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Abstract

Recent literature on testing experts shows that it is difficult, and often im-

possible, to determine whether an expert knows the stochastic process that

generates data. Despite this negative result, we show that often exist con-

tracts that allow a decision maker to attain the first-best payoff in the following

sense: in the case in which the expert knows the stochastic process, the decision

maker achieves the payoff she would obtain if there were no incentive problems;

while in the case in which the expert does not know the stochastic process, she

achieves the payoff she would obtain in the absence of any expert.

More precisely, this kind of full-surplus extraction is always possible in

infinite-horizon models in which future payoffs are not discounted. If future

payoffs are discounted (but the discount factor tends to 1), the possibility of

full-surplus extraction depends on a constraint involving the forecasting tech-

nology.

1. Introduction

A number of recent papers show that if an empirical test can be passed by an expert

who knows a stochastic process that generates states, and reports this knowledge

truthfully, then the test can also be passed an expert who knows nothing about the

stochastic process, but delivers forecasts strategically in order to pass this particular
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test. That is, empirical tests cannot distinguish between these two types of experts.

(See Foster and Vohra (1998), Fudenberg and Levine (1999), Lehrer (2001), Sandroni

(2003), Sandroni, Smorodinsky, and Vohra (2003), Vovk and Shafer (2005), Olszewski

and Sandroni (2008a) and (2008b), and Shmaya (2008).)

The literature on testing experts does not focus on and hence does not specify

in which way one benefits either from learning the expert’s type or the stochastic

process itself. Statistical decision theory views information as a tool for making

better decisions. For example, Wald (1949) and (1950) sees hypothesis testing as a

decision-maker’s strategy in a game with uncertainty. Of course, there is no conflict

between this view and the literature on testing experts. Even if the decision problem

is not explicitly modelled, one may argue that when we know the expert’s type, we

are able to make better decisions.

However, the impossibility of screening the expert’s type may depend critically on

whether the expert’s forecasts play the role of advice concerning a specific decision

problem, or alternatively, whether one has no specific decision problem in mind, but

simply wishes to learn the expert’s type. Indeed, there are several reasons for thinking

that this difference may be crucial. In practice, a decision maker must take some

default action even in the absence of any expert, and may not appreciate forecasts

that suggest the same (or similar) actions. On the other hand, if forecasts lead to

better decisions, the decision maker may appreciate them, no matter what type of

the expert is who provides them. Thus, in an analysis of forecasting in the context of

a single decision problem, it seems legitimate to relax the requirement that a “good”

test should always pass informed experts, and fail uninformed ones.

In addition, the famous Hannan’s Theorem (see Hannan (1957)) says that if a

decision maker receives forecasts from a finite number of sources, then there exists a

decision scheme that enables her to achieve (in the long run) an average payoff as high

as the maximum of the average payoffs she would achieve by receiving forecasts from

single sources. Hannan’s result seems quite robust to perturbations of the original

model, e.g., to introducing some type of strategic forecasters, or a cost of switching

between receiving forecasts from distinct sources. Some of these results are reviewed
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in Foster and Vohra (1999), and in Cesa-Bianchi and Lugosi (2006).1 The variety of

extensions of Hannan’s Theorem suggest that the decision maker should be able to

achieve a payoff as high as she would achieve when she knew the type of the expert.

We must note, however, that there exist important differences between the literature

on Hannan’s theorem and the present setting; one consequence of this is that we

obtain some impossibility results as well.

We study the relationship between a tester and an expert within an infinite-horizon

principal-agent model. In a single period, the principal (henceforth, “the decision

maker”) takes an action, and her utility depends on the action and the unknown

state of the world. The decision maker’s knowledge regarding the states cannot be

summarized by a probability distribution. The agent (henceforth “the expert”) can

be either informed, in which case he knows the stochastic process that generates the

states; or uninformed, in which case he knows no more than the decision maker. The

decision maker offers the expert a menu of contracts. According to each contract, the

expert is supposed to provide forecasts in selected periods (i.e., the expert delivers a

probability distribution over states in each selected period); the decision maker then

chooses an optimal action given the expert’s forecast. Each menu contains a default

contract under which the expert never provides any forecasts. In periods in which the

expert provides no forecast - in particular, in each period under the default contract

- the decision maker takes a default action, and the expert exerts his outside option.

This outside option can be interpreted as the utility of leisure, or avoiding the cost

of providing a forecast. The expert’s compensation depends on his forecasts and the

realized states. He is free to choose any contract in the menu.2

We consider two criteria for evaluating infinite sequences of payoffs. If the parties

do not discount future payoffs, i.e., they evaluate sequences of payoffs by taking the

limits of averages, then the principal can approximate her first-best payoff. That is,

there exists a menu of contracts that satisfies these two conditions: If the expert is

1We are grateful to Rekesh Vohra for a discussion on the relation between our results and exten-

sions of Hannan’s Theorem.
2All results of the present paper hold under the assumption that only the informed expert has

an outside option.
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informed, the decision maker’s payoff is almost equal to the payoff she would get if the

expert honestly revealed the process that generates states, and if the decision maker

had to compensate the expert for his forecasts only when the expert’s forecasts are

useful (i.e., the payoff under the contract exceeds the payoff from taking the default

action by the value of the expert’s outside option). If the expert is uninformed, then

even if he accepts a contract, the decision maker’s payoff can fall only marginally

below the payoff she would obtain in the absence of any expert.

Under our contracts, the expert can choose a number of grace periods during

which he cannot be dismissed. After the grace periods are over, the expert is dismissed

(once and for all) when the decision maker’s average payoff (including transfers to the

expert) falls below the payoff to taking default actions. If the expert is not dismissed,

he is compensated for his outside option, and receives a little bonus, proportional to

the decision maker’s payoff.

For a given discount factor δ < 1, the first-best menu (in the above sense) does not

exist. Moreover, it does not exist even when δ → 1 if contracts are irreversible, i.e.,

in a world in which once the expert does not deliver a forecast, he cannot deliver a

forecast in any future period. In contrast, if reversible contracts are allowed, first-best

menus do exist as δ → 1.

The distinction between reversible and irreversible contracts reflects the con-

straints that the contracting parties face in practice. If forecasting requires a relation-

specific capital that disappears when the expert is dismissed, the contracts must be

irreversible. On the other hand, if the expert can be hired or fired at will, the re-

versible contracts are appropriate.

The present analysis contrasts sharply with the message of the literature on testing

experts. A test can be interpreted as an irreversible contract that either accepts or

dismisses the expert in a finite time. We show that the contract chosen optimally

by the informed expert approximates the first best decision maker’s payoffs, even

if the expert never provides any forecast under the chosen contract. On the other

hand, the impossibility results from the testing literature depend crucially on the

assumption that a good test never dismisses any informed expert. For example,
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Olszewski and Sandroni (2007) study a similar principal-agent model, in which parties

discount future payoffs. They show that if the informed expert accepts a contract,

the uninformed expert also prefers to accept the contract; thus, the decision maker

cannot learn the expert’s type.3 In their model, default actions are not specified.

