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Econometrica, Vol. 46, No. 6 (November, 1978) 

ASSET PRICES IN AN EXCHANGE ECONOMY 

BY ROBERT E. LUCAS, JR.' 

This paper is a theoretical examination of the stochastic behavior of equilibrium asset 
prices in a one-good, pure exchange economy with identical consumers. A general 
method of constructing equilibrium prices is developed and applied to a series of 
examples. 

1. INTRODUCTION 

THIS PAPER IS A THEORETICAL examination of the stochastic behavior of equi- 
librium asset prices in a one-good, pure exchange economy with identical 
consumers. The single good in this economy is (costlessly) produced in a number 
of different productive units; an asset is a claim to all or part of the output of one 
of these units. Productivity in each unit fluctuates stochastically through time, so 
that equilibrium asset prices will fluctuate as well. Our objective will be to 
understand the relationship between these exogenously determined productivity 
changes and market determined movements in asset prices. 

Most of our attention will be focused on the derivation and application of a 
functional equation in the vector of equilibrium asset prices, which is solved for 
price as a function of the physical state of the economy. This equation is a 
generalization of the Martingale property of stochastic price sequences, which 
serves in practice as the defining characteristic of market "efficiency," as that 
term is used by Fama [7] and others. The model thus serves as a simple context 
for examining the conditions under which a price series' failure to possess the 
Martingale property can be viewed as evidence of non-competitive or "irra- 
tional" behavior. 

The analysis is conducted under the assumption that, in Fama's terms, prices 
"fully reflect all available information," an hypothesis which Muth [13] had 
earlier termed "rationality of expectations." As Muth made clear, this hypoth- 
esis (like utility maximization) is not "behavioral": it does not describe the way 
agents think about their environment, how they learn, process information, and 
so forth. It is rather a property likely to be (approximately) possessed by the 
outcome of this unspecified process of learning and adapting. One would feel 
more comfortable, then, with rational expectations equilibria if these equilibria 
were accompanied by some form of "stability theory" which illuminated the 
forces which move an economy toward equilibrium. The present paper also 
offers a convenient context for discussing this issue. 

The conclusions of this paper with respect to the Martingale property precisely 
replicate those reached earlier by LeRoy (in [10] and [11]), and not surprisingly, 
since the economic reasoning in [10] and the present paper is the same. The 

lThis paper originated in a conversation with Pentti Kouri, who posed to me the problem studied 
below. I would also like to thank Yehuda Freidenberg, Jose Scheinkman, and Joseph Williams for 
many helpful comments. 
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context used here differs somewhat from LeRoy's, however, and the analytical 
methods used differ considerably. 

The economy is informally described in the next section, and equilibrium is 
formally defined in Section 3. In Section 4, the basic functional equation for 
prices is derived and studied. Section 5 develops a certain "duality" property, on 
which is based the discussion of stability in Section 6. Section 7 deals with 
examples which are simple enough to permit either explicit solution or some 
"comparative static" exercises. The role of the Martingale property is discussed 
in Section 8. Section 9 concludes the paper. 

2. DESCRIPTION OF THE ECONOMY 

Consider an economy with a single consumer, interpreted as a representative 
"stand in" for a large number of identical consumers. He wishes to maximize the 
quantity 

(1) E1 E 3tU(ct)} 

where c, is a stochastic process representing consumption of a single good, ,B is a 
discount factor, U() is a current period utility function, and E{ } is an expec- 
tations operator. 

The consumption good is produced on n distinct productive units. Let Yit be 
the output of unit i in period t, i = 1, ..., n, and let yt = (yIt, .... Ynt) be the 
output vector in t. Output is perishable, so that feasible consumption levels are 
those which satisfy 

Production is entirely "exogenous": no resources are utilized, and there is no 
possibility of affecting the output of any unit at any time. The motion of yt will be 
taken to follow a Markov process, defined by its transition function 

F(y', y)= pr IYt+? : Y'lYt = Y}. 

Ownership in these productive units is determined each period in a competi- 
tive stock market. Each unit has outstanding one perfectly divisible equity share. 
A share entitles its owner as of the beginning of t to all of the unit's output in 
period t. Shares are traded, after payment of real dividends, at a competitively 
determined price vector Pt = (PIt . . . , Pnt). Let zt = (Zlt. . . Znt) denote a 
consurner's beginning-of-period share holdings. 

