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Abstract. We consider games with incomplete information à la Harsanyi, where the

payoff of a player depends on an unknown state of nature as well as on the profile

of chosen actions. As opposed to the standard model, the players in the game are not

necessarily expected–utility maximizers. Rather, their preferences over state–contingent

utility vectors are represented by arbitrary functionals. Our first contribution is to

provide simple and applicable definitions of both ex–ante and interim equilibria in

this generalized setting. Second, we characterize equilibrium existence in terms of

the preferences of the participating players. It turns out that, given some standard

properties of the functionals, equilibrium exists in every game if and only if all players

are averse to uncertainty. Finally, for a sub–class of preferences representing functionals,

we show that there exists a symmetric equilibrium in every symmetric game if and only

if all players share preferences.
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1. Introduction

Since Harsanyi [21], games with incomplete information have proved to be a powerful

tool in the analysis of strategic situations where agents are uncertain regarding the

specifics of the environment. In the vast majority of applications, economists assume

that the players in the game share a common prior probability distribution over the

state space, and that each player is a Bayesian expected–utility maximizer with respect to

(w.r.t.) this prior (and given the strategies of his opponents). With these assumptions on

players’ preferences, the appropriate solution concept for such games is the Bayes–Nash

equilibrium, either in its ex–ante or interim forms. Existence of Bayes–Nash equilibrium

in every game with incomplete information is guaranteed by a fixed–point argument1.

Starting with Ellsberg [11], a rich literature has developed showing consistent viola-

tions of the expected–utility maximization theory when decision makers are uncertain

regarding the probabilities of relevant events. In particular, agents’ preferences tend to

exhibit uncertainty aversion, which cannot be explained within the subjective expected–

utility framework. The experimental findings of Ellsberg [11] and his successors inspired

economists to develop alternative theories of decision making under uncertainty (e.g.,

Schmeidler [38], Gilboa and Schmeidler [18], and more recently Maccheroni et al. [30]

and Lehrer [27]).

Roughly speaking, we interpret uncertainty as the situation where the probabilities of

some relevant events are ambiguous, and cannot be determined by the decision maker2.

Under this interpretation, uncertainty is present in many real–life game–like situations.

For instance, a firm in a Cournot oligopoly may be too uncertain regarding the demand

function to assign a probability to the event that the intercept of this function is between

the numbers a and a; An oil company bidding for the rights to drill in a new site may

not have enough information to assess the probability that the site has a capacity of

ten million barrels. Notice that the uncertainty in both these examples concerns the

probabilities of payoff relevant states of nature, and not the strategies of the opponents.

The firm in the first example may know the production levels of its competitors, and the

oil company may know the bids of the other participants in the auction.

Given such examples, it is quite surprising that the literature remained relatively silent

regarding uncertainty averse players in games with incomplete information. We should

1See Milgrom and Weber [31] for a general equilibrium existence result in games with incomplete

information.
2As opposed to risk where the probabilities of outcomes are known. See Epstein [12].
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mention, however, several exceptions. Epstein and Wang [14] generalize the construction

of a universal type space to a class of preferences that can accommodate uncertainty

aversion. Kajii and Ui [22] introduce an equilibrium notion for games with incomplete

information where players have maxmin preferences (Gilboa and Schmeidler [18]). Salo

and Weber [35], Lo [29] and Bose et al. [7] study auctions with uncertainty averse bidders.

Bade [5] shows existence of equilibrium in a political game where parties are uncertain

regarding the distribution of voters.

The contribution of the current paper is twofold. First, we propose simple and ap-

plicable definitions of both ex–ante and interim equilibria in games with incomplete

information when players’ preferences over state–contingent utility vectors are repre-

sented by arbitrary functionals. We use the standard model of a game with incomplete

information, where each one of a finite set of players is endowed with a partition of

the state space3 that represents his information. Players’ payoffs depend on the chosen

action profile as well as on the realized state of nature. Thus, given the actions of other

players, a player faces a state–dependent utility decision problem (see Karni [25] for a

survey).

A strategy of a player is a function from states to (possibly mixed) actions that is

measurable w.r.t. his partition. In any given state of nature, every strategy profile

induces a probability distribution over pure action profiles. The utility of a player in this

state of nature is his expected payoff according to this distribution. Thus, any strategy

profile induces a real–valued function on the state space for each one of the players. We

refer to such a function as the induced utility–vector.

In the ex–ante version of our equilibrium concept, each player i is characterized by a

functional Ji over the space of real–valued functions over the state space. If f is such a

function then Ji(f) represents the total utility that player i derives from f .4 An ex–ante

equilibrium is then naturally defined as a strategy profile such that no player i can derive

a higher utility (as measured by Ji(f), where f is the induced vector for player i) by

altering his strategy. Notice that, as in standard Nash equilibrium, players beliefs about

their opponents’ strategies coincide with the truth5. In order to define interim equilibrium

3For simplicity, we restrict attention to finite state spaces. Our results can be extended to infinite

spaces at the cost of adding standard technical assumptions on the various mathematical objects.
4Note that in the original Harsanyi model, Ji(f) is the expected value of f w.r.t. the common prior.
5As opposed to uncertainty averse players in normal–form games (see Mukerji and Tallon [32] for

a survey), in our model players’ uncertainty regarding their opponents’ strategies is derived only from

their uncertainty about the state of nature. An exception is the recent paper by Bade [4], where she
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we assume that each player i is characterized by a family of functionals {JFi }, one for

every non–empty event F . A strategy profile constitutes an interim equilibrium if, for

every player i and for every element F in i’s partition, the restriction to F of the induced

vector for i maximizes player i’s utility (as measured by JFi ) given the strategies of i’s

opponents.