But if they were, the assumption that the informed expert finds a contract profitable

would mean that the contract must be profitable even for the expert whose forecasts

induce the same actions as (or similar actions to) those that the decision maker would

take in the absence of any expert.

The idea that the expert’s forecasts should be studied in the context of a specific

decision problem was examined in a recent paper by Echenique and Shmaya (2008).

In their paper, a decision maker also takes a sequence of actions, and discounts future

payoffs by δ. The decision maker is equipped in a default stochastic process π, and

before taking any action, receives from an expert an alternative stochastic process

ν. Echenique and Shmaya study empirical tests that give verdicts at infinity. Using

Lebesgue’s decomposition theorem, they prove the existence of a test which is passed

by the informed and honest expert with probability 1; in addition, contingent on the

test being passed, the expected payoff of the decision maker from taking the optimal

actions according to ν would be at least as high as the expected payoff from taking

the optimal actions according to π.4

2. Model

At the beginning of each period t = 1, 2, ..., a state st ∈ S is realized. Next, a decision

maker (female) takes an action at ∈ A. We assume that A is a compact metric space,

and S (equipped with a σ−algebra) is a measurable space. At the end of period t,

the state st is revealed. State st is generated according to a probability distribution

pt = pt(s
t) which may depend on the history of past states st = (s1, ..., st−1); let

3Note also that the decision problem studied in their paper is only one specific example, whereas

we study a general decision problem in the present paper.
4The expectations of the decision maker’s payoffs are taken with respect to π, and the expected

payoffs are compared in the limit as δ → 1.
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pt[st] denote the probability of state st in period t according to distribution pt. We

emphasize that pt = pt(s
t) is an arbitrary probability distribution. We make no

assumptions regarding the properties of this distribution, e.g., that the probability

distributions are i..i.d., Markovian, or exchangeable.

The decision maker does not know state st when she takes action at. Moreover,

she is completely ignorant, and does not even know pt(s
t). A potential expert (male)

may know pt, t = 1, 2, .... However, the “expert” - like the decision maker - may also

not know anything about pt. In other words, there is a continuum of informed types of

the expert (one for every sequence of history-dependent distributions pt, t = 1, 2, ...),

and one uninformed type.

A forecast in period t is a probability distribution ft = ft(s
t) over states st ∈ S,

which may depend on the history of states st; let ft[st] denote the probability of state

st in period t according to forecast ft.

Contracts

In period 0, the decision maker offers the expert a menu of contracts C. A contract

c specifies periods in which the expert is supposed to provide a forecast. Let et = 1 if

the expert is supposed to provide a forecast in period t, and let et = 0 otherwise; et

may depend on the states, forecasts, and also the values of all other variables observed

before period t. Let e = (et)
∞
t=1. A contract also specifies payments wt; each wt is a

function of the expert’s forecast ft and the realized state st, but may also depend on

the values of all variables observed before or in period t. We will assume that wt = 0

in periods in which et = 0. Let w = (wt)
∞
t=1. That is, c = (w, e).

We assume that in periods in which et = 0, the expert receives a payment w ≥

0 from an external source. One can think about w as an outside option, or the

opportunity cost of providing a forecast. It would not affect the results if we assumed

that the outside option, or the opportunity cost, is lower for the uninformed expert.

We also assume that each menu contains a default contract c0 = (w0, e0), where

w0t ≡ w and e0t ≡ 0; that is, the expert has the option of rejecting the entire menu of

contracts.
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A contract is called irreversible if et = 0 implies em = 0 in every future period

m ≥ t. Contracts which are not irreversible will be called reversible. If forecasting

requires a relation-specific capital that disappears when the expert is dismissed, the

contract must be irreversible. Otherwise, reversible contracts might be feasible.

Payoffs

Agents discount future payoffs with a common discount factor δ ≤ 1. The utility

of the decision maker in period t is ut(at, st) − wt; it depends on action at, state st,

and payment wt, and is quasi-linear with respect to this payment. We assume that

ut is a continuous function of at and a measurable function of st. We might also

assume that ut is a function of history st. We dropped st from the set of variables

in order to simplify notation. If δ < 1, the decision maker’s total utility is defined as

the (normalized) present value of utilities in periods t = 1, 2, ...; more precisely, this

utility is

U(s, a,w) := (1− δ)
∞∑

t=1

δt−1 [ut(at, st)− wt] ,

where s = (st)
∞
t=1, a = (at)

∞
t=1, and w = (wt)

∞
t=1.

The expert’s utility is equal to the (normalized) present value of the payments he

will receive in periods t = 1, 2, ...:

W (w, e) := (1− δ)
∞∑

t=1

δt−1[etwt + (1− et)w].

Denote by W 0 ≡ w the expert’s default payoff.

The separability of the decision maker’s payoff from actions and payments is im-

portant; however, none of the results would change if she had a convex disutility from

payment, and the expert had a concave utility in wt.

The informed expert, who knows the probability distribution over future states,

selects a contract and delivers forecasts in order to maximize his expected payoff.

The decision maker’s and the uninformed expert’s preferences cannot be described in

a similar manner, since none of them knows the probability distribution over future

states. They face ambiguity (sometimes also called Knightian uncertainty). The
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existing literature offers several distinct models of decision-making under ambiguity.

However, we need not assume any particular preference representation in the present

analysis.

If δ = 1, parties evaluate flows of payoffs according to the limits of averages,

instead of normalized weighted averages. This criterion is traditionally interpreted

as corresponding to no discounting, or representing preferences of infinitely patient

individuals. The decision maker’s total utility is equal to

lim inf
T→∞

UT (s, a, w),

where

UT (s, a,w) =
1

T

T∑

t=1

[ut(at, st)− wt] .

Similarly, the expert’s utility is equal to the limit inferior of the average payments

he will receive.

Action Choice

If a forecast is provided (i.e., in periods in which et = 1), the decision maker takes

an action aftt that maximizes her expected utility, computed under the assumption

that the states are generated by the forecasted probability distribution ft, i.e.,

aftt ∈ argmaxE
ftut(at, st).

When the forecast is not provided, i.e., et = 0, the decision maker takes a default

action a0t (s
t). This action may depend on the history of states st. The default

actions are known to the expert.

