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But who will monitor the monitor? Alchian and Demsetz (1972, p. 782)

1 Introduction

Ann owns a restaurant. She hires Bob to tally the till every night and report back

any mismatch between the till and that night’s bills. Ann can motivate Bob to exert

such effort and report truthfully any mismatch by sometimes secretly taking money

from the till herself and offering him the following incentive scheme: if Ann took

some money, she will pay Bob his wage only when he reports a mismatch; if Ann did

not take any money, she will pay Bob only when a mismatch is not reported.

Bob faces a secret contract: his report-contingent wage is unknown to him a priori

(it depends on whether or not Ann secretly took some money). If Bob fails to exert

effort, he won’t know what to report in order to secure his wage. However, if he does

his job he’ll discover whether or not there is a mismatch and deduce from this Ann’s

behavior. Only after tallying the till will Bob know what to report in order to receive

his wage, which turns out to be optimally truthful.

This paper studies contracts like Bob’s1 and how they might help organizations to

function productively. By allocating different information to team members, secret

contracts often provide better incentives to perform with an intuitive organizational

design. Thus, they give Bob incentives to acquire costly information and reveal it, and

provide Ann with enough a priori knowledge to distinguish working from shirking.

In general, they provide a way to “monitor the monitor” (Section 2.1).

Consider a hypothetical organization whose individuals are subject to moral hazard

but with rich communication protocols: access to (i) a disinterested mediator or ma-

chine that makes confidential, verifiable but non-binding recommendations to agents,

and (ii) (linear) “money” transfers that may depend on the mediator’s recommenda-

tions and individual reports (such as Bob’s). A contract thus involves instructions

and payments:, i.e., a way of telling people what to do and a way of rewarding them.

When can this organization actually overcome moral hazard with secret contracts?

Below, we study incentives in such a team to answer this question in various contexts.

1These contracts are pervasive. For instance, TSA screeners are evaluated with “covert testing”
(TSA, 2004, p. 5); police use young ‘drinkers’ to ensure that bartenders check IDs (Cheslow, 2005).
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Formally, we consider contractual arrangements subject to incentive compatibility

as described by Myerson’s (1986) communication equilibrium. We obtain minimal

conditions on a team’s primitives—its “monitoring technology” (what Bob can see

when) and individual preferences (whether Bob prefers to work or shirk)—such that

incentive compatibility is not a binding constraint for the team.

Theorem 1 provides a necessary and sufficient condition on a monitoring technology—

called detecting unilateral disobedience (DUD)—for every team outcome (e.g., Bob

works) to be approximately enforceable, i.e., an incentive compatible outcome exists

arbitrarily close to it. DUD requires that every disobedient deviation by any indi-

vidual be statistically detectable with some reaction by others, although different

deviations may be detected with different reactions. This key property distinguishes

DUD substantively from the literature2 (Section 3.1 has a detailed literature review).

Therefore, DUD is a weak restriction. It is also generic (Theorem 2).

Secret contracts add value not by approximate enforcement (Corollaries 1 and 2),3

but by allowing “monitors” to follow “deviators” in a hypothetical game of hide and

seek, even though in fact they move simultaneously. To illustrate, suppose Bob shirks.

If he also reports no mismatch then Ann can hypothetically “react” by secretly taking

some money to prove him wrong, whereas if he reports a mismatch then Ann can

choose not to take any money. By Theorem 1, such disobedience (e.g., Bob shirking)

is detectable in this sense if and only if obedience is enforceable with secret contracts.

Theorems 3 and 5 (Section 4) extend these results in two important directions that

help to clarify the differences between exact and approximate enforcement.

Theorem 3 characterizes monitoring technologies that approximately enforce a fixed

outcome rather than every outcome simultaneously (Theorem 1), regardless of indi-

vidual preferences. Interestingly, Theorem 3 reconciles an infinite regress inherent

in monitoring. Suppose that providing incentives for a given outcome requires a

monitor to detect deviations. What about the monitor’s deviations? Theorem 3

answers this question by asserting that effectively the monitor’s deviations are ir-

relevant. Indeed, if they are detectable then they can be easily discouraged with

contingent payments. Otherwise, if the monitor’s deviations are undetectable then

2For instance, conditions like individual full rank of Fudenberg et al. (1994) require that every
deviation be detected by the same “reaction,” making it more difficult to detect deviations.

3Even though we sometimes rely on approximation to expand contractual possibilities, our key
insight is the use of mediated transfers—not approximating outcomes—to provide incentives.
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the deviations themselves still detect others’ deviations from the given outcome, and

so they continue to fulfill the required monitoring role. Evidently, this argument also

applies to the monitor’s deviations from these deviations, and so forth. Theorem 3

reconciles this infinite regress by showing that under standard conditions (e.g., in a

finite game) not every behavior by the monitor can have a profitable, undetectable

deviation. Therefore, to approximately enforce an arbitrary outcome with infrequent

monitoring, every deviation from the outcome must in principle be detectable with

some monitoring behavior, but deviations away from the monitoring behavior itself

need not be detectable. Heuristically, nobody needs to monitor the monitor.

Theorem 5 extends Theorem 3 by fixing individual preferences and finding joint con-

ditions on preferences and the monitoring technology that characterize approximate

enforcement. Intuitively, profitable deviations must be discouraged “uniformly” and

“credibly.” Uniform detection allows for infinitesimal deviations to be discouraged

even if they are only infinitesimally detectable (Example 5). Credibility is necessary

when deviations are discouraged with the use of others’ actions rather than with

contingent payments, and this disciplining behavior must be incentive compatible.

The paper is organized as follows. Section 2 presents two motivating examples that

guide our main results. Section 3 develops the model. Section 3.1 defines DUD,

characterizes its incentive properties, finds conditions for its generic satisfaction, and

relates it to the literature. Section 4 extends the model by characterizing exact and

approximate enforcement of fixed outcomes with and without fixed preferences, and

accommodates complications such as participation constraints, limited liability, and

even coalitional deviations. Section 5 concludes. Omitted proofs and ancillary results

appear in Appendices A and B.

2 Example

We begin our analysis of secret contracts with two leading examples that attempt to

capture the intuition behind our main results, Theorems 1 and 3. The first example

considers an environment that typifies the strategic interaction between a principal,

a worker, and a monitor. The second example suggests an intuitive way of attaining

approximately efficient partnerships with budget balance.
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2.1 Robinson and Friday

There are two agents: Robinson, who can either monitor or rest, and Friday, who can

either work or shirk. A mediating principal makes possibly secret recommendations to

the agents and enforces contingent contractual payments. Robinson (the row player)

and Friday (the column player) interact according to the left bi-matrix below.

work shirk work shirk

monitor 2,−1 −1, 0 monitor 1, 0 0, 1

rest 3,−1 0, 0 rest 1/2, 1/2 1/2, 1/2

Utility Payoffs Signal Probabilities

There are two signals, g and b, on which to condition linear transfers. Their condi-

tional probability is given in the right bi-matrix above. In words, if Robinson monitors

he observes Friday’s effort, whereas if he rests then the signal is uninformative.

Although clearly the efficient profile (rest,work) is unenforceable, we can get arbi-

trarily close even if only Robinson observes the signal and it is not verifiable.4 For

the principal to write signal-contingent contracts, he must first solicit the realizations

from Robinson, who may in principle misreport them.5 We approximate (rest,work)

by having Friday mix between working and shirking and Robinson’s report-contingent

payments depend on Friday’s recommendation, thereby “monitoring the monitor.”

Specifically, the following correlated strategy is incentive compatible given µ ∈ (0, 1):

(i) Robinson is told to monitor with probability σ (and rest with probability 1− σ),

(ii) Friday is independently told to work with probability µ (to shirk with 1−µ), and

(iii) the principal enforces the following secret contract :

(monitor,work) (monitor,shirk) (rest,work) (rest,shirk)

g 1/µ, 1/σ 0, 0 0, 0 0, 0

b 0, 0 1/(1− µ), 0 0, 0 0, 0

The table reads as follows. The leftmost column says that Robinson is paid $1/µ if he

reports g and $0 if b when (monitor,work) was recommended, whereas Friday is paid

4If signals are publicly verifiable, the correlated strategy σ[(monitor,work)]+(1−σ)[(rest,work)],
where [a] means Dirac measure for any action profile a, is enforced for all σ ∈ (0, 1] with Holmström’s
(1982) group penalties, e.g., by paying Robinson $2 and Friday $1/σ if g and both agents $0 if b.

5Now group penalties break down, since then Robinson reports g and rests, hence Friday shirks.
Furthermore, if Robinson was paid independently of his report then although he would happily tell
the truth, he would find no reason to monitor.
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$1/σ if g is reported and $0 if b, etc. Honesty and obedience to the mediator is now

incentive compatible. Letting σ → 0 and µ→ 1, (rest,work) can now be approached.

Intuitively, Robinson is rewarded only when he reports g if Friday was asked to work

and b if Friday was asked to shirk. Robinson, like Bob, faces a “trick question.”

Secret contracts add value in this example because they allow different correlated

strategies to detect different deviation plans, unlike just signal-contingent contracts.

In other words, this is as if a correlated strategy is chosen after agents choose deviation

plans in order to detect them. To illustrate, suppose that Robinson is asked to monitor

but instead chooses to rest and report g. The mediator can “react” by asking Friday to

shirk, which would lead to b if Robinson monitored and reported truthfully. Similarly,

if Robinson plans to rest and report b then Friday can be asked to work instead, and

Robinson’s deviation is detected again.