In this economy, it is easy to determine equilibrium quantities of consumption 
and asset holdings. All output will be consumed (ct = :iyit) and all shares will be 
held (z, (1, 1, . . . 1)= 1 for all t). The main analytical issue, then, will be the 
determination of equilibrium price behavior. 

Our attack on this problem begins from the observation that all relevant 
information on the current and future physical state of the economy is sum- 



ASSET PRICES 1431 

marized in the current output vector y. Since, given recursive preferences, the 
asset market "solves" a problem of the same form each period, equilibrium 
prices should (if they behave in a systematic way at all) be expressible as some 
fixed function p( ) of the state of the economy, or p,= p(y,) where the ith 
coordinate pi(y,) is the price of a share of unit i when the economy is in the state 
y,. If so, knowledge of the transition function F(y', y) and this function p(y) will 
suffice to determine the stochastic character of the price process {p,}. 

Similarly, one would expect a consumer's current consumption and portfolio 
decisions, c, and z,,1, to depend on his beginning of period portfolio, z, the 
prices he faces, p,, and the relevant information he possesses on current and 
future states of the economy, y, If so, his behavior can be described by fixed 
decision rules c(-) and g(-): c, = c(z,, yt, pt) and zt+1 = g(zt, Yt, Pt). 

Now given perceived, future price behavior F(y', y) and p(y), consumers will 
be able to determine these decision rules c( ) and g( ) optimally. In this sense, a 
price function p determines consumer behavior. On the other hand, given 
decision rules c( ) and g( ), the current period market clearing conditions 
determine a price function p( ). In this sense, consumer behavior determines the 
equilibrium price function. We close the system with the assumption of rational 
expectations: the market clearing price function p implied by consumer behavior 
is assumed to be the same as the price function p on which consumer decisions 
are based. 

3. DEFINITION OF EQUILIBRIUM 

The economy described in the preceding section is specified by the functions U 
and F and the number ,B. Assume 0 < 3 < 1. U: R + -- R + is continuously 
differentiable, bounded, increasing, and strictly concave, with U(0)= 0.' 
F: E`'+ x En R is continuous; F(-, y) is a distribution function for each fixed y, 
with F(O, y)= 0. Assume that the process defined by F has a stationary dis- 
tribution f(-), the unique solution to 

(y') F E(y',y)dq (y), 

and that for any continuous function g(y), 

J g(y') dF (y',y) 

is a continuous function of y. 
An equilibrium will be a pair of functions: a price function p(y), as discussed 

above, and an optimum value function v(z, y). The value v(z, y) will be inter- 
preted as the value of the objective (1) for a consumer who begins in state y with 
holdings z, and follows an optimum consumption-portfolio policy thereafter. 

2Rt is the set of nonnegative real numbers. En is n-dimensional space. E" is the subset of En 
with all components nonnegative (xE EE and x - 0). LU is the set of continuous, bounded functions 
with domain En, and so on. 
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DEFINITION: An equilibrium is a continuous function p(y): E+- E'+ and a 
continuous, bounded function v (z, y): E'+ x E' + - R + such that 

(i) ttv(z,Y)=max U(c)+,8{v(x,y')dF((y',y) 
c,x 

subject to 

c +p(y) x S y z +p(y) z, c BO, O!x !z, 

where z is a vector with components exceeding one; 

(ii) for each y, v(i, y) is attained by c = Eiyi and x = 1. 

Condition (i) says that, given the behavior of prices, a consumer allocates his 
resources y z+p(y) z optimally among current consumption c and end-of- 
period share holdings X.3 Condition (ii) requires that these consumption and 
portfolio decisions be market clearing. Since the market is always cleared, the 
consumer will never be observed except in the state z = 1. On the other hand, the 
consumer has (though he always rejects it) the option to choose security holdings 
x # 1. To evaluate these options, he needs to know v(z, y) for all Z.4 

4. CONSTRUCTION OF THE EQUILIBRIUM 

We begin by studying the consumer's maximum problem (i) for given price 
behavior p(y). We have the following proposition. 

PROPOSITION 1: For each continuous price function p( ) there is a unique, 
bounded, continuous, nonnegative function v(z, y; p) satisfying (i). For each y, 
v(z, y; p) is an increasing, concave function of z. 

