ti) , t) dF (t).

The following lemma will be useful. Fix the end points t0 and tK . Let (ti (x))i=0,...,K
be a partition that satisfies (A) for i = 2, ..., K with tK−1 (x) = x. So the partition

satisfies (A) except for (possibly) i = 1. We want to look at the DM’s expected payoff

on [t0, tK ] when she faces the partition (ti (x))i=0,...,K as x moves to the right.

Let y be the type that satisfies t1 (y) = t0. So the first step of the partition

(ti (y))i=0,...,K is degenerate: the partition has size (K − 1). Let y0 be the type such
that the partition (ti (y))i=0,...,K satisfies (A) for i = 1 as well as i = 2, ...,K. (That is,

UDM (āF (t0, t1 (y
0)) , t1 (y

0)) = UDM (āF (t1 (y
0) , t2 (y

0)) , t1 (y
0))). Note that (M) im-

plies that for x ∈ (y, y0), UDM (āF (t0, t1 (x)) , t1 (x)) > UDM (āF (t1 (x) , t2 (x)) , t1 (x)).

Lemma 3 For x ∈ [y, y0], the DM’s expected payoff on [t0, tK ] when she faces the
partition (ti (x))i=0,...,K is increasing in x.

Lemma 3 has important implications for the DM’s preference over different par-

titions of T . As we will see in Lemma 4 and Lemma 5 below, if we fix the payoff

functions and the prior and start with an equilibrium partition, then the DM would

not prefer another partition with the boundary types shifted to the left. Moreover,

the DM would prefer another partition with the boundary types shifted to the right,

at least locally.

Here is some intuition. Recall that for each equilibrium boundary type, the expert

is indifferent between the actions induced in the steps immediately below and imme-

diately above. Since the DM prefers a lower action than the expert does, the DM

must prefer the action induced in the lower step to the action induced in the higher

step. So, roughly speaking, if the boundary types are shifted to the left, the partition

becomes even more skewed to the left, making the DM worse off. When the boundary

types are shifted locally to the right, the partition becomes more “balanced,” making

the DM better off.

From Lemma 2, we know that the boundary types of the equilibrium partition

tL (K) are to the left of the boundary types of the equilibrium partition tH (K). Hence

the preference of the DM with signal sH (and hence belief H) follows.
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Lemma 4 For a fixed number of steps K, the DM with the belief H strictly prefers

the equilibrium partition tH (K) to the equilibrium partition tL (K).

The most informative equilibria under L and under H may have different sizes.

We have seen in Corollary 1 that N∗ (H) ≥ N∗ (L). Theorem 3 in Crawford and

Sobel (1982) shows that when the payoff functions and the prior are fixed, the DM

prefers an equilibrium with a higher number of steps. Let tL (N∗ (L)) be the most

informative equilibrium partition under L and tH (N∗ (H)) be the most informative

equilibrium partition under H. We have the following proposition.

Proposition 2 The DM with the belief H strictly prefers tH (N∗ (H)) to tL (N∗ (L)).

Clearly, the DM who has observed s = sH would not want the expert to believe

that she has observed s = sL. What about the DM with signal sL? Does she prefer

the equilibrium partition underH as well? I have already argued that the DM benefits

when the boundary types in an equilibrium partition shift to the right locally. As

long as the the boundary types are not shifted “too far” to the right, the DM is

better off. Lemma 5 and Proposition 3 below make it precise what “too far” means.

Basically, as long as the DM still prefers the action induced in the lower step to the

action induced in the higher step, she benefits from a shift of the boundary types to

the right.

Lemma 5 Fix the DM’s prior F . Take two partial partitions of the same size K,

t = (ti)i=1,...,K and t̂ =(t̂i)i=1,...,K . Suppose t0 = t̂0, tK = t̂K and t̂i > ti for all i =

1, ...,K−1. If UDM (āF (ti−1, ti) , ti) ≥ UDM (āF (ti, ti+1) , t) and UDM
¡
āF
¡
t̂i−1, t̂i

¢
, t̂i
¢
≥

UDM
¡
āF
¡
t̂i, t̂i+1

¢
, t̂i
¢
, then the DM strictly prefers the partition t̂ to t.