The key idea behind Theorem 1 shows that, therefore, Robinson can be dissuaded

from resting. However, with only signal-contingent contracts (Corollary 1), detecting

Robinson’s deviations requires the principal to fix Friday’s behavior in advance. If

Friday works with fixed probability µ then Robinson can rest and report g with

probability µ. Now Robinson can deviate without being detected, and no contract

contingent only on signals can induce him to monitor.
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3 Model

This section develops the main model of secret contracts, whose purpose is to charac-

terize a team’s enforceable outcomes. Firstly, basic notation is introduced, the timing

of interaction amongst team members is described explicitly, and several notions of

enforcement are formally defined that will be used extensively later.

Section 3.1 then extrapolates from the leading example in Section 2.1. A notion of

detection of deviation plans is introduced and the equivalence between detection and

enforcement is derived in terms of a hypothetical zero-sum game of hide and seek

where the hider (a deviator) moves first and the seeker (a monitor) moves second.

Allowing the seeker to move second is shown to characterize the value of secret con-

tracts. Formally, an outcome is shown to be enforceable if and only if the seeker wins

in this hypothetical hide-and-seek game. A notion of “almost perfect monitoring” is

also proposed, called detecting unilateral disobedience, and conditions are provided

for it to obtain generically. Section 3.1 ends with a literature review.

We begin by defining the basic strategic environment. Let I = {1, . . . , n} be a finite

set of agents, Ai a finite set of actions available to any agent i ∈ I, and A =
∏

iAi

the (nonempty) space of action profiles. Let vi(a) denote the utility to agent i ∈ I
from action profile a ∈ A. A correlated strategy is a probability measure σ ∈ ∆(A).6

Let Si be a finite set of private signals observable only by individual member i ∈ I
and S0 a finite set of publicly verifiable signals. Let

S :=
n∏
j=0

Sj

be the (nonempty) product space of all observable signals. A monitoring technology

is a measure-valued map Pr : A → ∆(S), where Pr(s|a) stands for the conditional

probability that s = (s0, s1, . . . , sn) ∈ S was observed given that the team played

a = (a1, . . . , an) ∈ A.

Assume that the team has access to linear transfers. An incentive scheme is any

map ζ : I × A × S → R that assigns monetary transfers contingent on individuals,

recommended actions, and reported signals. It is assumed that recommendations are

verifiable.7 Rather than focus on incentive schemes ζ, we will also study probability

6If X is a finite set, ∆(X) = {µ ∈ RX
+ :

∑
x µ(x) = 1} is the set of probability vectors on X.

7If recommendations were not directly verifiable, then agents could be asked to announce theirs
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weighted transfers, ξ : I×A×S → R. For any recommendation a ∈ A with σ(a) > 0,

one may think of ξ as solving ξi(a, s) = σ(a)ζi(a, s) for some ζ. For any a ∈ A with

σ(a) = 0 and ξ(a) 6= 0, one may think of ξ as either arising from unbounded incentive

schemes (i.e., ζi(a, s) = ±∞) or as the limit of a sequence {σmζm}. This change of

variables from ζ to ξ is explained further in Section 4.1.

The timing of team members’ interaction runs as follows. Firstly, agents agree upon

some contract (σ, ζ) consisting of a correlated strategy σ and an incentive scheme ζ. A

profile of recommendations is drawn according to σ and made to agents confidentially

and verifiably by some machine. Agents then simultaneously take some action. Taken

actions are neither verifiable nor directly observable. Next, agents observe their

unverifiable private signals and submit a verifiable report of their observations (given

by a signal) before observing the public signal (not essential, just simplifying). Finally,

recommendation- and report-contingent transfers are made according to ζ.

If every agent obeys his recommendation and reports truthfully, the expected utility

to agent i (before recommendations are actually made) from a contract (σ, ζ) is∑
a∈A

σ(a)vi(a)−
∑
(a,s)

σ(a)ζi(a, s) Pr(s|a).

Of course, Mr. i may disobey his recommendation ai to play some other action bi and

lie about his privately observed signal. A reporting strategy is a map ρi : Si → Si,

where ρi(si) is the reported signal when Mr. i privately observes si. Let Ri be

the set of all reporting strategies for agent i. The truthful reporting strategy is the

identity map τi : Si → Si with τi(si) = si. Thus, both ζi(a, s−i, τi(si)) = ζi(a, s) and

ξi(a, s−i, τi(si)) = ξi(a, s).
8 The space of pure deviations for i is therefore Ai ×Ri.

For every agent i and every deviation (bi, ρi), the conditional probability that signal

profile s will be reported when everyone else is honest and plays a−i ∈ A−i equals

Pr(s|a−i, bi, ρi) :=
∑

ti∈ρ−1
i (si)

Pr(s−i, ti|a−i, bi).

When all other agents are honest and obedient, the utility to i from deviating to

(bi, ρi) conditional on being recommended to play ai under contract (σ, ζ) equals∑
a−i

σ(a)

σ(ai)
vi(a−i, bi)−

∑
(a−i,s)

σ(a)

σ(ai)
ζi(a, s) Pr(s|a−i, bi, ρi),

as verifiable messages. However, this would involve some loss of generality (Example 2).
8We will often use the notation s = (s−i, si) and a = (a−i, ai) for any i, where si ∈ Si and

s−i ∈ S−i =
∏

j 6=i Sj ; similarly for A−i.
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where σ(ai) =
∑

a−i
σ(a) > 0 is the probability that ai was recommended.

A team’s metering problem is to find a contract (σ, ζ) that makes incentive compatible

obeying recommended behavior as well as honest reporting of monitoring signals.

This is captured by the following family of inequalities.

∀i ∈ I, ai ∈ Ai, (bi, ρi) ∈ Ai ×Ri,∑
a−i

σ(a)(vi(a−i, bi)− vi(a)) ≤
∑

(a−i,s)

σ(a)ζi(a, s)(Pr(s|a−i, bi, ρi)− Pr(s|a)). (∗)

The left-hand side reflects the deviation gain in terms of utility9 for an agent i from

playing bi when asked to play ai. The right-hand side reflects his contractual loss

from deviating to (bi, ρi) relative to honesty and obedience (i.e., playing ai after being

asked to do so and reporting according to τi). Such a loss originates from two sources.

On the one hand, playing bi instead of ai may change conditional probabilities over

signals. On the other, reporting according to ρi may affect conditional payments.

Definition 1. A correlated strategy σ is exactly enforceable (or simply enforceable)

if there exists an incentive scheme ζ : I×A×S → R to satisfy (∗) for all (i, ai, bi, ρi).

A correlated strategy σ is approximately enforceable if a sequence {σm} of enforceable

correlated strategies exists with σm → σ.

A correlated strategy is approximately enforceable if it is the limit of exactly enforce-

able ones. E.g., in Section 2.1 the correlated strategy [(rest,work)] is approximately

enforceable but not enforceable.

9Specifically, in terms of probability weighted utility, weighted by σ(ai). If ai is never recom-
mended then σ(ai) = 0 and both sides of the inequality equal zero.
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3.1 Detection

We now provide a notion of detection that is shown to be equivalent to enforcement.

A deviation plan for any agent i is a map αi : Ai → ∆(Ai × Ri), where αi(bi, ρi|ai)
stands for the probability that i deviates to (bi, ρi) when recommended to play ai.

Given σ ∈ ∆(A), let Pr(σ) ∈ RS be the vector defined by Pr(σ)(s) =
∑

a σ(a) Pr(s|a).

Intuitively, Pr(σ) is the vector of prior report probabilities if everyone is honest and

obediently playing according to σ. Let Pr(σ, αi) ∈ RS, defined pointwise by

Pr(σ, αi)(s) =
∑
a∈A

σ(a)
∑

(bi,ρi)

Pr(s|a−i, bi, ρi)αi(bi, ρi|ai),

be the vector of prior probabilities if agent i deviates from σ according to αi.

A deviation plan αi is disobedient if αi(bi, ρi|ai) > 0 for some ai 6= bi, i.e., it disobeys

some recommendation ai with positive probability. A disobedient deviation plan may

be “honest,” i.e., ρi may equal τi with probability one after every recommendation.

A profile α = (α1, . . . , αn) of deviation plans is called disobedient if αi is disobedient

for some agent i. Although dishonesty is arguably a form of disobedience, it will be

useful in the sequel to distinguish between them.

Definition 2 (Detection). A deviation plan αi for agent i is called undetectable if

∀σ ∈ ∆(A), Pr(σ) = Pr(σ, αi).

Call αi detectable if it is not undetectable, i.e., Pr(σ) 6= Pr(σ, αi) for some σ ∈ ∆(A).

Intuitively, a deviation plan αi is undetectable if the probability of reported signals

induced by αi, Pr(σ, αi), coincides with that arising from honesty and obedience,

Pr(σ), regardless of the team’s correlated strategy, σ, assuming that others are honest

and obedient. Undetectability is arguably a strong restriction on a deviation plan,

making detectability a weak requirement.10 We now give our first main definition.

Definition 3 (DUD). A monitoring technology Pr detects unilateral disobedience

(DUD) if every disobedient deviation plan is detectable.

DUD is intuitively defined.11 Formally, note that different correlated strategies may

be used to decide whether or not different disobedient deviation plans are detectable.

10Undetectability may be defined equivalently by Pr(a) = Pr(a, αi) for all a ∈ A by linearity.
11For a slightly stronger but also mathematically more tractable version of DUD (without using

reporting strategies), see Lemma B.1.
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This is one important aspect that renders DUD substantially weaker than other

conditions in the literature, as will soon be seen. To illustrate, consider an example.

Example 1. There are two publicly verifiable signals, S = S0 = {x, y}, and two

agents, I = {1, 2}. Agent 1 has two actions, A1 = {U,D}, and agent 2 has three

actions, A2 = {L,M,R}. The conditional probability system Pr is given below.