One can think about the default actions as those that would be taken in the

absence of any expert. The decision maker could use her favorite learning strategy

in order to use the data on past states to predict which action will fare best in the

current period. It is convenient to normalize the decision maker’s utility so that

ut
(
a0
(
st
)
, st
)
≡ 0 for each t, past history st, and state st.
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Because the utility ut may depend on the history of past states s
t, the normalization

does not impose any additional constraints on the decision maker’s payoffs. Due to

this normalization, the decision maker’s payoff under the default contract is equal to

0 at any history of states. An action a ∈ A is undominated (in period t) if for every

other action a 
= a
′

∈ A, there exists a state s ∈ S such that ut(a, s) > ut(a
′

, s), or

ut(a, s) = ut(a
′

, s) for every state s ∈ S. We assume that every default action a0t (s
t)

is undominated.

We also assume that the decision maker is committed from period 0 on to taking

the actions prescribed in the previous paragraph. This assumption makes the analysis

tractable. Without commitment, the information revealed by the expert’s choices

could affect the decision maker’s actions. The selection of a particular contract or

the provision of a particular forecast may contain some information about probability

distributions pt. However, if we allowed the decision maker to take optimal actions

(given information available to her), we would have a dynamic choice problem under

ambiguous information; in addition, agents would interact while making their choices.

Given the current state of the literature on ambiguity, we find the no-commitment

case intractable.

So far, all payoffs have been defined as functions of states, actions, and the con-

tractual arrangements. However, since the actions are completely determined by the

contract and the forecasts provided by the expert, we will now stop referring to ac-

tions, and instead writing the payoffs of the decision maker and the expert as functions

of s, f, c.

3. Problem

In the present paper, we assume that the decision maker has two goals: When she

faces an informed expert, she compares her payoff under incentive compatible con-

tractual arrangements to her payoff under the scenario in which there are no incentive

problems. She seeks menus of contracts under which the two payoffs are equal. Sec-

ond, when she faces an uninformed expert, she compares her payoff to the default

9



payoff obtained in the absence of any expert. She wants to ensure a minimal safety

condition such that her payoffs will not fall below the default payoff.

Define

U∗ (p) := sup
c

sup
f

EpU (s, f, c) s.t. EpW (s, f, c) ≥W 0. (3.1)

This is the highest possible payoff attained when the expert’s information is equal

to p and when the decision maker can choose (for the expert) the contract and the

forecasts, but the individual rationality constraint is satisfied. Define U∗,ir (p) simi-

larly, except that the supremum over all contracts c is replaced by the supremum over

irreversible contracts c ∈ Cir.

In the reversible case, it is easy to show that the supremum is attained by truthful

forecasts, i.e., ft = pt, and contract c
∗ = (w∗, e∗) such that w∗t ≡ w0 and e∗t = 1 in

periods t such that there is an action at with

Eptut(at, st) ≥ w. (3.2)

Under such a contract, the expert provides a forecast in periods in which the forecasts

are useful for the decision maker, i.e., when the expected benefit from the forecast

is no smaller than the cost. If the opposite inequality holds for all actions at, then

e∗t = 0, and the decision maker takes the default action a∗t := a0t (s
t); recall that this

default action yields a payoff equal to 0.

To compute the first-best payoff in the irreversible case, imagine that the expert

truthfully reveals the entire stochastic process p up front in period 0; in addition,

the decision maker decides when to stop taking optimal actions for the stochastic

process p and to begin taking default actions instead. Up to that moment, she has to

pay w in every single period. The optimal stopping rule is determined by solving a

dynamic programming problem in which, contingent on each history st, the decision

maker compares (1) her continuation payoff from taking default actions, and (2) her

continuation payoff from taking the optimal action according to p in period t and

continuing to apply her stopping rule from period t+ 1 on. It is easy to see that for

any δ < 1, optimal stopping rules exist for all p = (pt)
∞

t=1, and U∗,ir(p) is equal to the

payoff that is achieved by using an optimal stopping rule. It is also easy to see that
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optimal stopping rules may not exist for δ = 1. In this case, we denote by U∗,ir(p)

the supremum of the decision maker’s payoffs across all stopping rules. The exact

expressions can be found in the proof of Proposition 1.

Take a λ > 0, and consider a menu of contracts C. The expert makes several

choices. He first chooses a contract (or rejects the entire menu); next, if he decided

to accept a contract, he chooses forecasts to be provided in periods t in which et = 1.

Because the expert maximizes his own payoffs, he might not have any incentive to

choose either a contract or forecasts that maximize the expression (3.1). The informed

expert’s choices c∗ ∈ C and f∗ are called λ incentive compatible if no other contract

in the menu and no other forecasts yield him a payoff higher than c∗ and f ∗ by more

than λ, i.e.,

EpW (s, f ∗, c∗) ≥ sup
c∈C

sup
f

EpW (s, f, c)− λ.

We study λ incentive compatible choices of the expert, because for δ = 1, optimal

choices may not exist, whereas λ incentive compatible choices do exist for any positive

λ. Of course, if optimal choices do exist, as they do when δ < 1, then they are λ

incentive compatible for any λ > 0.5

Contract c is ε−safe if for each realization of states s, each forecast f , the decision

maker’s payoff never falls more than ε below the default payoff, that is,

U (s, a, c) ≥ −ε.

Of course, the default contract is 0−safe. If the expert is uninformed, then even if

he accepts a safe contract, the decision maker’s payoff can fall only marginally below

the payoff she would obtain in the absence of any expert.

Now, take an ε > 0. A menu of contracts C is ε first best if (1) it consists entirely

of ε-safe contracts, and (2) there exists a λ > 0 such that for any informed expert

p, if his choices c and f are λ incentive compatible, then the decision maker’s payoff

5The nonexistence of optimal choices is typical for the literature on testing experts. This literature

assumes that the informed expert reveals forecasts truthfully. However, it is often not optimal for

the expert to reveal his information honestly; moreover, there often exist no forecasts that maximize

the chance of passing a test.
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falls by no more than ε below U∗(p), that is,

EpU (s, f, c) ≥ U∗(p)− ε.

Irreversibly ε first best menus of irreversible contracts are defined similarly, except

that U∗(p) has to be replaced with U∗,ir(p); of course, such a menu must consist of

irreversible contracts.

Almost first best menus guarantee almost first best payoffs in a quite strong sense.

The decision maker does not know whether the expert is informed or not; nor when

he is informed what his information is. Nevertheless, if the expert is informed, the

decision maker’s payoff is close to what she would get if the expert honestly revealed

his information, and if he got paid w only in periods in which the decision maker

would like to rely on the expert’s information.

If the expert is uninformed, i.e., he has no additional information about the process

that generates states, the decision maker cannot expect to accomplish more than

preventing the possibility that this type of expert will benefit at her own expense due

to a contract she has offered. Because each contract in an ε first best menu is ε-safe,

this indeed cannot happen (up to ε) at any single sequence of states. Equivalently,

this cannot happen (up to ε) for any single process that generates the states.

Although we focus on the first best contracts, other constraints might be important

in practice for the contracting parties. Two important ones are the following:

• In principal-agent problems, it is common to assume a limit on liability. Say

that contract c = (w, e) has limited liability if for each t, wt ≥ 0.