To illustrate the definition of equilibrium, as well as to motivate the main result of

the paper, consider the following example of a game with incomplete information. There

are two players i = 1, 2 and two states {s1, s2}. The action set of player 1 is {T,B} and

that of player 2 is {L,R}. The information partitions of both players are trivial. The

payoffs are described in the diagram below, where 1 chooses a row and 2 a column.

B

T

L R

0, 1

1, 0

0, 0

0, 0

B

T
L R

0, 0

0, 0

1, 0

0, 1

s1 s2

Consider the case where both players are ‘optimistic’ in the sense that they evaluate

any utility vector according to its maximal element. That is, if f = (f(s1), f(s2)) is the

induced state–contingent utility for player i when a certain strategy profile is played,

then i’s total utility is Ji(f) = max{f(s1), f(s2)} (i = 1, 2).

We claim that with these preferences of the players there is no equilibrium in this game

(since both players have trivial information partitions the ex–ante and interim versions

coincide). Indeed, assume that player 1 plays βT + (1−β)B, and 2 plays αL+ (1−α)R

for some 0 ≤ α, β ≤ 1. Then the induced vector for player 1 is (αβ, (1 − α)(1 − β))

and for player 2 is ((1 − β)α, β(1 − α)). Therefore, the images of the best response

correspondences of both players consist of only pure strategies. But it is easy to see that

there is no pure equilibrium in this game and, therefore, no equilibrium exists.

As the above example shows, some restrictions must be imposed on the preferences of

the participating players in order for equilibrium to exist. We are therefore led to ask

what characterizes preferences that guarantee equilibrium existence in every game. Our

second and main contribution is to show that, given some natural and standard proper-

ties of the functionals Ji, equilibrium exists in every game if and only if all the players

considers incomplete information extensions à la Aumann [2] of normal–form games. However, her

results are confined to the case where payoffs are state–independent.
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are (weakly) uncertainty averse. By uncertainty aversion we mean concavity of the pref-

erences representing functional6. The properties that we assume each of the functionals

possesses are either continuity and translation invariance (Theorem 1) or continuity, ho-

mogeneity, monotonicity and non–degeneracy (Theorem 2). These theorems (as well

as the other results of the paper) are stated for the ex–ante version of the equilibrium

concept, but similar results can be phrased for the interim version as well. We choose to

present the results for the ex–ante version of the equilibrium since it simplifies notation

and proofs.

We believe that this result is of interest to economists for three reasons. First and

foremost, finding necessary and sufficient conditions for existence is the most basic task

for any solution concept. By so doing, the boundaries of the domain where the con-

cept can be applied are clearly marked. Second, since agents’ preferences often exhibit

uncertainty aversion, our result implies that in many cases equilibrium existence is guar-

anteed7. Third, the result provides a possible explanation for why in some game–like

situations stability is not achieved.

We proceed as follows. Section 2 formally defines the class of games with incomplete

information that we consider and the notion of ex–ante equilibrium. In Section 3 we

present several properties of the preferences representing functionals and state the main

results which relate uncertainty aversion to equilibrium existence. In the next Section 4

we discuss in more detail some of the more familiar functional forms that are often used

in the literature. Namely, we study the implications of our result to maxmin preferences

(Gilboa and Schmeidler [18]), variational preferences (Maccheroni et al. [30]), Choquet

preferences (Schmeidler [38]) and concave integral preferences (Lehrer [26]).

A natural question in our setting is what characterizes the case where different players

share the same preferences. We give an answer to this question in Section 5 for the

cases of maxmin and concave integral preferences. The characterization is based on the

notions of symmetric games and symmetric equilibrium. To the best of our knowledge,

this characterization is new even in the special case of expected–utility preferences. In

Section 6 we define interim equilibrium and briefly discuss the subject of updating of

preferences and dynamic consistency in our multi–agent environment. Remarks are in

Section 7, and finally, all the proofs are in Section 8.

6For a further discussion see Section 3.
7It should be noted however that even if only one of the agents is not uncertainty averse then it is

possible that the set of equilibria is empty.
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2. Ex–ante equilibrium

An environment is a tuple (S,N, J = {Ji}i∈N). The first component S = {s1, s2, . . . , sm}
is a non–empty finite set of states of nature (the state space). We assume m ≥ 2 through-

out. A utility–vector (vector, for short) is any function from S to R. We will usually use

the letters f, g to denote vectors. Addition of vectors and multiplication of vectors by

scalars are performed pointwise. We can therefore identify the space of all vectors with

the linear space Rm. The constant vector f in which f(s) = c for every s ∈ S will be

denoted by c. N = {1, 2, . . . , n}, where n ≥ 2, is the set of players. For each i ∈ N ,

the functional Ji : Rm → R represents player i’s preferences over vectors8. We fix the

environment until Section 6.

A normal–form game with incomplete information (game, for short) G is defined by

G = ({Fi}i∈N , {Ai}i∈N , {ui}i∈N). For each i ∈ N , Fi is player i’s information partition –

a partition of S, and Ai is the finite non–empty set of actions of i.9 Denote by A = ×i∈NAi
the set of all action profiles with typical element a = (a1, ..., an). The utility function of

player i ∈ N is ui : S×A→ R. The set of all games (in a fixed environment) is denoted

by Γ.