Equilibrium condition implies that UDM
¡
āL
¡
tLi−1, t

L
i

¢
, tLi
¢
≥ UDM

¡
āL
¡
tLi , t

L
i+1

¢
, tLi
¢

always holds. Since the boundary types under H are to the right of the boundary

types under L, Lemma 5 immediately implies that the DM with belief L prefers

the equilibrium under H to the equilibrium under L with the same size, as long as

UDM
¡
āL
¡
tHi−1, t

H
i

¢
, tHi
¢
≥ UDM

¡
āL
¡
tHi , t

H
i+1

¢
, tHi
¢
.

This result can be generalized even if the most informative equilibrium under H

has more steps than the most informative equilibrium under L, i.e., if N∗ (H) >

N∗ (L).

Proposition 3 If UDM
¡
āL
¡
tHi−1, t

H
i

¢
, tHi
¢
≥ UDM

¡
āL
¡
tHi , t

H
i+1

¢
, tHi
¢
for i = 1, ..., N∗ (H),

then the DM with belief L strictly prefers the equilibrium partition tH (N∗ (H)) to the

equilibrium partition tL (N∗ (L)).
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Proposition 3 gives sufficient conditions under which the DM with belief L prefers

the most informative equilibrium partition under H to the most informative equilib-

rium partition under L. Under these conditions, the DM with sL has an incentive to

deviate from reporting s truthfully.12 So the main result regarding the DM’s (failure

of) communication follows.

Proposition 4 (The DM cannot truthfully reveal her signal) If the conditions in

Proposition 3 are met, no equilibrium exists in ΓII such that the DM reveals s truth-

fully to the expert.

Remark 5 Crawford and Sobel (1982) have a related result on DM’s preference over
equilibrium partitions. Their Theorem 4 says that for a given size, the DM prefers

the equilibrium associated with more similar preferences (i.e., a smaller b).

Again, it is instructive to compare their result with mine. As we know, when b gets

smaller, the boundary types shift to the right. This shift is never “too far” to the right

to benefit the DM. That is, the conditions on the DM’s payoffs given in Proposition

3 are always satisfied. To see this, note that the indifference condition of a boundary

type ti requires that UE (ā (ti−1, ti) , ti, b) = UE (ā (ti, ti+1) , ti, b). Since UDM (a, t) =

UE (a, t, 0) and UE
13 > 0, it follows that UDM (ā (ti−1, ti) , ti) > UDM (ā (ti, ti+1) , ti)

for any b > 0.

Remark 6 I have assumed in this paper that the DM has private information on the

state of the world. An alternative assumption is that the DM has private informa-

tion on her preference. In particular, suppose the DM has private informtion on the

divergence of interest between the two players, the parameter b.13 A similar result

holds in this setting: since the DM prefers the most informative equilibrium associ-

ated with a lower b, the DM with a high b has an incentive to lie. Intuitively, the DM

12One may wonder what happens if the DM can make verifiable reports of her signal. Does

Proposition 3 imply that the DM’s information will be fully revealed through “unravelling,” a la

Milgrom and Roberts (1986)? The answer is not necessarily so. This is because sometimes both

types of the DM may benefit from the expert’s uncertainty over her signal. In particular, under

certain parameter values, the only CS equilibrium is babbling even if the players have common prior

H, but an informative non-monotone equilibrium exists when the expert is uncertain about what

the DM’s signal is. In this case, even if the DM can verifiably report her signal, an equilibrium exists

in which the DM is “silent.”
13Althought the original CS model specifies that b enters the expert’s payoff function, one can

change the assumption so that b enters the DM’s payoff function instead. This change affects no

result.
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wants to convince the expert that their interests are closely aligned so that the expert

would reveal more information subsequently, but this incentive prevents the DM from

communicating truthfully.

With this alternative assumption that the DM has private information on her

preference, it is plausible that her signal is independent of the expert’s signal. Without

correlation between the two players’ signals, the non-monotone equilibrium such as the

one constructed in section 4 fails to exist.

Below, I provide an example that illustrates that the DM prefers the equilibrium

partition under H no matter what her signal realization is. The example also shows

that the sufficient conditions given in Lemma 5 are not tight. In the second set of

parameter configurations, the sufficient conditions in Lemma 5 are violated, but the

DM with belief L still prefers the equilibrium partition under H.