• Second, the contracts should not force the agent to work for the principal against

his will. Let φt ∈ {0, 1} be any history-dependent function, which will be

interpreted as the expert’s decision as to whether to provide forecasts to the

decision maker. For any contract c = (w, e), define eφt = φtet and contract

cφ =
(
w, eφ

)
. Say that a menu of contracts C allows for free exit, if for any φt

and c ∈ C, we have that cφ ∈ C. (In the irreversible case, we assume that φt = 0

implies φm = 0 for any m ≥ t.)
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It turns out that none of these constraints affects our positive results, i.e., the

results that establish the existence of first-best menus. All contracts used in our

proofs, have limited liability; and we can ensure free exit by including, together with

every contract c, all induced contracts cφ.

4. No discounting

Our first result refers to the case in which the parties do not discount future payoffs.

Consider the following countable family of (irreversible) contracts cirn = (w, en,ir),

n = 1, 2, ...: Under contract cirn , e
n,ir
t ≡ 1 for t = 1, ..., n; the payments in the first n

periods are irrelevant, since the parties evaluate sequences of payments by limits of

averages. For t > n, en,irt = 1 if

1

k

k∑

m=1

um(am, sm) > w; (4.1)

recall that afmm is an optimal action of the decision maker, given the expert’s forecast

fm. If (4.1) is not satisfied, then et = 0. The payment is defined by

wt = w + θ [ut(at, st)− w] ,

where θ is a sufficiently small positive number.

The number n can be interpreted as the length of a “grace period”; if the expert

selects contract cirn , he cannot be dismissed in the first n periods. After the grace

period is over, the expert is compensated for the outside option he has forgone, and

receives a bonus, proportional to the utility generated by his forecast. This payment

is received as long as his forecasts generate a positive surplus on average. Once the

average surplus drops below zero, the expert is dismissed and no longer receives any

payment.

Assumption 1. The values ut (a, s) are uniformly bounded, i.e., there exists a

constant M such that

∀t,a,s |ut (a, s)| ≤M .
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Proposition 1. Suppose that δ = 1, and that Assumption 1 is satisfied. For each

ε > 0 and θ < ε
4M
, the family {cirn : n = 1, 2, ...} is an irreversibly ε first best menu of

contracts.

The formal proof of Proposition 1 is relegated to the appendix. Informally, the

argument can be explained as follows: Condition (4.1) guarantees that the uninformed

expert will not benefit at the decision maker’s expense, i.e., that each contract cirn is

0-safe. On the other hand, since contracts with an arbitrarily long grace period

are available, the patient expert whose forecasts generate a surplus on average is

unlikely to be dismissed. Because of the incentives provided by the bonus, the expert’s

information is with high probability honestly revealed to the decision maker. As long

as the bonus is sufficiently small, the expert takes only a small share of the surplus

generated by his forecasts.

A simple modification of the above contracts leads to an ε first best menu of

contracts for every ε > 0. The decision maker requires the expert to provide forecasts

only in periods in which (3.2) holds. More precisely, let φt = 1 if condition (3.2)

is satisfied, and ρt = 0 otherwise. For each n, define en,φt := φte
n,ir
t . Then, define

cn,φ =
(
w, en,φ

)
.

Proposition 2. Suppose that δ = 1, and that Assumption 1 is satisfied. For each

ε > 0 and θ < ε
4M
, the family {cn,φ : n = 1, 2, ...} is an ε first best menu of contracts.

We omit the argument since ti follows very closely the proof of Proposition 1.

4.1. A comparison with the literature on testing strategic experts

We view Proposition 2 as a response to the recent literature on testing experts. Sev-

eral papers show that an uniformed expert, who knows nothing about the stochastic

process that generates states, can forecast strategically to pass empirical tests. (The

most general results have been obtained by Olszewski and Sandroni (2008a) and

Shmaya (2008).)

An empirical test T is defined as an arbitrary function that takes as input forecasts

f = (ft)
∞
t=1 and states s = (st)

∞
t=1, and returns a verdict that is 0 or 1. When the
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test returns a 1, the expert (or his forecasts) pass the test. When a 0 is returned,

the expert (or his forecasts) fail the test. Unlike the current paper, the literature on

testing experts does not specify how the tester benefits from the expert’s forecasts.

Instead, it seeks tests such that: (a) if the informed expert truthfully reports (pt)
∞
t=1,

he passes the test with high probability; and (b) no matter what the forecasts of

the uninformed expert are, he fails the test with high probability (at least) on some

sequences of states s.6

Olszewski and Sandroni (2008a) study tests such that if the expert fails, he fails

after a finite number of periods, i.e., T (f, s) = 0 implies that there exists an m such

that T (f, s
′

) = 0 if the first m states of s and s
′

coincide. They call a test future-

independent if for any f and f
′

that coincide on histories of length m or shorter, a

failure of f at a history sm implies a failure of f
′

at the history sm. Olszewski and

Sandroni (2008a) show that no future-independent test satisfies (a) and (b) simulta-

neously. This result implies that no test satisfying the prequential principle, i.e., no

test such that the expert is required to provide forecasts only from period to period,

satisfies (a) and (b) simultaneously. Shmaya (2008) shows that tests satisfying the

prequential principle must violate either (a) or (b) even if they allow for failing the

expert at infinity without failing him at any finite number of periods.

Tests that pass informed and truthful experts but fail uninformed experts do exist

(see Dekel and Feinberg (2006) and Olszewski and Sandroni (2008b)), but they must

be future-dependent and violate the prequential principle.

The first best menus of contracts fulfill two goals. First, they lead to payoffs that

approximate the first best payoffs. This corresponds to the requirement that the

informed expert pass the test with high probability. Notice that in the present paper,

the informed expert may not report forecasts truthfully, as is assumed in the existing

literature. Second, we require that the uninformed expert cannot (too) negatively

affect the decision maker’s payoff. This corresponds to, but conceptually differs from,

the requirement that the uninformed expert fails the test. The contracts provided in

6The uninformed expert is allowed to produce forecasts randomly, and high probability refers to

his random device.
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Proposition 1 require the expert to provide forecasts only from period to period, and

so our contracts have the properties corresponding to future-independence and the

prequential principle.

Finally, although the model with discounting seems more appropriate for studying

principal-agent relationships, no discounting is appropriate for the sake of comparing

the results of the present paper to the literature on testing experts. Indeed, tests

studied in the existing literature typically give a verdict only at infinity, and even if

restrictions (such as “if the expert fails, he fails after a finite number of periods”) are

imposed, different finite numbers are treated equally.

