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Abstract

We characterize the optimal incentive scheme for a manager who faces costly e¤ort decisions

and whose ability to generate pro�ts for the �rm varies stochastically over time. The optimal

contract is obtained as the solution to a dynamic mechanism design problem with hidden ac-

tions and persistent shocks to the agent�s private information. When the agent is risk-neutral,

the optimal contract can often be implemented with a simple pay package that is linear in the

�rm�s pro�ts. Furthermore, the power of the incentive scheme typically increases over time, thus

providing a possible justi�cation for the frequent practice of putting more stocks and options

in the package of managers with a longer tenure in the �rm. Contrary to other explanations

proposed in the literature (e.g. declining disutility of e¤ort, career concerns), the optimality of

seniority-based reward schemes is not driven by any particular assumption on the agent�s pref-

erences/technology. It results from an optimal allocation of the manager�s informational rents

over time. Building on the insights from the risk-neutral case, we then explore the properties

of optimal incentive schemes for risk-averse managers. Contrary to the risk-neutral case, the

optimal pay package is typically non-linear in the �rm�s pro�ts (although, there are instances

where it is a convex function of a linear aggregator). Furthermore, we �nd that risk-aversion

may contribute to reducing (but not necessarily eliminate) the bene�t of o¤ering incentives

whose power increase, on average, over time.

JEL classi�cation: D82

Keywords: dynamic mechanism design, adverse selection, moral hazard, incentives, optimal pay

scheme, stochastic process.



1 Introduction

This paper contributes to the literature on managerial compensation by adopting a mechanism

design approach to characterize the dynamics of the optimal incentives contract.

We consider an environment in which the �rm�s shareholders (the principal) hire a manager

(the agent) whose ability to generate pro�ts for the �rm varies stochastically over time. This could

re�ect, for example, the possibility that the value of the manager�s expertise/competence changes

in response to variations in the business environment. It could also be the result of learning by

doing. We assume that both the manager�s ability to generate pro�ts (his type) as well as his

e¤ort choices are the manager�s private information. The �rm�s shareholders simply observe the

dynamics of pro�ts (equivalently, the value of their shares), which we assume to be veri�able, and

pay the manager on the basis of this information.

Contrary to the literature on renegotiation (e.g. La¤ont and Tirole, 1988, 1990), we assume

that the �rm�s shareholders perfectly understand the value of commitment and hence adhere to

the incentive scheme they o¤ered when they hired the manager, even if, after certain contingencies,

such a scheme need not be optimal anymore. However, contrary to this literature, we do not impose

restrictions on the process governing the evolution of the agent�s private information. In particular,

we do not restrict the agent�s type to be constant over time, nor do we restrict the shocks to the

agent�s type to be independent. Allowing for general processes is important for it permits us to shed

light on certain interesting properties of the optimal scheme that are obscured, if not completely

eliminated, by assuming perfectly correlated, or independent types (more below).

Our baseline model features an environment where both the �rm�s shareholders and the man-

ager are risk-neutral. Because the �rm contracts with the manager at the time the latter is already

privately informed about his type, interesting dynamics emerge even without introducing risk aver-

sion. In particular, we show that the power of incentives typically increases over time, which can

explain the frequent practice of putting more stocks and options in the package of managers with a

longer tenure in the �rm. Contrary to other explanations proposed in the literature (e.g. declining
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disutility of e¤ort, career concerns), in our model, the optimality of seniority-based reward schemes

is not driven by variations in the agent�s preferences, nor by variations in his outside option. It

results from an optimal allocation of the manager�s informational rents over time. In other words,

it originates from the �rm�s desire to minimize the manager�s compensation while preserving his

incentives for both e¤ort and information revelation.

The driving assumption behind this result is the assumption that the e¤ect of the manager�s

initial type on the distribution of his future types declines over time. This assumption seems quite

reasonable and is satis�ed, for instance, when the agent�s private information evolves according to

an ARIMA process with coe¢ cients of linear dependence smaller than one in absolute value. As

documented in other recent works on dynamic mechanism design (e.g. Battaglini, 2005, Pavan,

Segal, and Toikka (2008)) this assumption implies that, to minimize the agent�s rents, it is more

e¢ cient to distort decisions downwards in the early stages of the relationship than in later ones.

The reason is that an agent�s ability to guarantee himself a rent by mimicking another type depends

on the di¤erent expectations the two types have about their future types. When this di¤erence

declines with the time horizon, distorting decisions in the distant future becomes very ine¤ective

at reducing informational rents. When applied to the situation in this paper, this principle of

�vanishing distortions�leads to an e¤ort policy that is closer to the �rst-best in the long run than

in the short run. This follows from the fact that a type�s rent increases in the e¤ort of lower types,

as shown by La¤ont and Tirole (1986) in a static setting.

A second prediction of the model is that the optimal contract under risk neutrality often takes

the form of a simple (state-contingent) linear contract. In other words, in each period, the �rm pays

the manager a �xed salary plus a bonus that is linear in the �rm�s pro�ts (or, equivalently, in the

�rm�s stock price, provided the latter also depends on the manager�s e¤ort). When the manager�s

type follows an ARIMA process (more generally, any process whose future distributions exhibit a

certain separability with respect to the initial type), then the slope of the linear scheme changes

deterministically over time, i.e. it depends on the manager�s initial type, but does not need to

respond to future shocks.
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More generally, the optimal contract requires that the manager be given the possibility of

proposing changes to his pay package over time, in response to the shocks to his type (equivalently,

to any privately observed shock to the environment that a¤ects his ability to generate pro�ts for

the �rm). The idea that a manager may be given the possibility to propose changes to his reward

package seems appealing in light of the recent empirical literature on managerial compensation

where it is found that this practice has become more frequent in the last decade (see, among

others, Kuhnen and Zwiebel (2008), and Bebchuck and Fried (2004)).

While, under risk neutrality, the optimality of linear schemes holds across a variety of speci�-

cations of the process governing the evolution of the manager�s productivity, there are instances

where the optimal e¤ort policy requires the use of stronger incentive schemes according to which

the manager is paid a bonus only when the �rm�s pro�ts exceed a certain target, where this target

may depend on the (history of the) manager�s reports about his type. While the power of these

schemes is stronger, contrary to linear schemes, these �bonus�schemes would not be appropriate

when pro�ts are the result not only of the manager�s type and e¤ort, but also of unobservable

shocks (noise) whose distribution is una¤ected by the manager�s e¤ort.

Building on the insights from the risk-neutral case, in the second part of the paper we explore

the properties of optimal incentive schemes for risk-averse managers. Contrary to the risk-neutral

case, we �nd that the optimal pay package is typically non-linear in the �rm�s pro�ts. To eliminate

(or at least reduce) the e¤ects of the risk associated with the manager�s compensation, the principal

needs to use a pay scheme that is convex in (a linear aggregator of) the �rm�s pro�ts.

We also �nd that risk-aversion tends to reduce (but not necessarily eliminate) the bene�ts of

seniority-based incentive schemes whose power increase, on average, over time. The reason is that

the volatility of the agent�s future types given his current type increases with the time horizon.

In other words, while the agent�s current type is a fairly good predictor of his type in the next

period, it is a fairly poor predictor of his type, say, �ve periods into the future. Since the agent�s

exposure to risk is increasing in e¤ort (because of incentive compatibility), other things equal, risk

aversion makes it more attractive for the principal to induce higher e¤ort in the early stages of
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the relationship, when the agent is subject to little risk about his ability to generate pro�ts, than

in later periods, where the uncertainty about the agent�s type (as perceived from the moment the

contract is signed) is higher.

Thus, quite interestingly, the same property of �declining correlation�which makes seniority-

based schemes attractive under risk neutrality, now contributes to making such schemes costly under

risk aversion. Whether risk-averse managers with a longer tenure receive more or less high-powered

incentives then depends on which of the two e¤ects prevails.

Related literature.1 The literature on managerial compensation is way too large to be suc-

cessfully summarized within the context of this paper. We refer to Prendergast (1999) for an

excellent review and to Edmans and Gabaix (2009) for a survey of some more recent developments.

In terms of model, the work which is closest to this paper is La¤ont and Tirole (1986) and

Edmans and Gabaix (2008). In our model, like in these two papers, the �rm�s pro�ts are a deter-

ministic function of the manager�s e¤ort and of the manager�s type, with the manager observing his

type prior to choosing his e¤ort. La¤ont and Tirole (1986) were the �rst to show how, in a static

setting, this modelling choice permits one to use techniques from the mechanism design literature

to solve for the optimal contract and to show how the latter can often be implemented with linear

schemes. In independent work, Edmans and Gabaix (2008) show how this approach can be applied

to a dynamic setting, allowing for risk aversion. Contrary to La¤ont and Tirole and the current

paper, Edmans and Gabaix (2008), however, do not characterize the optimal e¤ort policy. Another

di¤erence is that Edmans and Gabaix assume contracting occurs at a time at which the agent does

not possess any private information. This assumption has strong implications. For example, under

risk neutrality, it implies that the principal always �nds it optimal to induce the agent to choose

the �rst-best level of e¤ort in each period, thus precluding interesting dynamics. Lastly, while

our schemes are often similar (modulo certain important details) to the ones proposed in Edmans

and Gabaix, the stochastic processes and the e¤ort policies considered here are signi�cantly more

1This part is even more preliminary than the rest. We apologize to those who believe their work should have been

cited here and that we omitted to discuss.
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general (for example, we allow e¤ort to depend on the entire history of shocks experienced by the

manager while Edmans and Gabaix restrict attention to policies that either depend only on time

or at most on the current shocks).

The paper is also related to the empirical literature on the use of seniority-based incentives.

This literature �nds mixed evidence as to the e¤ect of tenure on performance-related pay. While the

early literature has suggested that managers with a longer tenure tend to have weaker incentives and

explained this by the fact that the board of directors may tend to be captured by CEOs over time

(e.g. Hill and Phan, 1991), more recent evidence points to the contrary (see, e.g. Lippert and Porter,

1997, but also Gibbons and Murphy, 1991). As one would expect, often these di¤erent �ndings

originate in di¤erent choices about the relevant incentives measurements. At the theoretical level,

our paper contributes to this literature by o¤ering a new trade-o¤ for the optimality of seniority-

based incentives that, to the best of our knowledge, was not noticed before.

Lastly, from a methodological standpoint, the paper uses recent results in the dynamic mech-

anism design literature to arrive to a characterization of the necessary and su¢ cient conditions

for incentive-compatibility. In particular, the approach here builds on the techniques developed in

Pavan, Segal, and Toikka (2008)� hereafter referred to as PST.

The rest of the paper is organized as follows. Section 2 presents the baseline model. Section 2.2

characterizes the optimal mechanism. Section 3 extends the analysis to settings where the optimal

e¤ort policy is contingent on the entire history of shocks. Section 4 examines optimal schemes for

risk-averse agents. All proofs omitted in the text are in the Appendix.

2 The Baseline Model

2.1 The environment

The �rm�s shareholders (hereafter referred to as the principal) hire a manager (the agent) to work

on a project over T periods, where T may be either �nite or in�nite. In each period t, the agent

receives some private information �t 2 �t about the environment or, equivalently, about his ability
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to generate pro�ts for the �rm, and then chooses e¤ort level et 2 E � R. We will assume that

�t � R is either equal to [�t; �t] or, in case �t = +1 to [�t; �t) � R for some �1 < �t � �t � +1.2

To simplify the exposition (and facilitate the characterization of the optimal e¤ort policy) we

will assume that E = R.3

The principal�s pro�ts �t in period t, gross of any agent compensation, depend on the the

sequence of e¤ort decisions et � (es)ts=1 exerted by the agent in previous periods and on the agent�s

current �type��t.4 In particular, we assume that5

�t = �t + et +

t�1X
�=1

��et��

for some constant � � 0 that captures the persistence of the e¤ect of the manager�s e¤ort on the

�rm�s pro�ts. The set of possible period-t pro�ts will be denoted by

�t � f�t 2 R : �t = �t + et +
t�1X
�=1

��et�� ; �t 2 �t, es 2 E; 8s � tg

Both �t and et are the agent�s private information. On the contrary, the stream of pro�ts �t are

assumed to be veri�able, which implies that the agent can be rewarded as a function of the �rm�s

pro�ts.

As is common in the literature, we equate the agent�s period-t consumption ct with the payment

from the principal (in other words, we assume away the possibility of hidden savings). Such a

restriction is however without loss of generality under the assumption of risk-neutrality considered

in this section.

In each period, the principal may condition the agent�s payment on the entire history of pro�ts

�t. By choosing e¤ort et in period t, the agent su¤ers a disutility  (et). To ensure interior solutions

2As it will become clear from the analysis in the subsequent sections, that �t is bounded from below is to guarantee

that expected payo¤s, when expressed taking incentives into account, are well de�ned.
3That e¤ort can take negative values should not raise concerns: because e here simply stands for the e¤ect of the

agent�s activity on the �rm�s performance, there is no reason to restrict e to be positive.
4From now on, we adopt the convention of denoting sequences of variables by their superscripts.
5Note that because �t is not restricted to be independent of the past shocks �t�1 � (�1; :::; �t�1), there is no loss

of generality in assuming that �t depends only on �t, as opposed to the entire history �t = (�1; :::; �t): To see this,

suppose that �t = ft(�
t)+ht(e

t) for some functions ft : Rt ! R and ht : Rt ! R: It then su¢ ces to change variables
and simply let �newt = ft(�

t).
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and to validate a certain dynamic envelope theorem (more below), we will assume that  is a

continuously di¤erentiable function and that there exist scalars �e 2 R++ and K > 1 +
PT�1
s=1 (��)

s

such that  (e) = 0 for all e < 0;  is thrice continuously di¤erentiable over (0; �e) with  00(e) > 0

and  000(e) � 0 for all e 2 (0; �e) and  (e) = Ke for all e > �e.6

The agent�s preferences over (lotteries over) streams of consumption levels cT and streams of

e¤ort choices eT are described by an expected utility function with (Bermoulli) utility given by

UA(cT ; eT ) =
TX
t=1

�t�1[ct �  (et)] (1)

where � < 1 is a discount factor. As standard, the aforementioned speci�cation presumes time-

consistency. In what follows, we will thus assume that, after each history ht, the agent maximizes

the expectation of UA(cT ; eT ); where the expectation is taken with respect to whatever information

is available to the agent after history ht.

Throughout, we will also assume that �� < 1. The principal�s payo¤ is given by the discounted

sum of the �rm�s pro�ts, net of the agent�s compensation:

UP (�T ; cT ) =

TX
t=1

�t�1 [�t � ct] :

The function UP also corresponds to the principal�s Bermoulli function used to evaluate lotteries

over (�T ; cT ).

