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Abstract

We show that a solution to the problem of mechanism selection
by an informed principal exists in a large class of environments with
generalized private values: the agents’ payoff functions are indepen-
dent of the principal’s type. The solution is an extension of Maskin
and Tirole’s (1990) strong unconstrained Pareto optimum. Our main
condition for existence is that given any type profile the best pos-
sible outcome for the principal is the worst possible outcome for all
agents. This condition is satisfied in most market environments. We
also compute some examples of strong unconstrained Pareto optima.
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1 Introduction

In the most of the mechanism design literature, the mechanism proposer
(the principal) is assumed to have no private information. This allows to
formulate the mechanism design problem as a maximization problem of the
principal’s payoff function subject to the agents’ incentive constraints. In
many circumstances, however, the assumption that the principal has no pri-
vate information is not warranted: the cost of the goods to the seller who
designs an auction can be unknown to bidders; the beliefs of a speculator of-
fering a bet can be his private information; there can be uncertainty about the
valuation of a supplier suggesting a collusive agreement to her competitors;
a bidder who decides on a mechanism to resell some of the goods acquired
in an auction can have private information about her valuations.

If the principal has private information, the proposal of a mechanism
must be viewed as a move in a game and the maximization approach is not
applicable. In particular, the agents posterior belief about the principals
type after a mechanism is proposed may differ from their prior belief. The
seminal references for this problem of informed principal are Myerson (1983)
and Maskin and Tirole (1990, 1992). Nevertheless, their models exclude the
standard market environments where private goods are traded.

In this paper, we provide a solution of the informed principal problem
in a large class of market environments.1 We consider environments with
generalized private values: the agents’ payoffs and types are independent of
the principal’s type, while the principal’s payoff may depend on the agents’
types, and the agents’ payoffs are allowed to be interdependent. We per-
mit arbitrary continuous payoff functions; in particular, we do not require a
single-crossing property or risk-neutrality. Moreover, we do not impose any
conditions on the outcome space, such as, e.g., the number of units of good
to be allocated by the principal. Finally, we do not restrict the number of
agents and their types.

Our paper builds on the work of Maskin and Tirole (1990). Maskin and
Tirole discovered the crucial role played by direct mechanisms which they
call Strong Unconstrained Pareto Optima (SUPO). A direct mechanism M
is an SUPO if (i) M is incentive-feasible given the prior belief, and (ii) there
exists no direct mechanism M ′ and no posterior belief G about the principal’s

1Our results can be used to compute the solution of the informed principal problem, for
example, in multi-unit auction environments with risk-neutral or even risk-averse bidders
and a privately informed seller.
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type such that M ′ is incentive-feasible given the belief G and the principal
prefers M ′ to M independently of her type. In a private-value environment,
Maskin and Tirole prove existence of SUPO and demonstrate that SUPO is
the unique perfect Bayesian equilibrium outcome of an informed principal
game.

To obtain their results, Maskin and Tirole envision a competitive equi-
librium in a fictitious economy where the various types of the principal trade
amounts of slack allowed for one specific incentive constraint and one spe-
cific participation constraint of the agent, with initial endowments being 0.
Building on the arguments in Debreu (1959), they show that slack exchange
equilibrium exists. Furthermore, a slack exchange equilibrium has welfare
properties that ensure that it is an SUPO.

What is the main difficulty with extending this approach to environments
other than the ones considered in Maskin and Tirole? The assumptions
imposed by Maskin and Tirole2 guarantee that the equilibrium prices for the
two traded slacks are non-zero, and that there are no gains from trading
slacks of any of the other constraints. These properties are important in
establishing the connection between slack exchange equilibrium and SUPO;
they do not hold in general if the assumptions of Maskin and Tirole are not
satisfied.3

To overcome this difficulty and establish a generally valid connection
between slack exchange equilibrium and SUPO, we allow trade in all con-
straints. Our crucial insight is to consider a weak version of competitive
equilibrium where (i) the price of slack may be equal to 0 for some con-
straints and (ii) market clearing may fail for such constraints (that is, the
aggregate consumption may be strictly negative).

Our main result is that a (generalized) slack exchange equilibrium exists
under rather weak conditions (Proposition 3). The essential condition is that
the payoff functions are such that, given any type profile, the best outcome
for the principal is the worst outcome for the agents; if this condition is true,

2These assumptions are: (i) one agent with two types, (ii) two-dimensional out-
comes, (iii) concavity, differentiability, and monotonicity of payoff functions, (iv) type-
independent agent’s reservation utility, (v) a condition on transfers, (vi) a condition on
the reservation payoffs of the parties, and (vii) a sorting condition on the principal’s payoff.

3For instance, in the partnership dissolution example presented in Section 2, which
violates condition (vii) in Maskin and Tirole, different types of the principal consume slacks
of different constraints, only one of the consumed slacks is traded, and the equilibrium
prices are zero for the slack that is traded and non-zero for the slacks that are not traded.
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Maskin and Tirole’s assumptions can be relaxed. This best-worst-condition
is satisfied in most market environments where private goods are traded.

Our slack exchange equilibrium existence proof is along the lines Maskin
and Tirole (1986, 1990), who in turn follow Debreu (1959). The details of the
proof are, however, significantly more demanding; for example, the payoffs of
the traders in the slack exchange economy may fail to be smooth functions
of the consumed vector of slack.

We also show that any slack exchange equilibrium is an SUPO (Proposi-
tion 2) and that any SUPO is a perfect Bayesian equilibrium outcome in an
appropriately defined non-cooperative informed principal game; in particu-
lar, it is an equilibrium outcome both in Myerson’s (1983) game and Maskin
and Tirole’s (1990) game (Proposition 1).

In addition, we show that the Lagrange multiplier technique proposed by
Maskin and Tirole as a shortcut towards computing slack exchange equilibria
applies in our framework (Lemma 3). We use this technique to establish
necessary and sufficient conditions under which the equilibrium outcome in
the informed principal game can be described by the mechanisms that would
be optimal if the principal’s information were public (Proposition 4).

Finally, we compute slack exchange equilibria in some environments,
whose special cases include a discrete-type version of the Myerson and Sat-
terthwaite bargaining environment (Myerson and Satterthwaite 1983), a ver-
sion of the Akerlof’s Lemons market (Akerlof 1970), a speculative trade en-
vironment with non common priors, and a partnership dissolution problem
(Proposition 5 and Remark 1).

Our results are obtained for finite type spaces. Extending slack exchange
equilibrium approach to continuous type spaces appears to be technically
challenging as it requires considering trade in a continuum of goods.