Let G ∈ Γ and fix i ∈ N . A strategy for player i is an Fi–measurable function10

σi : S → ∆(Ai). The set of all strategies for player i is denoted Σi, and the set of all

strategy profiles is Σ = ×i∈NΣi with typical element σ = (σ1, . . . , σn). The probability

with which player i plays the action ai ∈ Ai in state s ∈ S according to σi is denoted

σi(s, ai). As usual, σ−i denotes the strategy profile of players other than i in which each

player j 6= i plays as in σ.

Every strategy profile σ in a game G induces a vector for each one of the players. For-

mally, the induced vector of player i is f
(σ)
i where f

(σ)
i (s) =

∑
a∈A

(∏
j∈N σj(s, aj)

)
ui(s, a)

for every s ∈ S. We can now define our notion of ex–ante equilibrium.

8Usually, the preferences of agents are given by a binary relation. Our interest here is in the functional

properties that guarantee the existence of equilibrium. Therefore, we assume all that is needed for

preferences to be represented by functionals. See Bade [4] for a notion of equilibrium where preferences

are given by a binary relation.
9Here we assume that each player has the same set of actions in all states of nature. Our results can

easily be extended to the case where the action set of a player vary across S as long as it is constant at

each element of that player’s information partition.
10For a finite set X, ∆(X) is the set of all probability measures over X.



UNCERTAINTY AVERSION AND EQUILIBRIUM EXISTENCE 7

Definition 1. Let G ∈ Γ. A strategy profile σ ∈ Σ is an ex–ante J–equilibrium of G if,

for every i ∈ N and for every σ′i ∈ Σi, Ji(f
(σ)
i ) ≥ Ji(f

(σ′i,σ−i)
i ).

3. Uncertainty aversion and ex–ante equilibrium existence

The following axioms are standard in the theory of decision making, and are usually

stated as properties of preference orders. Since we assume that preferences are already

represented by functionals, we consider the analogous functional properties. In each one

of the following axioms we mean that the relevant property holds for every Ji ∈ J.

Continuity (C): Ji is continuous over Rm.

Homogeneity (H): For every vector f and for every α ≥ 0, Ji(αf) = αJi(f).

Monotonicity (M): For every two vectors f, g, if f(s) ≥ g(s) for every s ∈ S then

Ji(f) ≥ Ji(g).

Translation Invariance (TI): For every vector f and a constant vector c, Ji(f + c) =

Ji(f) + c.

Non–degeneracy (ND): There exist vectors f, g such that Ji(f) > Ji(g).

Uncertainty Aversion (UA): Ji is concave. That is, Ji(αf + (1 − α)g) ≥ αJi(f) +

(1− α)Ji(g) for every two vectors f, g and α ∈ (0, 1).

Schmeidler’s [38] seminal definition of uncertainty aversion11 states that if the acts f, g

satisfy f � g, then for any α ∈ (0, 1), αf+(1−α)g � g. This axiom translates into quasi–

concavity of the preferences representing functional (see Cerreia et al. [8] and Hanany and

Klibanoff [20]). However, to quote Schmeidler, “Intuitively, uncertainty aversion means

that “smoothing” or averaging utility distributions makes the decision maker better off

. . . Concavity captures best the heuristic meaning of uncertainty aversion”. We note

that our main interest is in proving that ex–ante equilibrium existence implies aversion

to uncertainty by all agents. Thus, adapting a stronger version of the (UA) axiom gives

a stronger result.

While the former axioms are relevant to the preferences of each decision maker sepa-

rately, the next axiom reflects the interactive flavor of our model. Namely, the last axiom

states that ex–ante J–equilibrium exists in every game G ∈ Γ. It should be emphasized

11While this is the most commonly used definition of uncertainty aversion, there are alternative

definitions in the literature such as those of Epstein [12] and Ghirardato and Marinacci [17].
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that we do not think that equilibrium existence is a plausible property of players’ prefer-

ences neither from the descriptive nor from the normative points of view. We state this

property as an axiom just for convenience of use in the sequel.

Equilibrium Existence (EE): There exists an ex–ante J–equilibrium in every game

G ∈ Γ.

We can now state our main results.

Theorem 1. If (C) and (TI) are satisfied then (UA) is equivalent to (EE).

Remark 1. In order to guarantee ex–ante equilibrium existence in every game it is

sufficient that each of the functionals Ji be quasi–concave and continuous. Thus, (UA)

implies (EE) without any further assumption.

Remark 2. Since the combination of (M) and (TI) implies (C), Theorem 1 remains

valid if (C) is replaced by (M).

Our next aim is to obtain a similar result to that of Theorem 1 when (TI) is replaced

by (H). Notice that Theorem 1 and Remark 1 imply that, given (C) and (TI), the

seemingly stronger property of concavity is equivalent to quasi–concavity. The fact that

a continuous, monotone and homogeneous functional on12 Rm
+ is concave iff it is quasi–

concave is already known (see Rader [33], page 98 Theorem 6, and Shephard [41], page 31

Proposition 7). In the next theorem we restrict our attention to the class of games G ∈ Γ

with non–negative payoffs and, correspondingly, to functionals with Rm
+ as a domain.

Theorem 2. If (C), (H), (M) and (ND) are satisfied then (UA) is equivalent to (EE).