Example 2 Suppose the common prior on t is uniform on [0, 1] and the conditional

probabilities for the DM’s signal are prob (s = sL|t) = 3
4
− 1

2
t and prob (s = sH |t) =

1
4
+ 1
2
t. So g (t|sL) = 3

2
−t and g (t|sH) = 1

2
+t and L (t) = 3

2
t− 1

2
t2 and H (t) = 1

2
t+ 1

2
t2.

Suppose the players’ payoff functions are UDM (a, t) = − (a− t)2 and UE (a, t, b) =

− (a− t− b)2 . Let b = 0.15.14 (These assumptions are the same as in Example 1.)

The most informative equilibria under L (t) andH (t) both have size two. The equi-

librium partition under L is tL = (0, 0.132, 1) and that under H is tH = (0, 0.25, 1).

Proposition 4 says that the DM with sH prefers tH to tL. Indeed, straightforward

calculation shows that for the DM with sH, her expected payoff when facing tL is

−0.055 whereas her expected payoff when facing tH is −0.039.
For the DM with sL, one need to compare āL

¡
0, tH1

¢
and āL

¡
tH1 , 1

¢
to apply Propo-

sition 3. Since āL
¡
0, tH1

¢
=

tH1
0 x( 32−x)dx
3
2
tH1 −1

2(tH1 )
2 = 0.121 and āL

¡
tH1 , 1

¢
=

1

tH1
x( 32−x)dx

1− 3
2
tH1 +

1
2(tH1 )

2 =

0.571, UDM
¡
āL
¡
0, tH1

¢
, tH1
¢
> UDM

¡
āL
¡
tH1 , 1

¢
, tH1
¢
. According to Proposition 3 , the

DM with signal s = sL also prefers the partition under H to the partition under L.

Straightforward calculation shows that for the DM with sL, her expected payoff when

facing tL is −0.0475 whereas her expected payoff when facing tH is −0.0307.
Now suppose the conditional probabilities are different: prob (s = sL|t) = 1 − t4

and prob (s = sH |t) = t4. Then g (t|sL) = 5
4
(1− t4) and g (t|sH) = 5t4. The MLRP

is satisfied. The conditional distributions are L (t) = 5
4
t − t5

4
and H (t) = t5. I keep

14One can verify that condition (M) is satisfied under the assumptions on the payoff functions

and probability distributions.
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the assumptions on the prior on t and the players’ payoff functions but assume that

b = 0.1.

Under the new information structure, the most informative equilibrium under

L has size two: tL = (0, 0.233, 1); the most informative equilibrium under H has

size three: tH = (0, 0.235, 0.565, 1). Again, Proposition 4 says that the DM with

sH prefers tH to tL. As to the DM with sL, it is easy to show that āL
¡
0, tH1

¢
=

0.117, āL
¡
tH1 , t

H
2

¢
= 0.397 and āL

¡
tH2 , 1

¢
= 0.727. So UDM

¡
āL
¡
tH1 , t

H
2

¢
, tH1
¢
<

UDM
¡
āL
¡
tH2 , 1

¢
, tH2
¢
: the condition in Proposition 3 fails.

But the condition is sufficient, not necessary. I find that the DM with sL has

an expected payoff of (−0.0285) when the partition is tL whereas she has an expected
payoff of (−0.0084) when the partition is tH. Again, independent of her signal re-
alization, the DM prefers the most informative equilibrium partition under H to the

most informative equilibrium partition under L.

So, in both examples, no equilibrium exists in ΓII that the DM reveals s truthfully

to the expert through cheap talk.

The result on two-way communication may shed light on the organizational struc-

ture within firms, in particular, why a “bottom up”, rather than “top down” arrange-

ment may help an organization use information more efficiently.15

Scharfstein and Stein (1990) introduce a model in which managers care about

their reputation of having informative signals. Because reputational concerns may

lead to herding and thus information loss, Scharfstein and Stein argue that it helps a

firm make better decisions to have those with stronger reputational concerns (usually

younger memebers whose abilities are more uncertain) speak first. Hence a “bottom

up” arrangement helps aggregate information. The result in this section suggests

another explanation for the “bottom up” information flow within organizations: when

different levels of an organization have different objectives, it may be difficult for

decision makers at the top to elicit information from lower levels by communicating

to their subordinates first. Since communication is usually not cost free, a “bottom

up” arrangement results in higher efficiency.