In another paper, Mylovanov and Troeger (2008), we consider the in-
formed principal problem in Myerson (1981) optimal auction environments
and in Guesnerie and Laffont (1984) principal agent environments. These
papers differ in three aspects. First, in the other paper, we show that the
privacy of the principal’s information does not affect the outcome of the mech-
anism design problem; this is not so in general environments.4 Second, in
this paper we employ Maskin and Tirole’s solution concept, SUPO, whereas
in the other paper we apply Myerson’s strong solution. Finally, the results

4Maskin and Tirole (1992) demonstrate this in a generic class of environments. See
also the solution of the informed principal problem computed in Remark 1.
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in this paper are obtained for finite type spaces whereas all applications in
the other paper are with continuous type spaces.

The rest of the paper is organized as follows. Section 2 presents the
example. The model is described in Section 3. We introduce SUPO and prove
that any SUPO is a perfect Bayesian equilibrium outcome of an informed
principal game in Section 4. The existence of slack exchange equilibrium
and SUPO is demonstrated in Section 5. We compute examples of SUPO in
Section 6.

2 Example

In this section, we describe the solution of the informed principal problem,
SUPO, in the following partnership dissolution environment. There are a
principal (player 0) and an agent (player 1). Each of them owns a half (one
share) of a company.

Let y ∈ [−1, 1] denote the amount of shares transferred from the principal
to the agent and p ∈ R denote the payment from the agent to the principal.
The parties’ preferences are expressed by linear risk-neutral payoff functions:

u0(y, p, t0) = p− yt0,
u1(y, p, t1) = yt1 − p,

where t0 and t1 are the parties’ marginal valuation of the shares (their types).
Let z0 = (y0, p0) = (0, 0) denote the no trade outcome.

The players’ types are their private information. We assume that t0 ∈
{0, 3} and t1 ∈ {1, 2}. The principal believes that both agent types are
equally likely. The agent believes that t0 = 0 with probability α ∈ [0, 1].

The objective of the principal is to design a trading mechanism that
maximizes her expected payoff subject to the individual rationality constraint
that the agent agrees to participate in the mechanism. Let v0 and v3 denote
the principal’s continuation payoff if t0 = 0 and t0 = 3 respectively.

If the principal’s type were common knowledge, the principal would ob-
tain the maximal feasible payoff of v0 = v3 = 1 by offering, for example, to
sell at the price of 1 if her type is low and buy at the price of 2 is her type
is high.

Let Vα denote the set of principal’s payoffs that can be obtained in some
individually rational and incentive compatible direct mechanism and are
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higher than what the principal can obtain when her type is commonly known.
In our model,

Vα = {(v0, v3)|αv0 + (1− α)v3 ≤ 2− α, v0 ≥ 1, v3 ≥ 1}.

In Section 4, we introduce the notion of mechanisms that are Strong Un-
constrained Pareto Optimum (SUPO). These mechanisms are characterized
by the Pareto property that for any prior beliefs about the principal there
does not exist another incentive feasible mechanism in which all types of the
principal are better off and some are strictly better off than in SUPO. In
our example, we can describe the set of the principal’s payoffs attainable in
SUPO as the payoffs that belong to Vα and are not dominated by any payoffs
in Vα′ for any α′ ∈ [0, 1],

Wα = {(v0, v3) ∈ Vα|v0 ≥ v′0 and v3 ≥ v′3 for any α′ ∈ [0, 1] and (v′0, v
′
3) ∈ Vα′}

It is straightforward to see that this set is not empty and is given by

Wα =


{(1, 2)}, if α < 1/2;

V 1
2
, if α = 1/2;

{(2, 1)}, if α > 1/2.

We offer an example of a simple indirect mechanism that implements the
payoffs in Wα: there is a fixed price p and the principal has the right to
choose whether to buy or sell at this price. The price is equal to 1 if α > 1/2,
2 if α < 1/2, and any value in [1, 2] if α = 1/2.

3 Model

We consider the interaction of a principal (player 0) and n agents (players
i ∈ N = {1, . . . , n}). The players must collectively choose an outcome from
a measurable space of basic outcomes Z. Every player i = 0, . . . , n has a type
ti that belongs to a finite type space Ti. The product of agents’ type spaces
is denoted T = T0 × · · · × Tn. Player i’s payoff function is denoted

ui : Z ×T→ IR,

That is, player i’s payoff can depend on the outcome and on every player’s
type.
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We assume that ui(·, t) : Z → IR is measurable for all t ∈ T, and that
ui is bounded. The types t0, . . . , tn are realizations of stochastically inde-
pendent random variables with probability distributions P0, . . . , Pn, where
Pi = (p

(ti)
i )ti∈Ti

. We call Pi the prior distribution for player i’s type. The
joint distribution of players’ types is denoted P. We will use the notation t−i
for the vector of types of the players other than i, use T−i for the respective
product of type spaces, and use P−i for the respective product of distribu-
tions. Similarly, we use the index −i− 0 if agent i as well as the principal
are excluded.

The interaction leads to a probability distribution over basic outcomes;
let Z denote the set of probability measures on Z. Any element of Z is
called an outcome. We endow Z with the smallest σ-algebra such that, for
every measurable set B ⊆ Z, the mapping mB : Z → [0, 1], ζ 7→ ζ(B) is
measurable.5 We identify any z ∈ Z with the point distribution that puts
probability 1 on the point z; hence, Z ⊆ Z.6 We extend the definition of ui
to Z ×T via the statistical expectation:7

ui(ζ, t) =

∫
Z

ui(z, t)ζ(dz).

Some outcome z0 ∈ Z is designated as the disagreement outcome.
The interaction is described by the following informed-principal game.

First, each player privately observes her type ti. Second, the principal offers
a mechanism M (a precise definition is given later). Third, the agents decide
simultaneously whether or not to accept M . If M is accepted unanimously,
each player chooses a message in M , and the outcome specified by M is
implemented. If at least one agent rejects M , the disagreement outcome z0

5Given this σ-algebra, any uncertainty about outcomes in Z can be equivalently de-
scribed as uncertainty about basic outcomes in Z. Formally, any probability measure P
on Z can be identified with a probability measure ζP on Z, via the definition

ζP (B) =
∫
Z
ζ(B)P (dζ) for every measurable B ⊆ Z.

6Observe that, if M is an arbitrary measurable space and if a mapping f :M→ Z is
measurable with respect to the σ-algebra on Z, then f is also measurable when viewed as
a mapping into Z (the reason is that the composite mapping mBf is measurable for every
measurable B ⊆ Z).