Remark 3. Theorem 2 is not true without the restriction of the domain to the non–

negative orthant. Indeed, let m = 2 and Ji(f) = max{f(s1) + f(s2), 2(f(s1) + f(s2))}
for every i ∈ N . Then each Ji is homogenous, (strictly) monotone, continuous, quasi–

concave but not concave. Thus, (EE) is satisfied while (UA) is not.

4. Special functional forms

4.1. Maxmin preferences. Gilboa and Schmeidler [18] axiomatize preference orders

that are determined by the minimal expected–utility w.r.t. some convex and compact

12Rm
+ is the set of all non–negative utility vectors.
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set of priors. Given a set of probability measures Pi ⊆ ∆(S), we say that Ji represents

maxmin preferences w.r.t. Pi if13 Ji(f) = minp∈Pi
p · f for every vector f .

The following is a consequence of the Gilboa–Schmeidler axiomatization (see in par-

ticular Lemma 3.5 in [18]), when combined with Theorem 1 and Remark 2 above. It can

be seen as an alternative characterization of maxmin preferences.

Corollary 1. The functionals {Ji}i∈N satisfy (H), (M), (TI) and (EE) if and only if

there is a family of sets {Pi}i∈N , where Pi ⊆ ∆(S) is convex and compact for each i,

such that Ji represents maxmin preferences w.r.t. Pi. Moreover, each set Pi is uniquely

determined by Ji.

Maccheroni et al. [30] axiomatize variational preferences, which generalize the model

of maxmin preferences. The functional form of a variational preference is Ji(f) =

minp∈∆(S)

(
p · f + c(p)

)
for every vector f , where c : ∆(S) → [0,∞] is a grounded14

convex and lower–semicontinuous functional. A consequence of the axiomatization of

Maccheroni et al. along with Theorem 1 and Remark 2 is the following.

Corollary 2. The functionals {Ji}i∈N satisfy (M), (TI) and (EE) if and only if every

Ji represents a variational preference.

Remark 4. Similar functional forms to the maxmin and variational preferences appear

in the risk assessment literature (see Artzner et al. [1], Delbaen [9], and Föllmer and

Schied [16]).

4.2. Non–additive integration. Choquet integral preferences (Schmeidler [38]) are

often used as an alternative to expected–utility maximization. It is well known that the

Choquet integral w.r.t. any capacity15 v satisfies the (M), (H) and (TI) properties. If

v is convex (v(E) + v(F ) ≤ v(E ∪ F ) + v(E ∩ F ) for every two events E,F ⊆ S) then

the Choquet integral w.r.t. v is a concave functional. Moreover, it coincides with the

maxmin functional w.r.t. the core16 of v.

13If p ∈ ∆(S) and f ∈ Rm is a vector then p · f =
∫

S
fdp denotes the expected value of f according

to the probability measure p.
14A function c is grounded if its infimum over the domain is zero.
15A capacity is a set function v : 2S → R satisfying v(∅) = 0, v(S) = 1 and v(E) ≤ v(F ) whenever

E ⊆ F .
16The core of a capacity v is the set of probability measures p over S satisfying p(E) ≥ v(E) for every

event E.
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However, if v is not convex then the Choquet integral w.r.t. v is not a concave func-

tional. In this case, Theorem 1 implies that, if one of the players has Choquet preferences

w.r.t. a non–convex capacity, then there is a game G with no ex–ante J–equilibrium. Note

that in the example presented in the introduction both players’ preferences are repre-

sented by the Choquet integral w.r.t. the capacity that assigns 1 to every non–empty set

of states. This capacity is non–convex, and indeed, the proposed game has no equilib-

rium. This example can be easily generalized to provide a constructive proof of ex–ante

equilibrium non–existence whenever one of the players has Choquet preferences w.r.t.

some non–convex capacity.

Recently, Lehrer [26] introduced the concave integral for capacities. This integral

is defined only for non–negative vectors. Therefore, in the rest of this subsection we

restrict attention to the orthant of non–negative vectors and, correspondingly, to games

with non-negative payoffs. Given a non–negative vector f , the concave integral of f

w.r.t. a capacity v is defined by∫
fdv := max

{∑
A⊆S

λAv(A);
∑
A⊆S

λA1lA ≤ f, λA ≥ 0

}
,(1)

where 1lA is the indicator function of A. Notice that if v is additive then the righthand

side of (1) is the Lebesgue integral of f .

As implied by its name, the concave integral w.r.t. any capacity v is a concave func-

tional over the set of non–negative vectors. Lehrer [26] shows that it is continuous even

on the boundary of its domain. By Remark 1 we have:

Corollary 3. If, for every i ∈ N , the functional Ji is defined by the concave integral

w.r.t. some capacity vi then (EE) is satisfied.

Note that the concave integral is also monotone and homogeneous (and trivially non–

degenerate). Thus, the concave integral satisfies the properties in Theorem 2, however

it is not characterized by these properties (Lehrer [26]).

Unlike the Choquet integral, (TI) is not always satisfied. A capacity v has a large

core (Sharkey [40]) if for every additive measure17 µ ≥ v there exists a core element p

of v such that µ ≥ p. Azrieli and Lehrer [3] proved that the concave integral w.r.t. v

satisfies (TI) if and only if v has a large core. In this case the concave integral coincides

with the maxmin functional, where the convex compact set of priors is the core of v.