15Another application of two-sided asymmetric information in organizations is by Harris and

Raviv (2005). They assume that both a CEO and a division manager have private information

regarding the profit maximizing investment level. They focus on the question of when the CEO

prefers delegating the decision to making the decison himself with the division manager’s report.

They find that delegation is more likely when the division manager’s information is more important

relative to the CEO’s.
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5.3 Discussion: Partial revelation of the Decision Maker’s

Signal in Equilibrium

We have seen that under mild conditions, the DM cannot reveal s credibly in equi-

librium. What about partial revelation? One can show, using essentially the same

argument as in section 5.2, that if the expert follows a monotone strategy in the

second round of communication, then it is impossible for the DM to even partially

reveal her information in the first round.16

But, as we have seen in section 4, when the expert is uncertain what the DM’s

signal realization is, he may follow a non-monotone strategy in equilibrium and this

may provide sufficient incentive for the DM to partially separate in the first round.

In the example below, the DM partially reveals her information in the first round and

the expert responds to a certain message by playing a non-monotone strategy in the

second round.

Example 3 Suppose the common prior on t is uniform on [0, 1] and the DM’s signal

s has three potential realizations: sL, sM , sH with sL < sM < sH. Assume the con-

ditional probabilities are prob (s = sL|t) = 2(0.55−0.1t)
3

and prob (s = sH |t) = 2(0.45+0.1t)
3

and prob (s = sM |t) = 1
3
. The conditional distribution functions are L (t) = 1.1t− t2,

H (t) = 0.9t + 0.1t2 and M (t) = t (i.e., observing sM does not change the DM’s

prior on t). Suppose the players’ payoff functions are UDM (a, t) = − (a− t)2 and

UE (a, t, b) = − (a− t− b)2. Let b = 0.2499.

Suppose in ΓII, the DM plays the following reporting strategy zII (sM) = z1 and

zII (sL) = zII (sH) = z2, (z1 6= z2).

Then, after receiving z1, the expert infers that s = sM and the players play a CS

game with prior M (t) subsequently. The most informative equilibrium in this CS

game has a size-two partition: (0, 0.000 2, 1).17

16If a particular message induces the expert to believe that the DM has observed a high signal

with a higher probability, then the DM has an incentive to always send this message, independent

of her signal realization.

17The reader may notice that if b ≥ 0.25, there exists no informative CS equilibrium under the uni-
form prior. In this example, b(= 0.2499) is close to the threshold, and the partition

¡
0, 2× 10−4, 1

¢
is “not very informative.” It is worth pointing out that the choice of b is deliberate. In fact, if b

is a little lower, say b = 0.249, then the size-two partition under M is
¡
0, 2× 10−3, 1

¢
and the DM

with either sL or sH prefers this partition to the non-monotone partition induced by z2, violating

equilibrium condition. This suggests that although one can find paramter values under which the

first round of communication can be partially informative, they are highly limited.
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After receiving z2, the type-t expert infers that s = sL with probability (0.55− 0.1t)
and s = sH with probability (0.45 + 0.1t). There exists a non-monotone equilibrium

in the continuation game. In this equilibrium, mII (z2, t) = m1 if t ∈ [0, 0.03604) ∪
(0.9642, 1] andmII (z2, t) = m2 if t ∈ [0.03604, 0.9642] (m1 6= m2) and aII (sL, z2,m1) =

0.452, aII (sH , z2,m1) = 0.545, aII (sL, z2,m2) = 0.486, aII (sH , z2,m2) = 0.514.

Next, I show that the DM has no incentive to deviate from her communication

strategy in the first round. Imagine that the DM with sM deviates, sends z2 and

induces the nonmonotone partition corresponding to mII (z2, t). With prior M (t), if

the DM believes that t ∈ [0, 0.03604) ∪ (0.9642, 1], her optimal action is 0.499 09 and
if the DM believes that t ∈ [0.03604, 0.9642], her optimal action is 0.500 12. Note that
with prior M (t) and no additional information from the expert, the DM’s optimal

action is 0.5. So, to the DM with sM , the value of information contained in the non-

monotone partition is very low. He has a higher expected payoff by sending z1 and

inducing the monotone partition (0, 0.0002, 1).