7Observe that the extended mapping ui : Z×T→ IR inherits the following properties:
the function ui(·, t) : Z → IR is measurable for all t ∈ T and ui is bounded.
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is implemented.8

An allocation rule is a function

ρ : T→ Z, t 7→ ρ(t)

that assigns an outcome ρ(t) to every type profile t. Thus, an allocation
rule describes the outcome of the players’ interaction as a function of the
type profile. Alternatively, an allocation rule ρ can be interpreted as a direct
mechanism, where the players i = 0, . . . , n simultaneously announce types t̂i
(=messages), and the outcome ρ(t̂0, . . . , t̂n) is implemented.

Let Q0 denote the probability distribution that describes the agents’ be-
lief about the principal’s type if the direct mechanism ρ is accepted. The
expected payoff of type ti of player i if she announces the type t̂i while all
other players announce their types truthfully, is

Uρ,Q0

i (t̂i, ti) =
∑
T−i

ui(ρ(t̂i, t−i), (ti, t−i)) q−i(t−i),

where q−i = q0 × p−i−0 if i 6= 0, and q−0 = p−0. We will use the short-
cuts Uρ,Q0

i (ti) = Uρ,Q0

i (ti, ti) and Uρ
0 = Uρ,Q0

0 . The expected payoff if the
mechanism ρ is rejected is denoted9

UQ0

i (ti) =
∑
T−i

ui(z0, (ti, t−i)) q−i(t−i).

A direct mechanism ρ is called Q0-incentive feasible if no type of any player
has an incentive to deviate from announcing her true type or can gain from
refusing to participate: for all i, ti, t̂i,

Uρ,Q0

i (ti) ≥ Uρ,Q0

i (t̂i, ti), (1)

Uρ,Q0

i (ti) ≥ UQ0

i (ti). (2)

8This game differs slightly from the games specified by Myerson (1983) and by Maskin
and Tirole (1990, 1992). Myerson allows the possibility of other private actions beyond
acceptance and rejection, and assumes that private actions and messages in M are chosen
simultaneously. Maskin and Tirole assume that players can use a public randomization
device to decide which equilibrium to play in M .

9Observe that when computing her expected payoff, agent i uses the prior beliefs about
the other agents; this is appropriate if she expects all other agents to accept and if she
actually is the only one to reject.
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An P0-incentive feasible allocation rule is simply called incentive feasible. A
direct mechanism ρ is called Q0-unconstrained feasible if (1) holds for all
i 6= 0, and (2) holds for all i; i.e., the definition of unconstrained feasibility
ignores the possibility that the principal may have an incentive to deviate
from announcing her true type.

Generalized private values environments

Our results will mainly concern environments with generalized private values,
where the agents’ payoff functions are independent of the principal’s type,
that is, for all i ≥ 1,

ui(z, (t0, t−0)) = ui(z, (t
′
0, t−0)) for all z, t0, t

′
0, t−0.

Many interesting environments belong to this class. All private-environments
are obvious members. But the principal’s payoff can also depend on the
agents’ types, and the agents can have interdependent types. For example,
a variant of a Lemons market where the seller (agent) is, as usual, privately
informed about quality, and the buyer (principal) is privately informed about
marginal willingness-to-pay for additional quality, has generalized private
values.

4 Strong Unconstrained Pareto Optimum

Generalizing Maskin and Tirole (1990), we introduce strong unconstrained
Pareto optimum (SUPO). This concept turns out to be a very useful solution
concept for a large class of informed-principal problems.

For any two allocation rules ρ and ρ′, let the sets of types of the principal
that are strictly better off in either allocation rule be denoted

S>(ρ, ρ′) = {t0 ∈ T0 | Uρ′

0 (t0) > Uρ
0 (t0)},

S<(ρ, ρ′) = {t0 ∈ T0 | Uρ′

0 (t0) < Uρ
0 (t0)}.

An allocation rule ρ is unconstrained-dominated by an allocation rule ρ′ if
there exists a belief Q0 such that ρ′ is Q0-unconstrained feasible and

PrQ0(S>(ρ, ρ′)) > 0,

S<(ρ, ρ′) = ∅.
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An incentive feasible allocation rule that is not unconstrained dominated is a
strong unconstrained Pareto optimum (SUPO, Maskin and Tirole, (1990)).10

SUPO appears to be a very restrictive concept. However, as we will see, an
SUPO exists in a large class of generalized private values environments.

One should distinguish the unconstrained-domination concept from Myer-
son’s (1983) stronger concept of domination. An incentive feasible allocation
rule ρ is dominated if there exists an incentive feasible allocation rule ρ′ such
that all types of the principal are at least as well off in ρ′ as in ρ, and a F0-
positive mass of types of the principal is strictly better off in ρ′.11 Clearly, if
an allocation is dominated, then it is unconstrained dominated.

Perfect Bayesian equilibrium

Any SUPO is a perfect Bayesian equilibrium in an appropriately specified
informed-principal game. Specifying the game is, unfortunately, not straight-
forward because a careful definition needs to be made about what constitutes
a “mechanism”. As observed by Myerson (1983) and Maskin and Tirole
(1990), the standard approach of applying the revelation principle and re-
stricting attention to direct mechanisms is not possible. The principal’s very
act of offering a particular mechanism may force the agents to update their
belief about the principal’s type, away from the prior F0. Hence, whatever
mechanism is proposed, one must consider its equilibria for all possible beliefs
about the principal.12

On the equilibrium path, however, we can assume, without loss of gener-
ality, that the same direct mechanism is proposed by all types of the principal

10Formally, our definition differs slightly from Maskin and Tirole’s (1990). However, if
both Maskin and Tirole’s and our assumptions hold, then our definition is equivalent to
theirs. This can be seen from the proofs of Propositions 3 and 4 in Maskin and Tirole’s
paper.

11Even if one restricts attention to generalized private values environments, SUPO differs
from the solution concepts neutral optimum and strong solution proposed by Myerson
(1983): neutral optimum may exist when no SUPO exists, and an SUPO may exist when
no strong solution exists. However, if both a strong solution and an SUPO exist, then they
lead to identical payoffs for all types of the principal (this holds in general environments).