17Not necessarily a probability measure.
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5. Symmetry and common preferences

A natural question in our multi–agent environment is what characterizes the case

where different players have the same preferences. We restrict our attention to the special

cases of maxmin preferences and of preferences that can be represented by the concave

integral. As was shown in the previous section, in both these cases ex–ante equilibrium

exits in every game. The characterization is based on the notions of symmetric games

and symmetric ex–ante equilibrium, which we now define.

Fix two players i, j ∈ N . For a given action profile a in some game G ∈ Γ with

Ai = Aj, we denote aij the action profile in which players i and j exchange their actions

while any other player plays the same as in a. That is, aiji = aj, a
ij
j = ai and aijk = ak

for every k ∈ N \ {i, j}.

Definition 2. A game G ∈ Γ is ij–symmetric if Fi = Fj, Ai = Aj, and for every s ∈ S
and a ∈ A, ui(s, a) = uj(s, a

ij) and uk(s, a) = uk(s, a
ij) for every player k 6= i, j.

We now state an additional axiom and then use it to characterize the case of common

preferences.

ij–Symmetric Equilibrium (ij -SE): If G is ij–symmetric then there is an ex–ante

J–equilibrium σ in G such that σi = σj.

5.1. Maxmin and common multiple–priors.

Proposition 1. If, for some two players i, j ∈ N , the functionals Ji and Jj represent

maxmin preferences w.r.t. Pi and Pj respectively, then (ij-SE) is satisfied if and only if

Pi = Pj.

A game G ∈ Γ is symmetric if it is ij–symmetric for every two players i, j. A symmetric

ex–ante J–equilibrium (in a symmetric game G) is an ex–ante J–equilibrium σ such that

σi = σj for every i, j ∈ N . By a simple adjustment of the proof of Proposition 1 one

obtains the following corollary.

Corollary 4. If, for every i ∈ N , the functional Ji represents maxmin preferences w.r.t.

Pi, then there is a symmetric ex–ante J–equilibrium in every symmetric game if and only

if all the Pi’s are equal.
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5.2. The concave integral and common capacities. Let vi be the uniform prob-

ability distribution over {1, 2}, and vj be the capacity defined by vj(A) = 1 for every

non–empty subset A of {1, 2}. Even though these capacities are different, if Ji and Jj

are defined by the concave integral w.r.t. vi and vj accordingly, then Ji and Jj represent

the same preference order.

The normalized cover (cover, for short) of a capacity v is defined by

v̂(A) =

∫
1lAdv∫
1dv

for every A ⊆ S.

Proposition 2. If, for some pair of players i, j ∈ N , the functionals Ji and Jj are

defined by the concave integral w.r.t. vi and vj respectively, then (ij-SE) is satisfied if

and only if v̂i = v̂j.

Corollary 5. If, for every i ∈ N , the functional Ji is defined by the concave integral

w.r.t. vi, then there is a symmetric ex–ante J–equilibrium in every symmetric game if

and only if all the v̂i’s are equal.

6. Interim equilibrium

This section is devoted to the notion of interim equilibrium and its existence. However,

in order to define interim equilibrium we first need to revise the notion of an environment.

An interim environment is a tuple
(
S,N, J = {JFi }i∈N,F⊆S

)
. The first two components

S and N are as described in Section 2. Given an event F ⊆ S, an F–vector is any

function from F to R. Once F is fixed we identify the space of all F–vectors with the

linear space R|F |. For each i ∈ N and F ⊆ S, the functional JFi : R|F | → R represents

player i’s preferences over F–vectors.

Given such an environment, a game with incomplete information, a strategy, a strategy

profile and an induced vector (over S) are defined as in Section 2. Given a vector f over

S and an event F ⊆ S, we denote by f |F the F–vector which is the restriction of f to

F .

Definition 3. Let G ∈ Γ. A strategy profile σ ∈ Σ is an interim J–equilibrium of G if,

for every i ∈ N , every F ∈ Fi, and for every σ′i ∈ Σi, J
F
i (f

(σ)
i |F ) ≥ JFi (f

(σ′i,σ−i)
i |F ).

Note that when considering the notion of interim environment, the analogous definition

of an ex–ante J–equilibrium in a game G is a strategy profile σ, such that for every
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i ∈ N and for every σ′i ∈ Σi, J
S
i (f

(σ)
i ) ≥ JSi (f

(σ′i,σ−i)
i ). In this revised model, the axioms

presented in Section 3 can be reformulated as possible properties of JSi (instead of Ji),

resulting with the analogs to Theorems 1 and 2.

In order to characterize interim J–equilibrium existence, we need to adapt the axioms

presented in Section 3 to suit the interim environment. By “adapt” we mean that each

relevant property (depending on the axiom) holds for every JFi . Now, Theorems 1 and 2

can be reformulated to show that interim J–equilibrium exists in every game if and only

if all players are averse to uncertainty.

In the Harsanyi [21] model, ex–ante and interim preferences are related through Bayes

rule. A well–known result in this case is that the sets of ex–ante and interim equilibria

are equivalent. This raises two tangled questions regarding the interim environment

presented above.

The first question concerns the relation between JSi and JFi . Informally, what is (or

should be) the relation between player i’s preferences before and after receiving the

information that an event F occurred? The matter of updating preferences has been

extensively dealt with in the literature. Examples include updating rules for Choquet

preferences (e.g., Dempster [10] and Shafer [39]), and full Bayesian (e.g., Sarin and

Wakker [37] and Fagin and Halpern [15]) and maximum–likelihood Bayesian (Gilboa and

Schmeidler [19]) updating rules for Maxmin preferences. Updating general preferences,

not necessarily any of those mentioned above, were studied in Hanany and Klibanof [20]

and Wang [42]18.