4.2. Brier score

Meteorologists are required to meet a sufficiently low Brier score for their forecasts

(see Brier (1950)). The Brier score of forecasts (ft)
∞
t=1 at period k is defined as

Bk :=
1

k

k∑

m=1

(fm[sm]− 1)
2,

where fm[sm] stands for the probability assigned by forecast fm to state sm realized in

period m. Once the threshold of the Brier score is met, their compensation is partly

based on other performance measures (e.g., calibration).

The contracts described in Section 3 mimic this idea. Indeed, after the grace

period, the expert is required to satisfy condition (4.1) in order not to be dismissed.

Assume that S is finite, A = ∆S, and the decision maker has the quadratic utility:

u(am, sm) = −(am[sm]− 1)
2 −

(
|S| − 1

|S|

)2
,

where am[sm] stands for the probability assigned by (mixed) action am to (pure)

action sm. Then, action am = fm will maximize E
fmu(am, sm). Let the default action

be a probability distribution that assigns equal probability to each state, that is, for

any sm and sm,

a0m[sm] =
1

|S|
,
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where a0m(s
m) ≡ a0m. After checking that the payoff normalization holds, we obtain

that the inequality from condition (4.1) is equivalent to

Bk > w.

According to our contracts, once the threshold of the Brier score is met, the

expert is compensated by a bonus, proportional to the decision maker’s payoff. This

simple performance measure is sufficient for achieving our objectives (i.e., proving

Proposition 1). However, we conjecture that in the proof of Proposition 1, the bonus

can be replaced with several other performance measures, including calibration.

5. Discounting

Suppose now that the parties discount future payoffs by a common discount factor

δ < 1. Our first result shows that for any given discount factor, there exist no

first-best menus of contracts. An action a is rationalized by distribution pt if

Eptut(a, st) ≥ Eptut(a
′

, st) for any a′ ∈ A.

Because we assume that the default actions are undominated, they are rationalized

by some distribution p.

Assumption 2. (a) There exist: a period t, a history st = (s1, ..., st−1), a state

st, and an action at such that

ut(at, st) > w.

(b) For everym < t, and for sm = (s1, ..., sm−1), there exists probability distributions

p0m(s
m) rationalizing actions a0t (s

m) such that p0m(s
m)[sm] > 0.

Part (a) of the assumption guarantees that the expert’s forecasts are minimally

useful from the decision maker’s perspective, that is, the expert’s forecast generates

a surplus at least at one history. Part (b) says that this history has a positive proba-

bility according to some distributions rationalizing default actions. The assumption

is satisfied if the distribution that rationalizes the default actions has full support.
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Proposition 3. Under Assumption 2, for every δ < 1, there exists an ε > 0 such

that no menu of contracts is ε first best.

The formal proof is relegated to the appendix. To provide a intuition for this

result, assume that w = 0, and that there is only one period. Consider a contract (a

menu consisting of one contract) according to which the expert delivers a forecast,

and receives payment

wt := θut(a
ft
t , st),

where aftt is an optimal action given the forecast ft. That is, the expert receives a

bonus proportional to the surplus created by his forecast.

In this way, the incentives of the expert’s incentives are allied with these of the

decision maker. The expert accepts the contract only if his forecast is indeed useful,

and delivers a truthful forecast. The expected utility of action aftt when ft = pt is

at least as high as that from taking the default action a0t . Thus, payoff U∗ (p) can

be ε−approximated provided that θ is sufficiently small. If θ is large, the informed

expert retains more than an ε−share of the surplus, and the decision maker’s payoffs

will be bounded away from U∗ (p).

However, if θ is small, the expert bears only a small share of the decision maker’s

payoff from taking actions which are optimal according to his forecasts, and therefore

the contract is typically not ε-safe.

Thus, if ε > 0 is sufficiently small, the one-contract menu is not ε first best for

any θ. This argument generalizes to all menus of contracts.

Remark 1. An analogous result holds for menus of irreversible contracts. However,

Assumption 2 is insufficient. One must make the assumption that the expert’s fore-

casts are minimally useful in the world in which dismissed experts cannot be hired

again. Part (b) of Assumption 2 must also be properly modified. We will omit the

version of Proposition 1 for menus of irreversible contracts. However, we show in

Proposition 4 that in the world in which dismissed experts cannot be hired again,

irreversibly first-best menus may not exist not only for a given discount factor, but

even in the limit when δ → 1.
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For a given discount factor δ < 1, the decision maker cannot attain payoffs U∗ (p)

and U∗,ir (p). However, by Propositions 1 and 2, she can approximate the first best

outcome arbitrarily closely when δ = 1. It is therefore relevant to see whether the

payoff can approximate the first best in the limit case in which the contracting parties

discount future payoffs but the discount factor tends to 1. Throughout the rest of

this section, we will assume that w > 0. We will show that for sufficiently large

discount factors, the decision maker can attain payoffs U∗ (p) if she is allowed to offer

reversible contracts; in contrast, payoffs U∗,ir (p) cannot be attained in the world of

irreversible contracts.

Assumption 3. (a) There exist a constant η > 0 such that for any t and history

st, there exist a state st and an action at such that

ut(at, st)− w ≥ η.

(b) There exists a constant µ > 0, and a probability distribution p0t (s
t) rational-

izing actions a0t (s
t) such that for all t and st, there exists a state s′t such that

µ ≤ p0t (s
t)[s′t] ≤ 1− µ.

Part (a) of Assumption 2 says that in all periods and at any history, it is possi-

ble that the expert’s forecast will be useful; moreover, this “usefulness” is uniformly

bounded from below (by a constant η). This assumption reduces to part (a) of

Assumption 2 for all time-independent utility functions, i.e., whenever ut(at, st) =

u(at, st) for all t. Part (b) requires that the probability distributions rationalizing de-

fault actions are “uniformly” nondegenerated; if the decision maker’s utility function

is time-independent, it reduces to the requirement that distributions p0t are simply

nondegenerated.

Proposition 4. Suppose that Assumption 3 is satisfied and w > 0. There exist an

ε > 0 and a δ < 1 such that for every δ ∈ (δ, 1), no menu of irreversible contracts is

irreversibly ε first best.
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Proposition 3 shows that irreversibly ε first best menus of irreversible contracts

may not exist for large discount factors in a broad range of circumstances. In contrast,

an ε first best menu of contracts typically does exist if the discount factor is sufficiently

large.

Proposition 5. Suppose that Assumption 1 is satisfied. For every ε > 0, there exists

a δ < 1 such that for every δ > δ, there exists an ε first best menu of contracts.

The formal proofs of Propositions 4 and 5 can be found in the appendix. The

intuition for the two propositions can be easily explained by means of the following

example: Suppose that there are only two periods t = 1, 2, two states S = {−1, 1},

and three actions A = {−1, 0, 1}. For all histories st, t = 0, 1, action a0t (s
t) = 0

is rationalized by the fifty-fifty probability distribution p0t (s
t), and action a = s is

optimal in each of the two states s. Say that

ut(s, s) = 6, ut(−s, s) = −12, ut(0, s) = 0

for t = 1, 2 and s ∈ S. Finally, let w = 1.