12An interesting example by Yilankaya (1999) shows that, in general, the agents’ off-path
beliefs will have to be different from the prior beliefs in order to support an equilibrium.
His example involves a bilateral trade environment, where ρ is constructed from optimal
fixed-price offers by all types of the seller (principal), and M is a double auction. If the
agent believes in the lowest-cost type of the seller, then all types can be prevented from
deviating to the double auction.
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and is accepted by all agents (Myerson’s “inscrutability principle”). This fol-
lows from the revelation principle: any perfect Bayesian equilibrium of the
informed-principal game induces some incentive feasible allocation ρ; with-
out loss of generality, all types of the principal offer the direct mechanism ρ.
Perfect Bayesian equilibrium in the informed principal game then requires
that no type of the principal has an incentive to deviate by offering a mech-
anism M 6= ρ, given that the continuation play is sequentially optimal given
the agents’ (off-path) belief about the principal. As usual, off-path beliefs
can be arbitrarily defined.

A finite mechanism is a finite multi-stage game form with observed ac-
tions, with players N ∪ {0}, and with outcomes Z.13 (Observe that the
informed-principal game where any finite mechanism is feasible is not a finite
game because the set of finite mechanisms is infinite.)

Proposition 1. Let ρ be an SUPO. Consider the informed principal game
where the set of feasible mechanisms consists of all finite mechanisms.

Then there exists a perfect Bayesian equilibrium where all types of the
principal propose the direct mechanism ρ, and the allocation rule ρ is the
equilibrium outcome.

Proof. Define a function w on T0 by w(t0) = Uρ(t0).
For any regular mechanism M 6= ρ, consider the following reduced game

(M,w):

At stage 1, each type t0 of the principal chooses between obtaining
the payoff w(t0), which ends the game (and the agents’ payoffs
are irrelevant), or proposing the mechanism M . If M is proposed,
then the agents decide about acceptance at stage 2. If M is
unanimously accepted, then M is played at stage 3, otherwise
the disagreement outcome z0 is implemented.

This is finite multi-stage game with observable actions and thus has a perfect
Bayesian equilibrium, denoted σM (cf., e.g., Fudenberg and Tirole, Section
8.2.3.).

13It seems appropriate to consider the possibility that the principal proposes a multi-
stage mechanism rather than the strategic form of this mechanism, in order to reduce the
set of possible (perfect Bayesian) equilibrium outcomes of the mechanism, thus influencing
the players’ actions in the mechanism. In the earlier literature (Myerson, (1983), and
Maskin and Tirole, (1990)) only normal-form mechanisms are considered.
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Let ρM denote the allocation rule induced by the continuation equilibrium
at the beginning of stage 2 in (M,w), and let QM denote the belief about
the principal at the beginning of stage 2 in (M,w).

We construct a PBE of the informed-principal game as follows. The prin-
cipal proposes the direct mechanism ρ, everybody accepts, and everybody
announces their true type. If the principal proposes a mechanism M 6= ρ,
then the agents hold the belief QM . Moreover, if M is proposed, then the
continuation strategies are as in σM .

It remains to be shown that no type of the principal has an incentive to
deviate from proposing ρ to proposing any M 6= ρ; i.e., to show that

S>(ρ, ρM) = ∅. (3)

Let ρ′ be the allocation that coincides with ρM for all principal-types in the
support of QM , and otherwise coincides with ρ. If (3) does not hold, then ρ
is unconstrained dominated by the QM -incentive feasible allocation rule ρ′,
a contradiction to the assumption that ρ is an SUPO. QED

Proposition 1 generalizes a result of Maskin and Tirole (1990). Our proof
is different from theirs. In particular, we do not rely on the connection
between SUPO and Walrasian equilibrium.

The logic of the proof of Proposition 1 extends straightforwardly to envi-
ronments with a non-finite type space. However, the definition of a “mecha-
nism” then needs to include infinite game forms (even direct mechanisms are
then infinite game forms), and some technical restrictions need to be added
to avoid equilibrium non-existence.

5 Existence of SUPO in generalized private

values environments

In this section, we assume that the basic outcome space Z is a compact
metric space such that all payoff functions ui (i ≥ 0) are continuous. Similar
to Maskin and Tirole (1990), we define an exchange economy where the
different types of the principal trade amounts of slack granted to the incentive
constraints and participation constraints of the agents. The crucial departure
from Maskin and Tirole’s approach is that we consider trade in all constraints.
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For all t0 and real-valued functions r on

R = ∪i≥1{i} × Ti

and c on

C = ∪i≥1{i} × {(t̂i, ti) | t̂i, ti ∈ Ti, t̂i 6= ti},

consider the problem

P (t0, r, c) : max
ρ:T→Z

∑
t−0

u0(ρ(t), t)p−0(t−0)

s.t.
∑
t−0−i

(ui(ρ(t), t)− ui(z0, t))p−0−i(t−0−i) ≥ −r(i, ti)

for all (i, ti) ∈ R,∑
t−0−i

(ui(ρ(t), t)− ui(ρ(t̂i, t−i), t))p−0−i(t−0−i) ≥ −c(i, t̂i, ti)

for all (i, t̂i, ti) ∈ C.

According to the problem P (t0, r, c), type t0 of the principal maximizes
her expected payoff, given certain (positive or negative) slacks in the agents’
constraints, as described by the functions r and c.

Let C denote the set of (r, c) such that the constraint set of problem
P (t0, r, c) is non-empty and such that (r, c) is bounded. Observe that C
is non-empty (the point where both r and c are identically 0 belongs to
C because the allocation rule that implements the disagreement outcome
satisfies all constraints). Moreover, C is convex.

Lemma 1. Problem P (t0, r, c) has a solution, for all t0 ∈ T0 and all (r, c) ∈
C.

Proof. When we endow Z with the weak topology, then, for any given t
the functions u0(·, t) and ui(·, t) are continuous as functions of Z, and Z is
a compact metric space, by Prohorov’s Theorem. Hence, with respect to the
product topology on Z |T|, the objective of P (t0, r, c) is continuous and the
constraint set is compact. Hence, a maximizer exists. QED

For all (r, c) ∈ C, let V (t0, r, c) < ∞ denote the maximum value of
problem P (t0, r, c).
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For all i ≥ 1, endow {i} × Ti with the same topology as Ti. Endow R
with the standard induced topology for disjoint unions.

Let β be a non-negative function on R, and γ be a non-negative function
on C such that ∑

i≥1, ti

β(i, ti) +
∑

i≥1, t̂i 6=ti

γ(i, t̂i, ti) > 0.

We write (β, γ) for the induced function on R∪ C.
For any (β, γ) and any functions r on R and c on C, let

β · r =
∑
i≥1, ti

β(i, ti)r(i, ti),

γ · c =
∑

i≥1, t̂i 6=ti

γ(i, t̂i, ti)c(i, t̂i, ti).