L M R

U 1, 0 0, 1 1/2, 1/2

D 1, 0 0, 1 1/3, 2/3

If agent 1 plays U then there is a mixed deviation by agent 2 (namely 1
2
[L] + 1

2
[M ],

where [·] stands for Dirac measure) such that the conditional probability over signals

equals what it would be if he played R. A similar phenomenon takes place when

agent 1 plays D (this time with the deviation 2
3
[L] + 1

3
[M ]) or indeed regardless of

agent 1’s mixed strategy. It is therefore impossible to even approximately enforce R

with transfers contingent only on signals if agent 2 strictly prefers playing L and M ,

since there always exists a profitable deviation without any contractual losses.

However, Pr detects unilateral disobedience because for any deviation plan by agent 2

there is a mixed strategy by agent 1 that detects it. By correlating agent 2’s payment

with agent 1’s recommendation, secret contracts can keep agent 2 from knowing the

proportion with which he ought to mix between L and M for his contractual payment

to equal what he would obtain by playing R. It will be seen that this renders R

enforceable. This suggests how secret contracts can extract more information from a

monitoring technology to provide incentives, even with publicly verifiable signals.

Next, we will show that DUD characterizes approximate enforcement.

Definition 4 (PSI). A monitoring technology Pr provides strict incentives (PSI) if

there exists a probability weighted incentive scheme ξ : I × A× S → R such that

∀(i, ai, bi, ρi), 0 ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|a−i, bi, ρi)− Pr(s|a)),

with a strict inequality whenever ai 6= bi.
12

12Although no budget constraints are imposed, we could have added expected budget balance,∑
(i,a,s)

ξi(a, s) = 0,

but this constraint would not bind, since adding a constant to any ξ preserves its incentive properties.
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By scaling ξ as necessary, PSI implies that for every utility profile there is an incentive

scheme so that any deviator’s contractual loss outweighs his deviation gain. PSI may

appear to be a rather strong condition, in contrast with the argued weakness of DUD

(Example 1). As it turns out, PSI and DUD are equivalent, in fact mutually dual.

Lemma 1. A monitoring technology detects unilateral disobedience if and only if it

provides strict incentives.

Proof. By the Alternative Theorem (Rockafellar, 1970), PSI fails if and only if there

is a vector λ ≥ 0 such that λi(ai, bi, ρi) > 0 for some (i, ai, bi, ρi) with ai 6= bi and

∀(a, s),
∑

(bi,ρi)

λi(ai, bi, ρi)(Pr(s|a−i, bi, ρi)− Pr(s|a)) = 0.

Such a vector λ exists if and only if the deviation plan αi, defined pointwise by

αi(bi, ρi|ai) :=

{
λi(ai, bi, ρi)/

∑
(b′i,ρ

′
i)
λi(ai, b

′
i, ρ
′
i) if

∑
(b′i,ρ

′
i)
λi(ai, b

′
i, ρ
′
i) > 0, and

[(ai, τi)] (bi, ρi) otherwise (where [·] denotes Dirac measure),

is disobedient and undetectable: DUD fails. �

The simple proof of Lemma 1 above describes a duality between identifiability and

enforceability via secret contracts. A natural corollary follows that motivates DUD

from a “backward-engineering” exercise: what minimal requirement on a monitoring

technology suffices to contractually overcome incentive constraints? Given ξ and any

completely mixed correlated strategy σ ∈ ∆0(A) := {σ ∈ ∆(A) : ∀a ∈ A, σ(a) > 0},
there exists ζ with ξi(a, s) = σ(a)ζi(a, s) for all (i, a, s). Hence, PSI is equivalent to

every σ ∈ ∆0(A) being (exactly) enforceable, which proves the next result.

Theorem 1. A monitoring technology detects unilateral disobedience if and only if

any team with any profile of utility functions can approximately enforce any correlated

strategy with secret contracts.

As Example 1 shows, DUD is not enough to provide incentives with just signal-

contingent contracts, but the following strengthening is. Given a subset B ⊂ A and

an agent i, let Bi := {bi ∈ Ai : ∃b−i ∈ A−i s.t. b ∈ B} be the projection of B on Ai.

Call a deviation plan αi B-disobedient if it is disobedient at some ai ∈ Bi. Given

σ ∈ ∆(A), say Pr detects unilateral disobedience at σ (DUD-σ) if Pr(σ) 6= Pr(σ, αi)

for every agent i and supp σ-disobedient13 deviation plan αi. Intuitively, the same σ

detects every αi. The proof of Theorem 1 also implies the following corollary.

13By definition, supp σ = {a ∈ A : σ(a) > 0} is the support of σ.
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Corollary 1. Fix a correlated strategy σ. A monitoring technology detects unilateral

disobedience at σ if and only if any team with any profile of utility functions can

enforce σ with just “standard” signal-contingent contracts.

Corollary 1 captures the value-added of secret contracts. By the paragraph preceding

Theorem 1, DUD suffices to enforce any completely mixed σ with secret transfers by

effectively allowing the use of different σ’s to detect different α’s, unlike standard

contracts, for which the same σ must detect every α.14 On the other hand, to enforce

a pure-strategy profile a, DUD is generally not enough. Since agents receive only

one recommendation under [a], there is no use for secret contracts, so by Corollary 1

DUD-[a] characterizes enforcement with secret as well as standard contracts.

The intermediate case where σ has arbitrary support is discussed in Section 4.1.

There, necessary and sufficient conditions are derived for exact as well as approximate

enforcement. Section 4.2 extends the results further by fixing utility functions.

Genericity of DUD is established next from the number of agents’ action-signal pairs.

Intuitively, incentives may be provided to a given agent in three ways: (a) using only

others’ signals to detect his deviations (e.g., Friday), (b) using only his own reports

and others’ recommendations (e.g., Robinson), and (c) using both his reports and

others’ signals in conjunction. Theorem 2 below identifies conditions such that for

every agent, at least one such way of detecting deviations is generic.

Theorem 2. DUD is generic if for every agent i,

(a) |Ai| − 1 ≤ |A−i| (|S−i| − 1) when |Si| = 1,

(b) |Ai| (|Si| − 1) ≤ |A−i| − 1 when |S−i| = 1, and

(c) |Ai| |Si| ≤ |A−i| |S−i| when both |Si| > 1 and |S−i| > 1.

If |S| = 1 then DUD is generic only if |A| = 1. More interestingly, DUD is generic

even if |S| = 2, as long as agents have enough actions. Hence, a team may overcome

incentive constraints (i.e., DUD, therefore Theorem 1, holds) generically even if only

one individual can make substantive observations and these observations are just a

binary bit of information. If others’ action spaces are large enough and their actions

have generic effect on the bit’s probability, this uniquely informed individual may still

be controlled by testing him with unpredictable combinations of others’ actions.15

14Even for approximate enforcement with standard contracts the same σ must detect all α’s. E.g.,
in Example 1 there is no sequence {σm} with σm → [(U,R)] and Pr satisfying DUD-σm for all m.

15We thank an anonymous referee for urging us to emphasize this point.
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We conclude this subsection by relating DUD to the literature. Broadly, DUD is an

improvement in that different σ can be used to detect different αi.

In a restricted setting, Legros and Matsushima (1991) and Legros and Matthews

(1993) find conditions equivalent to DUD-[a] (but differently interpreted) to enforce a

profile a with signal-contingent contracts. In repeated games, Fudenberg et al. (1994)

introduced individual full rank (IFR). Formally, IFR (at some σ) means that for every

i, Pr(σ) /∈ span{Pr(σ, bi, ρi) : (bi, ρi) 6= (ai, τi)}, where “span” stands for linear span.

Arguably, the spirit of IFR is to detect deviations away from some prescribed σ, i.e.,

DUD-σ.16 IFR at σ implies DUD-σ but not conversely.17 DUD is also weaker than

local IFR (LIFR) of d’Aspremont and Gérard-Varet (1998), requiring IFR at possibly

different σ for different i.18 Indeed, clearly LIFR implies DUD, and LIFR fails but

DUD holds in Example 1. “Local” DUD-σ fails there, too.

DUD is also weaker than the generalization of IFR by Kandori (2003), where agents

play mixed strategies and report on the realization of such mixtures. He considers

contracts contingent on those reports and signal realizations. The next example shows

that secret contracts can perform strictly better even with public monitoring.

Example 2. One agent, three actions (L, M and R), and two publicly verifiable

signals (g and b), with the following utility function and monitoring technology.

L M R L M R

0 2 0 1, 0 1/2, 1/2 0, 1

Utility Payoffs Signal Probabilities

The mixed strategy σ = 1
2
[L] + 1

2
[R] is enforceable with secret contracts but not with

Kandori’s contracts. Indeed, offering $1 for g if asking to play L and $1 for b if asking

to play R makes σ enforceable. With Kandori’s contracts, the agent is asked to play

σ and then asked what he actually played before receiving any monetary rewards.

The agent gains two ‘utils’ by playing M instead and announcing that he played L

(R) if the realized signal is g (b), with the same expected monetary payoff.19

16For instance, see Compte (1998) or Kandori and Matsushima (1998).
17If |S−i| < |Ai| for some i then this holds trivially, since IFR is impossible yet DUD-σ, which

requires only convex (rather than linear) independence, is possible (e.g., all the points on a circle
are convexly independent). This holds even with at least as many signals as actions (e.g., consider
the vectors ( 1

3 ,
1
3 , 0,

1
3 ), (0, 1

3 ,
1
3 ,

1
3 ), ( 1

6 , 0,
1
3 ,

1
2 ) and (1

3 , 0,
1
6 ,

1
2 )).