In each period t, �t is drawn from a cumulative distribution function Ft(�j�t�1) with support

�t. Below, we will often �nd it convenient to describe the evolution of the agent�s type through

a collection of functions of independent shocks. More precisely, let (~"t)
T
t=2 denote a collection of

random variables, jointly independent and independent of �1; each with support Et � R where

Et = ["t�"
t] if �"t < +1 and ["t;�"t) if �"t = +1; for some �1 < et � �"t � +1:7 Then let

(zt(�))Tt=2 denote a collection of real-valued functions such that, for any t � 2, any �1 and any

"t�1 2 E t�1 � �t�1s=2Es; the distribution of zt(�1; ("t�1;~"t)) given (�1; "t�1) is the same as that of �t
6These conditions are satis�ed e.g. when �e = K and  (e) = (1=2)e2 for all e 2 [0; �e].
7The reason for restricting "t > �1 is the same as for restricting �t to be bounded from below; it guarantees

that the agent�s payo¤ in any incentive compatible mechanism can be conveniently expressed in integral form.
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given �t�1 = zt�1(�1; "t�1), where zt�1(�1; "t�1) � (�1; z2(�1; "2); :::; zt�1(�1; "t�1)): As indicated in

PST (2008), any stochastic process (i.e. any collection of kernels F = hFt(�j�)iTt=1) admits at least

one such representation.

We initially restrict attention to processes for which each zt is separable in its �rst component.

De�nition 1 Let (~"t)
T
t=2 be a collection of random variables, jointly independent, and each inde-

pendent of �1; such that, for each t � 2, ~"t is distributed according to the c.d.f. Gt strictly increasing

on the interval Et � R. The process for (~�t)Tt=1 given by the kernels

F �


Ft : �

t�1 ! �(�t)
�T
t=1

is separable in the �rst component (SFC) if it admits an independent-shock representation such

that for each t � 2, the function zt : �1 � E t ! �t takes the form

zt(�1; "
t) = 
t(�1) + �t("2; : : : ; "t)

for some functions 
t : �1 ! R and �t : E t ! R.

The set of SFC processes is quite large and it includes for example all moving average processes,

and more generally any ARIMA process with arbitrary parameters. We also assume the following.

Condition 1 (�nite expectations) The distribution F1 satis�es
R
j~�1jdF1(~�1) < +1 and the

collection of distributions (Gt)
T
t=2 satis�es

R
j�t(~"2; : : : ;~"t)jdG2(~"2)� � � � � dGt(~"t) < +1 for each

t.8

Condition 2 (monotone hazard rate) The inverse hazard rate �(�1) � 1�F1(�1)
f1(�1)

is non-increasing.

Condition 3 (smoothness+fosd) For each t; 
t(�) is nondecreasing and di¤erentiable. Further-

more, there exists a M 2 R+ such that supt fj
0t(�1)jg �M for all �1.

8This condition guarantees that for any 1 � s < t � T , any history (�1; "s), E[jzt (�1; "s;~"s+1; � � � ;~"t) j] < +1.
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2.2 The mechanism design problem

The principal�s problem consists of choosing a mechanism detailing for each period t a recommen-

dation for the agent�s e¤ort et and a level of consumption ct that depend on the sequence of realized

pro�ts �t and (possibly) on a sequence of messages about the environment sent by the agent over

time.

By the revelation principle, we restrict attention to direct mechanisms for which a truthful and

obedient strategy is optimal for the agent. Let �t � �t�=1�� and �t = �t�=1�� . A (deterministic)

direct mechanism 
 = h�t; stiTt=1 consists of a collection of functions �t : �t��t�1 ! E and st : �t�

�t ! R such that �t(�t; �t�1) is the recommended level of e¤ort for period t given the agent�s reports

�t and the observed past pro�ts �t�1, while st(�t; �t�1; �t) is the principal�s payment (i.e. the agent�s

consumption) at the end of period t given the reports �t and the observed pro�ts �t = (�t�1; �t):

Note that st(�t; �t�1; �t) depends also on the current performance �t: Equivalently, the mechanism


 speci�es for each period t and each history (�t; �t�1) a recommended e¤ort level �t(�
t; �t�1)

along with a contingent payment scheme st(�t; �t�1; �) : �t ! R. With a slight abuse of notation,

henceforth we will denote by et(�t) � �t(�
t; �t�1(�t�1)) and by ct(�t) = st(�

t; �t(�t)) respectively

the equilibrium e¤ort and the equilibrium consumption level for period t given �t; where �t(�t) =

(�s(�
s))ts=1 with �s(�

s) de�ned recursively by �s(�s) = �s +
Ps�1
�=0 �

��s�� (�
s�� ; �s���1(�s���1)):

The timing of play in each period t is the following:

� At the beginning of period t; the agent learns �t 2 �t;

� The agent then sends a report �̂t 2 �t;

� Finally, the mechanism reacts by prescribing an e¤ort choice et = �t(�
t; �t�1) and a reward

scheme st(�t; �t�1; �) : �t ! R:

The mechanism 
 is o¤ered to the agent at date 1; after the agent has observed the �rst

realization �1 of the process governing the evolution of �t: If the agent refuses to participate in the

mechanism 
; then both the agent and the principal receive their outside options, which we assume
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to be equal to zero. If, instead, the agent accepts 
; then he is obliged to stay in the relationship

in all subsequent periods.9

Because we will often �nd it convenient to describe the evolution of the agent�s type through an

independent-shock representation (described above), hereafter, we will also consider direct mech-

anisms in which the agent reports the shocks "t in each period t � 2 instead of his period-t type

�t. We will then denote such mechanisms by 
̂ = h�̂t; ŝtiTt=1 where �̂t : �1 � E t � �t�1 ! E and

ŝt : �1 � E t � �t ! R have the same interpretation as the mappings �t and st in the primitive

representation (the one in terms of the �t). Likewise, we will denote by ĉt(�1; "t) and by êt(�1; "t)

the consumption and e¤ort choices that are implemented in equilibrium given (�1; "t):

The optimal mechanism

To ease the understanding of the properties of the optimal mechanism, we start by considering the

optimal e¤ort policy in the absence of any private information.10

Proposition 1 Assume the agent does not possess any private information, i.e. both the evolution

of the environment (as captured by the process for �t) and the agent�s e¤ort choices eT are publicly

observable and veri�able. The optimal contract for the principal then implements the following

e¤ort policy:

 0(eFBt ) = 1 +
T�tX
s=1

(��)s 8t, 8(�1; "t)

In particular, when T = +1; the optimal e¤ort is stationary over time and is implicitly given

by  0(eFB) = 1=[1 � ��]: Likewise, the optimal e¤ort is constant and given by  0(eFB) = 1 when

the manager�s e¤ort has only a transitory e¤ect on the �rm�s performance, i.e. when � = 0:

That the �rst-best e¤ort policy is independent of any variation in the underlying environment is a

consequence of the assumption of separability of the agent�s disutility of e¤ort from the underlying

state �t:
9That participation must be guaranteed only in period one is clearly not restrictive when the principal can ask the

agent to post bonds. Below, we will discuss also situations/implementations where, even in the absence of bonding,

participation can be guaranteed after any history.
10Given the assumptions on  ; eFBt 2 (0; �e) for all t.
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Clearly, the same �rst-best e¤ort policy is implemented in any environment in which the agent�s

initial type �1 is publicly observed and veri�able (equivalently, in any environment in which the

agent contracts with the principal before learning �1), irrespective of the observability of e¤ort

choices and future shocks �t.11

Next, consider the case where the agent possesses relevant private information. Thus assume

that both the evolution of the environment (as captured by the process for �t) and the agent�s e¤ort

choices are the agent�s private information. In addition, suppose that contracting between the agent

and the principal occurs at a time at which the agent is already informed about his period-1 type

�1. The following proposition presents the main characterization result for this environment.

Proposition 2 Assume conditions 1-3 hold. For any �1, let D1;1(�1) � 1 and for any t � 2,

let D1;t(�1) � 
0t(�1) � �
0t�1(�1), with, 

0
1(�1) � 1. Assume that D1;t(�1) � 0 for any �1: Then

consider the e¤ort policy ê� implicitly de�ned, for all t all �1, by12

 0(ê�t (�1)) = 1 +
T�tX
s=1

(��)s � �(�1)D1;t(�1) 00(ê�t (�1)) 8�1;8t � 1; (2)

unless  00+(0) �
h
1 +

PT�t
s=1 (��)

s
i
= [�(�1)D1;t(�1)] in which case ê�t (�1) = 0:

1. For any t and any �1 let

�t(�1) �  0(ê�t (�1))� �� 0(ê�t+1(�1))

[if T is �nite, then �T (�1) �  0(ê�T (�1))]. Suppose the policy ê
� satis�es the following single-

crossing condition"
TX
t=1

�t�1
0t(�1)[�t(�1)� �t(�̂1)]
#
[�1 � �̂1] � 0 8�1; �̂1 2 �1. (3)

Then the recommendation policy

�̂
�
t (�1; "

t; �t�1) = ê�t (�1) 8(�1; "t; �t�1) 2 �1 � E t ��t�1

11As we will show below, this property is however a consequence of the assumption of transferable utility, i.e. of

the fact that both the agent�s and the principal�s preferences are linear in the transfers ct.
12Throughout,  00+ will denote the second right derivative of  :
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together with the output-contingent reward scheme ŝ de�ned below are part of an optimal

mechanism. The reward scheme ŝ is such that

ŝ�1(�1; �1) = S1(�1) + �1(�1)�1

while for any t � 2;

ŝ�t (�1; "
t; �t) = �t(�1)�t

where

S1(�1) �
TX
t=1

�t�1

"
 (ê�t (�1)) +

Z �1

�1

D1;t(s) 
0(ê�t (s))ds� E

�
�t(�1)�̂

�
t (�1;~"

t)
�#

with �̂�t (�1; "
t) � zt(�1; "

t) + ê�t (�1) +
Pt�1
�=1 �

� ê�t�� (�1):

2. Suppose that for any t, either (a) � = 0 and the function �(�)D1;t(�) is non-increasing, or (b)

 (e) = ke2=2 for all e 2 [0; �e] and �(�)[D1;t(�)� ��D1;t+1(�)] is non-increasing [if T is �nite,

then for t = T; �(�)D1;T (�) is non-increasing]. Then the e¤ort policy ê� implicitly given by

(2) satis�es the single-crossing condition (3).

Because this is one of the main results in the paper and because many of the subsequent results

follow from arguments/techniques similar to those used to establish Proposition 2, the proof for

this result is given below instead of being relegated to the Appendix. The reader interested only in

the predictions of the model can however skip this proof and continue with the reading at page 20.

Proof. The structure of the proof is the following. Lemma 1 provides a necessary condition for

incentive compatibility based on the application of a dynamic envelope theorem (as in Proposition

3 in PST) to the agent�s optimization problem. Lemma 2 characterizes the e¤ort policy ê� that

solves the principal�s relaxed problem, where the latter considers only the necessary condition

established in Lemma 1 (along with a certain participation constraint) and ignores all remaining

constraints. Lemma 3 shows that, when the solution to the relaxed program satis�es the single-

crossing condition of (3), then (i) it can be implemented by the linear scheme described in the

proposition, (ii) under this scheme all types �nd it optimal to participate, and (iii) the lowest type

13



�1 receives a zero expected payo¤ in equilibrium. As discussed more in detail below, together these

properties guarantee that the e¤ort policy ê� (equivalently, the recommendation policy �̂
�
) along

with the linear reward scheme ŝ� are part of an optimal mechanism. Finally, Lemma 4 completes

the proof by establishing the result in Part 2.

Given the mechanism 
̂ = h�̂; ŝi, let V 
̂(�1) denote the value function when the agent�s period

one type is �1: This is simply the supremum of the agent�s expected payo¤over all possible reporting

and e¤ort strategies. The mechanism 
̂ is incentive compatible if V 
̂(�1) coincides with the agent�s

expected payo¤ under a truthful and obedient strategy for every �1 2 �1: We then have the

following result.

Lemma 1 The mechanism 
̂ is incentive compatible only if V 
̂(�1) is Lipschitz continuous and

for almost every �1 2 �1

dV 
̂(�1)

d�1
= E

"
TX
t=1

�t�1D1;t(�1) 
0(êt(�1;~"

t))

#
:

Proof of the lemma. Consider the following �ctitious environment. At any point in time, the

agent can misreport his private information but is then �forced�to choose e¤ort so as to perfectly

�hide�his lies. That is, at any period t, and for any given sequence of reports (�̂1; "̂t); the agent

must exert e¤ort et so that �t = �̂t(�̂1; "̂
t), where �̂t(�̂1; "̂t) is the equilibrium pro�t for period t

given (�̂1; "̂t); as de�ned in the Proposition. Now let

êt(�1; "
t; �̂1; "̂

t) = �̂t(�̂1; "̂
t)� zt(�1; "t)� �

t�1X
�=1

���1êt�� (�1; "
t�� ; �̂1; "̂

t�� ) (4)

= �̂t(�̂1; "̂
t)� zt(�1; "t)

��
 
êt�1(�1; "

t�1; �̂1; "̂
t�1) +

t�2X
�=1

�� êt�1�� (�1; "
t�1�� ; �̂1; "̂

t�1�� )

!
= �̂t(�̂1; "̂

t)� zt(�1; "t)� �
�
�̂t�1(�̂1; "̂

t�1)� zt�1(�1; "t�1)
�

denote the e¤ort the agent must exert in period t to meet the target �̂t(�̂1; "̂t) when his true type

is (�1; "t) given that he met the targets (�̂s(�̂1; "̂s))t�1s=1 in all preceding periods, with e1(�1; �̂1) =

�̂1(�̂1)� �1.
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Now �x (�̂1; "̂T ) and let (ĉT ; �̂T ) be the stream of equilibrium payments and pro�ts that, given

the mechanism 
̂; correspond to the sequence of reports (�̂1; "̂T ). For any (�̂1; "̂T ) and given any

sequence of true shocks (�1; "T ), the agent�s payo¤ in this �ctitious environment is given by

ÛA(�1; "
T ; �̂1; "̂

T ) =
TX
t=1

�t�1[ĉt �  (êt(�1; "t; �̂1; "̂t))]

= ĉ1 �  (�̂1 � �1)

+

TX
t=2

�t�1[ĉt �  (�̂t � zt(�1; "t)� �
�
�̂t�1 � zt�1(�1; "t�1)

�
)]

= ĉ1 �  (�̂1 � �1)

+

TX
t=2

�t�1[ĉt �  (�̂t � 
t(�1)� �t("t)� �(�̂t�1 � 
t�1(�1)� �t�1("t�1)))]

Condition 3 implies that ÛA is equi-Lipschitz continuous and di¤erentiable in �1. Now suppose the

mechanism 
̂ is incentive compatible in the unrestricted world where the agent is free to choose

any e¤ort he wants at any point in time. It is then necessarily incentive compatible also in this

�ctitious world where e¤ort is pinned down by (�1; "T ; �̂1; "̂T ) according to (4). The result in the

Lemma then follows directly from Proposition 3 in PST: Letting ÛA(�1; "T ) denote the agent�s

payo¤ when he follows a truthtelling and obedient strategy, we have that 
̂ is incentive compatible

only if V 
̂ is Lipschitz continuous and, for almost every �1 2 �1;

dV 
̂(�1)

d�1
= E

"
@ÛA(�1;~"