A slack exchange equilibrium is a list

(r∗t0 , c
∗
t0

)t0∈T0 , β
∗, γ∗

such that (β∗, γ∗) is non-negative and not identically zero on R∪C, and, for
all t0 ∈ T0,

V (t0, r
∗
t0
, c∗t0) = max

(r,c)∈C
V (t0, r, c) s.t. β∗ · r + γ∗ · c ≤ 0, (4)

β∗ · r + γ∗ · c = 0 for all maximizers (r, c) in (4), (5)

and, for all i ≥ 1, ti, and t̂i 6= ti,∑
T0

r∗t0(i, ti) p0(t0) ≤ 0, (6)∑
T0

c∗t0(i, t̂i, ti) p0(t0) ≤ 0. (7)

Each type t0 of the principal can be interpreted as a trader in an exchange
economy. Slacking a constraint (i, ti) by an amount r(i, ti) can be interpreted
as consuming the (positive or negative) quantity r(i, ti) of a good (i, ti).
Similarly, there are goods (i, t̂i, ti). Each trader t0 has an initial endowment
of 0 of each good.
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Given the price vector (β∗, γ∗), each trader t0 optimally decides which
bundle of slacks (r∗t0 , c

∗
t0

) to buy (4). Walras’ law holds (5). The total con-
sumption of each good does not exceed the total initial endowment (6, 7).14

Proposition 2. Any slack exchange equilibrium in a generalized private val-
ues environment is an SUPO.

Proof. Let ρ be a maximizer of problem P (t0, r
∗
t0
, c∗t0) for all t0. By (6) and

(7), ρ satisfies constraints (2) and (1) for all i ≥ 1. Because the allocation rule
that implements the disagreement outcome is feasible in problem P (t0, 0, 0),
(2) is satisfied for i = 0. Because, for all t0, t̂0, the bundle (r∗

t̂0
, c∗
t̂0

) belongs

to the constraint set of problem (4), constraint (1) is satisfied for i = 0. In
summary, ρ is incentive feasible.

To complete the proof ρ is an SUPO, suppose that ρ is unconstrained-
dominated by an allocation rule ρ′; let Q0 denote the corresponding belief.
Then, there exists a set S with positive Q0-measure such that

Uρ′

0 (t0) ≥ Uρ
0 (t0) for all t0 ∈ T0,

and Uρ′

0 (t′0) > Uρ
0 (t′0) for all t′0 ∈ S. (8)

For all t0, define r′t0 and c′t0 such that ρ′ satisfies all constraints of problem
P (t0, r

′
t0
, c′t0) with equality. Because ρ′ is unconstrained-feasible,∑

T0

r′t0(i, ti) q0(t0) ≤ 0 for all i, ti, (9)∑
T0

c′t0(i, t̂i, ti) q0(t0) ≤ 0 for all i, t̂i, ti. (10)

Because (r∗t0 , c
∗
t0

) satisfies (4) and (5), (8) implies

β∗ · r′t0 + γ∗ · c′t0 ≥ 0, and “>” if t0 ∈ S.

Adding over T0 according to the measure Q0, we obtain a contradiction to
(9) or (10). QED

We consider trade in all constraints, whereas Maskin and Tirole consider
trade in just two constraints in a specific class of economic environments with

14We allow that part of the initial endowment is destroyed. This can be relevant for
goods with price 0 and is potentially important for equilibrium existence.
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one agent and two types, where these two constraints cannot be relaxed and
the other two constraints are automatically satisfied. Because we consider
trade in all constraints, the equilibrium prices of some constraints may be
0. For any such constraint, the aggregate amount of slack “consumed” in
equilibrium may be strictly below the aggregate endowment of 0. All of
these differences could be relevant: in Section 6, we present an example of a
speculative trade environment in which (i) all constraints could be potentially
relevant, (ii) only one constraint is traded at 0 price, and (iii) the aggregate
consumption of the slack of the constraint which is traded is negative.

The focus on generalized private values environments is essential to make
the exchange-economy-technique applicable: it guarantees that the form of
the agents’ incentive compatibility and participation constraints is indepen-
dent of the type of the principal.

We say that any best outcome for the principal is a worst outcome for all
agents if

arg max
z∈Z

u0(z, t) ⊆ arg min
z∈Z

ui(z, t) for all t.

This condition is useful because it guarantees Walras’ law for the fictitious
economy.15

Lemma 2. If any best outcome for the principal is a worst outcome for all
agents, then (5) holds for all t0, β∗, and γ∗.

Proof. Suppose that ρ is a maximizer of problem P (t0, r, c) and β∗ · r +
γ∗ · c < 0. Then there exists i ≥ 1 and ti such that r(i, ti) < 0 or i ≥ 1, t̂i
and ti such that c(i, t̂i, ti) < 0. Hence, looking at the constraints of problem
P (t0, r, c), there exists i, ti such that Uρ

i (ti) is not the lowest feasible expected
payoff for type ti of agent i. Hence, there exists a type profile t−0−i such
that ρ(t) puts probability less than 1 on the outcomes in arg minz∈Z ui(z, t).
Because any best outcome for the principal is a worst outcome for all agents,
ρ(t) puts probability less than 1 on the outcomes in arg maxz∈Z u0(z, t).

Consider (r′, c′) := (r + ε, c+ ε) with ε > 0 so small that

β · r′ + γ · c′ < 0. (11)

The allocation ρ satisfies all constraints of problem P (t0, r
′, c′) with strict

inequality. Let ρ′ be an allocation rule that, for the type profile t constructed

15I.e., the condition replaces the condition of locally non-satiated preferences that is
needed to guarantee the existence of a Walrasian equilibrium in the standard context.
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above, implements any outcome in arg maxz∈Z u0(z, t), and for all other type
profiles implements the same outcome as ρ. Then, an allocation rule ρ′′

that implements ρ with probability λ < 1 and ρ′ with probability 1 − λ,
belongs to the constraint set of problem P (t0, r

′, c′) if λ is sufficiently close
to 1, and yields a higher value for the objective of P (t0, r

′, c′) than ρ. Hence,
V (t0, r

′, c′) > V (t0, r, c). Hence, (r, c) is not a maximizer of the problem in
(4), because, by (11), the point (r′, c′) satisfies the constraint of this problem.
QED

An environment with generalized private values is constraint-non-degenerate
if there exists an allocation rule such that, for any Q0 = 1t0 ,

16 the incentive
constraints (1) and participation constraints (2) are satisfied with strict in-
equality for all agents i ≥ 1, t̂i, and ti.