18For all i, LIFR uses the same correlated strategy σi to detect each deviation plan αi of agent i.
19Kandori’s are like secret contracts if actions are secretly announced before signals are observed.
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Tomala (2005) independently derives a condition comparable to DUD to prove a folk

theorem. He defines detection with respect to a fixed correlated strategy using uncon-

ditional probabilities over actions and signals. He focuses on exact implementation,

so for σ ∈ ∆0(A), his version of DUD agrees broadly with ours (he proves a version of

Corollary 3 below). However, he does not study approximate enforcement in general

(i.e., for σ /∈ ∆0(A)), and does not use different σ to detect different αi. This issue is

developed further in Theorems 3 and 5 (Section 4) below.

4 Discussion

This section makes two comments. Firstly, the previous section’s results are extended

to correlated strategies with restricted support. Finally, we discuss collusion and

characterize contracts that dissuade multilateral deviations.

4.1 Exact versus Approximate Enforcement

Next, we characterize exact enforcement of a fixed correlated strategy for any utility

profile. Fix two sets of action profiles B,C ⊂ A. A deviation plan αi is C-detectable

if Pr(σ) 6= Pr(σ, αi) for some σ ∈ ∆(A) with supp σ ⊂ C. Say Pr C-detects unilateral

B-disobedience (DUDC
B) if every B-disobedient deviation plan is C-detectable. (We

will call A-detection simply detection, and write DUDA
B as DUDB.) For instance,

DUDA
A is just DUD, and DUD

{a}
{a} equals DUD-[a]. Consider another example.

Example 3. There are two agents and two publicly verifiable signals, with the mon-

itoring technology below. (It is Example 1 with an added row.)

L M ′ R

U 1, 0 0, 1 2/3, 1/3

M 1, 0 0, 1 1/2, 1/2

D 1, 0 0, 1 1/3, 2/3

Let A = {U,M,D}×{L,M ′, R}, B = {U,M}×{L,M ′, R}, C = {U,D}×{L,M ′, R}.
Clearly, DUDA

A fails here, since 1
2
[U ] + 1

2
[D] is statistically indistinguishable from

M . Also, DUDA
B fails because a plan to play 1

2
[U ] + 1

2
[D] when asked to play M

is A-undetectable and B-disobedient. However, DUDC
C does hold, since there is no

undetectable deviation from D or U by the row player. (DUD-σ fails for every σ.)

14



Corollary 2. Fix any subset B ⊂ A. A monitoring technology B-detects unilateral

B-disobedience if and only if any team with any profile of utility functions can exactly

enforce every (if and only if some fixed) correlated strategy with support equal to B.

Therefore, every correlated strategy with support equal to a subset of B is automat-

ically approximately enforceable, just as with Theorem 1. By Corollary 2, only the

support of a correlated strategy matters for its enforcement regardless of preferences.

Having characterized exact enforcement, we proceed with approximate enforcement.

By Corollary 2, existence of some C ⊃ B such that DUDC
C holds clearly yields a

sufficient condition. However, this is unnecessary. To motivate, consider an example.

Example 4. Two agents, two public signals, the following monitoring technology:

L M R

U 1, 0 1, 0 1, 0

D 1, 0 0, 1 0, 1

The action profile (U,L) is not enforceable for every utility profile, since DUD
{(U,L)}
{(U,L)}

clearly fails. Indeed, playing D when asked to play U is {(U,L)}-undetectable. It

is also easy to see that DUDC
C fails, too, for every C ⊃ {(U,L)}. However, (U,L) is

approximately enforceable for every utility profile, since either [(D,M)] or [(D,R)]

can be used to detect {(U,L)}-disobedient deviations. No contract can induce the row

player to choose M if R is strictly dominant, say, but this is unimportant as long as

the row player chooses either M or R when asked to do so. The key condition satisfied

here is that every {(U,L)}-disobedient deviation plan is detectable (DUD{(U,L)}).

In general, it should be clear that DUDB is necessary for approximate enforcement,

but perhaps it is not so clear that it is also sufficient, as the next result shows.

Theorem 3. Fix any subset B ⊂ A. A monitoring technology detects unilateral

B-disobedience if and only if any team with any profile of utility functions can ap-

proximately enforce every (if and only if some fixed) correlated strategy with support

in (equal to) B with secret contracts.

Hence, still only the support of a correlated strategy matters for approximate enforce-

ment regardless of preferences. Clearly, Theorem 1 is a special case of Theorem 3 (as

well as Corollary 2) when B = A. Example 4 illustrates the insight behind Theorem

3 and gives intuition for its proof. Suppose that, to detect deviations from ai ∈ Bi,
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some aj /∈ Bj is played infrequently by j 6= i. What if aj itself has a profitable, un-

detectable deviation αj(aj) ∈ ∆(Aj)? After all, DUDB says nothing about detection

outside B. If such αj(aj) exists, playing it instead of aj still detects deviations from

ai by virtue of being undetectable. Similarly, undetectable deviations from αj(aj)

detect deviations from ai, and so on. Proceeding iteratively, since the game is finite

there must be detecting behavior without a profitable, undetectable deviation.

4.2 Fixed Utility Functions

Throughout this section, let us fix a profile v : I × A → R of utility functions. A

natural weakening of the previous results might be to allow for undetectable deviation

plans as long as they are unprofitable. Exact enforcement amounts to the following.

Corollary 3. A correlated strategy σ is enforceable with secret contracts if and only

if every supp σ-undetectable deviation plan αi of any agent i is σ-unprofitable, i.e.,

∆vi(σ, αi) :=
∑

(a,bi,ρi)

σ(a)αi(bi, ρi|ai)(vi(a−i, bi)− vi(a)) ≤ 0.

The proof of this claim is comparable to previous ones, therefore omitted. Given an

enforceable correlated strategy σ, we now ask how large transfers must be to enforce

it. To this end, let us introduce some notation. Let Di = ∆(Ai ×Ri)
Ai be the space

of deviation plans αi for a agent i and D =
∏

i Di be the set of profiles of deviation

plans α = (α1, . . . , αn). For any deviation plan αi ∈ Di and any σ ∈ ∆(A), write

‖∆ Pr(σ, αi)‖ :=
∑
s∈S

∣∣∣ ∑
(a,bi,ρi)

σ(a)(αi(bi, ρi|ai) Pr(s|a−i, bi, ρi)− Pr(s|a))
∣∣∣.

This norm summarizes the difference in signal probabilities between abiding by σ

and deviating to αi. A correlated strategy σ is called enforceable within some vector

z ∈ RI
+ if there exists a scheme ξ : I × A× S → R to satisfy (∗) and

∀(i, a, s), −σ(a)zi ≤ ξi(a, s) ≤ σ(a)zi.

Next, we provide a lower bound on z so that σ is enforceable within z.

Theorem 4. (i) A correlated strategy σ is enforceable within z ∈ RI
+ if and only if

Vσ(z) := max
α∈D

∑
i∈I

∆vi(σ, αi)−
∑
(i,a)

ziσ(a) ‖∆ Pr(a, αi)‖ = 0.

16



(ii) If σ is enforceable then Vσ(z) = 0 for some z ∈ RI
+. If not then supz Vσ(z) > 0.

(iii) A correlated strategy σ is enforceable if and only if zi < +∞ for every i, where

zi := sup
αi∈Fi

max{∆vi(σ, αi), 0}∑
a σ(a) ‖∆ Pr(a, αi)‖

if Fi := {αi :
∑

a σ(a) ‖∆ Pr(a, αi)‖ > 0} 6= ∅

and, whenever Fi = ∅, zi := +∞ exactly when maxαi ∆vi(σ, αi) > 0.20

(iv) If zi < +∞ for every i then Vσ(z) = 0 if and only if zi ≥ zi for all i.

Theorem 4 quantifies the wedge that transfers require to enforce a given correlated

strategy with punishments and rewards. It implies that supp σ-detectability, hence

also enforceability by Corollary 3, is captured by
∑

a σ(a) ‖∆ Pr(a, αi)‖ > 0. By

Corollary 1, enforcement with signal-contingent transfers is captured by the stronger

detectability condition that 0 < ‖∆ Pr(σ, αi)‖ ≤
∑

a σ(a) ‖∆ Pr(a, αi)‖. Hence, a

version of Theorem 4 holds with signal-contingent transfers and ‖∆ Pr(σ, αi)‖ instead

of
∑

a σ(a) ‖∆ Pr(a, αi)‖. Finally, Theorem 4 (iii) clearly implies the following.

Corollary 4. Each supp σ-undetectable deviation plan is σ-unprofitable if and only

if there exists z ≥ 0 such that ∆vi(σ, αi) ≤ z
∑

a σ(a) ‖∆ Pr(a, αi)‖ for all i and αi,

that is, utility gains from any deviation are uniformly outweighed by monetary losses.

Next, we characterize approximate enforcement of a correlated strategy for a fixed

profile of utility functions. Corollary 3 might suggest that a correlated strategy σ

is enforceable if every σ-profitable deviation plan is detectable. However, the next

example shows that approximate enforcement imposes a stronger requirement.

Example 5. Consider a variation on Robinson and Friday (Section 2.1):

work shirk solitaire work shirk solitaire

monitor 0,−1 0, 0 0, 0 monitor 1, 0 0, 1 1, 0

rest 0,−1 0, 0 0,−1 rest 1/2, 1/2 1/2, 1/2 1/2, 1/2

Utility Payoffs Signal Probabilities

Assume for simplicity that the signal is publicly verifiable and Robinson’s utility

is constant. Clearly, the profile (rest,work) is not enforceable because a deviation

by Friday to shirk is [(rest,work)]-profitable and {(rest,work)}-undetectable. More-

over, (rest,work) is not approximately enforceable either. Indeed, for Friday to ever

20Intuitively, Fi is the set of all supp σ-detectable deviation plans available to agent i.
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work Robinson must monitor with positive probability. But then no contract can

discourage Friday from playing solitaire instead of working, since playing solitaire

when asked to work is undetectable and weakly dominant. On the other hand, every

[(rest,work)]-profitable deviation plan is detectable.