PROOF: Define the operator Tp on functions v (z, y) such that (i) is equivalent 
to Tpv = v. The domain of Tp is the nonnegative orthant L 2n+ of the space L2n of 
continuous, bounded functions u: E'+ x E+--> R, normed by 

Ilull = sup lu(z, Y)i. 
z,y 

Since applying Tp involves maximizing a continuous function over a compact set, 
Tpu is well defined for any u e L Since U(c) is bounded, Tpu is bounded, and 
by [2, p. 116] Tpu is continuous. Hence T,: L2n? L2n+. T, is monotone (u ,v 
implies Tpu > T,pv) and for any constant A, T,p(u + A) = Tpu + PA. Then from [3, 
Theorem 5] Tp, is a contraction mapping. It follows that Tpv = v has a unique 
solution v in L2n+ as was to be shown. Further, limn Tun = v for any u E L2n+. 

3 The bound z on x is to assure that the maximization in (i) is always over a compact set, even if 
some components of p(y) are zero. 

4This is not a "new" concept of equilibrium. It is (though no proof is offered) a standard, 
Arrow-Debreu equilibrium where the commodity space is the space of all possible realizations of the 
process XYiyi. See [12] for a full development of this relationship in a closely related context. 
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To prove that v is increasing in z, observe that Tpu is an increasing function of 
z for any u. Since v = Tpv, this implies that v is increasing in z. 

To prove that v is concave in z, we first show that if u (z, y) is concave in z, so 
is (Tpu)(z, y). Let zo, z1 be chosen, let O 0 - 1, and let z9 = Ozo+(1 - 0)zl. Let 
(ci, xi) attain (Tpu)(z', y), i = O, 1. Now (c@, x@)= (0c0+ (1- 0)c1, x0+ (1-0)x1) 
satisfies c6 +p(y) x6 - y*z' +p(y)*z6, so that 

(Tpu)(z6, y)? U(c')+3 Ju(xO, y') dF (y', y) 

-?: 0 (Tpu Xz , y )+ (1- 0)(Tpu Xz1, y) 

using the concavity of U and u. Hence (Tpu)(z, y) is concave in z. It follows by 
an induction that Tpu is concave in z for all n = 1, 2,. Then, since 
lim,,. Tpu = v, v is concave. 

The derivatives of v with respect to z are described in the following 
proposition. 

PROPOSITION 2: If v(z, y; p) is attained at (c, x) with c >0, then v is differen- 
tiable with respect to z at (z, y) and 

(2) av(z, Y; P) = U(c)[yi +pi(y)] (i = 1,..., n). 

PROOF: Define f: R + - R + by 

f(A)==max { U(c)+f3Jv(x, y')dF (y',y) 
c,x 

subject to 

c+p(y)-x-A, c,x 0. 

For each A, f (A) is attained at c(A), x (A) say, and since the maximand is strictly 
concave in c, c(A) is unique and varies continuously with A [2, p. 116]. If 
c (A)> 0 and if h is sufficiently small, c (A)+ h is feasible at "income" A + h, and 
c (A + h) - h is feasible at income A. Thus 

f(A + h) u(c(A)+ h)+,3Jv(x(A), y') dF (y', y) 

= u(c(A)+ h)- u(c(A))+ f(A) 
and 

f(A)> u(c(A +h)-h)+,4v(x(A +h), y', y) 

- u(c(A + h)- h)- u(c(A + h))+f(A + h). 

Combining these inequalities gives 

U(c(A)+ h)- U(c(A))-< f(A + h)-f (A) 
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Dividing by h, letting h -* 0, and utilizing the continuity of c ( ) gives 

f'(A)= U'(c(A)). 

Now letting A=y.z+p(y)-z, so that v(z,y;p)=f(A), we obtain (av/azi)= 
f'(A)(aA/azi), as was to be shown. 

With the main features of v(z, y; p) thus established, we proceed to the study 
of the maximum problem (i), still taking asset prices p to be described by an 
arbitrary continuous function. The first order conditions, necessary and sufficient 
in this instance, are: 

(3) U(x(ypi(y)'=)a ( Y)dF(y',y) (i=,. ), 

(4) c +p(y) x = y z +p(y) z, 

provided c, x >0. If next period's optimum consumption c' is also positive, 
Proposition 2 implies in addition 

(5) v y )= U'(c')[y +pi(y')] (iW= 1,..., n). 
axi 

Now in equilibrium (condition (ii)) z = x = 1, c = I yj, and c' = Xjy'. Combin- 
ing (3) and (5) and using these facts gives 

(6) U'( y1)pi(y) = U4 y' y;)(y' +P(y')) dF (y', y), 

for i = 1, . . . , n. One may think of (6), loosely, as equating the marginal rate of 
substitution of current for future consumption to the market rate of trans- 
formation, as given in the market rate of return on security i. Mathematically, (6) 
is a stochastic Euler equation. It is conceptually the same as equations (8) in [10]. 