T ))

@�1

#

= E

"
 0(ê1(�1)) +

TX
t=2

�t�1[
0t(�1)� �
0t�1(�1)] 0(êt(�1;~"t))
#

= E

"
TX
t=1

�t�1D1;t(�1) 
0(êt(�1;~"t))

#
,

which establishes the result.�

Now, one can think of the principal�s problem as consisting in choosing a pair of contingent

policies h�̂; ĉi so as to maximize her expected payo¤

E[ÛP ] = E

"
TX
t=1

�t�1
h
�̂t(~�1;~"

t)� ĉt(~�1;~"t)
i#
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subject to all IC and IR constraints. Because both the principal�s and the agent�s preferences

are quasilinear, E[ÛP ] can be rewritten as expected total surplus, net of the agent�s expected

(intertemporal) rent:

E[ÛP ] = E

"
TX
t=1

�t�1�̂t(~�1;~"
t)�  (êt(~�1;~"t))

#
� E[V 
̂(~�1)] (5)

Using the result in the previous Lemma and integrating by parts, the agent�s expected (intertem-

poral) rent can in turn be written as

E[V 
̂(~�1)] = V 
̂(�1)+E

"
1� F (~�1)
f(~�1)

dV 
̂(~�1)

d�1

#
(6)

= V 
̂(�1)+E

"
�(~�1)

TX
t=1

�t�1D1;t(~�1) 
0(êt(~�1;~"

t))

#

Finally, substituting (6) into (5), we have that

E[ÛP ] = E

"
TX
t=1

�t�1
�
�̂t(~�1;~"

t)�  (êt(~�1;~"t))� �(~�1)D1;t(~�1) 0(êt(~�1;~"t))
�#
� V 
̂(�) (7)

= E

"
TX
t=1

�t�1

 
zt(~�1;~"

t) + êt(~�1;~"
t) +

Pt�1
�=1 �

� êt�� (~�1;~"
t�� )�  (êt(~�1;~"t))

��(~�1)D1;t(~�1) 0(êt(~�1;~"t))

!#
�V 
̂(�)

Next, consider a relaxed program for the principal that consists of choosing an e¤ort policy ê

and a constant V 
̂(�) � 0 so as to maximize E[ÛP ]: The solution to this relaxed program is given

in the following lemma.

Lemma 2 Suppose that, for any �1 2 �1 any t, D1;t(�1) � 0. The (almost-unique) solution to

the principal�s relaxed program is then given by V 
̂(�) = 0 along with the e¤ort policy ê� as in the

Proposition.

Proof of the Lemma. The result follows directly from pointwise maximization of (7). The

assumptions that  is a continuously di¤erentiable function with  (e) = 0 for all e < 0;  00(e) > 0

and  000(e) � 0 for all e 2 [0; �e],  0(e) = K for all e > �e, together with D1;t(�1) � 0 for all

�1, imply that, for all t all (�1; "t), the principal�s payo¤ ÛP is strictly increasing in et for all
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et < ê�t (�1); and strictly decreasing in et for all et > ê�t (�1), where ê
�
t (�1) is implicitly given by (2)

when  00+(0) <
h
1 +

PT�t
s=1 (��)

s
i
= [�(�1)D1;t(�1)] and ê�t (�1) = 0 otherwise. �

To prove the result in part 1, it then su¢ ces to show that, when the e¤ort policy in (2) satis�es

the single-crossing condition (3), it can be implemented by the linear scheme proposed in the

Proposition. That is, it su¢ ces to show that, under this scheme, (i) the agent �nds it optimal

to participate in period one, (ii) the agent �nds it optimal to report all his private information

truthfully and obey to the principal�s recommendations, and (iii) the lowest period-1 type�s expected

payo¤ is equal to his outside option, i.e. V 
̂(�) = 0. This is shown in the following lemma.

Lemma 3 Assume the e¤ort policy ê� that solves the relaxed program (as implicitly given by (2))

satis�es the single-crossing condition (3). Then the mechanism 
̂ = h�̂t; ŝtiTt=1 where �̂t and ŝt

are, respectively, the recommendation policy and the (output) contingent reward scheme described

in the Proposition, implements the e¤ort policy ê�, it induces any type �1 to participate and gives

the lowest period-1 type �1 a zero expected payo¤.

Proof of the Lemma. Because neither �̂t nor ŝt depend on "t; it is immediate that the agent

�nds it optimal to report the shocks truthfully. Furthermore, conditional upon reporting �̂1 in

period 1; it is also immediate that, at any period t � 1 the agent �nds it optimal to follow the

principal�s recommendation and choose e¤ort ê�t (�̂1); irrespective of his true period-1 type �1, the

true shocks "t and the history of past performances �t�1. To see this, note that at any period

t � 1; and for any history (�1; "t; �̂1; "̂t; �t�1; et�1); the problem that the agent faces in period t is

to choose a (possibly contingent) plan (et; et+1(�) : : : ; eT (�)) to maximize

E

"
TX
�=t

���t

 
�� (�̂1)

 
~e� +

��1X
�=1

��~e��� + z� (�1;~"
� )

!
�  (~e� )

!
j �1; "t

#
The solution to this problem is given by the (non-contingent) e¤ort policy implicitly de�ned by

 0(et) = �t(�̂1) +

TX
�=1

(��)��t+� (�̂1)

When the sequence
�
�t(�̂1)

�T
t=1

is the one speci�ed in the Proposition, the e¤ort policy that solves

these conditions is the policy ê� that solves the relaxed program.
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It remains to show that each type �1 �nds it optimal to report truthfully and to participate,

and that type �1 expects a zero payo¤ from the relationship. That each type �1 �nds it optimal

to participate is guaranteed by the fact that his expected payo¤ (under a truthful and obedient

strategy) is given by
TX
t=1

�t�1
Z �1

�1

D1;t(s) 
0(e�t (s))ds

which is non-negative because D1;t(�1) � 0 and  0(e) � 0: To see that each type �1 �nds it optimal

to report truthfully let

U(�1; �̂1) �
TX
t=1

�t�1
Z �̂1

�1

D1;t(s) 
0(e�t (s))ds

+E

"
TX
t=1

�t�1�t(�̂1)[zt(�1;~"
t)� zt(�̂1;~"t)

#
]

The function U(�1; �̂1) simply represents the payo¤ that type �1 obtains by mimicking type �̂1.

Next note that

@U(�1; �̂1)

@�1
=

TX
t=1

�t�1�t(�̂1)

0
t(�1):

The single-crossing condition in the Proposition guarantees that"
dU(�1; �1)

d�1
� @U(�1; �̂1)

@�1

#
[�1 � �̂1] � 0
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To see this note that

dU(�1; �1)

d�1
� @U(�1; �̂1)

@�1
=

TX
t=1

�t�1D1;t(�1) 
0(ê�t (�1))�

TX
t=1

�t�1�t(�̂1)

0
t(�1)

=
TX
t=1

�t�1

(
[
0t(�1)� �
0t�1(�1)] 0(ê�t (�1))

�
0t(�1)[ 0(ê�t (�̂1))� �� 0(ê�t+1(�̂1))]

)
=  0(ê�1(�1))�  0(ê�1(�̂1)) + �� 0(ê�2(�̂1))

+�
02(�1) 
0(ê�2(�1))� �� 0(ê�2(�1))

+:::

= [ 0(ê�1(�1))� �� 0(ê�2(�1))]� [ 0(ê�1(�̂1))� �� 0(ê�1(�̂1))]

+�
02(�1)[ 
0(ê�2(�1))� �� 0(ê�3(�1))]

��
02(�1)[ 0(ê�2(�̂1))� �� 0(ê�3(�̂1))]

+::::

=

TX
t=1

�t�1
0t(�1)[�t(�1)� �t(�̂1)]:

The result then follows from Lemma 12 in PST.

Lemma 4 Suppose that, for any t, either (a) � = 0 and the function �(�)D1;t(�) is non-increasing,

or (b)  (e) = ke2=2 for all e 2 [0; �e] and �(�)[D1;t(�) � ��D1;t+1(�)] is non-increasing [if T is

�nite, then �(�)D1;T (�) is non-increasing]. Then the e¤ort policy ê� implicitly given by (2) satis�es

condition (3), i.e., for any �1; �̂1 2 �1 :"
TX
t=1

�t�1
0t(�1)[�t(�1)� �t(�̂1)]
# h
�1 � �̂1

i
� 0

Proof of the lemma. We establish the result by showing that, under the assumptions in

the lemma, �t(�1) is non-decreasing in �1, for each t � 1. Consider �rst case (a). When � = 0;

�t(�1) =  0(ê�t (�1)). It then su¢ ces to show that the e¤ort policy ê
�
t (�1) implicitly given by (2) is

non-decreasing. To see that this is indeed the case, it is enough to recognize that the dynamic virtual

surplus (as de�ned in 7) has increasing di¤erences in et and ��(�1)D1;t(�1) and, by assumption,

�(�1)D1;t(�1) is non-increasing.13

13The relevant terms of the dynamic virtual surplus are et +
PT�t

s=1 (��)
set �  (et)� �(�1)Dt(�1) 

0(et).
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Next, consider case (b). For any t < T and any �01 > �001,

�t(�
0
1)� �t(�001) =

�
 0(ê�t (�

0
1))� �� 0(ê�t+1(�01))

�
�
�
 0(ê�t (�

00
1))� �� 0(ê�t+1(�001))

�
=

"
1 +

T�tX
s=1

(��)s � �(�01)D1;t(�01)k � ��
 
1 +

T�t�1X
s=1

(��)s � �(�01)D1;t+1(�01)k
!#

�
"
1 +

T�tX
s=1

(��)s � �(�001)D1;t(�001)k � ��
 
1 +

T�t�1X
s=1

(��)s � �(�001)D1;t+1(�001)k
!#

= k
�
�(�001)

�
D1;t(�

00
1)� ��D1;t+1(�001)

�
� �(�01)

�
D1;t(�

0
1)� ��D1;t+1(�01)

��
� 0

where the inequality follows from the assumption that �(�)[D1;t(�)� ��D1;t+1(�)] is non-increasing.

Likewise, when T is �nite, then

�T (�
0
1)� �T (�001) =  0(ê�T (�

0
1))�  0(ê�T (�001)) = k

�
�(�001)D1;T (�

00
1)� �(�01)D1;T (�01)

�
� 0

where the inequality follows from the assumption that �(�)D1;T (�) is non-increasing. �

This completes the proof.

Note that, because the agent is indi¤erent over the way the constant term S(�1) is distributed

over time, an equivalent (linear) implementation consists in paying the agent in each period t a

�xed wage

 (ê�t (�1)) +

Z �1

�1

D1;t(s) 
0(ê�t (s))ds� E

�
�t(�1)�̂

�
t (�1;~"

t)
�

plus a fraction �t(�1) of the current pro�ts �t, with S1(�1) now de�ned by

S1(�1) =  (ê�1(�1)) +

Z �1

�1

 0(ê�1(s))ds� �1(�1)�̂�1(�1).

While the particular way the constant term S1(�1) is distributed over time is clearly inconsequential

for incentives, certain choices may have the advantage of guaranteeing that, if the agent has the

option to leave the relationship at any point in time, he does not �nd it optimal to do so. To see

this, suppose that T = +1 and that all shocks are strictly positive, i.e. �1; "s > 0 all s: Then

front-loading the payment

�
1X
t=1

�t�1E
�
�t(�1)�̂

�
t (�1;~"

t)
�

20



and then paying in each period

 (ê�t (�1)) +

Z �1

�1

D1;t(s) 
0(ê�t (s))ds+ �t(�1)�t

guarantees participation in each period, at any truthful history.

We now turn to the properties of the optimal e¤ort policy. Because D1;t � 0 and  0 is convex,

the optimal e¤ort policy involves downward distortions. These distortions in turn depend on the

�rst-period inverse hazard rate �(�1) and on the function D1;t, which captures the e¤ect of �1

on both �t and �t�1, taking into account the persistent e¤ect of e¤ort. When the process for �t

satis�es condition SFC, these distortions are independent of the realizations of the shocks "t and

of their distributions Gt. Whether ê�t (�1) increases or decreases with t then depends entirely on

the dynamics of D1;t(�1) as illustrated in the following examples, where the conditions of Part 2 of

Proposition 2 are clearly satis�ed.

Example 1 Suppose that T =1 and that �t evolves according to an AR(1) process

�t = ��t�1 + "t

for some � 2 (0; 1) with � > � � 0. Then D1;t(�1) = �t�2 (� � �) for all �1 2 �1. It follows that

ê�t (�1) increases over time and

lim
t!1

ê�t (�1) = 1=[1� ��] = eFB 8�1.

Example 2 Assume that each �t is i.i.d., so that D1;t(�1) = 0 for all t � 2 and all �1. Then e¤ort

is distorted only in the �rst period, i.e. ê�1(�1) < eFB1 and ê�t = eFBt for all t � 2:

Example 3 Suppose �t follows a random walk, i.e.

�t = �t�1 + "t

and that e¤ort has only a contemporaneous e¤ect on the �rm�s pro�ts (i.e. � = 0). Then ê�t (�1) is

constant over time and coincides with the static optimal e¤ort.
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The result in Example 1 is actually quite general; most ARIMA(k,q,m) processes have the

property that limt!1D1;t = 0; where D1;t are nonnegative scalars decreasing in t that depend on

the parameters (k,q,m) of the ARIMA process.

Example 2 is the case considered by Edmans and Gabaix (2008) where it is also assumed that

� = 0. However, contrary to the case considered here, they assume that contracting occurs before

the agent learns his �rst-period type. As discussed above, together with risk neutrality this implies

that the sequence of e¤ort decisions is always e¢ cient.

Finally, the random walk case of Example 3 is also a process that is sometimes considered in the

literature (especially in continuous-time Brownian models). In this case, because e¤ort is constant

over time, the optimal mechanism can be implemented by o¤ering in period one the same menu

of linear contracts that the principal would o¤er in a static relationship, and then committing to

using the contract selected in period one in each subsequent period. Each linear contract (indexed

by �1) has a �xed payment of

S(�1) �  (ê�(�1)) +

Z �1

�1

 0(ê�(s))ds� �(�1)[�1 + ê�(�1)]

together with a piece-rate �(�1): These contracts are reminiscent of those derived in La¤ont and

Tirole (1986) in a static regulatory setting. Contrary to the static case, the entire linear scheme

S(�1)+�(�1)~�t � as opposed to the point S(�1)+�(�1)[�1+ ê�(�1)] � is now used over time. This

is a direct consequence of the fact that the �rm�s performance ~�t now changes stochastically over

time in response to the shocks ~"t. Also note that while the optimal mechanism can be implemented

by using in each period the static optimal contract for period one, this does not mean that the

dynamic optimal mechanism coincides with a sequence of static optimal contracts, as in Baron and

Besanko (1984). Rather the opposite. In fact, because the agent�s type �t (and its distribution)

changes over time, the sequence of static optimal contracts entails a di¤erent choice of e¤ort for

each period. What the result then implies is that, despite the lack of stationarity, it is optimal for

the principal to commit to the same reward scheme (and to induce the same e¤ort) as if the agent�s

type were constant over time.