As to the DM with sL or sH, because these types have a more skewed belief than the

DM with sM , the information contained in the non-monotone partition is more valu-

able to them. Both types have higher expected payoff when facing the non-monotone

partition than when facing the monotone partition (0, 0.0002, 1). So the DM with sL

or sH has no incentive to deviate either.

6 Conclusion

How information is transmitted from experts (information gatherers) to decision mak-

ers is a central question in both organizations and markets. While existing literature

has focused on how the players’ preferences affect the incentives of the expert and

outcomes of communication, in this paper, I explore the implications for information

transmission when the decision maker, as well as the expert, is privately informed.

I find that when the expert is uncertain about what the DM privately knows,

information may be transmitted through communication in an interesting way, dis-

tinct from how information is transmitted when the DM has no private information.

Instead of conveying whether the state is low or high, the expert may convey whether

the state is extreme or moderate in equilibrium when the DM has private information.

By analyzing a simple game of two way communication in which the DM commu-

nicates to the expert first before the expert reports, I find that it is impossible for the

DM to credibly reveal his information to the expert through cheap talk. This implies
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that the DM benefits little from two-way sequential communication. In the context

of arrangement of information flow within organizations, this result on the “futility”

of “top down” communication suggests that a “bottom up” arrangment may be more

advantageous.
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Appendix
Proof of Proposition 1
For the indifference condition 1 to hold, x (ti) and y (ti) must have different signs.

In fact, it must be the case that x (ti) > 0 and y (ti) < 0. To see this, first note that

H (t) is a monotone likelihood ratio (MLR) improvement of L (t). Lemma 1 says that

āH(t
0, t00) > āL(t

0, t00), ∀ 0 ≤ t0 < t00 ≤ 1.
Since UE (a, t) is single-peaked in a and āF (ti−1, ti) < aE (ti) for F = H,L, we

must have x (ti) > 0 and y (ti) < 0. This can be shown by contradiction. Suppose

y (ti) > 0. Consider the following two cases. Case I: āH (ti, ti+1) ≤ aE (ti). Then,

since āL (ti, ti+1) < āH (ti, ti+1), we have āL (ti−1, ti) < āL (ti, ti+1) < aE (ti). But it

follows from single-peakedness that x (ti) > 0, which contradicts that y (ti) and x (ti)

have different signs. Case II: āH (ti, ti+1) > aE (ti). Since āL (ti−1, ti) < āH (ti−1, ti) <

aE (ti) and āL (ti, ti+1) < āH (ti, ti+1), it follows immediately from single-peakedness

that x (ti) > 0, again a contradiction. So if the DM’s signal is sH , sending mi−1 is

better than sending mi for the type-ti expert and if the DM’s signal is sL, sending mi

is better than sending mi−1 for him. But under uncertainty, type ti is indifferent.

Let∆UE = pL (t)x (t)+pH (t) y (t). It measures the difference in type t’s expected

payoff by sending message mi and by sending message mi−1. I will show that ∆UE

is not monotonically increasing in t, resulting in the failure of sufficiency. To see

this, note that d∆UE

dt
= p0L (t)x (t) + pL (t)x

0 (t) + p0H (t) y (t) + pH (t) y
0 (t). Since

UE
12 (a, t) > 0, it follows that x0 (t) > 0, y0 (t) > 0 and hence pL (t)x

0 (t) > 0 and

pH (t) y
0 (t) > 0. The MLRP implies that p0L (t) < 0 and p0H (t) > 0. Since x (ti) > 0

and y (ti) < 0 and x (t), y (t) are continuous, there exists δ > 0 such that if |t−ti| < δ,

we have p0L (t)x (t) < 0 and p0H (t) y (t) < 0. So
d∆UE

dt
is not necessarily positive — the

indifference conditions of the boundary types do not guarantee that the other types

are best responding.

Proof of Lemma 2
By induction on K.