Since equation (6) does not involve the particular value function v(z, y; p) 
used in its derivation, it must hold for any equilibrium price function. Con- 
versely, if p*(y) solves (6) and v(z, y; p*) is as constructed in Proposition 1, then 
the pair (p*(y), v(z, y; p*)) is an equilibrium. Thus solutions to (6) and equi- 
librium price functions are coincident. 

To study (6), define 

gi(Y)=1{ U'( y') y dF (y', y) (i= 1,. ..., n). 

Then if the n independent functional equations 

(7) f(y)= gi(y)+ 3{(y') dF (y', y) (i=1,. ., n) 

have solutions (fi(y), ... , fn(y)), the price functions 

(8) pi (Y) = rL'i . n), 
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will solve (6), and p(y)= (P1(y),.. ., p,(y)) will be the equilibrium price 
function. 

If f is any continuous, bounded, nonnegative function on En+, the function 
Tif:E-n+>R+ given by 

(9) (Tif )(y)= gi(y)+ 3j'f(y') dF (y', y) 

is well-defined and continuous in y. Since U is concave and bounded (by B, say) 
we have for any c: 

O = U (O) - U (c) + U' (c)(- c)>- B - cU'(c) 

so that cU'(c)'< B for all c. It follows that the functions gi(y) are bounded, since 
they are nonnegative and their sum is bounded by ,3B. Then the operators Ti 
defined by (9) take elements of the space L of continuous, bounded functions 
into the same space. Evidently, solutions to Tif =f are solutions to (7), and 
conversely. We have, then, the following proposition. 

PROPOSITION 3: There is exactly one continuous, bounded solution fi to (7) (or 
to Tif = f ). For any fo E Ln + limn _O Tnfo = fi. 

The proof follows from the fact that Ti is a contraction, verified as in the proof of 
Proposition 1. 

In summary, we have learned that there is exactly one equilibrium price 
function for this economy, and we have in (6) (equivalently in (7) and (8)) an 
equation useful in characterizing it. In the next two sections, we develop further 
results at this "general" level, and then turn to the study of the nature of 
equilibrium prices in special cases. 

5. A "DUALITY THEOREM" 

There is a second way to construct the equilibrium price function, as will be 
shown in this section. Since the preceding section already provides one way, this 
method appears somewhat redundant in the present context. The second 
method is slightly more general however (since it does not require differen- 
tiability of U); it is also suggestive for stability theory. 

Consider the functional equation 

(10) r(z,y)= infn+ [sup U(c)+, { r(x, y)'dF(y', Y 
qeE'~ C,X 

subject to c +q- x y z +q z. 

It will turn out that optimal policy functions q(z, y) for this dynamic program 
are, when evaluated at (1, y), equivalent to the equilibrium price functions found 
in Section 4. 
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To study (10), let B be the space of bounded integrable functions on En+x 

En, and let M: B -* B be the operator such that (10) is equivalent to: r = Mr. 
For the record, we have the following proposition. 

PROPOSITION 4: There is exactly one bounded integrable function r satisfying 
r = Mr, and for any ul E B, lim"""Mnu = r. 

The proof parallels that of Proposition 1, and will be omitted. In fact, much 
more can be said about the function r. 

PROPOSITION 5: The solution r to (10) satisfies 

(11) r(z, y)= U(y z)+f3Jr(z, y') dF (y', y). 

Further, r is continuous, and nondecreasing and concave in z for each fixed y. 

PROOF: Define R: L2n +*L2n? by 

(Rw)(z, y)= U(y z)+?3Jw(z, y') dF (y', y) 

so that (I 1) reads: r Rr. We show that if w is continuous, and non-decreasing 
and concave in z for each y, then (i) Rw has these properties, (ii) Mw = Rw. 

The proof of (i) parallels arguments in the proof of Proposition 1, and can be 
omitted. 