22



Out of curiosity, also note that the optimal reward scheme (and the corresponding e¤ort dy-

namics) when �t follows a random walk coincide with the one that the principal would o¤er in an

environment in which the shocks have only a transitory (as opposed to permanent) e¤ect on the

�rm�s performance. More generally, assuming E[~"t] = 0 for all t > 1 and letting (ats)s;t denote arbi-

trary scalars, the optimal contract is the same when �t = 
0t�1+
Pt
s=2 a

t
s"s as when �t = 
0t�1+ "t.

Seniority. While the examples above highlight interesting properties for the dynamics of

e¤ort, they also have important implications for the dynamics of the optimal reward scheme. What

these examples have in common is the fact that the e¤ect of the agent�s �rst-period type on his

future types declines over time (strictly in the �rst example). We �nd this property of �declining

correlation�to be reasonable for many stochastic processes describing the evolution of the agent�s

productivity. As anticipated in the introduction, this property has implications for the dynamics

of the optimal reward scheme. In particular, it helps understand why it may be optimal to reward

managers with a longer tenure with a more high-powered incentive scheme, e.g. by giving them

more equity in the �rm. To illustrate, consider the case presented in Example 1 above, and note

that in this case

�t(�1) = 1� �(�1) (� � �)�t�2[ 00(ê�t (�1))� ��� 00(ê�t+1(�1))]. (8)

This term, which captures the power of the incentive scheme, is typically increasing in t (it is easy

to see that this is the case, for example, when � = 0� in which case �t(�1) reduces to  0(ê�t (�1))� or

when  is quadratic).

Note that the reason why the power of the incentive scheme here increases over time is not

driven by variations of the manager�s preferences. It is merely a consequence of the fact that, when

he was hired, the manager possessed relevant private information about his ability to generate

pro�ts for the �rm. In the case of an AR(1) process, the correlation between the manager�s initial

type and his future types declines over time. This implies that, to minimize the informational

rents that the �rms�shareholders must leave to the manager, it is optimal to (downward) distort

the agent�s e¤ort more when he is �young� than when he is �old�. Because the manager�s e¤ort
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is increasing in the sensitivity �t of his reward scheme to the �rm�s performance �t; this in turn

implies that it is optimal to give the manager a more �high powered�incentive scheme when he is

�senior�than when he is a �young�.

Clearly, as mentioned in the introduction, other explanations for seniority have been suggested

in the literature. Gibbons and Murphy (1991), for example, argue that career-concern incentives

decline over time and, by implication, managers with a higher tenure must be provided with stronger

�explicit contracts�, i.e. with more high-powered incentive schemes. In their model, explicit incen-

tives are a substitute for career-concern incentives.14

Another explanation for the correlation between seniority and the power of the incentive scheme

may come from the fact that the disutility of e¤ort may decline over time, most notably as the

result of learning by doing. While we �nd such explanations plausible in certain environments,

what our results indicate is that, even in the absence of any assumption of time-variant prefer-

ences/technologies/career concerns, seniority may arise quite naturally as the result of an optimal

intertemporal screening problem in settings in which the correlation between the manager initial

type/talent and his future ones declines over time. We believe this is a plausible assumption for

most environments of interest.

3 Fully-contingent e¤ort policies

Consider now an environment in which the process for �t does not satisfy the SFC condition. When

this is the case, the optimal e¤ort policy typically depends not only on �1 but also on the realization

of the shocks "t. In many cases of interest, the optimal mechanism can still be implemented by a

menu of linear contracts, but the agent must now be allowed to change the slope of these contracts

over time in response to the shocks. To illustrate, assume that � = 0; so that e¤ort has only a

transitory e¤ect on the �rm�s performance, that T < +1,15 that the stochastic process governing

the evolution of �t is Markov so that each kernel Ft(�j�t�1) depends on �t�1 only through �t�1.
14For a detailed analysis of career concerns incentives, see Dewatripont, Jewitt and Tirole (1999).
15The results in this section actually extend to T = +1 under mild additional conditions.
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Finally, assume that, for any t any �t�1; Ft(�j�t�1) is absolutely continuous and strictly increasing

over �t with density ft(�tj�t�1) > 0 for all �t 2 (�t;
��t), and that, for each t; there exists an

integrable function Bt : �t ! R[f�1;+1g such that, for any �t 2 �t; @Ft(�tj�t�1)=@�t�1 exists

and j@Ft(�tj�t�1)=@�t�1j � Bt(�t):
16

Following steps similar to those used in the proof of Proposition 2, it is easy to see that the

solution to the principal�s relaxed program is an e¤ort policy ê� that is implicitly de�ned by the

following conditions17

 0(ê�t (�1; "
t)) = 1� �(�1)

@zt(�1; "
t)

@�1
 00(ê�t (�1; "

t)) (9)

where (z;G) is any independent shock representation for the process that corresponds to the kernels

F = hFt(�j�)iTt=1 :

Equivalently, this condition can be expressed in terms of the primitive representation F as

follows. Consider the mechanism 
 where in each period the agent reports �t (as opposed to "t).

Following steps similar to those in the proof of Proposition 2 (see also Proposition 2 in PST), one

can show that, in any IC mechanism, after almost every truthful history18 ht�1; the value function

V 

�
�t�1; �t

�
is Lipschitz continuous in �t and, for almost every �t,

@V 
(�t)

@�t
= E~�T j�t

"
TX
�=t

���1J�t (~�
�
) 0(e� (~�

�
))

#
(10)

where for all t, J tt
�
�t
�
� 1, and for any � > t;

J�t (�
� ) �

X
K2N, l2NK+1:
t=l0<:::<lK=�

KY
k=1

I lklk�1(�
lk);

with

Iml (�
m) � �@Fm(�mj�

m�1)=@�l
fm(�mj�m�1)

:

16Throughout, if �t�1 = �t�1, then @Ft(�tj�t�1)=@�t�1 denotes the right derivative of Ft with respect to �t�1:
17Again, this presumes that the RHS of (9) evaluated at e = 0 is positive, which is the case when  00+(0) is not too

high. When this is not the case, then ê�t (�1; "
t) = 0:

18A truthful history ht�1 is one that is reached by reporting �t�1 truthfully and following the principal�s e¤ort

recommendations in each period s = 1; :::; t� 1. For simplicity, whenever there is no risk of confusion, we will denote
a truthful history simply by �t�1:
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The function J�t (�
� ) is an impulse-response function that captures the total e¤ect of a variation of

�t on the distribution of �� taking into account all e¤ects on intermediate types (�t+1; :::; ���1):

While condition (10) applies to any (di¤erentiable) process, in the case of a Markov process, be-

cause each Iml (�
m) is equal to zero for all l < m�1 and depends on �m only through (�m; �m�1); the

impulse response J�t (�
� ) reduces to a function of (�t; :::; �� ) only and can be written as J�t (�t; �t+1; :::; �� ) =

��k=t+1I
k
k�1 (�k; �k�1), with each I

k
k�1 given by

Ikk�1 (�k; �k�1) =
�@Fk(�kj�k�1)=@�k�1

fk (�kj�k�1)
.

Applying condition (10) to t = 1, we then have that

V 
 (�1) = E(~�2;:::;~�T )j�1

"
TX
t=1

�t�1
Z �1

�1

J t1

�
s; ~�2; : : : ; ~�t

�
 0(et(s; ~�2; : : : ; ~�t))ds

#
.

Integrating by parts, this implies that the expected ex-ante surplus for the agent is given by

E
h
V 
(~�1)

i
= E~�T

"
�(~�1)

TX
t=1

�t�1J t1(~�
t
) 0
�
et(~�

t
)
�#
.

The principal�s expected payo¤ is thus given by

E[UP ] = E

"
TX
t=1

�t�1
n
~�t + êt(~�

t
)�  (êt(~�

t
))� �(~�1)J t1(~�

t
) 0(et(~�

t
))
o#
� V 
(�1).

Provided that J t1
�
�t
�
� 0 for each t all �t, which is the case under FOSD, the optimal e¤ort policy

can then be obtained by pointwise maximization of E[UP ] and is given by

 0(e�t
�
�t
�
) = 1� �(�1)J t1

�
�t
�
 00(e�t

�
�t
�
)

if 1� �(�1)J t1
�
�t
�
 00(0) > 0 and by e�t

�
�t
�
= 0 otherwise.

This condition is the analogue of (9) expressed in terms of the primitive representation (the

one where the agent reports �t as opposed to "t). From the same arguments as in the previous

section, it then follows that, if there exists a payment scheme s that implements the e¤ort policy

e� and gives zero expected surplus to the lowest period-one type (i.e. such that V 
(�1) = 0) then,

together with the e¤ort policy e�; such a payment scheme is part of an optimal mechanism.
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Now consider the following class of payment schemes. In each period t the principal pays the

agent a �xed amount St(�t) and a linear bonus �t(�t)�t; where both St and �t are now allowed to

depend on the entire history of reports �t (equivalently, St and �t are chosen by the agent out of

a menu, as a function of the observed shocks �t). In what follows we show that when the desired

e¤ort policy e� satis�es a certain single-crossing condition, which is the analogue of condition (3)

in the previous section, then the policy e� can be implemented by a reward scheme in this class.

To see this, for any t; let

�t(�
t) =  0(e�t (�

t)):

The sequence of �xed payments St(�t) is then de�ned recursively as follows. For t = T; let

ST (�
T ) �  (e�T (�

T )) +

Z �T

�T

 0(e�T (�
T�1; s))ds� �T (�T )��T (�T )

while for any t < T ,

St(�
t) �  (e�t (�

t))� �t(�t)��t (�t) (11)

+

Z �t

�t

E
(~�t+1;:::;

~�T )js

"
TX
�=t

���tJ�t

�
s; ~�t+1; : : : ; ~��

�
 0(e�t (�

t�1; s; ~�t+1 : : : ; ~�� ))

#
ds

�E
~�
T j�t

"
TX

�=t+1

���t
�
S� (~�

�
) + �� (~�

�
)��� (~�

�
)�  (e�� (~�

�
))
�#

where, for any j = 1; :::; T; any �j 2 �j ; ��j (�j) � �j + e
�
j (�

j).

Now suppose t = T and that the history of past reports is �̂
T�1

: It is then immediate that,

irrespective of the true shocks �T , if the agent reports �̂T in period T he then �nds it optimal

to choose e¤ort e�T (�̂
T�1

; �̂T ). Because the environment is Markov, it is also immediate that,

irrespective of whether the history of past reports �̂
T�1

was truthful, an agent whose period-T type

is �T always �nds it optimal to report truthfully in period T: This follows from arguments similar

to those used to establish Proposition 2. To see this, note that the continuation payo¤ that type

�T obtains by reporting �̂T is simply19

uT (�T ; �̂T ; �̂
T�1

) �
Z �̂T

�T

 0(e�T (�̂
T�1

; s))ds+ �T (�̂
T�1

; �̂T )[�T � �̂T ]. (12)

19 In what follows, by continuation payo¤, we mean the discounted sum of the future �ow payo¤s.
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Now, let

uT (�T ; �̂
T�1

) � uT (�T ; �T ; �̂
T�1

)) =

Z �T

�T

 0(e�T (�̂
T�1

; s))ds (13)

denote the continuation payo¤ that type �T obtains by reporting truthfully. It is then immediate

that "
duT (�T ; �̂

T�1
)

d�T
� @uT (�T ; �̂T ; �̂

T�1
)

@�T

#
=  0(e�T (�̂

T�1
; �T ))� �T (�̂

T�1
; �̂T )

=  0(e�T (�̂
T�1

; �T ))�  0(e�T (�̂
T�1

; �̂T ))

and hence "
duT (�T ; �̂

T�1
)

d�T
� @uT (�T ; �̂T ; �̂

T�1
)

@�T

#
[�T � �̂T ] � 0 (14)

if and only if e�T (�̂
T�1

; �) is increasing. As it is well known, condition (14) guarantees that

truthtelling is optimal (see e.g. Garcia, 2005).

Now, by induction, suppose that, irrespective of whether he has reported truthfully in the past,

at any period � > t, the agent �nds it optimal to report �� truthfully. Then, consider the agent�s

incentives in period t: Take any history of reports �̂
t�1

: Again, because the environment is Markov,

it is irrelevant whether this history corresponds to the truth or not. Then suppose the agent�s true

type in period t is �t and he announces �̂t: His continuation payo¤ is then given by

ut(�t; �̂t; �̂
t�1
) = ut(�̂t; �̂

t�1
) + �t(�̂

t�1
; �̂t)[�t � �̂t] (15)

+E~�t+1j�t
h
ut+1(~�t+1; �̂

t�1
; �̂t)

i
� E~�t+1j�̂t

h
ut+1(~�t+1; �̂

t�1
; �̂t)

i
where, for any period l � 1 and any (�l; �̂

l�1
),

ul(�l; �̂
l�1
) =

Z �l

�l

E(~�l+1;:::;~�T )js

"
TX
�=l

���lJ�l

�
s; ~�l+1; : : : ; ~��

�
 0(e�l (�̂

l�1
; s; ~�l+1; : : : ; ~�� ))

#
ds (16)

is the equilibrium continuation payo¤ under a truthful and obedient strategy starting from period

l onwards, given the current type �l and the history of past reports �̂
l�1
: It follows that

dut(�t; �̂
t�1
)

d�t
= E(~�t+1;:::;~�T )j�t

"
TX
�=t

���tJ�t

�
�t; ~�t+1; : : : ; ~��

�
 0(e�t (�̂

t�1
; �t; ~�t+1; : : : ; ~�� ))

#
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and that20

@ut(�t; �̂t; �
t�1)

@�t
= �t(�̂

t�1
; �̂t) +

@E~�t+1j�t
h
ut+1(~�t+1; �̂

t�1
; �̂t)

i
@�t

(17)

= E(~�t+1;:::;~�T )j�t

"
TX
�=t

���tJ�t

�
�t; ~�t+1; : : : ; ~��

�
 0(e�t (�̂

t�1
; �̂t; ~�t+1 : : : ; ~�� ))

#
:

Once again, a su¢ cient condition for ut(�t; �̂
t�1
) � ut(�t; �̂t; �̂

t�1
) for any �̂t is that"

dut(�t; �̂
t�1
)

d�t
� @ut(�t; �̂t; �̂

t�1
)

@�t

#
[�t � �̂t] � 0; (18)

or equivalently that

E~�t+1;:::;~�T j�t

"
TX
�=t

���tJ�t

�
�t; ~�t+1; : : : ; ~��

�
[�� (�̂

t�1
; �t; ~�t+1 : : : ; ~�� )� �� (�̂

t�1
; �̂t; ~�t+1 : : : ; ~�� )]

#
[�t��̂t] � 0:

(19)

This condition is the equivalent of condition (3) in the previous section. Note that, this condition

is satis�ed, for example, when the e¤ort policy is strongly monotone, i.e. when at any period t;

e�t (�
t) is nondecreasing in �t: We then have the following result.