An important property of an updating rule is dynamic consistency. To quote Epstein

and Le Breton ([13], page 3), “...the assumption of dynamic consistency is clearly advan-

tageous in terms of theoretical elegance and simplicity and also analytical tractability,

and so is “natural” for these reasons. From a normative point of view, it is difficult

to imagine adopting or recommending a dynamically inconsistent updating rule for use

of statistical decision problem.” Epstein and Le Breton show that if preferences that

are “based on beliefs” admit dynamic consistent updating, then Bayesianism is implied.

This leads us to ask the second question. Applying which updating rules, players will be

dynamic consistent and the two equilibria concepts presented will be equivalent? These

questions are beyond the scope of this paper and are left for future work.

18This is only a partial list out of the vast literature dealing with updating preferences.
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7. Final comments

7.1. General common preferences. In Section 5, for maxmin and concave integral

preferences, we characterize the case players’ preferences representing functionals are

the same. An interesting question is whether these results can be stated for general

functionals as in Theorems 1 and 2. We formulate this in the following two conjectures.

Conjecture 1. Assume that every Ji satisfies (C),(TI) and (EE). Then in every sym-

metric game there exists a symmetric ex–ante J–equilibrium if and only if all the Ji’s are

equal.

Conjecture 2. Assume that, for every i ∈ N , Ji is defined over Rm
+ , Ji(1) = 1, and

satisfies (C),(H), (M), (ND) and (EE). Then in every symmetric game with non–negative

payoffs there exists a symmetric ex–ante J–equilibrium if and only if all the Ji’s are equal.

The normalization requirement in Conjecture 2 (which is satisfied by (TI) in Con-

jecture 1) is due to the fact that, if all Ji’s represent the same preferences, then there

exists a symmetric ex–ante J–equilibrium in every symmetric game. Additionally, the

following example shows that if the Ji’s are defined over the entire space, then Conjec-

ture 2 does not hold. Indeed, the functionals J1(f1, f2) = 1
2
(f1 + f2) and J2(f1, f2) =

min{1
2
(f1 + f2), f1 + f2} defined over R2 satisfy all conditions of Conjecture 2. However,

they are different and represent the same preferences.

7.2. Zero–sum games and a ‘grain of agreement’. Consider the result of Corollary

4. It characterizes the case where all the players have exactly the same set of priors

which they think are possible. One may be interested in the weaker property that there

is at least one prior which all the players think is possible. In other words, assuming that

each player i in the environment has maxmin preferences w.r.t. the (convex compact)

set Pi, when is the intersection
⋂
i∈N Pi non–void?19

The answer to the above question is given by the following proposition. A game G ∈ Γ

is called zero–sum if
∑

i∈N ui(a, s) = 0 for every a ∈ A and s ∈ S.

Proposition 3. Assume that each Ji represents maxmin preferences w.r.t. Pi. Then the

following conditions are equivalent:

(i)
⋂
i∈N Pi 6= ∅.

19A similar question was studied by Billot et al. [6], Kajii and Ui [24] and Rigotti et al. [34] in the

setting of an exchange economy, and by Kajii and Ui [23] in the setting of bets between two agents.
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(ii) In every strategy profile σ ∈ Σ of every zero–sum game G, if Ji(f
(σ)
i ) > 0 for some

i ∈ N then there is j ∈ N such that Jj(f
(σ)
j ) ≤ 0.

8. Proofs

8.1. Proofs of Section 3. We start with the following lemma.

Lemma 1. Assume Ji satisfies (C). If Ji is not concave then there are vectors f, g such

that Ji(αf + (1− α)g) < αJi(f) + (1− α)Ji(g) for every α ∈ (0, 1).

Proof. If Ji is not concave then there are vectors f ′, g′ and α0 ∈ (0, 1) such that Ji(α0f
′+

(1− α0)g′) < α0Ji(f
′) + (1− α0)Ji(g

′). By (C), the set B := {β ∈ [0, 1] : Ji(βf
′ + (1−

β)g′) ≤ βJi(f
′) + (1 − β)Ji(g

′)} is compact and contains an interval around α0. Let β1

be the minimal element of B which is larger than α0 and satisfies Ji(β1f
′+ (1−β1)g′) =

β1Ji(f
′) + (1− β1)Ji(g

′). Similarly, let β2 be the maximal element of B which is smaller

than α0 and satisfies Ji(β2f
′ + (1 − β2)g′) = β2Ji(f

′) + (1 − β2)Ji(g
′). Define f =

β1f
′+(1−β1)g′ and g = β2f

′+(1−β2)g′. Then Ji(αf+(1−α)g) < αJi(f)+(1−α)Ji(g)

for every α ∈ (0, 1). �

The proof of Theorem 1:

(EE) =⇒ (UA)

Assume to the contrary that (C), (TI) and (EE) are satisfied, and that there is i ∈ N
such that Ji is not concave. Consider the following game G ∈ Γ. The information

partitions of all the players are trivial. The action set of player i is Ai = {T,B} and the

action set of some arbitrary player j 6= i is Aj = {L,R}. Each one of the other players

(if there are any) has only one action and, therefore, these players have no influence on

the outcome of the game.

The payoff function for player j is given by

uj(s, ai, aj) =


1; ai = T, aj = L,

1; ai = B, aj = R,

0; ai = T, aj = R,

0; ai = B, aj = L.