To prove (ii), observe that the point (c,x)=(y z,z) satisfies c+q x 
yz +qz for all q, so that Mw ?-Rw. Since w is concave, for any (z, y) the set 

A = (c, x): U(c)+?3 { w(x, y') dF (y', y)? (Rw)(z,y) 

is convex. From the separation theorem for convex sets, there is a number a( and 
a vector a c En (not both zero) such that (c,x)c A implies aoc+ a x 
a(y z + a z. Since U(c) is strictly increasing, it follows that ao > 0 and a a 0 0, so 
we can define q = (a/ao) and write 

(12) (c,x)eA implies c+q-x-y z+q z. 

Now for this vector q, suppose there is a (c, x) in the interior of A with 
c +?q x = y-? +q-z. Then by reducing c slightly, we obtain a point (c', x) in A 
such that c'?+ q x < y z + q z: a contradiction to (12). This proves that q attains 
Mw, or that Mw = Rw. 

Finally, the properties listed for r follow easily from the fact that r solves (11), 
using the methods applied to the proof of Proposition 1. This completes the 
proof. 

As immediate corollaries, we have the following propositions. 

PROPOSITION 6: For all y, r(q, y)= v(1, y). 

PROOF: From the definition of equilibrium v is the solution to (1 1) with z = 1. 



ASSET PRICES 1437 

PROPOSITION 7: If p (y) is an equilibrium price function, then q (A, y) = p (y) 
attains rQ, y). 

The converse to Proposition 7 is the following. 

PROPOSITION 8: If q (A, y) attains r(K, y) then p (y) = q (A, y) is an equilibrium 
price function. 

PROOF: Let q(Q, y) attain r(l, y) and suppose that (co, xo) uniquely attains 

(13) max U(c)+,f3 r(x, y') dF (y', y)} 
c,x 

subject to 

c +q(1, y) x < y 1 + q(1, y)* 1. 

If (c , x ) = (Xiyi, 1), then the assertion follows from Proposition 6 and the 
definition of equilibrium. If (co, xo)# (iyi, 1), then a convex combination of 
these two points is feasible for problem (13) and yields a higher value to the 
objective function (since r is concave in z and U is strictly concave) contradict- 
ing the assumption that (co, x?) solves problem (13). 

6. STABILITY OF EQUILIBRIUM 

The preceding sections showed that there is only one way for the economy 
under study to be in competitive equilibrium: when all output is consumed, all 
asset shares are held, and asset prices follow (6), or equivalently, solve the 
dynamic program (10). As always, there are innumerable ways for the economy 
to be out of equilibrium, so we must expect any treatment of out-of-equilibrium 
behavior to have considerable arbitrariness, not resolvable by economic 
reasoning. On the other hand, the model described above "assumes" that agents 
know a great deal about the structure of the economy, and perform some 
non-routine computations. It is in order to ask, then: will an economy with 
agents armed with "sensible" rules-of-thumb, revising these rules from time to 
time so as to claim observed rents, tend as time passes to behave as described in 
Sections 4 and 5? 

To sharpen this loosely posed question somewhat, let us recognize at least 
three different stability questions raised by this model, and dispose of two of 
them at once. First, in each period an ordinary "static" market clearing occurs, in 
which current asset prices are set. Since stability in this sense is well understood, 
we need add nothing here except the assumption that it always obtains. Second, 
agents may be in ignorance of the distribution F(y', y) of the exogenous pro- 
duction shocks, and learn its characteristics only gradually. Stability in this sense, 
too, is a well understood problem in Bayesian decision theory [5, Ch. 10] and 
need not be discussed here. Finally, consumers may be in error as to the price 
function, or equivalently, about the distribution of future prices conditional on 



1438 ROBERT E. LUCAS, JR. 

the current state, or again equivalently, about the way they wish to evaluate their 
end-of-period portfolio, x. We focus here on this last kind of disequilibrium. 

The "correct" way, given preferences, to evaluate an end-of-period portfolio 
x is to use the equilibrium value function v: fv(x, y') dF (y', y), but agents must 
know this, and the economy must be in equilibrium for this valuation to be 
correct. Suppose instead that agents use some other function u(z, y), say, where 
u is continuous, concave, and increasing in z, but otherwise arbitrary, so that an 
end-of-period portfolio x is valued at fu(x, y') dF (y', y). (To retain the con- 
veniences of the representative consumer device, we are forced to treat all 
agents as being wrong in the same way.) Suppose on the basis of this arbitrary 
portfolio evaluation formula, asset demands are drawn and a current period 
market clearing asset price vector q is es-tablished, at which c = 1i'i and x = 1. 
Now if prices are established in this fashion, what will be the realized utility 
yields experienced by agents? 