SupposeK = 2. Condition (A) requires that UE(āL(t
L
0 , t

L
1 ), t

L
1 )) = UE(āL(t

L
1 , t

L
2 ), t

L
1 ))

where āL(tL0 , t
L
1 ) < aE

¡
tL1
¢
< āL(t

L
1 , t

L
2 ). Since U

E
11 < 0, and āH(t

L
i−1, t

L
i ) > āL(t

L
i−1, t

L
i )

for i = 1, 2 by Lemma 1, it follows that UE(āH(t
L
0 , t

L
1 ), t

L
1 )) > UE(āH(t

L
1 , t

L
2 ), t

L
1 )). So

there exists a t ∈
¡
tL1 , t

L
2

¢
such that UE(āH(t

L
0 , t

L
1 ), t

L
1 )) = UE(āH(t

L
1 , t), t

L
1 )). Since

UE(āH(t
H
0 , t

H
1 ), t

H
1 )) = UE(āH(t

H
1 , t

H
2 ), t

H
1 )), condition (M) implies that t

H
1 > tL1 .

Suppose the claim holds for all i = 2, .., K − 1. Let tL (K) and tH (K) be two
partial partitions of size K satisfying (A) with tL0 (K) = tH0 (K) and tLK (K) =
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tHK (K). Then
¡
tLi (K)

¢
i=0,K−1 is a partial partition of size (K − 1) satisfying (A).

Let
¡
t̂Hi
¢
i=0,K−1 be a partial partion of size (K − 1) satisfying (A) under distribu-

tion H with t̂H0 = tL0 (K) and t̂HK−1 = tLK−1 (K). Then by the induction hypothe-

sis, t̂Hi > tLi for all i = 1, ...,K − 2. So āH
¡
t̂HK−2, t̂

H
K−1

¢
> āL

¡
t̂LK−2, t̂

L
K−1

¢
. Since

UE(āL(t
L
K−2, t

L
K−1), t

L
K−1)) = UE(āL(t

L
K−1, t

L
K), t

L
K−1)) and UE is single peaked, there

exists a t ∈
¡
tLK−1, t

L
K

¢
such that UE(āH(t̂

H
K−2, t̂

H
K−1), t̂

H
K−1)) = UE(āH(t̂

H
K−1, t), t̂

H
K−1)).

Since UE(āH(t
H
K−2, t

H
K−1), t

H
K−1)) = UE(āH(t

H
K−1, t

H
K), t

H
K−1)), condition (M) implies

that tHi > t̂Hi for i = 1, ..., K − 1. So tHi (K) > tLi (K) for i = 1, ..., K − 1.

Proof of Corollary 1
First, note that Lemma 2 and condition (M) imply that if tH0 (K) = tL0 (K) and

tL1 (K) = tH1 (K), then tLi (K) > tHi (K) for i = 2, ..., K.

Now suppose tL
¡
K
¢
is an equilibrium partition of size K under prior L. Let

tH
¡
K
¢
be a partition satisfying (A) such that tH0

¡
K
¢
= tL0

¡
K
¢
and tH1

¡
K
¢
= tL1

¡
K
¢
.

Then tH
K

¡
K
¢
< tL

K

¡
K
¢
= 1. By (M) there exists an equilibrium partition of size K

under prior H. So N∗ (H) ≥ N∗ (L).

Proof of Lemma 3
The arguments are similar to those in the proof of Theorem 3 in Crawford and

Sobel (1982).

Note that EUDM (x) =
PK

i=1

R ti(x)
ti−1(x)

UDM (āF (ti−1 (x) , ti (x)) , t) dF (t). Since

t0 (x) and tK (x) are fixed and āF (ti−1 (x) , ti (x)) is the DM’s optimal action on

[ti−1, ti], the envelope theorem implies that

dEUDM (x)

dx
=

K−1X
i=1

f (ti (x))
dti (x)

dx
(UDM (āF (ti−1 (x) , ti (x)) , ti (x))

−UDM (āF (ti (x) , ti+1 (x)) , ti (x)) .