Proposition 3. Consider any generalized private values constraint-non-degenerate
environment, where any best outcome for the principal is a worst outcome for
all agents.

Then a slack exchange equilibrium exists.

Before we prove this result, comments are in order. Our basic line of
proof is analogous to Maskin and Tirole (1986, 1990), who in turn follow
Debreu (1959). The proof is technically more demanding than Maskin and
Tirole’s. In particular, we cannot show that the traders’ utility functions in
the fictitious economy are continuous at the boundary of the consumption
set.

The assumption of finite type spaces greatly simplifies the technicalities
because it guarantees that the fictitious economy has finitely many traders
and finitely many goods. The assumption of constraint non-degeneracy is
essential towards showing that the demand correspondence in the fictitious
economy is upper hemicontinuous. The assumption that any best outcome
for the principal is a worst outcome for all agents guarantees that Walras’
law holds (cf. Lemma 2).

Proof of Proposition 3. Observe that the set C is closed. (Consider any
sequence (rm, cm) → (r, c) such that (rm, cm) ∈ C. By assumption, the
constraint set of P (t0, r

m, cm) contains a point ρm. For all sufficiently large
m, the point ρm belongs to the constraint set of problem P (t0, r + 1, c + 1),
where 1 denote the function that is identically equal to 1. Because the latter

16Due to generalized private values, it is irrelevant which t0 is used here.
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constraint set is compact, ρm has a subsequence that converges to some
point ρ′. By continuity, ρ′ belongs to the constraint set of P (t0, r, c). Hence,
(r, c) ∈ C.)

Because Z is compact, there exists an upper bound for the size of the left
hand side of every constraint of P (t0, r, c). Hence, there exist functions r on
N × Ti and c on N × T 2

i such that

V (t0, r, c) = V (t0,min{r, r},min{c, c}) for all (r, c) ∈ C, (12)

where “min” determines the point-wise minimum of two functions.
Similarly, there exist functions r on N × Ti and c on N × T 2

i such that

C ⊆ {(r, c) | r ≥ r, c ≥ c}, (13)

where “≥” refers to point-wise comparison. By (12) and (13), the set

D = C ∩ {(r, c) | r ≤ r, c ≤ c} is compact, (14)

where “≤” refers to point-wise comparison.
Define the unit simplex

∆ = {(β, γ) | β : ∪i≥1{i} × Ti → IR, γ : ∪i≥1{i} × T 2
i → IR,

β(i, ti) ≥ 0, γ(i, t̂i, ti) ≥ 0,∑
i≥1, ti

β(i, ti) +
∑

i≥1, t̂i 6=ti

γ(i, t̂i, ti) = 1}.

For all (β, γ) ∈ ∆, consider the problem

E(t0, β, γ) : max
(r,c)∈D

V (t0, r, c) s.t. β · r + γ · c ≤ 0.

The objective V (t0, ·) of problem E(t0, β, γ) does not “jump downwards”:17

for any convergent sequence (xm) in D,

V (t0, lim
m
xm) ≥ lim sup

m
V (t0, x

m). (15)

17It is not clear whether V (t0, ·) is continuous. Continuity does not follow from
Berge’s Theorem, because it is not clear whether the constraint set of P (t0, r, c) is lower-
hemicontinuous in (r, c). Although V (t0, ·) is concave and hence is continuous in the
interior of D, continuity at the boundary is not clear.
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To see (15), let x = limxm and let (xml) be a subsequence such that V (t0, x
ml)

converges. Let ρl be a maximizer of problem P (t0, x
ml) and let (ρlk) be

a subsequence such that ρlk converges. Because limk x
mlk = x, the limit

ρ′ = limk ρ
lk belongs to the constraint set of problem P (t0, x). Hence,

V (t0, x) ≥ Uρ′

0 (t0) = lim
k
Uρlk

0 (t0) = lim
k
V (t0, x

mlk ) = lim
l
V (t0, x

ml).

By (15) and because, by (14), the constraint set of problem E(t0, β, γ) is
compact, a maximizer to problem E(t0, β, γ) exists; let e(t0, β, γ) denote the
set of maximizers.

The correspondence e(t0, ·) : ∆→ D is convex-valued (because V (t0, ·) is
concave). To show that e(t0, ·) is upper-hemicontinuous, we begin by showing
that, for every sequence in ∆,

if (βm, γm)→ (β, γ) then lim inf
m
v(t0, β

m, γm) ≥ v(t0, β, γ), (16)

where v(t0, x) denotes the value reached at the maximum of problem E(t0, x).
Let (r∗, c∗) ∈ e(t0, β, γ). If r∗ ·β+c∗ ·γ < 0, then r∗ ·βm+c∗ ·γm < 0 if m is

sufficiently large, hence (r∗, c∗) belongs to the constraint set of E(t0, β
m, γm),

which shows (16). Now suppose that

r∗ · β + c∗ · γ = 0. (17)

Because of constraint-non-degeneracy, the set D contains a strictly negative
point (r−, c−). For all large m, define

αm = min

{
1,

−(r− · βm + c− · γm)

r∗ · βm + c∗ · γm − (r− · βm + c− · γm)

}
. (18)

Using the shortcuts x∗ = (r∗, c∗) and x− = (r−, c−), the convex combination
xm = αmx∗+(1−αm)x− ∈ D. By construction, xm belongs to the constraint
set of problem E(t0, β

m, γm). Hence, using the concavity of V (t0, ·),

αmV (t0, x
∗) + (1− αm)V (t0, x

−) ≤ V (t0, x
m) ≤ v(t0, β

m, γm). (19)

As m→∞, we have αm → 1 by (17) and (18). Hence, (19) implies

V (t0, x
∗) ≤ lim inf

m
v(t0, β

m, γm).

Because V (t0, x
∗) = v(t0, β, γ), we obtain (16).
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To show that e(t0, ·) is upper hemi-continuous, suppose that (βm, γm)→
(β, γ), xm ∈ e(t0, βm, γm) and xm → x. Then,

V (t0, x)
(15)

≥ lim inf
m
V (t0, x

m) = lim inf
m
v(t0, β

m, γm)
(16)

≥ v(t0, β, γ).