Let f, g be as in Lemma 1. Choose a numberM > 0 large enough such that Ji(f+M) >

Ji(g) and Ji(g+M) > Ji(f). Existence of such a number is guaranteed by (TI). Let the



16 YARON AZRIELI AND ROEE TEPER

payoff function to player i be given by

ui(s, ai, aj) =


f(s); ai = T, aj = L,

g(s); ai = B, aj = R,

f(s) +M ; ai = T, aj = R,

g(s) +M ; ai = B, aj = L.

Thus, the resulting bimatrix game in state s ∈ S is given by the following diagram,

where i is the rows player and j the columns player:

B

T

L R

g(s) +M, 0

f(s), 1

g(s), 1

f(s) +M, 0

We show that G has no ex–ante J–equilibrium. First, it is easy to check that there is

no pure ex–ante J–equilibrium in G (recall that the information partitions are trivial so

both players must play the same strategy in all states of nature).

Now, assume that player j plays the strategy αL+ (1− α)R for some α ∈ [0, 1] . By

(TI) and the construction of f, g, it cannot be that f − g is constant since in this case Ji

is linear on the interval [f, g]. It follows that αf +(1−α)(f +M) 6= α(g+M)+(1−α)g,

so every two different strategies of player i induce different vectors for him. If player

i plays βT + (1 − β)B (where 0 < β < 1) then the induced vector for i is given by

βf + (1 − β)g + [α(1 − β) + β(1 − α)]M . Using (TI) and the construction of f, g we

obtain

Ji (βf + (1− β)g + [α(1− β) + β(1− α)]M) =

Ji (βf + (1− β)g) + [α(1− β) + β(1− α)]M <

βJi(f) + (1− β)Ji(g) + [α(1− β) + β(1− α)]M =

βJi(αf + (1− α)(f +M)) + (1− β)Ji(α(g +M) + (1− α)g ≤

max{Ji(αf + (1− α)(f +M)), Ji(α(g +M) + (1− α)g)}.

It follows that, no matter what the strategy of player j is, a (strictly) best response for

player i is a pure strategy. But if i plays a pure strategy then, by (TI), the best response

for player j is also a pure strategy. This implies that G has no ex–ante J–equilibrium.

(UA) =⇒ (EE)

Existence of ex–ante equilibrium is guaranteed by the following argument. Since this

is a standard argument, we only provide the outline of the proof and omit the details.
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For every i ∈ N , define BRi : Σ−i → Σi to be player i’s best response correspondence.

Concavity of Ji guarantees that BRi is convex valued. Continuity of Ji implies that

BRi is upper semi–continuous and that it has compact values. (EE) is, therefore, a

consequence of Brower’s fixed point theorem.

The proof of Theorem 2:

(EE) =⇒ (UA)

Assume that (ND), (C), (H), (M) and (EE) are satisfied, and recall that each of the

functionals Ji is defined on the non–negative orthant only. (ND), (H) and (M) when

combined imply that each Ji is strictly positive on the interior of its domain.

Assume the contrary of the theorem that there is i ∈ N such that Ji is not concave. We

claim that it is possible to find f, g as in Lemma 1 such that f(s), g(s) > 0 for every s ∈ S.

Indeed, let f ′, g′ be as in the proof of Lemma 1. Then by (C) there are f ′′, g′′ such that

f ′′(s), g′′(s) > 0 for every s, and such that Ji(α0f
′′+(1−α0)g′′) < α0Ji(f

′′)+(1−α0)Ji(g
′′).

Using f ′′, g′′ instead of f ′, g′ one obtains strictly positive vectors f, g with the desired

property.

We now construct a game G with non–negative payoffs such that no ex–ante J–

equilibrium exists in G. The information partitions, the action sets and the payoff

function of player j are the same as in the proof of Theorem 1. The payoff function to

player i is given by

ui(s, ai, aj) =


0; ai = T, aj = L,

0; ai = B, aj = R,

f(s); ai = T, aj = R,

g(s); ai = B, aj = L.

Thus, the resulting bimatrix game in state s ∈ S is given by the following diagram,

where i is the rows player and j the columns player:

B

T

L R

g(s), 0

0, 1

0, 1

f(s), 0

Since f(s), g(s) > 0 for every s, Ji(f), Ji(g) > 0. This implies that there is no pure

ex–ante J–equilibrium. (H) and the construction of f, g imply that f, g are linearly

independent. Thus, if player j plays the strategy αL + (1 − α)R for some α ∈ [0, 1],
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player i’s induced vector when he plays T is different from the induced vector when he

plays B.

If i plays βT + (1− β)B (where 0 < β < 1) then the induced vector for i is given by

α(1 − β)g + β(1 − α)f . Defining γ = α(1 − β) + β(1 − α) > 0 and using (H) and the

construction of f, g we get

Ji (α(1− β)g + β(1− α)f) = γJi

(
α(1− β)

γ
g +

β(1− α)

γ
f

)
<

α(1− β)Ji(g) + β(1− α)Ji(f) = (1− β)Ji(αg) + βJi((1− α)f) ≤

max {Ji(αg), Ji((1− α)f)} .

It follows that, no matter what is the strategy of player j, a (strictly) best response for

player i is a pure strategy. But if i plays a pure strategy then the best response for player

j is also a pure strategy. This implies that G has no ex–ante J–equilibrium.

(UA) =⇒ (EE)

The proof of this direction is identical to its proof in Theorem 1.