Removing solitaire from Example 5 restores approximate enforcement of (rest,work).

This occurs not because every (rest,work)-profitable deviation is detectable (it is true

with or without solitaire), but because it is uniformly detectable, i.e., the utility gains

from every (rest,work)-profitable deviation by Friday are uniformly outweighed by

monetary losses when Robinson monitors, in line with Corollary 4. The next result

characterizes approximate enforcement with “uniform, credible” detection.

Theorem 5. A correlated strategy σ is approximately enforceable if and only if there

exists z ≥ 0 such that every σ-profitable deviation plan αi is detectable by some

correlated strategy µ for which both

(i) ∆vi(µ, αi) < z
∑

a µ(a) ‖∆ Pr(a, αi)‖ and

(ii) ∆vj(µ, αj) ≤ z
∑

a µ(a) ‖∆ Pr(a, αj)‖ for every other agent j and deviation αj.

Intuitively, Theorem 5 says that to approximately enforce a correlated strategy, it

is necessary and sufficient that all its profitable deviations be discouraged both (i)

uniformly and (ii) credibly. As before, different behavior may be used to detect

different deviations by an agent.21 Formally, uniform detection means that for the

same fixed z, every deviation plan αi must impact the magnitude of z-weighted

probabilistic changes enough to outweigh its deviation gains. Therefore, transfers

bounded within z can provide incentives against all σ-profitable deviations, perhaps

with different µ for different αi.

To explain the need for credibility, compare this result with Theorem 3, where “cred-

ible monitoring” is unnecessary. There, every disobedient deviation is potentially

profitable, so ought to be detectable. Here, with fixed utility functions, even if some

disobedient deviation plan αi is undetectable, it may nonetheless be discouraged with

behavior µ by others that makes the deviation unprofitable (as in a correlated equilib-

rium without transfers). However, if this specific behavior is not credible then there

may exist a µ-profitable deviation plan αj by some other agent such that αi becomes

21To see that credibility matters, simply add a row to the table in Example 5 above with utility
payoffs −1,−1 −1, 0 −1,−1 and signal probabilities 1, 0 0, 1 1, 0 . Now there is an
action for Robinson that is strictly dominated and indistinguishable from monitoring, yet uniformly
detects all of Friday’s (rest,work)-profitable deviations.
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profitable once again given µ and αj.

We end this subsection by noting without proof that all previous results hold also with

budget balance using the same arguments, replacing detection with attribution and∑
a σ(a) ‖∆ Pr(a, αi)‖ with minη

∑
(i,a) σ(a) ‖∆ Pr(a, αi)− η(a)‖, where η ∈ RA×S.

Now, instead of the change in transfers to an agent after a deviation being bounded

by the magnitude of the change in the probability over signals, it is bounded by the

residuals of a least-absolute-deviations regression of the probability changes on A.

This amount is clearly smaller than the magnitude of the dependent variable, i.e.,

the probability change. Intuitively, budget balance implies that only the variation

across agents of the deviations’ effect on signals can be used to provide incentives to

discourage them, rather than the deviations’ effects themselves.

4.3 Coalitional Deviations

A notable weakness of secret contracts is not being collusion-proof. To illustrate, in

our leading example (Section 2.1) Robinson and Friday could communicate “extra-

contractually” to break down the incentives that secrets tried to provide.22 On the

other hand, collusion is a problem for contracts in general. For instance, the scheme

proposed by Cremer and McLean (1988) is not collusion-proof for similar reasons.

To study collusion-proof contracts, assumptions must be made regarding coalitions’

contractual ability. We will assume that every coalition t maximizes some given

coalitional utility function vt : A→ R, quasilinear in monetary transfers.23

Definition 5. A correlated strategy σ is strongly enforceable if there is an incentive

scheme ζ : I × A× S → R such that

∀t ⊂ I, at ∈ At, (bt, ρt) ∈ At ×Rt,∑
a−t

σ(a)(vt(a−t, bt)− vt(a)) ≤
∑

(a−t,s)

σ(a)
∑
i∈t

ζi(a, s)(Pr(s|a−t, bt, ρt)− Pr(s|a)).

22The following incentive scheme deters such communication between Robinson and Friday (Friday
prefers misreporting his signal to Robinson) while approximately enforcing (rest,work).

(monitor,work) (monitor,shirk) (rest,work) (rest,shirk)
g 1/µ, 1/σ 0, 1/σ 1/2µ, 0 0, 1/2(1− σ)
b 0, 0 1/(1− µ), 0 0, 1/(1− σ) 1/2(1− µ), 1/2(1− σ)

23This assumption is standard. See for instance, Che and Kim (2006) and references therein. The
purpose of this section is not to derive a meaningful utility for coalitions, but to use one.
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Strong enforcement requires that no subset of agents can profitably deviate after

coordinating their information even if they can commit to sharing their information

non-strategically. This makes strong enforceability especially “strong.”

We now derive the detection requirement implied by strong enforceability. Given a

nonempty subset of agents t ⊂ I, a multilateral deviation plan for t is any measure-

valued map αt : At → ∆(At × Rt), where At × Rt =
∏

i∈tAi × Ri. Intuitively, a

multilateral deviation plan αt has the agents in t coordinate their deviations contin-

gent on all recommendations to members of t. A multilateral deviation plan αt is

called disobedient if αt(bt, ρt|at) > 0 for some (at, bt, ρt) such that at 6= bt. It is called

detectable if Pr(σ) 6= Pr(σ, αt) for some σ ∈ ∆(A).

A coalitional deviation plan by agent i is a profile of multilateral deviation plans

αi = {αt : t 3 i}, one for each coalition to which i may belong. It is called disobedient

if αt is disobedient for some coalition t 3 i. It is called detectable if Pr(σ) 6= Pr(σ, αi)

for some σ ∈ ∆(A), where Pr(σ, αi) :=
∑

t3i
∑

(a,bt,ρt)
σ(a) Pr(a−t, bt, ρt)αt(bt, ρt|at).

Intuitively, a coalitional deviation plan for an agent i is a profile of multilateral

deviation plans involving i. It is undetectable if regardless of the correlated strategy σ,

even if some multilateral deviation plan αt is detectable, there is another multilateral

deviation plan αt′ with i ∈ t ∩ t′ that “undoes” the change in probability from αt.

Therefore, even if every disobedient multilateral deviation plan is detectable, it is

possible that some disobedient coalitional deviation plan remains undetectable.

Definition 6 (DCD). A monitoring technology Pr detects coalitional disobedience

(DCD) if every disobedient coalitional deviation plan is detectable.

The next result characterizes strong enforcement as detection of coalitional deviations.

It is argued similarly to previous ones, so its proof is omitted.

Theorem 6. A monitoring technology detects coalitional disobedience if and only if

any team with any profile of coalitional utility functions can approximately strongly

enforce every correlated strategy with secret contracts.

5 Conclusion

Secret contracts emphasize that—as part of a team’s economic organization—it may

be beneficial for private information to be allocated differently across individuals in
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order for the right incentives to be provided. This remains true even if the team starts

without informational asymmetry. Secret contracts effectively subject contractual

deviations to “tailored monitoring,” making monitors de facto auditors. Heuristically,

secret contracts allow for monitoring to follow deviations.

A Proofs

Corollary 1. Fix any σ ∈ ∆(A). By the Alternative Theorem, a monitoring technology Pr
satisfies DUD-σ if and only if there is a signal-contingent scheme ζ : I × S → R such that

∀i ∈ I, ai ∈ Bi, (bi, ρi) ∈ Ai ×Ri, 0 ≤
∑

(a−i,s)

σ(a)ζi(s)(Pr(s|a−i, bi, ρi)− Pr(s|a)),

with a strict inequality if ai 6= bi, where Bi = {ai ∈ Ai : ∃a−i s.t. σ(a) > 0}. Call this dual
condition PSI-σ. By scaling ζ appropriately, PSI-σ clearly implies that any deviation gains
can be outweighed by contractual losses. Conversely, if DUD-σ fails then Pr(σ) = Pr(σ, αi)
for some deviation plan αi with αi(bi, ρi|ai) > 0 for some ai ∈ Bi, and bi 6= ai. For
all a−i, let 0 = vi(a) < vi(a−i, bi) = 1. Now σ cannot be enforced by any ζ : I × S → R,
since

∑
(bi,ρi)

αi(bi, ρi|ai)
∑

a−i
σ(a)(vi(a−i, bi)−vi(a)) >

∑
s ζi(s)(Pr(s|σ, αi)−Pr(s|σ)) = 0,

being a convex combination of incentive constraints, must violate at least one. �

Theorem 2. By Lemma B.1, DUD is implied by conic independence

∀(i, ai, si), Pr(ai, si) /∈ cone{Pr(bi, ti) : (bi, ti) 6= (ai, si)}.

This is in turn implied by linear independence, or full row rank, for all i, of the matrix with
|Ai| |Si| rows, |A−i| |S−i| columns and entries Pr(ai, si)(a−i, s−i) = Pr(s|a). Since the set of
full rank matrices is generic, this full row rank is generic if |Ai| |Si| ≤ |A−i| |S−i| if |Si| > 1
and |S−i| > 1. If |Si| = 1, adding with respect to s−i for each a−i yields column vectors
equal to (1, . . . , 1) ∈ RAi . This leaves |A−i| − 1 linearly dependent columns. Eliminating
them, genericity requires that for every i,

|Ai| = |Ai| |Si| ≤ |A−i| |S−i| − (|A−i| − 1) = |A−i| × (|S−i| − 1) + 1.