Proposition 3 Assume the evolution of �t is governed by a Markov process satisfying the assump-

tions described above and that, for each period t; �t = �t + et.

1. Any policy e satisfying the single-crossing condition (19) for any t; any (�̂
t�1

; �̂t; �t), can be

implemented by the following linear pay package s: In every period t; given any history or

reports �t and any history of observed performances �t, the principal pays the agent

st(�
t; �t) = St(�

t) + �t(�
t)�t

where �t(�t) �  0(et(�
t)) and where the �xed payment St(�) is as in (11).

2. Let e� be the e¤ort policy implicitly de�ned, for all t and all �t 2 �t; by

 0(e�t (�
t)) = 1� �(�1)J t1

�
�t
�
 00(e�t (�

t)) (20)

20The expression in (17) is obtained by integration by parts, using (16).
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unless  00(0) � 1=[�(�1)J
t
1(�

t)] in which case e�t
�
�t
�
= 0: Assume e� satis�es the single-

crossing condition of (19). Then e�, together with the linear pay package s� described above

are part of an optimal mechanism.

A few remarks are in order. First note that the result in Proposition 3 complements that in

Proposition 2: while Proposition 3 does not restrict the process for �t to satisfy the SFC condition,

it restricts �t to follow a Markov process, a property that is not required by Proposition 2.

Second, note that the linear scheme in Proposition 3 has the appealing property of guaranteeing

that, even if the agent has the option of leaving the relationship at any point in time, he never �nds

it optimal to do so, i.e. it guarantees participation at any period, after any history.

Third note that a key distinction between the linear scheme of Proposition 3 and that of

Proposition 2 is that the agent must now be allowed to propose changes to his pay package over

time. These changes are in response to the shocks �t: This �nding is consistent with some of the

recent literature on managerial compensation which documents that CEO compensation is often

proposed by CEOs themselves (see e.g. Bebchuck and Fried, 2004). In our setting, the �rm�s

shareholders (the principal) set in advance broad restrictions on the CEO�s pay package but then

delegate to the latter the choice of the speci�c terms of the reward scheme so as to permit him

to respond to (unveri�able) variations in the environment. In particular, the optimal mechanism

involves o¤ering the CEO a menu of linear contracts with memory, in the sense that the set of

possible packages available for period t depend on the reward packages selected in past periods (as

indexed by �t�1).

Fourth, note that a form of seniority is likely to hold also in this environment, albeit only in

expectation: by inspecting (20) one can see that the power of the incentive scheme, as captured

by et increases, on average, with the manager�s tenure, provided that E~�tj�t�1
h
J t1

�
�t�1; ~�t

�i
�

J t�11

�
�t�1

�
. As discussed in the introduction, this property is satis�ed by many stochastic processes

that feature a correlation between �1 and �t declining in t:

Lastly note that, while the possibility of implementing the policy e� that solves the relaxed
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program (as given by (20)) with a menu of linear schemes is certainly appealing, such a possibility

cannot be taken for granted. In fact, in many cases of interest e� does not satisfy the single-

crossing condition of (19). To see this, assume that, for any t > 1 and any �t�1; Itt�1 (�; �t�1) is

continuous and lim�t!�t I
t
t�1 (�t; �t�1) = lim�t!��t I

t
t�1 (�t; �t�1) = 0:21 Then for any 1 < s � � ;

any ���s; lim�s!�s J
�
1 (�1; :::; �s; :::�� ) = lim�s!��s J

�
1 (�1; :::; �s; :::�� ) = 0: This in turn implies that

lim�s!��s e
�
�

�
���s; �s

�
= lim�s!�s e

�
s

�
���s; �s

�
= eFBs . The policy e��

�
���s; �s

�
is then typically non-

monotone in �s, for any � � s any ���s; which makes it di¢ cult (if not impossible) to satisfy

(19).

Motivated by the aforementioned considerations about the possible di¢ culties of implementing

the optimal e¤ort policy with linear schemes, we now consider an alternative implementation based

on the �trick�used to establish Lemma 1 in the proof of Proposition 2. The idea is to charge the

agent a su¢ ciently large penalty L whenever, given the announcements �t, the observed pro�ts

are di¤erent from the equilibrium ones ��t (�
t). To see how this permits one to relax condition

(19), suppose that in all periods t < T the principal uses the same reward scheme as in Part 1 in

Proposition 3, whereas at t = T; she uses the following scheme

sT (�
T ; �T ) =

(
 
�
e�T (�

T )
�
+
R �T
�T

 0(e�T (�
T�1; s))ds if �T = ��T (�

T )

�L otherwise
. (21)

Note that, conditional on �meeting the target�, under the new scheme, for any sequence of reports

�T ; the agent receives exactly the same compensation he would have obtained under the original

linear scheme by choosing e¤ort in period t so as to attain pro�ts �T (�T ). Provided that L is large

enough, it is then immediate that deviations from the equilibrium strategy are less pro�table under

the new scheme than under the original linear one. In particular, the agent�s continuation payo¤

in period T , after he has reported (�̂
T
) and experienced a shock �T in period t, is now given by

ûT (�T ; �̂T ; �̂
T�1

) �
Z �̂T

�T

 0(e�T (�̂
T�1

; s))ds+  
�
�T (�̂

T�1
; �̂T )� �̂T

�
�  

�
�T

�
�̂
T�1

; �̂T

�
� �T

�
=

Z �̂T

�T

 0(e�T (�̂
T�1

; s))ds+  (e�T (�̂
T�1

; �̂T ))�  (e�T (�̂
T�1

; �̂T ) + �̂T � �T )

21Note that, under our assumption of full support (i.e. Ft strictly increasing) over �t; these conditions hold e.g.

when ��t < +1 and when Ft is an atomless distribution with density strictly positive over [�t; ��t]:
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rather than uT (�T ; �̂T ; �̂
T�1

) as in Equation (12). Irrespective of whether �̂
T�1

was truthful or not,

incentive compatibility is then ensured in period T (i.e. the agent �nds it optimal to report �T

truthfully and then choose the equilibrium level of e¤ort e�T (�̂
T�1

; �T )) if the e¤ort policy e� satis�es

the analogue of condition (14) with uT (�T ; �̂T ; �T�1) now replaced by the function ûT (�T ; �̂T ; �T�1),

that is, if22 h
 0(e�T (�̂

T�1
; �T ))�  0(e�T (�̂

T�1
; �̂T ) + �̂T � �T )

i h
�T � �̂T

i
� 0. (22)

Note that condition (22) is clearly weaker than condition (19) which requires [ 0(e�T (�̂
T�1

; �T )) �

 0(e�T (�̂
T�1

; �̂T ))][�T � �̂T ] � 0: Moving from the linear scheme to this alternative scheme thus

permits one to implement e¤ort policies that are not necessarily monotone in the shock �T . It is

easy to see that condition (22) is equivalent to requiring that the pro�t function �T (�̂
T�1

; �) (as

opposed to the e¤ort policy e�T (�̂
T�1

; �)) being non-decreasing. Absent the dependence on history,

this is the same result found by La¤ont and Tirole (1993, A1.4) for the static case.

Now suppose the principal replaces the entire linear scheme s� with the incentive scheme s

recursively de�ned, for each t; as follows

st(�
t; �t) =

8>>><>>>:
 (e�t (�

t)) +
R �t
�t
E
(~�t+1;:::;

~�T )js

hPT
�=t �

��tJ�t (s; ~�t+1; : : : ; ~�� ) 
0(e�t (�

t�1; s; ~�t+1 : : : ; ~�� ))
i
ds

�E
~�
T j�t

hPT
�=t+1 �

��t
�
s� (~�

�
; ���(~�

�
))�  (e�� (~�

�
))
�i

if �t = ��t (�
t)

�L otherwise.
(23)

where ���(~�
�
) � (��s(�

s))�s=1: Note that, for t = T; this scheme is the same as the one in (21).

Now suppose, by induction, that under the scheme s de�ned above, truthful reporting is optimal

for the agent in each period � > t, irrespective of the period-� history (recall that, because the

environment is Markov, if truthful reporting is optimal on the equilibrium path, i.e. at a truthful

period-� history, then it is optimal at all period-� histories). Provided L is large enough, the

agent�s period-t continuation payo¤ under this scheme when his period-t type is �t, he reports �̂t,

22As mentioned above, note that the payo¤ under truthtelling under the new scheme is exactly the same as under

the original scheme. That is uT (�T ; �̂
T�1

) continues to be as in (13).
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and the sequence of past reports is �̂
t�1
, is then given by

ût(�t; �̂t; �̂
t�1
) = ut(�̂t; �̂

t�1
) +  (e�t (�̂

t�1
; �̂t))�  (e�t (�̂

t�1
; �̂t) + �̂t � �t)

+E~�t+1j�t
h
ut+1(~�t+1; �̂

t�1
; �̂t)

i
� E~�t+1j�̂t

h
ut+1(~�t+1; �̂

t�1
; �̂t)

i
,

where, for any period l � 1 and any (�l; �̂
l�1
), ul(�l; �̂

l�1
) continues to denote the equilibrium

continuation payo¤, as de�ned in (16). Incentive compatibility is then guaranteed in period t if

condition (18) holds, that is, if

E~�t+1;:::;~�T j�t

2664
 0(e�t (�̂

t�1
; �t))�  0(e�t (�̂

t�1
; �̂t) + �̂t � �t)

+
PT
�=t+1 �

��tJ�t

�
�t; ~�t+1; : : : ; ~��

�
�[ 0(e�� (�̂

t�1
; �t; ~�t+1 : : : ; ~�� ))�  0(e�� (�̂

t�1
; �̂t; ~�t+1 : : : ; ~�� ))]

3775 [�t � �̂t] � 0. (24)

Note that this condition is the same as that in (19) with the initial term  0(e�t (�̂
t�1

; �t))� 0(e�t (�̂
t�1

; �̂t))

replaced by  0(e�t (�̂
t�1

; �t))�  0(e�t (�̂
t�1

; �̂t) + �̂t � �t): We then have the following result.

Proposition 4 Any e¤ort policy e satisfying the single-crossing condition (24) for any t; any

(�̂
t�1

; �̂t; �t), can be implemented by the non-linear pay scheme s given in (23).

As an illustration of how the scheme s given in (23) may help implementing e¤ort policies e�

that solve the principal�s relaxed program but that cannot be implemented with the linear scheme

s� of Proposition 3, consider the following example.

Example 4 Suppose that, for any e 2 [0; �e];  (e) = e2=2. Let �1 be a non-negative random

variable with distribution F strictly increasing and absolutely continuous on the interval [�1; ��1] �

R++ whose hazard rate satis�es � (�1) � �1 for each �1.23 Now suppose that, for any t � 2,

�t = �1 ��t�=2"� , where "T � ("� )T�=2 is a collection of jointly independent random variables, each

independent of �1, each distributed according to the function G strictly increasing and absolutely

continuous with density g strictly positive over R+. Let e� be the e¤ort policy that solves the relaxed

program as given in (20). Then the policy e� cannot be implemented by the linear scheme s� of

Proposition 3 but it can be implemented by the non-linear scheme s of Proposition 4.

23This condition is satis�ed, for instance, when �1 is distributed uniformly over the interval [1; 3=2] :
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4 Risk aversion

We now show how the optimal mechanism must be adjusted to accommodate the possibility that

the agent is risk averse. We restrict attention here to the case where T is �nite. To simplify the

notation, we omit discounting, i.e. set � = 1. We start by assuming that the agent�s preferences

are represented by a Bermoulli function

UA(cT ; eT ) = V
 

TX
t=1

ct

!
�

TX
t=1

 (et)

where V is a strictly increasing and (weakly) concave function. This representation is quite common

in the literature (e.g. Holmstrom and Milgrom�s (1987) seminal paper on linearity and aggregation

in dynamic contracting). As well known, this representation permits one to introduce risk aversion

while at the same time avoiding any complication stemming from the desire of consumption smooth-

ing: it is thus appropriate for a setting where the agent cares only about his total compensation

and not the way this is distributed over time. We will come back to an alternative representation

that accommodates preferences for consumption smoothing at the end of the section.

For the stochastic process for �t, we adopt a general independent-shock representation and

assume it satis�es the regularity conditions spelled out in PST, generalizing Conditions 1-3 to

processes that need not satisfy the SFC condition.

Following steps similar to those used to establish Proposition 2, one can then show that the

characterization of incentive compatibility is una¤ected by the introduction of risk aversion and

that the agent�s value function in period one remains equal to

V 
̂(�1) = V 
̂(�1) + E

"
TX
t=1

Z �1

�1

D1;t(s;~"
t) 0(êt(s;~"

t))ds

#
;

where D1;1(�1) � 1 and, for any t > 1;

D1;t(�1; "
t) � @zt(�1; "

t)

@�1
� �@zt�1(�1; "

t�1)

@�1

with z1(�1) � �1. Note that these D1;t(�1; "t) functions reduce to the corresponding D1;t(�1)

functions of Section 2.2 when the stochastic process for �t satis�es the SFC condition.
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A similar characterization applies to each period t > 1. For example, incentive compatibility

at any truthful history24 hT�1 = (�1; "T�1) implies that V 
̂(�1; "T�1; "T ) is Lipschitz continuous in

"T and for a.e. "T ,

@V 
̂(�1; "
T�1; "T )

@"T
=
@zT ("

T�1; "T )

@"T
 0(êT (�1; "

T�1; "T )),

which in turn implies that

V 
̂(�1; "
T�1; "T ) = V 
̂(�1; "

T�1; "̂T ) +

Z "T

"T

@zT ("
T�1; s)

@"T
 0(êT (�1; "

T�1; s))ds.

Furthermore, using the fact that incentive compatibility implies that V 
̂(�1; "T�1; "T )must coincide

with the equilibrium payo¤ with probability one, we have that, for almost every (hT�1; "T ),

V
 

TX
t=1

ĉt(�1; "
t)

!
�

TX
t=1

 (êt(�1; "
t)) = V 
̂(�1; "

T�1; "T ) +

Z "T

"T

@zT ("
T�1; s)

@"T
 0(êT (�1; "

T�1; s))ds.

This implies that in almost every state (�1; "T ) the utility V
�PT

t=1 ĉt(�1; "
t)
�
that the agent assigns

to the total payment
PT
t=1 ĉt(�1; "

t) is uniquely determined by the e¤ort policy ê up to a constant

V 
̂(�1; "
T�1; "T ) which may depend on (�1; "

T�1) but is independent of "T . Iterating backwards,

and using the fact that in each period t and for any history ht we have

V 
̂(ht) = E[V 
̂(ht;~"t+1)];

one can then show that the dependence of the constant V 
̂(�1; "T�1; "T ) on the history (�1; "
T�1)

is also uniquely determined by the e¤ort policy ê up to a scalar K that does not depend on

anything� the proof is in the Appendix; see also Proposition 9 in PST for a similar result for

quasi-linear settings. Now, for any 1 < t � T , let Dt;t(�1; "t) � @zt(�1; "
t)=@"t and, for any s > t,

Dt;s(�1; "
s) � @zs(�1; "

s)

@"t
� �@zs�1(�1; "

s�1)

@"t
.