Consider the informed expert who knows that p1 is fifty—fifty; furthermore, s2 = s1

with probability 1 if s1 = 1, and p2 = p1 if s1 = −1. Denote this type of informed

expert by I1. To guarantee the first best payoff (against expert of type I1), a contract

c must have e2(−1) = 0 and e2(1) = 1, i.e., the expert must be dismissed in period 2

contingent on state −1 in period 1, but must not be dismissed contingent on state 1.

To ensure ε-safety, the payment of the decision maker to the expert contingent on

state −1 must be close to 0. Otherwise, the uninformed expert could accept contract

c, and the decision maker would make a (too) negative payoff contingent on any

history s such that s1 = −1. Thus, the expected payment to the expert contingent

on state 1 must be close to 3w. Indeed, the expert of type I1 receives this payment

only with probability 1
2
; therefore, in order for that expert to prefer accepting the

contract to rejecting the entire menu, he must receive at least 2w in addition to w

from the external source received contingent on state −1 in period 1.

Consider now the informed expert who knows that s1 = s2 = 1 with probability

1. Denote this type of informed expert by I2. This expert can also accept contract
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c and provide forecasts identical to those of the expert of type I1. Then, he receives

payment 3w with probability 1, and the decision maker’s payoff is bounded away from

the first best.

Notice now that the problem just described disappears in the world of reversible

contracts. Indeed, if there were only three types of expert - I1, I2, and the uninformed

expert - a contract (a menu consisting of one contract) that attains payoffs U∗ (p)

could be defined as follows: e1 = 0, e2(−1) = 0, and e2(1) = 1; the expert is paid

slightly more than w contingent on s2 = 1, and is paid nothing contingent on s2 = −1.

In general, the proof of Proposition 5 is more complicated, but involves arguments

somewhat similar to those used in the proof of Proposition 1.

6. Appendix

6.1. Proof of Proposition 1

If the expert (informed or uninformed) accepts a contract, and is fired in a period t,

the decision maker takes default actions, and makes no payment from period t + 1

on. In such a case, the decision maker’s payoff is equal to the default payoff, which is

normalized to 0. If the expert is not fired at any t, (4.1) holds for every T = 1, 2, ..,

and

UT
(
s, f, cirn

)
= (1− θ)

(
1

T

T∑

t=1

ut(a
ft
t , st)− w

)

≥ 0,

where aftt is the best response to forecast ft. Thus, the long-run payoff never falls

below 0, and so contract cirn is 0−safe.

The rest of the proof consists of two parts. First, we show that there exists an n

such that if the expert selects contract cirn , and reports forecasts truthfully, then the

decision maker’s payoff falls below U∗,ir (p) by no more than ε
2
. Recall that U∗,ir (p) is

defined as the first-best payoff attained by the decision maker, if individual-rationality

constraints, but not incentive-compatibility constraints, are satisfied. The exact value

of U∗,ir (p) is computed in the course of the proof. Second, we show that any almost

incentive-compatible choice of the contract approximates the first-best payoff.
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Given p = (pt)
∞
t=1, let Σ(p) be the set of all sequences s such that

lim inf
T

1

T

T∑

t=1

ut(a
pt
t , st) > w,

Set Σ(p) consists of all sequences of states along which it is never beneficial to fire

the truthful expert. For each sequence s, define

U ir (s, p) :=

{
lim infT

1
T

∑T

t=1 ut(a
pt
t , st)− w,

0,

if s ∈ Σ(p) ;

otherwise.

Because the decision maker benefits from the expert’s truthful forecasts only if s ∈

Σ(p), it follows that

EpU ir (s, p) ≥ U∗,ir (p) . (6.1)

For all n, define the set Σn (p) of all sequences such that

1

T

T∑

t=1

ut(a
pt
t , st) > w for all T > n.

Set Σn (p) consists of sequences along which the truthful expert is not fired by contract

cirn .

For every sequence of states s such that s /∈ Σ(p), we have that U (s, p, cirn ) =

U ir (s, p) = 0. On the other hand, for every sequence of states s such that s ∈ Σ(p),

there exists a natural number n (s) such that s ∈ Σn (p) for all n ≥ n (s). This

implies that the expert is never fired under contract cirn for all n ≥ n (s); therefore,

U (s, p, cirn ) = (1− θ)U ir (s, p).

Given a positive number µ > 0, there exists a natural number n∗ such that the

probability, according to probability distribution p, of the set of all sequences of states

s such that n (s) < n∗ is no lower than 1−µ. Thus, if the expert selects this contract

cirn∗, and reports his forecasts truthfully, the probability of Σ(p) \Σn∗ (p) is no higher

than µ. That is, the probability that the expert will be fired, although the decision

maker’s payoff would be higher if he were not, is bounded by µ. This shows that

(1− θ)EpU ir (s, p)− µM ≤ EpU
(
s, p, cirn∗

)
≤ EpU ir (s, p) .
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Since the inequalities hold for any θ and µ (and an appropriately chosen n∗), we

have that

EpU ir (s, p) ≤ sup
n

U
(
s, p, cirn

)
≤ U∗,ir (p) ,

which, taken together with (6.1), yields that U∗,ir (p) = EpU ir (s, p).

Since θ < ε
4M
, if µ ≤ ε

4M
, then the loss in the decision maker’s payoff under

contract cirn∗ (compared to U
∗,ir (p)) is no higher than µM + θM , which is no higher

than ε
2
.

Of course, the expert need not report forecasts truthfully. Notice, however, that

the bonus aligns the expert’s and the decision maker’s payoffs: under any contract

cirn , and for any sequence of reported forecasts f ,

W
(
s, f, cirn

)
= w + θ lim inf

1

T

T∑

t=1

et (ut (at, st)− w)

= w +
θ

1− θ
lim inf

1

T

T∑

t=1

(ut (at, st)− et [w + θ (ut (at, st)− w)])

= w +
θ

1− θ
U
(
s, f, cirn

)
.

The second equality follows from the fact that ut (at, st) = 0 whenever et = 0. Since

the expert makes λ incentive compatible choices, his expected payoff can be no lower

than

w +
θ

1− θ

(
U∗,ir (p)−

ε

2

)
− λ;

therefore, the decision maker’s payoff can be no lower than

U
(
s, f, cirn

)
=
1− θ

θ

(
W
(
s, f, cirn

)
− w

)
≥ U∗,ir (p)−

ε

2
−
1− θ

θ
λ.

If we take λ = εθ
2(1−θ)

> 0, then U (s, f, cirn ) ≥ U∗,ir (p)− ε.