Similarly, there are |Ai| − 1 redundant row vectors when |S−i| = 1. Since the intersection
of finitely many generic sets is generic, DUD is generic if all these conditions hold. �

Corollary 2. By the Alternative Theorem, Pr satisfies DUDB
B if and only if it satisfies

PSIBB, i.e., there exists a scheme ξ : I ×A× S → R such that ξi(a, s) = 0 if a /∈ B and

∀i ∈ I, ai ∈ Bi, bi ∈ Ai, ρi ∈ Ri, 0 ≤
∑

(a−i,s)

ξi(a, s)(Pr(s|a−i, bi, ρi)− Pr(s|a)),
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with a strict inequality whenever ai 6= bi. Replacing ξi(a, s) = σ(a)ζi(a, s) for some (or
equivalently any) correlated strategy σ with supp σ = B, this is equivalent to there being,
for every profile of utility functions, an appropriate rescaling of ζ that satisfies (∗). �

Theorem 3. For necessity, if DUDB fails then there is a B-disobedient, undetectable de-
viation plan αi. Therefore, αi(bi, ρi|ai) > 0 for some ai ∈ Bi, bi 6= ai and ρi ∈ Ri. Letting
vi(a−i, bi) < vi(a) for every a−i, clearly no correlated strategy with positive probability on
ai is approximately enforceable. Sufficiency follows by Lemmata B.2, B.3 and B.9. �

Theorem 4. Consider the family of linear programs below indexed by z ∈ [0,∞)I .

max
ε≥0,ξ

−
∑
(i,ai)

εi(ai) s.t. ∀(i, a, s), −σ(a)zi ≤ ξi(a, s) ≤ σ(a)zi,

∀(i, ai, bi, ρi),
∑
a−i

σ(a)∆vi(a, bi)−
∑
a−i

ξi(a) ·∆ Pr(a, bi, ρi) ≤ εi(ai),

where ∆vi(a, bi) := vi(a−i, bi) − vi(a) and ∆ Pr(a, bi, ρi) := Pr(a−i, bi, ρi) − Pr(a). Given
z ≥ 0, the primal problem above looks for a scheme ξ adapted to σ (i.e., such that ξi(a, s) = 0
whenever σ(a) = 0) that minimizes the burden εi(ai) of relaxing incentive constraints. By
construction, σ is enforceable with transfers bounded by z if and only if there is a feasible
ξ with εi(ai) = 0 for all (i, ai), i.e., the value of the problem is zero. Since σ is assumed
enforceable, such z exists. The dual of this problem is:

min
α,β≥0

∑
(i,a)

σ(a)[zi
∑
s∈S

σ(a)(β+
i (a, s) + β−i (a, s))−∆vi(a, αi)] s.t.

∀(i, ai),
∑

(bi,ρi)

αi(bi, ρi|ai) ≤ 1,

∀i ∈ I, a ∈ supp σ, s ∈ S, ∆ Pr(s|a, αi) = β+
i (a, s)− β−i (a, s).

Since β±i (a, s) ≥ 0, it follows easily that β+
i (a, s) = max{∆ Pr(s|a, αi), 0} and β−i (a, s) =

min{∆ Pr(s|a, αi), 0}. Hence, β+
i (a, s) + β+

i (a, s) = |∆ Pr(s|a, αi)|. Since ‖∆ Pr(a, αi)‖ =∑
s |∆ Pr(s|a, αi)|, the dual is now equivalent to

Vσ(z) = max
α≥0

∑
(i,a)

σ(a)(∆vi(a, αi)− z ‖∆ Pr(a, αi)‖) s.t. ∀(i, ai),
∑

(bi,ρi)

αi(bi, ρi|ai) ≤ 1.

Adding mass to αi(ai, τi|ai) if necessary, without loss αi is a deviation plan, proving (i).

To prove (ii), the first sentence is obvious. The second follows by Corollary 3: if σ is not
enforceable then a σ-profitable, supp σ-undetectable plan αi exists, so Vσ(z) > 0 for all z.

For (iii), if σ is not enforceable then there is a σ-profitable, supp σ-undetectable deviation
plan α∗i . Approaching α∗i from Fi (e.g., with mixtures of α∗i and a fixed plan in Fi), the
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denominator defining zi tends to zero whilst the numerator tends to a positive amount, so
zi is unbounded. Conversely, suppose σ is enforceable. If the sup defining zi is attained, we
are done. If not, it is approximated by a sequence of supp σ-detectable deviation plans that
converge to a supp σ-undetectable one. Since σ is enforceable, the limit is unprofitable. Let

F σi (δ) := min
λi≥0

∑
a∈A

σ(a) ‖∆ Pr(a, λi)‖ s.t. ∆vi(σ, λi) ≥ δ.

Since every σ-profitable deviation plan is detectable by Corollary 3, it follows that F σi (δ) > 0
for all δ > 0, and zi = (limδ↓0 F

σ
i (δ)/δ)−1. Hence, it suffices to show limδ↓0 F

σ
i (δ)/δ > 0.

To this end, by adding variables like β above, the dual problem for F σi is equivalent to:

F σi (δ) = max
ε≥0,xi

εδ s.t. ∀(a, s), −1 ≤ xi(a, s) ≤ 1,

∀(ai, bi, ρi),
∑
a−i

σ(a)(ε∆vi(a, bi)− xi(a) ·∆ Pr(a, bi, ρi)) ≤ 0.

Since σ is enforceable, there is a feasible solution to this dual (ε, xi) with ε > 0. Hence,
F σi (δ) ≥ εδ for all δ > 0, therefore limδ↓0 F

σ
i (δ)/δ > 0, as claimed.

To prove (iv), suppose that zi < ∞ for all i. We claim Vσ(z) = 0. Indeed, given α∗i ∈ Fi

for all i, substituting the definition of zi into the objective of the minimization in (i),∑
i∈I

∆vi(σ, α∗i )−
∑
(i,a)

σ(a) sup
αi∈Fi

{ max{∆vi(σ, αi), 0}∑
a σ(a) ‖∆ Pr(a, αi)‖

} ‖∆ Pr(a, α∗i )‖ ≤ 0.

If α∗i /∈ Fi then, since σ is enforceable, every supp σ-undetectable deviation plan is unprof-
itable, so again the objective is non-positive, hence Vσ(z) = 0. Clearly, Vσ decreases with
z, so it remains to show that Vσ(z) > 0 if zi < zi for some i. But by definition of z, there
is a deviation plan α∗i with ∆vi(σ, α∗i )/

∑
a σ(a) ‖∆ Pr(a, α∗i )‖ > zi, so Vσ(z) > 0. �

Theorem 5. For sufficiency, suppose that σ is approximately enforceable, so there is a
sequence {σm} such that σm is enforceable for every m and σm → σ. Without loss, assume
that supp σm ⊃ supp σ for all m. If σm = σ for all large m then σ is enforceable and
the condition of Theorem 5 is fulfilled with µ = σ, so suppose not. If there exists m and
m′ such that σm = pσm

′
+ (1 − p)σ then incentive compatibility with respect to m yields

that
∑

a−i
σm(a)∆vi(a, αi) ≤

∑
a−i

σm(a)ζmi (a) · ∆ Pr(a, αi) ≤
∑

a−i
σm(a)z ‖∆ Pr(a, αi)‖

for every αi, where z = max(i,a,s) |ζmi (a, s)|. For large m′, σm
′

is sufficiently close to σ that
if αi is σ-profitable then

∑
a−i

σm
′
(a)∆vi(a, αi) > 0, so αi is detectable.

If there does not exist m and m1 such that σm = pσm1 +(1−p)σ then there exists σm2 such
that its distance from σ is less than the positive minimum distance between σ and the affine
hull of {σm, σm1}. Therefore, the lines generated by σm and σm1 and σm1 and σm2 are not
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collinear. Proceeding inductively, pick C = {σm1 , . . . , σm|A|} such that its affine space is
full-dimensional in ∆(A). Since we are assuming that σ is not enforceable, it lies outside
conv C. Let σ̂ =

∑
k σ

mk/ |A| and Bε(σ̂) be the open ε-ball around σ̂ for some ε > 0. By
construction, Bε(σ̂) ⊂ conv C for ε > 0 sufficiently small, so there exists σ̂′ ∈ Bε(σ̂) such
that pσ̂ + (1 − p)σ = σ̂′ for some p such that 0 < p < 1. Now we can apply the argument
from the previous paragraph, so the condition of Theorem 5 holds.

For necessity, if σ is not approximately enforceable then 1 ≥ Vσ(z) ≥ C > 0 for every z,
where Vσ is defined in Lemma B.2. Let (λz, µz) solve Vσ(z) for every z. Given µ ∈ ∆(A),

C ≤ Vσ(z) ≤ 1 +
∑
(i,a)

∆vi(µ, λzi )− z
∑
(i,a)

µ(a) ‖∆ Pr(a, λzi )‖ .

If the condition of Theorem 5 holds then
∑

(i,a) ∆vi(µ, λzi ) < z
∑

(i,a) µ(a) ‖∆ Pr(a, λzi )‖ and∑
(i,a) µ(a) ‖∆ Pr(a, λzi )‖ > 0, since there must exist i such that λσi is σ-profitable. Hence,

C ≤ 1 + (z − z)
∑

(i,a) µ(a) ‖∆ Pr(a, λzi )‖, i.e., z − z ≤ (1 − c)/
∑

(i,a) µ(a) ‖∆ Pr(a, λzi )‖.
This inequality must hold for every z, therefore

∑
(i,a) µ(a) ‖∆ Pr(a, λzi )‖ → 0 as z → ∞.