We then have the following result.

24Note that incentive compatibility at a truthful history ht means that the agent�s value function in the meachanim


̂ after reaching history ht is equal to the agent�s expected payo¤ when, starting from history ht the agent follows a

truthful and obedient strategy in each period � � t: Also recall that incentive-compatibility in period one, given �1,

implies incentive compatibility at almost all (i.e. with probability one) truthful period t-history, t = 1; :::; T:
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Proposition 5 In any IC mechanism 
̂, the total payment to the agent in each state (�1; "T ) is

given by:

TX
t=1

ĉt(�1; "
t) = V�1

0@ PT
t=1  (êt(�1; "

t)) + V 
̂(�1) + E~"T
hR �1
�1

PT
t=1D1;t(s;~"

t) 0
�
êt
�
s;~"t

��
ds
i

+
PT
t=2 Ĥt(�1; "

t)

1A
with

Ĥt
�
�1; "

t
�
� E(~"t+1;:::;~"T )

"Z "t

"t

TX
�=t

Dt;�
�
�1; "

t�1; s;~"t+1; : : : ;~"�
�
 0
�
ê�
�
�1; "

t�1; s;~"t+1; : : : ;~"�
��
ds

#

�E(~"t;~"t+1;:::;~"T )

"Z ~"t

"t

TX
�=t

Dt;�
�
�1; "

t�1; s;~"t+1; : : : ;~"�
�
 0
�
ê�
�
�1; "

t�1; s;~"t+1; : : : ;~"�
��
ds

#

Using the characterization in Proposition 5, we then have that, in any incentive-compatible

mechanism, the principal�s expected payo¤ can be expressed as:

E[ÛP ] = E

"
TX
t=1

�̂t(~�1;~"
t)

#
� E

"
TX
t=1

ĉt(~�1;~"
t)

#
(25)

= E

"
TX
t=1

�
zt(~�1;~"

t) + êt(~�1;~"
t)
�#

�E

264V�1
0B@

TP
t=1

 (êt(~�1;~"
t)) + V 
̂(�1)

+E~"T
hR ~�1
�1

PT
t=1D1;t

�
s;~"t

�
 0
�
êt
�
s;~"t

��
ds
i
+
PT
t=2 Ĥt(

~�1;~"
t)

1CA
375

The expression in (25) is the analogue of dynamic virtual surplus for the case of a risk-averse

agent (it is easy to see that, when V is the identity function and the process for �t satis�es the SFC

condition, (25) reduces to the same expression as in (7) by standard integration by parts).

We now turn to the possibility of using �quasi-linear�schemes (i.e. pay packages that are convex

in a linear aggregator of the �rm�s pro�ts) to implement a desired e¤ort policy. We start with the

following result.

Proposition 6 Let ê be any policy that depends only on time t and on the agent�s �rst period type

�1. Suppose that ED1;t(�1;~"t) � 0 for any t any �1 and that the policy ê satis�es the following

single-crossing condition "
TX
t=1

ED1;t(�1;~"t)[�t(�1)� �t(�̂1)]
#
[�1 � �̂1] � 0 (26)
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for any �1; �̂1 2 �1, where for any t < T and any �1

�t(�1) �  0(ê�t (�1))� � 0(ê�t+1(�1))

while for t = T; �T (�1) �  0(ê�T (�1)). Then the e¤ort policy ê can be implemented by a �quasi-

linear� pay scheme ŝ� according to which the total payment the agent receives when he reports

(�1; "
t) and the sequence of observed pro�ts is �T is given by

TX
t=1

ŝ�t (�1; "
t; �t) = V�1

 
S(�1) +

TX
t=1

�t(�1)�t

!
(27)

where

S1(�1) �
TX
t=1

"
 (ê�t (�1)) +

Z �1

�1

ED1;t(s;~"t) 0(ê�t (s))ds� �t(�1)E
�
�̂t(�1;~"

t)
�#

with �̂t(�1; "t) � zt(�1; "
t) + êt(�1) +

Pt�1
�=1 �

� êt�� (�1):

The proof follows from steps similar to those that establish Proposition 2 adjusted for the fact

that the stochastic process for �t is here not restricted to satisfy the SFC condition and for the fact

that the agent�s payo¤ is now allowed to be concave in his total reward.

The value of the proposition is twofold. Firstly, it guarantees a form of continuity in the optimal

mechanism and in the players�payo¤with respect to the agent�s preferences. In particular, it implies

that when V is su¢ ciently close to the identity function, the principal can guarantee herself a payo¤

arbitrarily close to the one she obtains under risk neutrality by choosing to implement the same

e¤ort policy as in Proposition 2 and by adjusting the reward scheme as indicated in (27). More

generally, the proposition shows how one can adjust the linear reward scheme identi�ed in the

baseline model to implement any e¤ort policy that depends only on time t and the agent�s �rst

period report �1, provided that such a policy satis�es the single-crossing condition of (26).

We now turn to the characterization of the optimal e¤ort policy. It turns out that when the agent

is strictly risk averse, then a policy that depends only on the agent�s initial type need not be fully

optimal, even if the process for �t satis�es the SFC condition of Section 2. Due to the complexity

of the optimization problem, we illustrate this in a two-period model where zt (�1; "2) = 
�1 + "2

for 
 2 (0; 1]. That is, the process is AR(1). We �rst characterize the e¤ort policy that maximizes
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the principal�s expected payo¤ among those that depend only on �1 and then address the issue of

the optimality of these policies.

Example 5 Suppose that T = 2 and that � = 0 so that �t = �t + et, t = 1; 2: In addition, suppose

that the process for �t satis�es the SFC condition with z2 (�1; "2) = 
�1 + "2, 
 2 (0; 1], with �1

uniformly distributed over [0; 1] and "2 distributed according to the c.d.f. G2 strictly increasing

on an arbitrary compact interval E2 � R: Let the agent�s utility function over consumption be

given by V(c) = 1
�

p
2�c+ �2 � �

� with �; � > 0 and note that this function is chosen so that

V�1 (u) = �
2u

2 + �u. Let k < 1
� , and choose �e >

1
k� . Put K = k�e and suppose that, for any

e 2 (0;K),  (e) = ke2

2 , while for any e � K,  (e) = �e2

2 + (e� �e)K. Provided � is su¢ ciently

small, the policy ê� that maximizes the principal�s expected payo¤ (as given by 25) among the

policies that are contingent only on �1 is implicitly de�ned by

 0(ê�1 (�1))

0@@V�1
�
 (ê�1 (�1)) +  (ê

�
2 (�1)) +

R �1
0

�
 0 (ê�1(s)) + 
 

0 (ê�2(s))
�
ds
�

@u

1A (28)

= 1�  00(ê�1 (�1))
Z 1

�1

 
@V�1

�
 (ê�1 (q)) +  (ê

�
2 (q)) +

R q
0

�
 0 (ê�1(s)) + 
 

0 (ê�2(s))
�
ds
�

@u

!
dq

and

 0 (ê�2 (�1))

0@@V�1
�
 (ê�1 (�1)) +  (ê

�
2 (�1)) +

R �1
0

�
 0 (ê�1(s)) + 
 

0 (ê�2(s))
�
ds
�

@u

1A (29)

= 1� 
 00(ê�2 (�1))
Z 1

�1

@V�1
�
 (ê�1 (q)) +  (ê

�
2 (q)) +

R q
0

�
 0 (ê�1(s)) + 
 

0 (ê�2(s))
�
ds
�

@u
dq

�� 0 (ê�2 (�1)) 00 (ê�2 (�1))V ar("2). (30)

The policy ê� satis�es the single-crossing condition (26) and hence can be implemented by the

�quasi-linear�payment scheme of Proposition 6.

Equations (28) and (29) show that whether e¤ort in period t = 1; 2 is optimally increasing or

decreasing in �1 depends on a trade-o¤ between two concerns: (1) insuring the agent against risk

and (2) limiting the agent�s intertemporal informational rent. Equation (28), for instance, shows

that, at the optimum, the marginal disutility of an extra unit of period-1 e¤ort for type �1 (the
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left-hand side) must equal to the gain in pro�ts (equal to 1) less the marginal cost of the additional

rent that must be given to types �̂1 > �1.

Noticing that �(�1) = (1 � �1) in the case of a uniform distribution, it is easy to see that (28)

reduces to condition (2) for the risk-neutral case when � = 0 and � = 1. Also note that, because

the set of types for which the agent must be given an additional rent is decreasing in �1, as in

the risk-neutral case, the policy ê�1 is increasing in �1. However, contrary to the risk-neutral case,

distortions do not vanish at the top. In fact, when applied to ��1; condition (28) becomes

 0(ê�1
�
��1
�
)

0@@V�1
�
 (ê�1

�
��1
�
) +  (ê�2

�
��1
�
) +

R ��1
�1
[ 0(ê�1(s)) + 
 

0(ê�2(s))]ds
�

@u

1A = 1 (31)

while e¢ ciency (under risk aversion) requires that

 0(ê�1
�
��1
�
)

 
@V�1

�
 
�
ê�1
�
��1
��
+  (ê�2

�
��1
��

@u

!
= 1

To further appreciate the distinctions/similarities between the risk-neutral and the risk-averse case,

take the speci�cation of the example, and let k = 1
2 : Then note that, under risk-neutrality (say � =

0; � = 1) the (fully)25 optimal policies are given by ê�1 (�1) = 2�(1��1) and ê�2 (�1) = 2�(1��1)
,

with eFB1 = eFB2 = 2: As discussed in Section 2.2, to minimize the agent�s informational rents, the

principal �nds it optimal to distort downward both e1 and e2. Furthermore, because the correlation

between the agent�s initial type and his future ones is imperfect (and declining with time), it is

optimal to distort more in the early stages of the relationship than in the later ones. This property

leads to the seniority e¤ect discussed in the previous sections. This e¤ect can be seen easily within

the context of this example: the smaller 
 is (i.e. the lower the correlation between �1 and �2) the

stronger the seniority e¤ect, with ê�2 (�1) = ê�1 (�1) [i.e. no seniority] when 
 = 1 [random walk case]

and ê�2 (�1) = êFB when 
 = 0 [�1 and �2 independent].

To see how risk aversion a¤ects the choice of e¤ort, Figure 4 below depicts the optimal (shock-

independent) policies of Example 5 for � = � = 1; 
 = k = 1
2 , and "2 uniformly distributed over

[0; 1]:26

25Recall, from Proposition 2, that with risk-neutrality restricting the policy ê to depend only on �1 is without loss
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Figure 1: E¤ort policies (risk-averse case)

While a form of seniority continues to hold (ê2 is on average higher than ê1) risk aversion tends

to depress ê2 thus reducing the optimality of seniority-based reward schemes. Furthermore, now

there exist values of �1 for which ê2 (�1) < ê1 (�1) : To see the reason for this, note that, evaluated at

��1, equations (28) and (29) are symmetric except for the term �� 0
�
ê�2
�
��1
��
 00
�
ê�2
�
��1
��
V ar("2).

This term captures an additional cost associated with a high second-period e¤ort stemming from

the volatility of the agent�s payment generated by the shock "2 to his second-period productiv-

ity. To better appreciate where this term comes from, recall, from Proposition 5, that incentive-

compatibility requires that the total payment the agent receives in each state (�1; "2) be given

by

C(�1; "2) = V�1
 
 (ê1(�1)) +  (ê2(�1)) +  

0(ê2(�1))["2 � E[~"2]] +
Z �1

�1

�
 0(ê1(s))ds+ 
 

0(ê2(s))
�
ds

!
.

It is then immediate that reducing ê2(�1) permits the principal to reduce the agent�s exposure to

the risk generated by "2: For high values of �1, this new e¤ect dominates the rent-extraction e¤ect

of optimality.
26We approximated the solution using a sixth-order polynomial.
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documented in the previous section resulting in ê2 (�1) < ê1 (�1).

When the correlation between �1 and �2 is low enough, however, this new e¤ect mitigates but

does not eliminate the optimality of seniority-based incentive schemes. When instead �1 and �2 are

highly correlated, then this new e¤ect can completely reverse the optimality of incentive schemes

whose power increases with tenure. In the limit, when the shocks to the agent�s productivity become

fully persistent (i.e. �t follows a random walk, with 
 = 1), it is then immediate from (28) and

(29) that ê2 (�1) < ê1 (�1) for all �1; in which case the power of the incentive scheme decreases with

tenure.

Another way the principal could mitigate the e¤ect of the volatility of "2 on the agent�s com-

pensation is by conditioning the second-period e¤ort on the realized value of "2. To gauge the e¤ect

of this additional �exibility, consider again the situation examined in Example 5. While a complete

analytical characterization of the fully optimal policy escapes us because of the complexity of the

optimization problem, we could approximate the optimal policy with 6th degree polynomials. The

result is depicted in Figure 2 below, where we considered the same parametrization as in Figure 1,

but now allowed the second-period e¤ort to depend on the shock "2. Again, when the correlation

between �1 and �2 is not too high (in the example, � = 1=2) the optimality of seniority-based

schemes is maintained: Eê2 (�1;~"2) is on average higher than ê1 (�1) ; but there are high values of

�1 for which Eê2 (�1;~"2) < ê1 (�1).

It is also interesting to note that, in this example, second-period e¤ort, as illustrated in Figure

3 below, can be decreasing in the shock "2. This permits the principal to mitigate some of the

variability in the agent�s payment, as discussed above.27

This suggests that, in certain environments such as the one considered in this example, it may

be di¢ cult to sustain the fully optimal policy with linear or even �quasi-linear�schemes along the

lines of those of Proposition 6. When this is the case, one may need to resort to the type of schemes

27Figure 3 is drawn to display two features of the policies: �rstly, that the optimal second-period e¤ort is decreasing

in the shock "2 is clear; secondly, �xing "2, it turns out that the increase in �1 is less steep for low values of "2 than

for higher ones. For "2 = 0 it decreases slightly for high values of �1.
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Figure 2: First-period and average second-period e¤orts

Figure 3: Second-period shock dependent e¤ort
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introduced in Proposition 4, adapted to the presence of risk aversion as indicated in Proposition

7 below. To facilitate the comparison with the results in the previous section, we revert here to

the primitive representation where the agent reports �t, as opposed to the shocks "t. The following

proposition then generalizes the results in Propositions 3 and 4 to the case of a (weakly) risk averse

agent.

Proposition 7 Suppose the agent�s type �t evolves according to a Markov process and that e¤ort

has only a transitory e¤ect on performance, so that �t = �t + et, all t.