6.2. Proof of Proposition 3

Suppose to the contrary that there exists an ε first best menu for every ε > 0. Let

t, st, and at have the properties described in part (a) of Assumption 2. Since action
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a0t (s
t) is undominated, there exists a state s

′

t such that

ut(at, s
′

t) < 0. (6.2)

Perturbing (if necessary) the degenerated probability distribution that assigns mea-

sure 1 to st, we obtain a probability distribution p
′

t which assigns a positive measure

to s
′

t, and such that

Eptut(at, st) > w.

For simplicity, assume that pt has two atoms, st and s
′

t, and assigns measure 0 to all

sets containing neither of the two atoms. Replacing (again, if necessary) at with an-

other action, we may in addition assume that at = aptt , i.e., at maximizes E
ptut(at, st).

Let p0m be a sequence of history-dependent probability distributions rationalizing

default actions, which have the properties described in part (b) of Assumption 2 along

history st.

Consider the informed expert of type p = (pm)
∞
m=1 such that pm = p0m in all

states and at all histories, except history st; and pt = p
′

t contingent on history st.

Denote this type of expert by I1. If ε < (1−δ)δt−1 Prob(st) (Eptut(at, st)− w), where

Prob(st) > 0 is calculated according to p, then any ε first best menu has to contain a

contract c which is accepted by this type of informed expert. Under this contract, et

has to be equal to 1 after history st. Otherwise, the decision maker would not benefit

from the expert’s advice at history st, and then his advice is useful. Consequently,

payoff U∗(p) would not be attained.

Since the expert of type I1 can choose the default contract, his total payoff when he

accepts contract c cannot be lower than w−λ; otherwise, his choice of contract would

not be λ incentive compatible. However, the expected (discounted and normalized)

payment of the decision maker to the informed expert of type I1 may not be higher

than (1− δ)δt−1w+ ε; otherwise, the decision maker could not attain (up to ε) payoff

U∗(p). Thus, the expert must receive w− (1− δ)δt−1w− ε from the external source.

Consider now the uninformed expert who predicts that states are generated ac-

cording to p. It follows from ε−safety that if this expert accepts contract c, then for

any sequence of states such that st = s
′

t, the (discounted and normalized) payment
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to the expert does not exceed

(1− δ)δt−1ut(at, s
′

t) + ε.

This number is negative, and if ε < −1
2
(1−δ)δt−1ut(at, s

′

t), it is lower than (1−δ)δ
t−1w

by at least β := −1
2
(1− δ)δt−1ut(at, s

′

t).

Therefore, since the probability distribution pt assigns positive probability only

to sets containing st or s
′

t, the expected (discounted and normalized) payment to the

expert contingent on history st, st must exceed (1− δ)δt−1w by β − λ.

Consider now the informed expert of type q = (qm)
∞
m=1, where the only difference

between p and q is that qt contingent on history s
t is the probability distribution with

an atom of mass 1 at st. Denote this type of the expert by I2. The informed expert

of type I2 can choose contract c, which guarantees him the total expected payoff that

exceeds w by β − λ − ε. Indeed, he receives at least (1 − δ)δt−1w + (β − λ) with

probability 1 from the decision maker and w − (1 − δ)δt−1w − ε from the external

source. Thus, the menu cannot be ε first best, if λ is sufficiently small.�

6.3. Proof of Proposition 4

Take a number α ∈ (0, 1) such that

α (1− µ) η > (1− α)w,

where η is the positive number from Assumption 3. Then, there exists a number

κ > 0, such that for all sufficiently large δ, there exist a t such that

δt+1 (1− µ) η > (1− δt+1)w ≥ κ. (6.3)

Indeed, it follows from the fact that for every interval α ∈ (α,α), if δ is sufficiently

large, then there exists a t such that δt+1 ∈ (α,α).

By part (a) of Assumption 3, for each period and past history st, there exists an

η > 0, an action a∗t (s
t), and a state s∗t (s

t) such that ut (a
∗
t (s

t) , s∗t (s
t))− w > η. Let

p∗ = (p∗t )
∞

t=1 denote the sequence of history-dependent probability distributions such

that p∗t (s
t) [s∗t (s

t)] = 1 for all histories st.
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Let s
′

t(s
t) denote the state such that µ < p0t (s

t)[s
′

t(s
t)] ≤ 1 − µ; the existence of

state s
′

t(s
t) with the required property is guaranteed by part (b) of Assumption 3.

Consider an informed expert of type p = (pm)
∞
m=1 such that pt = p0t up to and

including period t. If st = s
′

t(s
t), then pt = p0t also in periods t + 1, t + 2, .... If

st 
= s
′

t(s
t), then beginning in period t + 1, pt = p∗t . Notice that we can assume

without loss of generality that a∗t (s
t) is rationalized by p∗t (s

t); indeed, an action

aptt that maximizes E
p∗
t ut(at, st) also has the required property. Denote this type of

informed expert by I1.

The first part of (6.3) guarantees that the advice of this type of expert is valuable,

if this advice is elicited in periods 1, ..., t, and then in periods t+1, t+2, ..., contingent

on st 
= s
′

t(s
t), but the expert is dismissed contingent on st = s

′

t(s
t). Suppose that

ε < δt+1 (1− µ) η− (1− δt+1)w. To be irreversibly ε first best, a menu of irreversible

contracts must contain a contract c such that em := 1 for all m ≤ t.

To satisfy ε−safety, the (discounted and normalized) payment from the decision

maker to the expert, contingent on sequences s such that st = s
′

t(s
t), may not exceed

ε. Otherwise, the uninformed expert could accept contract c, and predict p0t for all

t and st; the decision maker’s payoffs would then fall below −ε contingent on some

history s such that st = s
′

t(s
t). Let x be the expected (discounted and normalized)

payment to the expert contingent on sequences s such that st 
= s
′

t(s
t). Together with

at most ε from the decision maker and δt+1w from the external source (both received

contingent histories s such that st = s
′

t(s
t)), the expert must receive at least w − λ

in order for his choice to be λ incentive compatible. Thus,

w − λ ≤ Prob[st = s
′

t

(
st
)
](δt+1w + ε) + Prob[st 
= s

′

t

(
st
)
]x,

where Prob[st = s
′

t (s
t)] and Prob[st 
= s

′

t (s
t)] are calculated according to p0.

Since p0t [st = s
′

t (s
t)] ≤ 1− µ, if ε and λ are sufficiently small, then the inequality

from the last display can be satisfied only if x exceeds w by a positive number which

does not vanish as the discount factor δ tends to 1. Consider now the informed

expert I2 who knows that st 
= s
′

t(s
t) with probability 1. The expert of type I2 can

also accept contract c and provide forecasts identical to those of expert I1. He then
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receives payment x > w with probability 1. This means that, for sufficiently small

ε > 0, the decision maker does not attain payoff U∗,ir(p) against the expert of type

I2.�

6.4. Proof of Proposition 5

In order to prove Proposition 5, we will need a lemma, which is stated below, and

which follows directly from Azuma’s inequality. A sequence of random variables

(Xk)
∞
k=1 is uniformly bounded by a constant C if

|Xk| ≤ C

for every k = 1, 2, .... Let

Sm :=
m∑

k=1

Xk .