Hence, x ∈ e(t0, β, γ) because x belongs to the constraint set of E(t0, β, γ).
Define a correspondence h :

∏
t0∈T0

D → ∆ by letting h((rt0 , ct0)t0∈T0) be
the set of solutions to the problem

R((rt0 , ct0)t0∈T0) : max
(β,γ)∈∆

∑
t0∈T0

p(t0) (β · rt0 + γ · ct0) .

By Berge’s Theorem, h is upper-hemicontinuous. Moreover, h is convex-
valued. By Kakutani’s Theorem, the correspondence

(
∏
t0∈T0

D)×∆ → (
∏
t0∈T0

D)×∆,

(x, (β, γ)) 7→ (
∏
t0∈T0

e(t0, β, γ))× h(x)

has a fixed point ((r∗t0 , c
∗
t0

)t0∈T0 , (β
∗, γ∗)).

Using the constraint of problem E(t0, β
∗, γ∗) for all t0,∑

t0∈T0

p(t0)
(
β∗ · r∗t0 + γ∗ · c∗t0

)
≤ 0.

Hence, ∑
t0∈T0

p(t0)r∗t0(i, ti) ≤ 0 for all i, ti. (20)

(If not, choose (β, γ) ∈ ∆ such that γ = 0 and β(j, t′i) = 0 for all (j, t′i) 6=
(i, ti), hence

∑
t0∈T0

p(t0)(β · r∗t0 + γc∗t0) > 0, which contradicts the fact that
(β∗, γ∗) solves problem R((r∗t0 , c

∗
t0

)t0∈T0)). Similarly,∑
t0∈T0

p(t0)c∗t0(i, t̂i, ti) ≤ 0 for all i, t̂i, ti. (21)

Finally, condition (5) follows from Lemma 2. QED
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Our assumption that any best outcome for the principal is a worst out-
come for all agents may possibly be weakened in some cases, because the
assumption guarantees that Walras’ law holds for every agent’s entire de-
mand correspondence in the fictitious economy, whereas in the proof we only
use the fact that Walras’ law holds at the equilibrium prices. However, the
assumption cannot be completely dropped.

Consider Example 1. There is only one agent, with no private informa-
tion, and the principal has two equally likely types, T0 = {0, 1}. The space of
basic outcomes is the unit interval Z = [0, 1]. The players have single-peaked
preferences, u0(z, t0) = −(z−t0)2 and u1(z) = −z2. (Hence, the agent’s pref-
erences are aligned with type 0 of the principal.) The disagreement outcome
is z0 = 1/2. The following deterministic allocation rule ρ dominates all other
incentive feasible allocation rules: ρ(0) = 0 and ρ(1) =

√
2. Hence, ρ is a

perfect Bayesian equilibrium outcome (assume prior beliefs if any alternative
mechanism is proposed, and apply the revelation principle).18 But ρ is not
an SUPO: for the belief Q0 that puts probability 1/4 on type 1 of the prin-
cipal, the deterministic allocation rule ρ′ given by ρ′(0) = 0 and ρ′(1) = 1 is
Q0-unconstrained dominating ρ. Hence, an SUPO does not exist.

6 Computing SUPOs in generalized private

values environments

Computing slack exchange equilibria can be difficult. However, in many cases
a shortcut is possible.

Observe that Z is a convex subset of the vector space of signed measures
on Z. Hence, the allocation rule ρ belongs to the vector space of functions
from T into the space of signed measures on Z. The set of allocation rules
is convex and is denoted Ω.

For all ρ ∈ Ω, let G(ρ, i, ti) denote the left-hand-side of constraint (i, ti) ∈
R in any problem P (t0, r, c). Let G(ρ, i, t̂i, ti) denote the left-hand-side of
constraint (i, t̂i, ti) ∈ C. Let G(ρ) denote the corresponding function R∪C →
IR. Let f t0(ρ) denote the objective of problem P (t0, r, c). Let the Lagrange

18By Myerson, a neutral optimum exists and is undominated if we replace the outcome
space by a finite set Z ′; hence, ρ is the unique neutral optimum if Z ′ ⊇ {0,

√
2}.
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function be denoted by

Lt0,r,c(ρ, β, γ) = f t0(ρ) + (β, γ) · (G(ρ) + (r, c)).

The saddle-point condition is satisfied at (ρ̂, β̂, γ̂) if, for all ρ ∈ Ω and all
non-negative (β, γ),

Lt0,r,c(ρ, β̂, γ̂) ≤ Lt0,r,c(ρ̂, β̂, γ̂) ≤ Lt0,r,c(ρ̂, β, γ).

The vector (β̂, γ̂) is then called a Lagrange multiplier vector.
We say that the vectors (β, γ) and (β′, γ′) are co-linear if there exists k > 0

such that the β(i, ti) = kβ′(i, ti) for all (i, ti) ∈ R and γ(i, t̂i, ti) = kγ′(i, t̂i, ti)
for all (i, t̂i, ti) ∈ C.

Lemma 3. Consider a generalized private values environment. Suppose that,
for all t0 and some (r∗t0 , c

∗
t0

) and (β̂, γ̂), the saddle-point condition is satisfied

for problem P (t0, r
∗
t0
, c∗t0) at the point (ρ, β̂, γ̂). Moreover, suppose that (5)

holds with (β∗, γ∗) = (β̂, γ̂).
Then (4) holds for all (β∗, γ∗) that are co-linear to (β̂, γ̂). Moreover, ρ is

a maximizer of problem P (t0, r
∗
t0
, c∗t0).

Proof. From Luenberger ((1969), p. 221, Theorem 2), ρ is a maximizer
of problem P (t0, r

∗
t0
, c∗t0). From Luenberger ((1969), p. 222, Theorem 1),

V (t0, r
∗
t0
, c∗t0)− V (t0, r, c) ≥ (β̂, γ̂) ·

(
(r∗t0 , c

∗
t0

)− (r, c)
)
.

From (5) with (β∗, γ∗) = (β̂, γ̂), we have (β̂, γ̂) · (r∗t0 , c
∗
t0

) = 0. Given the

constraint (β̂, γ̂) · (r, c) ≤ 0 of the problem in (4) with (β∗, γ∗) = (β̂, γ̂), we
conclude that V (t0, r

∗
t0
, c∗t0) ≥ V (t0, r, c). Hence, (r∗t0 , c

∗
t0

) solves the problem

in (4) with (β∗, γ∗) = (β̂, γ̂), and hence with any co-linear (β∗, γ∗). QED

This lemma is the key towards computing slack exchange equilibria. One
determines slacks (r∗t0 , c

∗
t0

) for all t0 such that the Lagrange multiplier vectors
(βt0 , γt0) for the problems P (t0, r

∗
t0
, c∗t0) become co-linear across types t0, and

such that the budget conditions (6) and (7) are satisfied.
In best-worst environments condition (5) is then automatically satisfied

and we have found a slack exchange equilibrium.
Lemma 3 shows that the actual process of solving the optimization prob-

lem (4) can be avoided if the saddle-point condition is satisfied. This shows

21



that the technique of working with co-linear Lagrange multipliers generalizes
tremendously beyond the environments considered by Maskin and Tirole
(1990).