But this contradicts Lemma B.10, since
∑

i ∆vi(σ, λi) ≥ C, completing the proof. �

B Lemmata

Lemma B.1. A monitoring technology satisfies DUD if

∀(i, ai, si), Pr(ai, si) /∈ cone{Pr(bi, ti) : (bi, ti) 6= (ai, si)},

where cone stands for the set of positive linear combinations of {Pr(bi, ti) : (bi, ti) 6= (ai, si)}.

Proof. If DUD fails then there exists αi such that αi(bi, ρi|ai) > 0 for some ai 6= bi and

∀(a, s), Pr(s|a) =
∑

(bi,ρi)

∑
ti∈ρ−1

i (si)

αi(bi, ρi|ai) Pr(s−i, ti|a−i, bi)

=
∑

(bi,ti)

∑
{ρi:ρi(ti)=si}

αi(bi, ρi|ai) Pr(s−i, ti|a−i, bi).

Write λi(ai, si, bi, ti) :=
∑
{ρi:ρi(ti)=si} αi(bi, ρi|ai). By construction, λi(ai, si, bi, ti) ≥ 0 is

strictly positive for some ai 6= bi and satisfies

∀(i, a, s), Pr(s|a) =
∑

(bi,ti)

λi(ai, si, bi, ti) Pr(s−i, ti|a−i, bi).

Without loss, λi(ai, si, ai, si) = 0 for some (ai, si). Indeed, if λi(ai, si, ai, si) = 1 for all
(ai, si), then the equation above is violated because αi is disobedient by hypothesis and

24



probabilities are non-negative. If λi(ai, si, ai, si) 6= 1 then subtract λi(ai, si, ai, si) Pr(s|a)
from both sides of the equation and divide by 1 − λi(ai, si, ai, si). Therefore, Pr(ai, si) ∈
cone{Pr(bi, ti) : (bi, ti) 6= (ai, si)} for some (ai, si). �

Lemma B.2. Consider the following linear program.

Vσ(z) := min
µ≥0,p,ξ

p s.t.
∑
a∈A

µ(a) = p,

∀(i, a, s), −(µ(a) + (1− p)σ(a))z ≤ ξi(a, s) ≤ (µ(a) + (1− p)σ(a))z,

∀(i, ai, bi, ρi),
∑
a−i

(µ(a) + (1− p)σ(a))∆vi(a, bi) ≤
∑
a−i

ξi(a) ·∆ Pr(a, bi, ρi).

The correlated strategy σ is approximately enforceable if and only if Vσ(z)→ 0 as z →∞.
The dual of the above linear program is given by the following problem:

Vσ(z) = max
λ≥0,κ

∑
i∈I

∆vi(σ, λi)− z
∑
(i,a)

σ(a) ‖∆ Pr(a, λi)‖ s.t.

∀a ∈ A, κ ≤
∑
i∈I

∆vi(a, λi)− z
∑
i∈I
‖∆ Pr(a, λi)‖ ,∑

i∈I
∆vi(σ, λi)− z

∑
(i,a)

σ(a) ‖∆ Pr(a, λi)‖ = 1 + κ.

Proof. The first family of primal constraints require ξ to be adapted to µ+ (1− p)σ, so for
any z, (µ, p, ξ) solves the primal if and only if µ + (1 − p)σ is exactly enforceable with ξ.
(Since correlated equilibrium exists, the primal constraint set is clearly nonempty, and for
finite z it is also clearly bounded). The first statement now follows. The second statement
follows by a lengthy but standard manipulation of the primal to obtain the above dual. �

Lemma B.3. Consider the following family of linear programs indexed by ε > 0 and z ≥ 0.

F εσ(z) := max
λ≥0

min
µ∈∆(A)

∑
i∈I

∆vi(µ, λi)− z
∑
(i,a)

µ(a) ‖∆ Pr(a, λi)‖ s.t.

∑
i∈I

∆vi(σ, λi)− z
∑
(i,a)

σ(a) ‖∆ Pr(a, λi)‖ ≥ ε.

F εσ(z)→ −∞ as z →∞ for some ε > 0 if and only if σ is approximately enforceable.

Proof. The dual of the problem defining F εσ(z) is

F εσ(z) = min
δ,µ≥0,x

−δε s.t.
∑
a∈A

µ(a) = 1,

∀(i, a, s), −(µ(a) + δσ(a))z ≤ xi(a, s) ≤ (µ(a) + δσ(a))z,

∀(i, ai, bi, ρi),
∑
a−i

(µ(a) + δσ(a))∆vi(a, bi) ≤
∑
a−i

xi(a) ·∆ Pr(a, bi, ρi).
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Since clearly ε > 0 does not affect the dual feasible set, if F εσ(z)→ −∞ for some ε > 0 then
there exists z ≥ 0 such that δ > 0 is feasible, and δ →∞ as z →∞. Therefore, F εσ(z)→ −∞
for every ε > 0. If Vσ(z) = 0 for some z we are done by monotonicity of Vσ. Otherwise,
suppose that Vσ(z) > 0 for all z > 0. Let (λ, κ) be an optimal dual solution for Vσ(z)
in Lemma B.2. By optimality, κ = minµ∈∆(A)

∑
i ∆vi(µ, λi) − z

∑
(i,a) µ(a) ‖∆ Pr(a, λi)‖.

Therefore, by the second dual constraint in Vσ(z) of Lemma B.2,

Vσ(z) = 1 + κ = 1 + F Vσ(z)
σ (z) = 1− δVσ(z),

where δ is an optimal solution to the dual with ε = Vσ(z). Rearranging, Vσ(z) = 1/(1 + δ).
Finally, F εσ(z)→ −∞ as z →∞ if and only if δ →∞, if and only if Vσ(z)→ 0. �

Lemma B.4. Fix any ε > 0. If Pr satisfies DUDB, where B = supp σ, then for every
C ≤ 0 there exists z ≥ 0 such that Gσ(z) ≤ C, where ∆vi(ai)∗ := max(a−i,bi){∆vi(a, bi)},

∆vi(ai, λi)∗ := ∆vi(ai)∗
∑

(ai,bi 6=ai,ρi)

λi(ai, bi, ρi), and

Gσ(z) := max
λ≥0

∑
(i,a)

‖∆vi(ai, λi)‖ − z
∑
(i,a)

‖∆ Pr(a, λi)‖ s.t.

∀i ∈ I, ai /∈ Bi, λi(ai) = 0, and
∑
i∈I

∆vi(σ, λi)− z
∑
(i,a)

σ(a) ‖∆ Pr(a, λi)‖ ≥ ε.

Proof. The dual of this problem is given by

Gσ(z) = min
δ≥0,x

−δε s.t.

∀(i, a, s), −(1 + δσ(a))z ≤ xi(a, s) ≤ (1 + δσ(a))z,

∀(i, ai ∈ Bi, bi, ρi),
∑
a−i

δσ(a)∆vi(a, bi) + 1{ai 6=bi}∆vi(ai)
∗ ≤

∑
a−i

xi(a) ·∆ Pr(a, bi, ρi),

where 1{bi 6=ai} = 1 if bi 6= ai and 0 otherwise. This problem looks almost exactly like the
dual for F εσ(z) except that the incentive constraints are only indexed by ai ∈ Bi. Now,
DUDB is equivalent to PSIB, i.e., there is an incentive scheme x : I ×A×S → R such that

∀(i, ai, bi, ρi), 0 ≤
∑
a−i

xi(a) ·∆ Pr(a, bi, ρi)

with a strict inequality whenever ai ∈ Bi and ai 6= bi. Hence, by scaling x appropriately,
there is a feasible dual solution with δ > 0, so Gσ(z) < 0. Moreover, for any δ > 0, clearly
an x exists with

∑
a−i

δσ(a)∆vi(a, bi) +1{bi 6=ai}∆vi(ai)
∗ ≤

∑
a−i

xi(a) ·∆ Pr(a, bi, ρi) on all
(i, ai ∈ Bi, bi, ρi) by PSIB, so there exists z to make such δ feasible. In particular, δ ≥ C/ε
is feasible for some z, as required. �

Lemma B.5. If Pr satisfies DUDB, then there exists a finite z ≥ 0 such that

∀i ∈ I, ai ∈ Bi, λi ≥ 0,
∑
a−i

∆vi(ai, λi)∗ − z ‖∆ Pr(a, λi)‖ ≤ 0.
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Proof. Given i, ai ∈ Bi, plug σ(a) = 1/ |A−i| for all a−i in the proof of Theorem 4 (iii). �

Call λ extremely detectable if λi(ai) cannot be written as a positive linear combination
involving undetectable deviations (possibly mixed) for every (i, ai). Let E denote the set
of all such extremely detectable λ.

Lemma B.6. The set De = {α ∈ E : ∀(i, ai),
∑

(bi,ρi)
αi(ai, bi, ρi) = 1} is compact.

Proof. De is clearly a bounded subset of Euclidean space, so it remains to show that it is
closed. Consider a sequence {αm} ⊂ De such that αm → α∗. For any α ∈ D , let

p∗(α) := max
0≤p≤1,αi∈D

{p : α0 is undetectable, pα0 + (1− p)α1 = α}.

This is a well-defined linear program with a compact constraint set and finite values, so p∗

is continuous in α. By assumption, p∗(αm) = 0 for all m, so p∗(α∗) = 0, hence α∗ ∈ De. �

Lemma B.7. Let De be the set of extremely detectable deviation plans.

γ := min
αe∈De

∑
(i,a)

‖∆ Pr(a, αei )‖ > 0.