The answer is given by the function (Mu)(z, y), where M is the operator 
defined in association with equation (10). That this is so is the content of 
Proposition 5: the price q which attains the right side of (10) is precisely that 
price which clears markets, given the portfolio valuation function u. 

If this experience is utilized by agents, they will replace the initial valuation u 
with the value Mu actually experienced, then new prices will be established, and 
utilities M2u experienced, and so on.5 Since, as shown in the preceding section, 
M-u - v, where v is the equilibrium value function, prices will converge to the 
equilibrium price function. In short, the successive approximations used in 
Section 5 constitute a kind of stability theory. 

It is worth emphasizing that the adjustment toward equilibrium described by 
these successive approximations does not presuppose that agents are familiar 
with the theory of Markov processes or of dynamic programming; nor need 
agents in equilibrium be particularly skilled at responding to survey questions 
about future price movements. All that is required is they have consistent 
preferences for consumption and asset holdings (which would seem necessary for 
dealing in asset markets at all) and that they revise these preferences in the 
direction of the consumption utility actually yielded by their asset holdings. 

The point of this section, it should also be said, is not that one would use any 
of the successive approximations Mnu as a description of observed behavior. 
(This suggestion is not even operational, since u was arbitrarily chosen.) It is 
rather to argue that there is a theoretical reason for expecting the equilibrium to 
be a good approximation to behavior. Certainly one would not expect to capture 
the creativity which is devoted to discovering and gaining from disequilibria in 
actual economies in any mechanical approximation routine. 

5As one of the referees for this paper emphasized, the process by which u is "replaced" by Mu, 
Mu by M2u, and so forth, might well be quite complicated to spell out. It involves "learning" a 
function over time by experiencing discrete values of the function Mu at arguments partly selected 
by the household (z) and partly by nature (y). There are many ways to formulate learning of this sort; 
for our purposes here, it seems simpler just to assume that households are good at it. 
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7. EXAMPLES 

7.1. Linear Utility 

The case of constant marginal utility of consumption does not exactly fit the 
assumptions of Section 3 (it violates boundedness) but is easily handled 
separately, and is a useful point of departure. In this case, equation (6) reduces 
to 

(14) pi(y)=f3E(y'Iy)+fE(pj(y')Iy) 

which may be solved for 

co 

Pi (y )= L j3'E(yj,t+sjyjt = Y)- 
S=1 

That is, the price of the ith asset is the expected, discounted present value of its 
real dividend stream, conditioned on current information y. 

7.2. One Asset 

It is easy to use equation (6) (or (7)) to characterize the function p(y), as can 
be illustrated for the case of a one-asset economy. The crucial issues are the 
information content of the current state y (that is, the way F(y', y) varies with y) 
and the degree of "risk aversion" (the curvature of U). Suppose, as a first case, 
that {Yt} is a sequence of independent random variables: F(y', y)= 1(y'). Then 
g(y) is the constant 

g = 13{y'U'(y') dO (y') = 13E[yU'(y)] 

and calculating f from (9) as limn ,,TnO, say, we get 

g 
(Y) - PO ,f(y)= 0. 

1 -:' 

Then differentiating (8) gives 

P3E[yyU'(y)]U"(y) -U'(y) 
P,") (1~)U()2 - U'(y) 

0 

Rearranging, 

yp'(y) yU"(y) 
p(y) U') 

That is, the elasticity of price with respect to income is equal to the Arrow-Pratt 
[1] measure of relative risk aversion. 

In a period of high transitory income, then, agents attempt to distribute part of 
the windfall over future periods, via securities purchases. This attempt is frus- 
trated (since storage is precluded) by an increase in asset prices. 
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Next, we consider autocorrelated production disturbances, under a restriction 
which amounts to requiring that the stochastic difference equation governing Yt 
have its root between zero and one: assume that F is differentiable, and that its 
derivatives F1 and F2 satisfy 

(15) 0<-F2 <F1. 

We will repeatedly apply the following lemma. 