Condition (M) implies that dti(x)
dx

> 0 for all i = 1, ...,K − 1. Also, since

(ti (x))i=0,...,K satisfies (A) for i = 2, ...,K, we have UE (āF (ti−1 (x) , ti (x)) , ti (x)) −
UE (āF (ti (x) , ti+1 (x)) , ti (x)) = 0 for i = 2, ..., K − 1. It follows that

UDM (āF (ti−1 (x) , ti (x)) , ti (x))−UDM (āF (ti (x) , ti+1 (x)) , ti (x)) > 0 for i = 2, ..., K−
1. Also, for x ∈ (y, y0), UDM (āF (t0, t1 (x)) , t1 (x)) > UDM (āF (t1 (x) , t2 (x)) , t1 (x)).

It follows that dEUDM (x)
dx

> 0.

Proof of Lemma 4
By induction on the step size K.
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SupposeK = 2. Since UDM
¡
āH
¡
0, tH1

¢
, tH1
¢
≥ UDM

¡
āH
¡
tH1 , 1

¢
, tH1
¢
and tL1 < tH1 ,

the claim is true as immediately implied by Lemma 3 when t0 = 0 and tK = 1.

Suppose the claim holds for steps i = 2, ...,K − 1. Below I show that it holds for
steps K.

Consider two equilibrium partitions tL (K) =
¡
tL0 = 0, t

L
1 , ..., t

L
K = 1

¢
under prior

L and tH (K) =
¡
tH0 = 0, t

H
1 , ..., t

H
K = 1

¢
under prior H. One can find a partition

t̂H (K) =
¡
t̂H0 = 0, t̂

H
1 , ..., t̂

H
K = 1

¢
such that t̂H1 = tL1 but the condition (A) holds

for all t̂Hi (i = 2, ...,K − 1) under distribution H. By Lemma 2, t̂Hi > tLi for all

i = 2, ...,K−1. By the induction hypothesis, the DMwith beliefH must strictly prefer

partition t̂H (K) to tL (K). All we need to show is that the DM with belief H prefers

partition tH (K) to t̂H (K). By (M), UDM
¡
āH
¡
0, t̂H1

¢
, t̂H1
¢
≥ UDM

¡
āH
¡
t̂H1 , t̂

H
2

¢
, t̂H1
¢
.

Lemma 3 implies that the DM indeed prefers tH (K) to t̂ (K).

Proof of Lemma 5
By induction on the step size K.

Step 1. Suppose K = 2. Lemma 3 implies that the claim is true.

Step 2. Suppose K ≥ 3 and the claim holds for all i = 2, ...,K− 1. Let’s compare
the partitions (ti)i=0,...,K and (t0, t1, ..., t̂K−1, tK). There are two possibilities.

(1) Suppose UDM
¡
āF
¡
tK−2, t̂K−1

¢
, t̂K−1

¢
≥ UDM

¡
āF
¡
t̂K−1, tK

¢
, t̂K−1

¢
. Then by

step 1, the DM prefers the partial partition
¡
tK−2, t̂K−1, tK

¢
to (tK−2, tK−1, tK). It

follows that the DM prefers (t0, ..., tK−2, t̂K−1, tK) to (ti)i=0,...,K . Now compare the

partitions (t0, t1, ..., t̂K−1) and (t̂i)i=0,...,K−1. Since t̂i ≥ ti, by the induction hypoth-

esis, the DM prefers (t̂i)i=0,...,K−1 to (t0, t1, ..., t̂K−1). It follows that the DM prefers

(t̂i)i=0,...,K−1 to (ti)i=0,...,K .

(2) Suppose UDM
¡
āF
¡
tK−2, t̂K−1

¢
, t̂K−1

¢
< UDM

¡
āF
¡
t̂K−1, tK

¢
, t̂K−1

¢
. Com-

pare the partitions (ti)i=0,...,K and (t0, ..., tK−2, t̃K−1, tK), where t̃K−1 satisifies

UDM
¡
āF
¡
tK−2, t̃K−1

¢
, t̃K−1

¢
= UDM

¡
āF
¡
t̃K−1, tK

¢
, t̃K−1

¢
. Note that tK−1 ≤ t̃K−1 <

t̂K−1. By step 1, the DM prefers the partition
¡
tK−2, t̃K−1, tK

¢
to (tK−2, tK−1, tK)

and hence the partition (t0, t1, ..., tK−2, t̃K−1, tK) to (ti)i=0,...,K . Now consider t̃K−2
that satisfies UDM