8.2. Proofs of Section 5.

The proof of Proposition 1:

Assume that Ji and Jj are maxmin functionals with respect to Pi and Pj respectively.

If Pi 6= Pj then, without loss of generality, there is q ∈ Pj \ Pi. Since Pi is a convex

compact set there exists a separating vector f such that

Ji(f) = min
p∈Pi

p · f > q · f ≥ Jj(f).

Let c be a constant such that Ji(f) > c > Jj(f).

We shall now construct an ij–symmetric game G ∈ Γ. The information partitions of

all the players are trivial. The action sets are Ai = Aj = {T,B} and Ak = {T} for every

other player k. For an action profile a ∈ A, the payoff function of player k (k = i, j) in

state s is given by

uk(s, a) =

{
c; ak = T,

f(s); ak = B.

Thus, each of the players i, j can choose between the vector f and the constant vector

c. The payoffs to all other players are arbitrary.

We claim that playing T is a strictly dominant strategy for player j. Indeed, choosing

T gives player j the payoff c which is strictly higher than Jj(f) which he gets for choosing
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B. Moreover, for every α ∈ (0, 1),

Jj(αf + (1− α)c) = αJj(f) + (1− α)c < c,

so player j gets strictly less than c if he mixes. Applying the same argument we ob-

tain that B is a strictly dominant strategy for player i. Thus, the unique ex–ante

J–equilibrium of G is when j plays T and i plays B. This contradicts the (ij-SE) axiom.

The proof of the inverse direction is standard and therefore omitted.

The proof of Proposition 2:

Given a capacity v, define uv(A) =
∫

1lAdv for every A ⊆ S. It is shown in [28] that20∫
fduv =

∫
fdv for every vector f . In particular, uv(A) =

∫
1lAdv =

∫
1lAduv for every

A ⊆ S. Note that the normalized cover v̂ = uv

uv(S)
, and that it satisfies v̂(A) =

∫
1lAdv̂

for every A ⊆ S.

Assume that Ji and Jj are defined by the concave integral w.r.t. vi and vj respectively,

and that v̂i 6= v̂j. That is, there exists A ⊂ S such that w.l.o.g. v̂i(A) > v̂j(A). Since the

concave integral is piecewise linear (Lehrer [26]), there exists λ > 0 small enough such

that for every 0 < λ′ ≤ λ we have that∫
(1 + λ′1lA)dv̂i =

∫
1dv̂i +

∫
λ′1lAdv̂i = 1 + λ′v̂i(A),

and ∫
(1 + λ′1lA)dv̂j =

∫
1dv̂j +

∫
λ′1lAdv̂j = 1 + λ′v̂j(A).

Thus, there exits c > 1 such that
∫

(1+λ1lA)dv̂i > c >
∫

(1+λ1lA)dv̂j, which implies that

Ji(1 + λ1lA) > Ji(c) and Jj(1 + λ1lA) < Jj(c).

We shall now construct an ij–symmetric game G ∈ Γ. The information partitions of

all the players are trivial. The action sets are Ai = Aj = {T,B} and Ak = {T} for every

other player k. For an action profile a ∈ A, the payoff function of player k (k = i, j) in

state s is given by

uk(s, a) =

{
c; ak = T,

1 + λ1lA(s); ak = B.

Thus, players i and j choose between the constant vector c and 1 + λ1lA.

20The definition of the concave integral is extended naturally to set functions that need not be

normalized.
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Let us verify that the only ex–ante J–equilibrium is for player i to play B and for

player j to play T . If player i plays αB+ (1−α)T for some 0 < α < 1, then his induced

vector is α(1 + λ1lA) + (1 − α)c = α1 + (1 − α)c + αλ1lA. Since c > 1 we get that

d = α + (1− α)c > 1 and αλ
d
< λ. This implies that

Ji

(
1 +

αλ

d
1lA

)
= Ji (1) + Ji

(
αλ

d
1lA

)
.

Now,

Ji(α(1 + λ1lA) + (1− α)c) = Ji(α1 + (1− α)c+ αλ1lA) = Ji(d+ αλ1lA) =

dJi

(
1 +

αλ

d
1lA

)
= dJi (1) + Ji (αλ1lA) = α + (1− α)c+ αλv̂i(A) =

αJi(1 + λ1lA) + (1− α)Ji(c).

In particular, since Ji(1 + λ1lA) > Ji(c) player i would prefer 1 + λ1lA to any convex

combination with c. This means that B is a strictly dominant strategy for i. In the same

way it can be shown that T is a strictly dominant strategy for j.

The proof of the inverse direction is standard and therefore omitted.

8.3. The proof of Proposition 3.

The proof is based on the main proposition in Samet [36]. Applying Samet’s result, we

know that
⋂
i∈N Pi = ∅ iff there are {fi}i∈N ⊆ Rm such that

∑
i∈N fi = 0 and pi · fi > 0

for every pi ∈ Pi and for i = 1, . . . , n.

Assume
⋂
i∈N Pi = ∅. Define G to be the game where each player has only one action,

and where player i’s payoff in state s is fi(s). Obviously, G is a zero–sum game and in

the (unique) strategy profile σ we have Ji(f
(σ)
i ) > 0 for every i ∈ N .

Conversely, assume
⋂
i∈N Pi 6= ∅. Then for any profile σ in some zero–sum game G we

have that
∑

i∈N f
(σ)
i = 0. By Samet’s proposition, it can’t be that Ji(f

(σ)
i ) > 0 for all

i ∈ N .
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