Proof. If De = ∅ then γ = +∞. If not, De is compact by Lemma B.6, so there is no
sequence {αe,mi } ⊂ De with ‖∆ Pr(a, αe,mi )‖ → 0 for all (i, a) as m→∞, hence γ > 0. �

Lemma B.8. Let De
i = projiDe. There exists a finite z ≥ 0 such that

∀i ∈ I, ai /∈ Bi, αei ∈ De
i ,

∑
a−i

∆vi(ai, αei )
∗ − z ‖∆ Pr(a, αei )‖ ≤ 0.

Proof. Let ‖∆v‖ = max(i,a,bi) |∆vi(a, bi)|. If z ≥ ‖∆v‖ /γ, with γ as in Lemma B.7, then

∀(i, ai),
∑
a−i

∆vi(ai, αei )
∗−z ‖∆ Pr(a, αei )‖ ≤ ‖∆v‖−z

∑
a−i

‖∆ Pr(a, αei )‖ ≤ ‖∆v‖−
‖∆v‖
γ

γ.

The right-hand side clearly equals zero, which establishes the claim. �

Lemma B.9. Fix any ε > 0. If Pr satisfies DUDB then for every C ≤ 0 there exists z ≥ 0
such that for every λ ≥ 0 with∑

i∈I
∆vi(σ, λi)− z

∑
(i,a)

σ(a) ‖∆ Pr(a, λi)‖ ≥ ε,

there exists µ ∈ ∆(A) such that

W (µ, λ) :=
∑
i∈I

∆vi(µ, λi)− z
∑
(i,a)

µ(a) ‖∆ Pr(a, λi)‖ ≤ C.
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Proof. Rewrite W (µ, λ) by splitting it into three parts, Wd(µ, λ), We(µ, λ) and Wu(µ, λ):

Wd(µ, λ) =
∑
i∈I

∑
ai∈Bi

∑
a−i

µ(a)(∆vi(a, λi)− z ‖∆ Pr(a, λi)‖)

We(µ, λ) =
∑
i∈I

∑
ai /∈Bi

∑
a−i

µ(a)(∆vi(a, λei )− z ‖∆ Pr(a, λei )‖),

Wu(µ, λ) =
∑
i∈I

∑
ai /∈Bi

∑
a−i

µ(a)(∆vi(a, λui )− z ‖∆ Pr(a, λui )‖),

and λ = λe + λu with λe extremely detectable, λu undetectable. Since λu is undetectable,

Wu(µ, λ) =
∑
i∈I

∑
ai /∈Bi

∑
a−i

µ(a)∆vi(a, λui )

Let µ0(a) = 1/ |A| for every a. By Lemma B.4, there exists z with Wd(µ0, λ) ≤ C for
every λ, and by Lemma B.8 there exists z with We(µ0, λ) ≤ 0 for every λ. Therefore, if
Wu(µ0, λ) ≤ 0 we are done. Otherwise, for every i and ai, bi ∈ Ai, let µ0

i (ai) = 1/ |Ai| and

µ1
i (bi) :=

∑
(ai,ρi)

λui (ai, bi, ρi)∑
(b′i,ρ

′
i)
λui (ai, b′i, ρ

′
i)
µ0
i (ai)

Iterate this rule to obtain a sequence {µmi } with limit µ∞i ∈ ∆(Ai). By construction, µ∞i is
a λui -stationary distribution (Nau and McCardle, 1990; Myerson, 1997). Therefore, given
any a−i, the deviation gains for every agent equal zero, i.e.,∑

(ai,bi,ρi)

µ∞i (ai)λui (ai, bi, ρi)(vi(a−i, bi)− vi(a)) = 0.

Let µm(a) :=
∏
i µ

m
i (ai) for all m. By construction, Wu(µ∞, λu) = 0. We will show that

Wd(µ∞, λ) ≤ C and We(µ∞, λ) ≤ 0. To see this, notice firstly that, since λui is undetectable,
for any other agent j 6= i, any λj ≥ 0 and every action profile a ∈ A,

‖∆ Pr(a, λj)‖ = ‖∆ Pr(a, λui , λj)‖ ≤ ‖∆ Pr(a, λ̂ui , λj)‖,

where λ̂ui (ai, bi, τi) =
∑

ρi
λui (ai, bi, ρi) and λ̂ui (ai, bi, ρi) = 0 for all ρi 6= τi,

∆ Pr(a, λui , λj) =
∑

(bj ,ρj)

λj(aj , bj , ρj)
∑

(bi,ρi)

λui (ai, bi, ρi)(Pr(a, bi, ρi, bj , ρj)− Pr(a, bi, ρi)),

and Pr(s|a, bi, ρi, bj , ρj) =
∑

tj∈ρ−1
j (sj)

Pr(s−j , tj |a−j , bj , bi, ρi). Secondly, notice that

∀i ∈ I, ai ∈ Bi,
∑
a−i

µm(a)(∆vi(a, λi)− z ‖∆ Pr(a, λi)‖) ≤

µmi (ai)
∑
a−i

µm−i(a−i)(∆vi(ai, λi)
∗ − z ‖∆ Pr(a, λi)‖) ≤

µmi (ai)
∑
a−i

µ0
−i(a−i)(∆vi(ai, λi)

∗ − z ‖∆ Pr(a, λi)‖) ≤∑
a−i

µ0(a)(∆vi(ai, λi)∗ − z ‖∆ Pr(a, λi)‖).
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Indeed, the first inequality is obvious. The second one follows by repeated application of
the previously derived inequality ‖∆ Pr(a, λi)‖ ≤ ‖∆ Pr(a, λ̂uj , λi)‖ for each agent j 6= i

separately m times. The third inequality follows because (i) µmi (ai) ≥ µ0
i (ai) for all m and

ai ∈ Bi, since Bi is a λ̂ui -absorbing set, and (ii)
∑

a−i
∆vi(ai, λi)∗ − z ‖∆ Pr(a, λi)‖ ≤ 0 for

every (i, ai) by Lemma B.5. Therefore, Wd(µ∞, λ) ≤Wd(µm, λ) ≤Wd(µ0, λ) ≤ C. Thirdly,

∀i ∈ I, ai /∈ Bi,
∑
a−i

µm−i(a−i)(∆vi(a, λ
e
i )− z ‖∆ Pr(a, λei )‖) ≤∑

a−i

µm−i(a−i)(∆vi(ai, λ
e
i )
∗ − z ‖∆ Pr(a, λei )‖) ≤∑

a−i

µ0
−i(a−i)(∆vi(ai, λ

e
i )
∗ − z ‖∆ Pr(a, λei )‖) ≤ 0.

The first inequality is again obvious, the second inequality follows by repeated application
of ‖∆ Pr(a, λi)‖ ≤ ‖∆ Pr(a, λ̂uj , λi)‖, and the third one follows from Lemma B.8. Hence,
We(µm, λ) ≤ 0 for every m, therefore We(µ∞, λ) ≤ 0. This completes the proof. (This
proof extends Nau and McCardle (1990) and Myerson (1997) by including transfers.) �

Lemma B.10. The conditions of Theorem 5 imply that for every ε > 0 there exists δ > 0
such that

∑
i ∆vi(σ, λi) ≥ ε implies that

∑
(i,a) µ(a) ‖∆ Pr(a, λi)‖ ≥ δ for some µ ∈ ∆(A)

with
∑

i ∆vi(µ, λi) ≤ z
∑

(i,a) µ(a) ‖∆ Pr(a, λi)‖.

Proof. Otherwise, there exists ε > 0 such that for every δ > 0 some λδ exists with∑
i ∆vi(σ, λδi ) ≥ ε but

∑
(i,a) µ(a) ‖∆ Pr(a, λi)‖ < δ whenever µ ∈ ∆(A) satisfies the given

inequality
∑

i ∆vi(µ, λi) ≤ z
∑

(i,a) µ(a) ‖∆ Pr(a, λi)‖. If λδ is bounded for every δ then
{λδ} has a convergent subsequence with limit λ0. But this λ0 violates the conditions of
Theorem 5, so assume that {λδ} is unbounded. A deviation plan αri is called relatively
undetectable if

∑
(i,a) µ(a) ‖∆ Pr(a, λi)‖ = 0 whenever µ ∈ ∆(A) satisfies

∑
i ∆vi(µ, λi) ≤

z
∑

(i,a) µ(a) ‖∆ Pr(a, λi)‖. Call Dr
i the set of relatively undetectable plans. A deviation

plan αsi is called relatively detectable if

max
(p,αi,αri )

{p : pαri + (1− p)αi = αsi , αi ∈ Di, α
r
i ∈ Dr

i , p ∈ [0, 1]} = 0.

Let Ds
i be the set of relatively detectable plans. By the same argument as for Lemma B.6,

Ds
i is a compact set, therefore, by the same argument as for Lemma B.7,

γsi := min
αsi∈Ds

i

max
µ∈∆(A)

∑
(i,a)

µ(a) ‖∆ Pr(a, αsi )‖ :
∑
i∈I

∆vi(µ, λi) ≤ z
∑
(i,a)

µ(a) ‖∆ Pr(a, λi)‖

 > 0.

Without loss, λδi = λr,δi + λs,δi , where λr,δi is relatively undetectable and λs,δi is relatively
detectable. By assumption, λr,δi is σ-unprofitable, so

∑
(bi,ρi)

λs,δi (ai, bi, ρi) is bounded below
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by β > 0, say. (Otherwise,
∑

i ∆vi(σ, λδi ) < ε for small δ > 0.) But this implies that

max
µ∈∆(A)

∑
(i,a)

µ(a)
∥∥∥∆ Pr(a, λδi )

∥∥∥ = max
µ∈∆(A)

∑
(i,a)

µ(a)
∥∥∥∆ Pr(a, λs,δi )

∥∥∥ ≥ βγsi > 0.

But this contradicts our initial assumption, which establishes the result. �
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