1. Any policy e satisfying the single-crossing condition of (19) for any t; any (�̂
t�1

; �̂t; �t); can be

implemented by the following �quasi-linear�scheme s� : given the reports �T and the observed

performances �T , the principal pays the agent a total reward

TX
t=1

s�t (�
t; �t) = V�1

 
TX
t=1

[St(�
t) + �t(�

t)�t]

!
where the functions St(�) are as in (11) and where �t(�t) �  0(e�t (�

t)):

2. Any e¤ort policy e satisfying the single-crossing condition (24) for any t; any (�̂
t�1

; �̂t; �t),

can be implemented by the following �bonus�scheme s: given the reports �T and the observed

performances �T , the principal pays the agent a total reward

TX
t=1

st(�
t; �t) = V�1

0BB@
PT
t=1  (êt(�

t))

+E(~�2;:::;~�T )j�1
hR �1
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0
�
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�
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i

+
PT
t=2Ht(�

t)

1CCA
if �t � ��t (�

t) 8 t; and
PT
t=1 st(�

t; �t) = �L otherwise, where, for any t � 2; any �t;

Ht
�
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�
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"Z �t
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TX
�=t

J�t
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 0
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ê�
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ds

#

�E
(~�t;:::;~�T )

"Z ~�t

�t

TX
�=t

J�t

�
�t�1; s; ~�t+1; : : : ; ~��

�
 0
�
ê�

�
�t�1; s; ~�t+1; : : : ; ~��

��
ds

#

Depending on whether the desired e¤ort policy e satis�es the stronger single-crossing condition

of (24) or the weaker single crossing condition of (19), it can be implemented either by the quasi-

linear scheme s� of part (1) where the agent�s compensation is a convex function of the linear
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aggregator
PT
t=1[St(�

t) + �t(�
t)�t], or by the bonus scheme s of part (2) according to which the

agent receives a positive bonus only upon meeting the �rm�s targets in each period.

4.1 Consumption smoothing

Finally, to see how the results in the previous sections may be a¤ected by the agent�s preferences

for consumption smoothing, consider an alternative setting where the agent�s payo¤ is given by

UA(cT ; eT ) =

TX
t=1

�t�1[v(ct)�  (et)]

For simplicity, assume here that e¤ort has only a transitory e¤ect on performance, i.e. �t =

�t + et for all t, and that �t evolves according to a Markov process as in the previous section.

Following the same steps used to establish Proposition 5, one can show that, in each state �T�

equivalently, (�1; "T )� the utility of the total payment to the agent is uniquely pinned down by

the policy e up to a constant V 
(�1). The characterization of the optimal reward scheme in this

environment then proceeds as follows. Given any e¤ort policy e, for each state �T , let

TX
t=1

�t�1v(ct(�
t)) =

TX
t=1

�t�1 (et(�
t)) + V 
̂(�1) (32)

+E~�T j�1

"Z �1

�1

TX
t=1

�t�1J t1(~�
t
) 0
�
et(~�

t
�
ds

#

+
TX
t=2

Ht(�
t)

denote the total utility of money that is necessary to sustain the policy e; where for all t � 2, all �t

Ht
�
�t
�
� E~�T j�t

"Z �t

�t

TX
�=t

�t�1J�t (~�
�
) 0(e� (~�

�
)ds

#
� E~�T j�t�1

"Z ~�t

�t

TX
�=t

�t�1J�t (~�
�
) 0(e� (~�

�
))ds

#
.

Then let copt(�; e) denote the reward scheme that minimizes the expected payment to the principal,

among all schemes that satisfy conditions (32), naturally adapted to the �ltration generated by the

history of reports �t: We then have the following result.

Proposition 8 Suppose the agent�s type �t evolves according to a Markov process and that e¤ort

has only a transitory e¤ect on performance so that �t = �t + et; for all t: Let e� denote any e¤ort
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policy that maximizes

E~�T

"
TX
t=1

�t�1
�
~�t + e(~�

t
)� coptt (~�

t
; e)
�#

1. For any t and any �t; let �t(�t) �  0(e�t (�
t)). Suppose the policy e� satis�es the single-crossing

condition of (19) for any t; any (�̂
t�1

; �̂t; �t). Then e� together with the �quasi-linear�reward

scheme s� de�ned below are part of an optimal mechanism. The scheme s� is such that, in

each period t; given the reports �t and the observed performances �t, the principal pays the

agent a reward s�t (�
t; �t) = v�1

�
S�t (�

t) + �t(�
t)�t

�
, where the �xed payment S�t (�

t) is now

implicitly de�ned by

v�1
�
S�t (�

t) + �t(�
t)��t (�

t)
�
= coptt (�t; e�)

with ��t (�
t) � �t + e

�
t (�

t) for any t and any �t:

2. Suppose instead that the policy e� does not satisfy the single-crossing condition of (19) but

satis�es the single-crossing condition of (24) for any t; any (�̂
t�1

; �̂t; �t). Then e� can be

implemented by the following �bonus� scheme s: in each period t; given the reports �t and

the observed performances �t, the principal pays the agent a reward st(�t; �t) = coptt (�t; e�) if

�t = ��t (�
t) � �t + e

�
t (�

t) and charges the agent a penalty L > 0 otherwise.

Both parts (1) and (2) follow directly from the preceding results along with the de�nition of

copt(�; e). The only di¤erence between this environment and the one examined in the rest of this

section is that, while in that setting the way the total payment to the agent is distributed over

time is irrelevant for the agent (and hence for the principal), in the environment considered here

it is essential to distribute the payments optimally over the entire relationship. The payment

schemes described in the Proposition guarantee that the agent has the right incentives to report

his information truthfully and then exert the right level of e¤ort, while at the same time inducing

the level of intertemporal consumption smoothing that maximizes the agent�s utility and hence is

of minimal cost for the principal.

To get a sense of how the principal allocates optimally the agent�s consumption over time (which

is instrumental to the characterization of the optimal e¤ort policy) one can use directly Rogerson�s
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(1985) necessary conditions for optimality. Adapted to our environment, these conditions can be

stated as follows.

Proposition 9 Suppose that e can be implemented by the reward scheme s and let c be the cor-

responding consumption policy. If s implements e at minimum cost for the principal, then the

following inverse Euler equation must hold for any two adjacent periods 1 � t; t + 1 � T , almost

every �t,

1

v0
�
ct
�
�t
�� = E~�t+1j�t

24 �

v0
�
ct+1

�
�t; ~�t+1

��
35 . (33)

[optimal e¤ort: to be completed]

5 Conclusion

[to be completed]

6 Appendix

Proof of Proposition 1. Because the agent�s participation constraint clearly binds at the

optimum, the principal�s payo¤ coincides with the total surplus generated by the relationship,

which is given by

W =

TX
t=1

�t�1
�
�t(�t; e

t)�  (et)
�
=

TX
t=1

�t�1

"
�t + et +

t�1X
�=1

��et�� �  (et)
#

The result then follows from pointwise maximization of E[W ] with respect to each et(�1; "t):

Proof of Example 4. First note that this environment satis�es all the conditions on the kernels

F assumed at the beginning of the section and that, for any t � 2; any �t 2 �t = R+; any �t�1;

Ft (�tj�t�1) = G

�
�t
�t�1

�
.
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Therefore, for each k � 2, each (�k; �k�1);

Ikk�1 (�k; �k�1) =
�@G

�
�k
�k�1

�
=@�k�1

1
�k�1

g
�

�k
�k�1

� =
�k
�k�1

.

It follows that for each � > t,

J�t (�t; :::; �� ) =
��
�t
.

In each period t, the e¤ort policy that solves the relaxed program is thus given by

e�t
�
�t
�
= max

�
1� � (�1)

�t
�1
; 0

�
.

It is immediate to see that, because e�t
�
�t
�
is decreasing in �t, it violates condition (19). Further-

more, by taking e.g. t = T , one can easily see that for any �̂1 and any �̂T < �T < �̂1=�(�̂1)

uT (�T ; �̂T ; �̂
T�1

) > uT (�T ; �̂
T�1

) � uT (�T ; �T ; �̂
T�1

)

where

uT (�T ; �̂
T�1

) =

Z �T

0
 0(e�T

�
�̂
T�1

; s
�
)ds =

Z �T

0
[1� �

�
�̂1

� s

�̂1
]ds

and

uT (�T ; �̂T ; �̂
T�1

) =

Z �̂T

�T

 0(e�T

�
�̂
T�1

; s
�
)ds+ �T (�̂

T�1
; �̂T )[�T � �̂T ]

=

Z �̂T

0
[1� �

�
�̂1

� s

�̂1
]ds+

"
1� �

�
�̂1

� �̂T
�̂1

#
[�T � �̂T ].

are, respectively, the continuation payo¤ that type �T obtains by reporting �T truthfully and the

continuation payo¤ he obtains by reporting �̂T < �T ; under the linear scheme s� of Proposition 3.

This proves that e� cannot be implemented with the linear scheme.

Finally, to see that e� can be implemented by the scheme s of Proposition 4, it su¢ ces to show

that it satis�es the single-crossing condition (24) holds for any t; any (�̂
t�1

; �̂t; �t): To see this, note

that, when t = 1; (24) is equivalent to

E~�2;:::;~�T j�1

24 max f1� � (�1) ; 0g �maxnmaxn1� � ��̂1� ; 0o+ �̂1 � �1; 0o
+
PT
t=2 �

t�1 ~�t
�1

h
max

n
1� � (�1)

~�t
�1
; 0
o
�max

n
1� �

�
�̂1

�
~�t
�̂1
; 0
oi 35 [�1 � �̂1] � 0.
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This holds by the assumption that � is non-decreasing. Now take any period t > 1: Condition (24)

then requires that"
max

�
1� �

�
�̂1

� �t
�̂1
; 0

�
�max

(
max

(
1� �

�
�̂1

� �̂t
�̂1
; 0

)
+ �̂1 � �1; 0

)#
[�t � �̂t] � 0

which holds because, by assumption, �
�
�̂1

�
� �̂1 for each �̂1.

Proof of Proposition 5. We prove the result by backward induction, starting from t = T .

Using the characterization of the necessary conditions for incentive compatibility in the main text,

we have that (to ease the exposition, hereafter we drop the quali�cation �for almost every truthful

history�):

V 
̂
�
�1; "

T
�
= V 
̂

�
�1; "

T�1; "T
�
+

Z "T

"T

DT;T
�
�1; "

T�1; x
�
 0
�
êT
�
�1; "

T�1; x
��
dx

Also,

V 
̂
�
�1; "

T�1� = V 
̂
�
�1; "

T�2; "T�1
�

+E~"T

"Z "T�1

"T�1

 
DT�1;T�1

�
�1; "

T�2; x
�
 0
�
êT�1

�
�1; "

T�2; x
��

+DT�1;T
�
�1; "

T�2; x;~"T
�
 0
�
êT
�
�1; "

T�2; x;~"T
�� ! dx#

Using the fact that

V 
̂
�
�1; "

T�1� = E~"T hV 
̂ ��1; "T�1;~"T �i
we then have that

V 
̂
�
�1; "

T�1; "T
�
= E~"T

"
V 
̂
�
�1; "

T�1;~"T
�
�
Z ~"T

"T

DT;T
�
�1; "

T�1; x
�
 0
�
êT
�
�1; "

T�1; x
��
dx

#

= V 
̂
�
�1; "

T�1�� E~"T
"Z ~"T

"T

DT;T
�
�1; "

T�1; x
�
 0
�
êT
�
�1; "

T�1; x
��
dx

#
= V 
̂

�
�1; "

T�2; "T�1
�

+E~"T

"Z "T�1

"T�1

 
DT�1;T�1

�
�1; "

T�2; x
�
 0
�
êT�1

�
�1; "

T�2; x
��

+DT�1;T
�
�1; "

T�2; x;~"T
�
 0
�
êT
�
�1; "

T�2; x;~"T
�� ! dx#

�E~"T

"Z ~"T

"T

DT;T
�
�1; "

T�1; x
�
 0
�
êT
�
�1; "

T�1; x
��
dx

#
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Therefore,

V 
̂
�
�1; "

T
�
= V 
̂

�
�1; "

T�2; "T�1
�

+E~"T

"Z "T�1

"T�1

 
DT�1;T�1

�
�1; "

T�2; x
�
 0
�
êT�1

�
�1; "

T�2; x
��

+DT�1;T
�
�1; "

T�2; x;~"T
�
 0
�
êT
�
�1; "

T�2; x;~"T
�� ! dx#

+ĤT
�
�1; "

T
�

This establishes the �rst step of the induction. Now suppose that there exists a t � T � 1 such

that the following representation holds for all periods s, t � s < T :

V 
̂
�
�1; "

T
�
= V 
̂

�
�1; "

s�1; "s
�

(34)

+E(~"s+1;:::;~"T )

"Z "s

"s

TX
�=s

Ds;�
�
�1; "

s�1; x;~"s+1; : : : ;~"�
�
 0
�
ê�
�
�1; "

s�1; x;~"s+1; : : : ;~"�
��
dx

#

+

TX
�=s+1

Ĥ� (�1; "
� )

We then want to show that it holds also for s = t� 1. Note that, by incentive compatibility,

V 
̂
�
�1; "

t�1;"t
�
= E~"t

h
V 
̂
�
�1; "

t�1;~"t
�i

�E(~"t;:::;~"T )

"Z ~"t

"t

TX
�=t

Dt;�
�
�1; "

t�1; x;~"t+1; : : : ;~"�
�
 0
�
ê�
�
�1; "

t�1; x;~"t+1; : : : ;~"�
��
dx

#
= V 
̂

�
�1; "

t�1�
�E(~"t;:::;~"T )

"Z ~"t

"t

TX
�=t

Dt;�
�
�1; "

t�1; x;~"t+1; : : : ;~"�
�
 0
�
ê�
�
�1; "

t�1; x;~"t+1; : : : ;~"�
��
dx

#
and that, again by incentive compatibility,

V 
̂
�
�1; "

t�1� = V 
̂
�
�1; "

t�2; "t�1
�

+E(~"t;:::;~"T )

"Z "t�1

"t�1

TX
�=t�1

Dt�1;�
�
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t�2; x;~"t; : : : ;~"�
�
 0
�
ê�
�
�1; "

t�2; x;~"t; : : : ;~"�
��
dx

#
.

Therefore,

V 
̂
�
�1; "

t�1;"t
�
= V 
̂

�
�1; "

t�2; "t�1
�

(35)
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�
ê�
�
�1; "
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#
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Using (34) for s = t and combining it with (35), we then have that

V 
̂
�
�1; "

T
�
= V 
̂

�
�1; "

t�2; "t�1
�

+E(~"t;:::;~"T )
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�=t�1
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ê�
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��
ds

#
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"t

TX
�=t

Dt;�
�
�1; "

t�1; x;~"t+1; : : : ;~"�
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 0
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ê�
�
�1; "
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��
dx

#

+E(~"t+1;:::;~"T )

"Z "t

"t

TX
�=t

Dt;�
�
�1; "

t�1; x;~"t+1; : : : ;~"�
�
 0
�
ê�
�
�1; "

t�1; x;~"t+1; : : : ;~"�
��
dx

#

+
TX

�=t+1

Ĥ� (�1; "
� )

= V 
̂
�
�1; "

t�2; "t�1
�

+E(~"t;:::;~"T )

"Z "t�1

"t�1

TX
�=t�1

Dt�1;�
�
�1; "

t�2; x;~"t; : : : ;~"�
�
 0
�
ê�
�
�1; "

t�2; x;~"t; : : : ;~"�
��
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#

+
TX
�=t

Ĥ� (�1; "
� )

which proves that the representation in (34) holds also for s = t�1. The result then follows directly

from the fact that the agent�s payo¤under truthtelling must coincide with the value function almost

surely.