We obtain particularly simple necessary and sufficient conditions for no
trade being an equilibrium,(r∗t0 , c

∗
t0

) ≤ 0 for all t0, because here the budget
constraints (6) and (7) are automatically satisfied.

Proposition 4. Consider any generalized private values constraint-non-degenerate
environment, where any best outcome for the principal is a worst outcome for
all agents. Furthermore, let ρ̂ be an allocation rule that would be optimal for
the principal if her type were known to the agents.

Then, ρ̂ is a slack exchange equilibrium if and only if there exists a set of
co-linear (β∗t0 , γ

∗
t0

) such that the saddle-point condition is satisfied for problem
P (t0, 0, 0) at the point (ρ̂, β∗t0 , γ

∗
t0

) for all t0 ∈ T0.

The proof is given in the supplement to this paper.

We now compute two examples of slack exchange equilibria. Our first
example has private values with linear risk-neutral payoff functions and is
a more general version of the example considered in Section 2. This exam-
ple can be interpreted as a discrete types version of partnership dissolution
problem in Cramton, Gibbons, and Klemperer (1987) or as a version of the
speculative trade environment with non-common priors considered in Eliaz
and Spiegler (2006, 2007).

In this example, in equilibrium only one constraint is traded at 0 price.
Furthermore, the aggregate consumption of the slack is negative for this
constraint and 0 for all other constraints. Finally, the principal’s type that
buys the slack achieves a higher payoff than would be possible for her if the
types of the players were commonly known.

There are a principal and an agent. The set of outcomes is given by

Z = [−1, 1]× [x, x].

We assume that T0 = {0, 3} and T1 = {1, 2} and that x ≤ −2 and
x ≥ 2. The prior probabilities of the types are common knowledge; the prior
probability of t

(i)
j , where j is the player’s index and i is the type’s index, is

denoted by p
(i)
j . We require that p

(i)
j > 0 for any j and i, p

(1)
0 ≥ p

(2)
0 , and

p
(1)
1 ≥ p

(2)
1 . Let α = p

(2)
0 /p

(1)
0 . The disagreement outcome is z0 = (0, 0).
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The players have linear risk-neutral payoff functions with private values:

u0(y, x, t0) = x− yt0,
u1(y, x, t1) = yt1 − x.

We now describe a slack exchange equilibrium:

ρ∗ = (y∗, x∗)(t0, t1) =

{
(1, 1), if t0 = 0;

(−1,−1), otherwise.

Let (r∗t0 , c
∗
t0

) denote the amount of slack corresponding to ρ∗ and observe
that

r∗t0(1, 1) = 0, r∗
t
(1)
0

(1, 2) = −r∗
t
(2)
0

(1, 2) = 1, c∗t0 = 0,

Furthermore, define

β∗1 = 1, β∗2 = 0, γ∗21 = p
(2)
1 , γ∗12 = 0.

Remark 1. The allocation rule ρ∗ is a maximizer of program P (t0, r
∗
t0
, c∗t0).

Furthermore, (r∗t0 , c
∗
t0

)t0∈T0 , β
∗, γ∗ is the slack exchange equilibrium corre-

sponding to ρ∗.

The proof is given in the supplement to this paper.

Our second example is an environment with generalized private values
and linear risk-neutral payoff functions. The special cases of this environ-
ment include a discrete-type version of the Myerson-Satterthwaite bargaining
environment where the parties have private information about their valua-
tions of the good, a version of the Akerlof’s Lemons market where the seller
(agent) is privately informed about the quality of the good and the buyer
(principal) is privately informed about its willingness to pay for additional
quality, and a labor contract setting in which the worker (agent) has pri-
vate information about its productivity and the firm (principal) has private
information about demand for its product.

In this environment, the set of constraints that cannot be relaxed and,
hence, the set of Lagrange multiplier vectors for which the saddle point con-
dition is satisfied varies with the type of the principal. Nevertheless, it is
possible to find a Lagrange multiplier vector such that the saddle-point con-
dition is satisfied for all principal types. Thus, the solution of the informed
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principal problem coincides with the allocation rules that would be imple-
mented in the absence of uncertainty about the principal’s type.

There are a principal and an agent. The set of outcomes is given by

Z = [0, 1]× [x, x],

where any y ∈ [0, 1] represents the amount of good allocated to the agent and
any x ∈ [x, x] represents a monetary transfer from the agent to the principal.

We assume that the agent’s type space is finite, T1 = {1, . . . , k}. Further-
more, we require that k < x,−x and 1 ≤ t0 ≤ k for all t0 ∈ T0. The prior

probability of t1 = i is denoted by p
(i)
1 . Let z0 = (0, 0) be the disagreement

outcome.
The players have linear risk-neutral payoff functions with generalized pri-

vate values:

u0(y, p, t0, t1) = (1− y)f(t0, t1) + x,

u1(y, p, t1) = yt1 − x,

where f(t0, t1) > 0 for all t0 ∈ T0 and t1 ∈ T1.
Define the virtual surplus function

v(i) =

{
k, if i = k;

i− G(i)

p
(i)
1

, otherwise;

where G(i) = 1−
∑i

j=1 p
(i)
1 for all i = 1, . . . , k − 1.

In this environment, any allocation rule ρ can be decomposed into a good
allocation rule µ : T → [0, 1] and a transfer allocation rule τ : T → [x, x];
that is, ρ = (µ, τ). Let

µ∗(t0, i) =

{
1, if v(i)− f(t0, i) ≥ 0;

0, otherwise;

τ ∗(t0, i) =


i∑

j=2

(µ∗(t0, j)− µ∗(t0, j − 1)) · j + µ∗(t0, 1), if i > 1;

µ∗(t0, 1), if i = 1.

Proposition 5. Let v(i) − f(t0, i) be increasing in i for all t0. Then, the
allocation rule ρ∗ = (µ∗, τ ∗) is a maximizer of the problem P (t0, 0, 0) for any
t0 and is a slack exchange equilibrium.
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The proof is given in the supplement to this paper.
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