Sequence (Sk)
∞
k=1 is called a supermartingale if

E[Sm+1 | S1, ..., Sm] ≥ Sm,

i.e., if

E[Xm+1 | X1, ...,Xm] ≥ 0

for k = 1, 2, ....

Lemma 1. If (Xk)
∞
k=1 is a sequence of random variables uniformly bounded by a

constant C, (Sk)
∞
k=1 is a supermartingale, and d is a positive constant, then

Prob

(
m∑

k=1

Xk ≤ −d

)

≤ 2 exp

(
−

d2

32mC2

)
. (6.4)

We can now prove Proposition 5. Let

C =M + w
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where M is the number from Assumption 1. Assume that

ε ≤
3

4
C. (6.5)

We first describe a family of menus of contracts CT , T = 1, 2, .... Fix any T =

1, 2, .... The payment w under each contract c in menu CT is the same as that used

to define ε first best contracts in Section 4, i.e.,

wt = w + θ [ut(at, st)− w] . (6.6)

Assume that

θ > 0 and θ <
ε

6M
.

Let e be any function which has the following property: in periods t = T, 2T, ..., the

expert’s forecasts are reviewed by the decision maker. Say that the expert fails the

k−th review if
kT∑

t=(k−1)T+1

et
(
ut(a

ft
t , st)− w

)
< −

ε

3
T (6.7)

where aftt maximizes E
ftut(at, st). Under each contract c in menu CT , et = 0 if the

expert failed a k−th review such that kT < t. That is, if the expert has passed all

previous reviews, he is free to choose in which periods of the current review he wants

to deliver a forecast. Once the expert fails a review, he no longer delivers any forecast.

We shall now show that if

δT ≥ 1−
ε

3C
, (6.8)

then every contract c ∈ CT is ε-safe.

Indeed, if the expert passes a k−th review, then the difference between the decision

maker’s payoff under the contractual arrangement and her payoff to taking default

actions cannot on average - across periods (k − 1)T +1, ..., kT - be larger than ε
3
+

θM < ε
2
; the expression θM estimates the bonus θ [ut(at, st)− w] received by the

expert. So, the discounted and normalized loss in the decision maker’s payoff caused

between periods (k − 1)T and kT by contract c cannot be larger than (1−δ)δ(k−1)T ε
2
T .
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If the expert fails a k−th review, the decision maker’s loss (during that review) is not

larger than δ(k−1)TC
(
1− δT

)
, and the expert is never hired again. Thus, the decision

maker’s loss in all periods cannot be larger than

C
(
1− δT

)
+ (1− δ)

1

1− δT
ε

2
T ≤ C

(
1− δT

)
+

ε

2δT
,

and this number is no larger than ε by (6.8) and (6.5).

We shall now show that there exists a T such that if T ≥ T and

δT ≤ 1−
ε

6C
, (6.9)

then for every p = (pt)
∞

t=1, menu CT attains U∗(p) provided the expert makes λ

incentive compatible choices for sufficiently small λ.

Given a p, for all t and st, define

a∗t :=






aptt ∈ argmaxaE
ptut (st, a) if Eptut (st, a) > w;

a0t otherwise;

and let

w∗t :=






w if Eptut (st, a) > w;

0 otherwise.

Then,

U∗ (p) = (1− δ)E
∑∞

t=1
δt [ut (a

∗

t , st)− w∗t ] .

We prove first that there exists a contract c(p) ∈ CT such that

EpU (s, p, c (p)) ≥ U∗ (p)−
ε

2
. (6.10)

That is, if the informed expert accepts this contract and reports his forecasts truth-

fully, then the decision maker obtains utility U∗ (p)− ε
2
.

Consider the contract c (p) such that if the expert has passed all previous reviews,

et = 1 if and only if E
ptut(a

pt
t , st) ≥ w. Then, the actions taken under this contract

(if the expert’s forecasts are truthful) may differ from a∗t only after the expert fails
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a review. This implies that EpU (s, p, c (p)) cannot be smaller than U∗ (p) by more

than

M
∞∑

k=1

δkT Prob (failure in k − th review | success in k′ − th review for all k′ < k) .

(6.11)

And by (6.4),

Prob (failure in k − th review | success in k′ − th review for all k′ < k) =

Prob






kT∑

t=(k−1)T+1

et

(
ut(a

ft
t , st)− w

)
≤ − ε

3
T

| he did not fail any k′ − th review for k′ < k




 ≤

2 exp

(
−

1

32C
2

(ε
3

)2
T

)
.

Now, let T be such that

2 exp

(
−

1

32C
2

(ε
3

)2
T

)
≤

ε2

24MC
;

Then, if T ≥ T , expression (6.11) can be estimated by

2M
1

1− δT
ε2

24MC
≤

ε

2
.

Observe now that under any contract c ∈ CT , the normalized present value of the

payments received by the expert is equal to

W (s, f, c)

= (1− δ)
∞∑

t=1

δt−1
[
etw + θ

(
ut

(
aftt , st

)
− w

)
+ (1− et)w

]

= w + (1− δ)
∞∑

t=1

δt−1etθ
(
ut

(
aftt , st

)
− w

)

= w +
θ

1− θ
U (s, f, c)
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where the last equality follows from the fact that ut (a
∗
t , st) = 0 whenever et = 0.

That is, the informed expert maximizes the decision maker’s utility. In particular,

if c and f are λ incentive compatible, then, because of (6.10), his expected payoff can

be no lower than

w +
θ

1− θ

(
U∗ (p)−

ε

2

)
− λ,

and the decision maker’s payoff can be no lower than

U (s, f, c) =
1− θ

θ
(W (s, f, c)− w) ≥ U∗ (p)−

ε

2
−
1− θ

θ
λ.

If λ ≤ θε
2(1−θ)

, then U (s, f, c) ≥ U∗ (p)− ε.

To complete the proof, we will show that there exists a δ < 1 such that for every

δ ≥ δ, there exists a T ≥ T such that conditions (6.8) and (6.9) are satisfied. Let

δ = max
{
δ1, δ2

}
,

where

δ1 =
1− ε

3C

1− ε

6C

, and δ
T

2 = 1−
ε

3C
.

For a given δ ≥ δ, take the largest T such that condition (6.8) is satisfied. Since

δ ≥ δ2, this T must be at least as large as T . If condition (6.9) were not satisfied,

then we would have that

δT+1 ≥ δT · δ1 ≥ 1−
ε

3C
,

which would contradict the definition of T .�
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