Proof of Example 5. Using (25), the principal�s payo¤ can be written as

E[ÛP ] = E[~�1 + ê1
�
~�1

�
+ 
~�1 + ~"2 + ê2

�
~�1

�
] (36)

�E

26666664
�
2

0@  
�
ê1

�
~�1

��
+  

�
ê2

�
~�1

��
+ V 
̂(�1)

+
R ~�1
0  0 (ê1 (s)) ds+

R ~�1
0 
 0 (ê2 (s)) ds+  

0
�
ê2

�
~�1

��
(~"2 � E(~"2))

1A2

+�

0@  
�
ê1

�
~�1

��
+  

�
ê2

�
~�1

��
+ V 
̂(�1)

+
R ~�1
0  0 (ê1 (s)) ds+

R ~�1
0 
 0 (ê2 (s)) ds+  

0
�
ê2

�
~�1

��
(~"2 � E(~"2))

1A

37777775
To maximize E[ÛP ]; it is then clearly optimal to set V 
̂(�1) = 0: Furthermore, it is clearly optimal to

restrict attention to positive e¤ort policies (if êt were negative over some non-empty subset Q � �1,

the principal could increase her gross pro�ts by asking the agent to exert a higher (negative) e¤ort

over Q, without any e¤ect on the agent�s compensation).
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Next note that, because ~�1 and ~"2 are independent, the expected payment to the agent [i.e. the

second term in (36)] can be conveniently rewritten as

E

266664
�
2

�
 
�
ê1

�
~�1

��
+  

�
ê2

�
~�1

��
+
R ~�1
0  0 (ê1 (s)) ds+

R ~�1
0 
 0 (ê2 (s)) ds

�2
+�
�
 
�
ê1

�
~�1

��
+  

�
ê2

�
~�1

��
+
R ~�1
0  0 (ê1 (s)) ds+

R ~�1
0 
 0 (ê2 (s)) ds

�
+�
2

h
 0
�
ê2

�
~�1

��i2
V ar(~"2)

377775
Finally note that it is optimal to restrict attention to policies such that êt (�1) � K for all �1;

t = 1; 2: To see this, suppose there exists a non-empty subset Q � �1 such that êt (�1) > K for all

�1 2 Q; t 2 f1; 2g: Then, the principal could reduce êt (�1) by � > 0 for all �1 2 Q without a¤ecting

 0 (êt (�1)). This would increase her expected payo¤ because �e > 1
k� implies that, conditional on

any �1 2 Q; her expected payo¤ is locally decreasing over êt(�1) for any êt(�1) 2 (K;+1); t = 1; 2.

Given any pair of policies êt : �1 ! [0;K]; t = 1; 2, we then have that

E[ÛP ] = E[~"2] + (1 + 
)E[~�1] + E
h
L
�
ê1

�
~�1

�
; ê2

�
~�1

�
; x1

�
~�1

�
; x2

�
~�1

��i
where

L (ê1; ê2; x1; x2) � ê1 + ê2 �
�

2

�
kê21
2
+
kê22
2
+ k (x1 + 
x2)

�2
��
2
V ar(~"2)k

2ê22 � �
�
kê21
2
+
kê22
2
+ k (x1 + 
x2)

�
.

with

xt (�1) =

Z �1

0
êt(s)ds; 8�1 2 �1; t = 1; 2. (37)

The principal�s problem thus consists of choosing a pair of functions êt : �1 ! [0;K] together with

a pair of functions xt : �1 ! R so as to maximize

E[L
�
ê1

�
~�1

�
; ê2

�
~�1

�
; x1

�
~�1

�
; x2

�
~�1

��
]

subject to (37).

We will solve this problem with optimal control by treating ê1 and ê2 as the control variables

and x1 and x2 as the state variables. To satisfy (37), we will thus restrict the policies êt(�) to be

integrable.
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Before turning to the Euler-Lagrange equations, we �rst verify that a solution to this optimal

control problem exists and that the Pontryagin principle applies. To this aim, note that the function

L(�) is concave with respect to (ê1; ê2; x1; x2) 2 R4+. Moreover, there exists a function � (r) �

a� k2�
2 r4, with a chosen su¢ ciently large, that satis�es limr!1

�(r)
r = �1 and �

�q
ê21
2 +

ê22
2

�
�

L (ê1; ê2; x1; x2) for all (ê1; ê2; x1; x2) 2 R4+.28 Tonelli�s theorem then implies existence of a solution

to the optimal control problem. That êt(�) is bounded and integrable, then guarantees that the

solution satis�es the Pontryagin principle.29

Assuming an interior solution, the Hamiltonian function is given by

H =

ê1(�1) + ê2(�1)� �
2

�
kê1(�1)2

2 + kê2(�1)2

2 + k (x1 (�1) + 
x2 (�1))
�2

��
2 k

2ê2(�1)
2V ar("2)� �

�
kê1(�1)2

2 + kê2(�1)2

2 + k (x1 (�1) + 
x2 (�1))
�

+�1(�1)ê1(�1) + �2(�1)ê2(�1).

where �1 and �2 are the two co-state variables associated with the constraints given by (37). The

following Euler-Lagrange equations must hold for almost every �1 2 �1:

x0t (�1) = êt (�1) t = 1; 2
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�02 (�1) = �
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�
kê1(�1)

2

2
+
kê2(�1)

2

2
+ k (x1 (�1) + 
x2 (�1))

�
� �

�
k�1 (�1) = �

�
1�

�
�

�
kê1(�1)

2

2
+
kê2(�1)

2

2
+ k (x1 (�1) + 
x2 (�1))

�
� �

�
kê1(�1)

�

k (�2 (�1) + k�V ar("2)ê2(�1)) = �
�
1�

�
�

�
kê1(�1)

2

2
+
kê2(�1)

2

2
+ k (x1 (�1) + 
x2 (�1))

�
� �

�
kê2(�1)

�
along with the boundary conditions �t

�
��1
�
= xt (�1) = 0, t = 1; 2. Together, these conditions

imply (28) and (29) hold almost everywhere. Moreover, one may choose an optimal e¤ort policy ê�

such that they hold everywhere without changing the principal�s payo¤. To see this, let ��1 2 [0; 1]

be a point at which they do not hold and let (�n1 ) be a sequence converging to �
�
1 for which (28)

28This condition is referred to as �coercivity� in the literature on optimal control.
29See, for example, Torres (2000).
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and (29) are de�ned. Since ê1 (�n1 ) ; ê2 (�
n
1 ) 2 [0; �e] for all n, there exists a subsequence (�

nk
1 ) with

(ê1 (�
nk
1 ) ; ê2 (�

nk
1 ))! (�e1; �e2). Next note that the functions

h1 (d1; d2; �1) = kd1

�
�

�
kd21
2
+
kd22
2
+ k

Z �1

0
[ê1(s) + 
ê2(s)] ds

�
+ �

�
�1 + k

Z 1

�1

 
�

"
kê1 (q)

2

2
+
kê2 (q)

2

2
+ k

Z q

0
[ê1(s) + 
ê2(s)] ds

#
+ �

!
dq

and

h2 (d1; d2; �1) = kd2

�
�

�
kd21
2
+
kd22
2
+ k

Z �1

0
[ê1(s) + 
ê2(s)] ds

�
+ �

�
+ �k2V ar("2)d2

�1 + 
k
Z 1

�1

 
�

"
kê1 (q)

2

2
+
kê2 (q)

2

2
+ k

Z q

0
[ê�1(s) + 
ê2(s)] ds

#
+ �

!
dq

are continuous in (d1; d2; �1) and equal to zero at (d1; d2; �1) = (ê
nk
1 ; ê

nk
2 ; �

nk
1 ) for every nk. It follows

(since limits of continuous functions commute) that they are equal to zero at (d1; d2; �1) = (�e1; �e2; ��1)

as well. It therefore su¢ ces to put ê�1 (�
�
1) = �e1 and ê

�
2 (�

�
1) = �e2. Since this change in the policy is

only on a set of zero measure, it does not a¤ect the principal�s payo¤.

To justify our consideration of interior solutions, we show that for � > 0 su¢ ciently small, ê�1

and ê�2 must be strictly positive on [0; 1]. To see this, re-write (28) and (29) as

ê�1 (�1) =
1� k

R 1
�1

�
�
h
kê�1(q)

2

2 +
kê�2(q)

2

2 + k
R q
0 [ê

�
1(s) + 
ê

�
2(s)] ds

i
+ �

�
dq

k
�
�
h
kê�1(�1)

2

2 +
kê�2(�1)

2

2 + k
R �1
0 [ê�1(s) + 
ê

�
2(s)] ds

i
+ �

�
and

ê�2 (�1) =
1� 
k

R 1
�1

�
�
h
kê�1(q)

2

2 +
kê�2(q)

2

2 + k
R q
0 [ê

�
1(s) + 
ê

�
2(s)] ds

i
+ �

�
dq

k
�
�
h
kê�1(�1)

2

2 +
kê�2(�1)

2

2 + k
R �1
0 [ê�1(s) + 
ê

�
2(s)] ds

i
+ �

�
+ �k2V ar("2)

.

The right-hand sides converge uniformly to 1
�k � (1� �1) and

1
�k � 
 (1� �1) over �1 2 [0; 1] and

any (integrable) functions ê�1, ê
�
2 : [0; 1] ! [0; ~e] as � ! 0. The assumption that �k,
 < 1 implies

the result.

Finally, we show that for � > 0 su¢ ciently small, the e¤ort functions ê�1 (�) and ê�2 (�) are increas-

ing and so satisfy the single-crossing condition (26), guaranteeing that they can be implemented

with the �quasi-linear�schemes of Proposition 6. Let �01 > �001 and suppose with a view to contra-
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diction that ê�1
�
�01
�
< ê�1

�
�001
�
. We show that this implies ê�2

�
�01
�
must be greater than ê�2

�
�001
�
by a

su¢ ciently large margin to violate (29).

Using the fact that ê�1 (�1) ; ê
�
2 (�1) 2 [0; �e] for all �1 2 [0; 1] and equation (28), we have

maxf�k2�eK
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ê�2
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� ê�2

�
�001
��
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0BB@ ê�1
�
�01
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1 )
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R �001
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2 (s) ds
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1CCA
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Z �01

�001
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kê�1 (q)

2
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kê�2 (q)

2
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+ k

Z q

0
[ê�1(s) + 
ê

�
2(s)] ds

#
+ �

!
dq

� k�
�
�01 � �001

�
.

This shows �rstly that, if � < �
k�e(1+
) , we must have ê

�
2

�
�01
�
> ê�2

�
�001
�
. In this case, ê�2

�
�01
�
�

ê�2
�
�001
�
� M (�)

�
�01 � �001

�
, with M (�) = ���k�e(1+
)

�k�eK ! 1 as � ! 0. On the other hand, again

using the fact that ê�1 (�1) ; ê
�
2 (�1) 2 [0; �e] for all �1 2 [0; 1], equation (29) implies30
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This shows that
�
ê�2
�
�01
�
� ê�2

�
�001
��
� N (�)

�
�01 � �001

�
for N (�) =


(�[k�e2+k(1+
)�e]+�)
�kV ar("2)+�

! 
 <1 as

�! 0. Thus, for any � su¢ ciently small, we obtain a contradiction. The function ê�2 can be shown

to be non-decreasing for su¢ ciently small � in the same manner.

Proof of Proposition 9. First note that if s implements e; then e can also be implemented by

30The �nal inequality makes use of the fact that the right-hand side of (28) is increasing. This implies, under the

hypothesis ê�1 (�
0
1) < ê�1 (�

00
1 ), that

kê�1(�
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2
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the following �bonus�scheme:

ŝt(�
t; �t) =

(
ct(�

t) if �t = �t + et(�
t)

�L otherwise
(38)

with L > 0 arbitrarily large. So, without loss, assume s itself satis�es condition (38).

Now, suppose there exists a period t and a (positive measure) set Q � �t such that, for any

�t 2 �t,
1

v0
�
ct
�
�t
�� > E~�t+1j�t

24 �

v0
�
ct+1

�
�t; ~�t+1

��
35 .

The argument for the case where the inequality is reversed is symmetric. Then consider the following

alternative scheme s#: For any � 6= t; t+ 1 and any (�� ; �� ), s#� (�� ; �� ) = s� (�
� ; �� ); in period t,

s#t (�
t; �t) =

8>><>>:
st(�

t; �t) if �t =2 Q
v�1

�
v
�
ct
�
�t
��
+ k
�
if �t 2 Q and �t = �t + et(�

t)

�L if �t 2 Q and �t 6= �t + et(�
t)

;

and in period t+ 1,

s#t+1(�
t+1; �t+1) =

8>><>>:
st+1(�

t+1; �t+1) if �t =2 Q
v�1

�
v
�
ct+1

�
�t+1

��
� k=�

�
if �t 2 Q and �t+1 = �t+1 + et+1(�

t+1)

�L if �t 2 Q and �t+1 6= �t+1 + et+1(�
t+1)

.

Clearly, this scheme preserves incentives for both truthful revelation and obedience and, in equilib-

rium, gives the agent the same payo¤ as the original scheme s:31 The di¤erence between the ex-ante

expected cost to the principal under this scheme and under the original scheme s is given by

�(k) � F (~�
t 2 Q)Ef~�t:~�t2Qg

24 �t�1
�
v�1

�
v
�
ct

�
~�
t
��
+ k
�
� ct

�
~�
t
��

+�tE~�t+1j~�t [v
�1
�
v
�
ct+1

�
~�
t+1
��
� k

�

�
� ct+1

�
~�
t+1
�
]

35
where F (~�

t 2 Q) denotes the probability that ~�
t 2 Q and Ef~�t:~�t2Qg[�] denotes the conditional

expectation over ~�t given the sigma-algebra generated by the event that �t 2 Q:

Clearly, �(0) = 0 and

@�(0)

@k
= F (~�

t 2 Q)Ef~�t:~�t2Qg�
t�1

24 1

v0(ct
�
~�
t
�
)
+ E~�t+1j�t

0@ �

v0
�
ct+1

�
�t; ~�t+1

��
1A35 > 0

The principal can then reduce her expected payment to the agent by switching to a scheme s# with

k < 0 arbitrarily small, contradicting the assumption that s is cost-minimizing.
31Since the choice of L in the scheme s was arbitrary, it may be chosen large enough that incentives are still

preserved in s#.
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