LEMMA 1: Let F satisfy (15), and let h (y) have a derivative bounded between 0 
and h' > 0. Then 

(16) -- I h(y')dF (y',y),h'. 
dy Jy 

M 

PROOF: Use the change of variable u = F(y', y), and invert to get y' = G(u, y), 
so that G2= (-F2)/F1. Then the derivative in question is 

-d h(G(u, y)) du = { h'(G)G2(u, y) du 
dy 

and the result follows from (15). 
Now from (9), for any differentiable f, 

(17) d MXy) = g'(Y)+ /3 d fty') dF (y y) dy dy' 

and from the definition of g(y), 

(18) g'(y)= 3{ d U'(y')y' dF (y, y). 

To get any information on the slope of the solution f(y) to (7), then, we must 
begin with bounds on the derivative of U'(y)y, or on U"(y)y + U'(y). (This 
derivative is U'(y)[1 - R (y)], where R is the Arrow-Pratt measure of relative 
risk aversion, so its magnitude has received some consideration.) For the sake of 
discussion, take 0 and a as lower and upper bounds on U"(y)y + U'(y). Then 
applying Lemma 1 to (18), 

0 g, (y ) -- a 

Then repeated application of (17), using Lemma 1 at each step, yields 

(19) 0 f (Y _ 

where f(y) is the solution to (8) in this one asset case.6 From (8), the elasticity of 

6Differentiability of the approximations TnF does not imply the differentiability of f, and in fact, 
there is no easy way to verify this. For "f(y)< c" read: "f(y1)-f(yo)s c(y1 - yo)." 
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the equilibrium price function is 

(20) yp(Y)= yf'(y) yU"(y) (2) p(y) f f(y) -U'() 

The second term on the right of (20) is the "income effect" we have seen 
above; it is positive. The first term might be called the "information effect";7 it 
has the sign of f'(y). Evidently, the use one can make of these formulas depends 
on our knowledge of the curvature of U; (19) and (20) show how to translate 
such knowledge into knowledge about asset prices. 

In the present case of relative risk aversion8 less than unity, we have found in 
(19) that f'(y)> 0, so that the information effect is positive. Thus as one might 
expect, new optimistic information on future dividends leads to increased asset 
prices. (Of course, one might also expect that this information will lead to an 
attempted consumption binge now, lowering asset prices!) 

Observationally, the derivative p'(y) is the change in the ratio of a compre- 
hensive stock price index to the CPI, as real output varies. Even in the simplified 
economy under study, then, the relationship of asset prices to real output is far 
from simple and possibly not even monotonic. Perhaps it has been good judg- 
ment, not merely timidity, which has led aggregate theorists to steer clear of any 
attempt to "understand the market." 

7.3. Many, Independent Assets 

If the number of productive units is large, and if there is sufficient indepen- 
dence across units, one would expect that replacing the term U'(Xiyi) in (6) with 
U'(A), where 

A =EAi=ZJyi(y)dy 
i i 

in mean total output, would yield a good approximation to the equilibrium price 
function. Let us pursue this idea, and the question of approximation generally, 
with the aid of the next lemma. 

LEMMA 2: Let S, T: L -+ L be contractions with modulus f3 and fixed points fs, 
fT E L. Suppose that 

jSf -Tfjj A for all f e L. 

Then 

lIfs -fTII 1 A- . 

7This follows Grossman [8]. 
8 In this multiperiod context, the term "risk aversion" is perhaps misleading, since the curvature of 

U also governs the intertemporal substitutability of consumption. With time-additive utility, there is 
no way to disentangle these conceptually distinct aspects of preferences. 
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PROOF: For any f, 

jIS2f - T2fj 1 IIS2f - TSf 11 + |ITSf - T2fjj 

I|S(Sf )-T(Sf )1I + f 3lSf- Tfl 

SA+ PA, 
and, in general, 

ljSnf-TTnfjiA(1+3+. +fln-1) 

Letting n -+ x gives the result. 
Now if gi(y) is an approximation to gi(y), and T is defined by 

Tif = gi(y)+.3Jf(y') dF (y', y), 
we have 

I?Tif- Titff = lgi (Y)-gi(Y)lI 

Then if fi and fi are the fixed points of Ti and Ti, respectively, Lemma 2 gives the 
bound 

(21) -fill-f< (1-j)-1jj-i -gill. 