¡
āF
¡
t̃K−2, t̂K−1

¢
, t̂K−1

¢
= UDM

¡
āF
¡
t̂K−1, tK

¢
, t̂K−1

¢
. Note that

since UDM
¡
āF
¡
t̂K−2, t̂K−1

¢
, t̂K−1

¢
≥ UDM

¡
āF
¡
t̂K−1, t̂K

¢
, t̂K−1

¢
, we have t̃K−2 ≤

t̂K−2. So UDM
¡
āF
¡
tK−3, t̃K−2

¢
, t̃K−2

¢
> UDM

¡
āF
¡
t̃K−2, t̂K−1

¢
, t̃K−2

¢
. Since t̂K−1 >

t̃K−1 and t̃K−2 > tK−2, Lemma 3 implies that the DM prefers the partial parti-

tion (tK−3,t̃K−2, t̂K−1, tK) to (tK−3,tK−2, t̃K−1, tK). It follows that the DM prefers the

partial partition (t0, t1, ..., tK−3,t̃K−2, t̂K−1, tK) to (t0, t1, ..., tK−2, t̃K−1, tK) and hence

to (ti)i=0,...,K . Now compare (t0, t1, ..., tK−3,t̃K−2, t̂K−1, tK) and (t̂i)i=0,...,K . Since
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ti ≤ t̂i and t̃K−2 ≤ t̂K−2, by the induction hypothesis, the DM prefers (t̂i)i=0,...,K to

(t0, t1, ..., tK−3,t̃K−2, t̂K−1, tK). It follows that the DM prefers (t̂i)i=0,...,K to (ti)i=0,...,K .

Proof of Proposition 3
Suppose N∗ (H) = N∗ (L). The result follows immediately from Lemma 5.

Suppose N∗ (H) > N∗ (L). For notational convenience, order the boundary types

in a partition from high to low. Lemma 2 and condition (M) imply that tHi > tLi for

i = 1, ..., N∗ (L)− 1.
Consider a partition of size N∗ (L) + 1, t̂, where t̂1 = tH1 (N

∗ (H)) and t̂i satis-

fies (A) under belief L for i = 1, 2, ..., N∗ (L)−1. SinceN∗ (L) is the highest number of

equilibrium steps under L, UE
¡
āL
¡
0, t̂N∗(L)

¢
, t̂N∗(L)

¢
> UE

¡
āL
¡
t̂N∗(L), t̂N∗(L)−1

¢
, t̂N∗(L)

¢
and hence UDM

¡
āL
¡
0, t̂N∗(L)

¢
, t̂N∗(L)

¢
> UDM

¡
āL
¡
t̂N∗(L), t̂N∗(L)−1

¢
, t̂N∗(L)

¢
. By Lemma

3, the DM with belief L prefers the partition t̂ to tL (N∗ (L)).

Suppose N∗ (H) = N∗ (L) + 1. Then the partitions t̂ and tH (N∗ (H)) have the

same size. By Lemma 2 and condition (M), t̂i < tHi for i = 2, ..., N∗ (H) − 1. So
Lemma 5 implies that the DM with belief L prefers the partition tH (N∗ (H)) to t̂.

Hence the DM with belief L prefers the partition tH (N∗ (H)) to tL (N∗ (L)).

Suppose N∗ (H) > N∗ (L) + 1. Then construct a partition of size N∗ (L) + 2,

t̄, where t̄i = tHi (N
∗ (H)) for i = 1, 2 and t̄i satisfies (A) under belief L for i =

2, ..., N∗ (L). Using argument similar as above, one can show that the DM with belief

L prefers t̄ to t̂ by Lemma 3. If N∗ (H) = N∗ (L)+2, then the partitions tH (N∗ (H))

and t̄ have the same size and by Lemma 5, the DM with belief L prefers the partition

tH (N∗ (H)) to t̄. Hence the DM with belief L prefers the partition tH (N∗ (H)) to

tL (N∗ (L)). If N∗ (H) > N∗ (L) + 2, then we can use similar argument as above,

construct a partition of size N∗ (L) + 3 (or larger as needed) and show that the DM

with belief L prefers the partition tH (N∗ (H)) to tL (N∗ (L)).
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