University of Toronto Department of Economics ECO 2061H Economic Theory - Macroeconomics (MA) Winter 2012

Professor Tasso Adamopoulos

Assignment 3

Due: Thursday, April 5, 2012 (9:00a.m. in class)

- 1. Consider the Lucas imperfect information model. There are many different segmented markets (islands) in the economy. Each market produces a different good, and each is perfectly competitive. All variables are expressed in logarithmic form. Let the nominal price in market i be p_i . Denote the aggregate price level (average of market basket of goods) as p. A typical producer i produces output according to a linear production function $q_i = \ell_i$, where q_i is the amount of output produced, and ℓ_i is the amount of labor supplied. From the individual producer's maximization problem, you can show that the supply of labor in market i is $\ell_i = \frac{1}{\gamma - 1} (p_i - p)$ with $\gamma > 1$. Assume that the demand for good i is given by $q_i = y + z_i - \eta(p_i - p)$, with $\eta > 0$. y is aggregate output in the economy (average across all goods), and z_i 's are relative demand shocks with a mean of zero. Aggregate demand in the model is assumed to be equal to y = m - p, where m is a monetary shock. Assume that m and z_i 's are normally distributed, but independent: $m \sim N(E(m), V_m)$ and $z_i \sim N(0, V_z)$. The individual observes his price p_i but cannot distinguish the source of the variation in this price (aggregate price level, p, or relative price, r_i). In order for the individual supplier to make his production decision he has to form an estimate of relative price r_i given the "signal" he receives p_i , i.e. calculate $E(r_i \mid p_i)$. Assume that the individual producer: (i) exhibits certaintyequivalence behavior, (ii) has rational expectations.
 - (a) Assume that suppliers, before entering the market, have a prior distribution for p that is normal: $p \sim N(E(p), V_p)$. Then they observe the "signal" p_i , and update their expectation for p according to $E(p \mid p_i) = (1 \theta) E(p) + \theta p_i$, where $\theta = \frac{V_p}{V_p + V_r}$, with V_r being the variance of the relative price r_i . Derive the individual producer's supply curve in terms of $p_i E(p)$. Show that the Lucas aggregate supply function is of the form y = b(p E(p)).

- (b) Using the aggregate demand equation and the Lucas aggregate supply equation find expressions for p and y in terms anticipated and unanticipated money, i.e., E(m)and m - E(m) respectively. What is the economic interpretation of these equations?
- (c) Evaluate the following statement (true, false, uncertain) in the context of the above model: "Since unanticipated money growth raises both inflation and output, the government should inflate to raise output."
- 2. Consider the Kydland and Prescott (1977) model on the time inconsistency of low inflation monetary policy. Aggregate supply is given by,

$$y = \overline{y} + b(\pi - \pi^e), \quad b > 0$$

where y is the log of output, and \overline{y} is its flexible price level. Note, that this can be different from the socially optimal level, y^* . π is the economy's inflation rate, while π^e is the inflation rate that the public expects to prevail. The policymaker chooses inflation to minimize a social welfare loss function, L, which depends on deviations of inflation and output from their socially optimal levels,

$$L = \frac{1}{2}(y - y^*)^2 + \frac{1}{2}a(\pi - \pi^*)^2, \quad a > 0, \quad \overline{y} > y^*$$

- (a) What are the equilibrium levels of output and inflation if the policymaker can commit to a policy, before the public forms its expectations?
- (b) What are the equilibrium levels of output and inflation if the policymaker has discretion, i.e., chooses policy taking expectations as given?