Returning to the specific approximation proposed above, let 

gi(y) = U'(u JYi dF (y', y), 

define Ti as above, and let fi be the fixed point of Ti. Then the approximate price 
function 

f i(Y) 
pii(Y)= 

is just the solution calculated in 7.1 above. 
To evaluate this approximation, we need bounds on gi -IgI. To this end, let 

us bound U"(y): 11 U"I' --M. Then 

gi(y)- 
g()I = fI|J[U' E; y -U'(A()]y 

dF (y, Y) 

EyH11( Y-Yi'dF (Y' Y)| 

using the mean value theorem. If the yi's are independent, or if F(y', y)= 

HkFk(yk, Yk), then 

J(~ y i-LY dF (y', y)= -( (Yi)))(Y-'- dF (y' y) 

+ pj E (y;'- ) dF (y', y) 

-var (y i'l yi) +Ai E E(y;-yj). 
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Combining gives 

jgi,(y)-g) ) sup [var (y 'yi)+ A' Z E(yX - Ailyi)]. 
y i 

If we think of a sequence of economies of the same total size, but with more and 
more independent productive units, of roughly equal size, var (y jyi) and 
Ai - plYi) will tend to zero, and the approximations fi will become close. 

8. THE MARTINGALE PROPERTY 

We have shown that equation (6) exhausts the implications of the assumption 
that, in this model economy, prices are in equilibrium and "reflect all available 
information." Evidently, asset prices themselves do not possess the Martingale 
property. The series that does have this property (something has to, in this 
time-additive set up) is the series wi,(i = 1, ... , n) defined by 

Wi-t+i-Wit = lu(z yit+1)(Yi,t+ +Pi,t+i)- (U Yj,)Pit, 

since from (6), the expectation of the right side of (22), conditioned on all 
available information (in this case, Yt) is zero. 

If the terms U'(Iiy1t) do not vary much, either because agents are indifferent 
-to risk (example 7.1) or because there is little aggregate risk (example 7.3), then 
securities prices properly "corrected" for dividends Yit almost have the property 
but not without another "correction" for the discount factor jl. In any case, 
neither rationale for a constant U'(X1y1t) seems likely to closely approximate 
reality. 

It should be added that the importance of the requirement that "the conditions 
of market equilibrium can be stated in terms of expected returns" has been 
repeatedly emphasized by Fama and other efficient market theorists; it is not a 
new result from this paper. What is new, I think, is an explicit framework within 
which one can judge what this requirement means and whether or not it is 
satisfied, or which in other words can lend some insight into the conditions under 
which the Martingale property is likely to approximately describe a price series. 
Within this framework, it is clear that the presence of a diminishing marginal 
rate of substitution of future for current consumption is inconsistent with this 
property.9 

9. CONCLUSIONS 

What can be concluded from this exercise (beyond the observation that a little 
knowledge of geometric series goes a long way, or perhaps, is a dangerous 
thing)? Substantively, the discussion of stability of Section 6 indicates that the 

9 This complements Danthine's [4] finding that a diminishing marginal rate of transformation over 
time, in a model with storage, has the same effect. 
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applicability of the hypothesis that agents "know" the "true" probability dis- 
tributions of future prices has little to do with the question of whether agents 
(ourselves included) think of, or describe, their behavior in these terms. A 
relatively crude use of hindsight, applied in a reasonably stationary physical 
environment, will lead to behavior well-approximated by rational expectations. 

With respect to the random character of stock prices, it is evident that one can 
construct rigorous economic models in which price series have this charac- 
teristic10 and ones with equally rational and well-informed agents in which they 
do not. This would suggest that the outcomes of tests as to whether actual price 
series have the Martingale property do not in themselves shed light on the 
generally posed issue of market "efficiency." 

In the main, however, this paper is primarily methodological: an illustration of 
the use of some methods which may help to bring financial and economic 
theories closer together. It may help, then, to close with some guesses as to the 
fronts on which further progress can be expected. 

The time-additive preference structure is, as remarked earlier, a nuisance, and 
it has no rationale beyond tractability. It would not be difficult (with the aid of 
[6]) to use recursive, but non-additive preferences of the Koopmans-Diamond- 
Williamson [9] type, provided sufficient "impatience" is assumed. 

Second, one would like to introduce capital accumulation. In this regard, the 
marginal analysis of Section 4 is probably a dead-end: equation (6) is a kind of 
Euler condition, and will necessarily involve capital provided capital enters the 
model in a non-trviial way. Aside from special cases (such as the one studied in 
Section 4) stochastic Euler equations are not likely to be of value in constructing 
solutions. Equation (10) in Section 5 appears more promising; perhaps it has 
useful analogues in more generally formulated models. 

University of Chicago 

Manuscript received September, 1975; final revision received March, 1978. 
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