
1 Finite Horizon, No Uncertainty

Consider a general finite horizon maximization problem in discrete time. Let yt be the stock or

state variable, that summarizes the state of the economy at each time t (all current information

relevant to the decision maker). Let zt be the flow or control variable, which is under the

optimizer’s choice and affects changes in the stock variable yt. I refer to y as “the” state and

z as “the” control as if there is only one of each, but these could very well be vectors of states

and controls respectively, and the analysis here continues to hold.

The criterion or objective function faced by the decision maker is,

T∑
t=0

F (yt, zt, t) (1)

The implicit assumption in the objective function is that it is additively separable in the period

functions F (.). Each period t = 0, 1, 2, ...T the decision maker faces a dynamic constraint

describing the relationship between the control and state variables,

yt+1 = yt +Q(yt, zt, t) (2)

and is often called the law of motion, as it describes the evolution of the state variable. There

could also be some time t constraints on time t control and state variables,

G(yt, zt, t) ≤ 0 (3)

for each t = 0, 1, 2, ...T . The initial value of the stock variable y0 > 0 is taken to be given as

an initial condition (the result of some unspecified history). Next we discuss solution methods

for this intertemporal optimization problem.

1.1 Lagrange Method

One approach to solving this problem is the standard Lagrange method. This is similar to the

standard Lagrange method used in static optimization as long as we are cautious of the inter-

temporal nature of the problem. For example we have to recognize that the constraints (2)

and (3) faced by the decision maker are sequences of constraints, one for each t = 0, 1, ...T . To

apply the Lagrange method let λt be the multiplier on the time t constraint (3), and πt+1 the

multiplier on the time t law of motion. These multipliers have the standard interpretation as

shadow prices. Consider for example the interpretation of πt+1, the multiplier on the dynamic

constraint, which is less standard. This is the shadow price on the time t + 1 stock: it tells

us how much the value of the objective would increase if the constraint of increasing the stock
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next period was relaxed, i.e., if we were given a gift of a little bit extra yt+1. Next, set up the

Lagrangian,

L =
T∑
t=0

F (yt, zt, t) +
T∑
t=0

πt+1 {yt +Q(yt, zt, t)− yt+1} −
T∑
t=0

λtG(yt, zt, t)

We can re-arrange the terms in the second summation term of the Lagrangian as follows,

T∑
t=0

πt+1 {yt − yt+1} = π1(y0 − y1) + π2(y1 − y2) + ...+ πT+1(yT − yT+1) =

= π1y0 + y1(π2 − π1) + y2(π3 − π2) + ...+ yT (πT+1 − πT )− πT+1yT+1 =

=
T∑
t=1

yt(πt+1 − πt) + π1y0 − πT+1yT+1

Then the Lagrangian can be re-written as,

L =
T∑
t=1

F (yt, zt, t) +
T∑
t=1

πt+1Q(yt, zt, t) +
T∑
t=1

yt(πt+1 − πt)−
T∑
t=1

λtG(yt, zt, t)+

+F (y0, z0, 0) + π1Q(y0, z0, 0)− λ0G(y0, z0, 0) + π1y0 − πT+1yT+1

The first order conditions with respect to zt for t = 0, 1, ...T are,

Fz(yt, zt, t) + πtQz(yt, zt, t)− λtGz(yt, zt, t) = 0

The first order conditions with respect to yt for t = 1, ...T are,

Fy(yt, zt, t) + πt+1Qy(yt, zt, t) + πt+1 − πt − λtGy(yt, zt, t) = 0

What about the choice of yT+1? If any positive stock is left then it must be worthless, i.e.,

yT+1 ≥ 0, πT+1 ≥ 0,

with complementary slackness. Another way of writing this is, yT+1πT+1 = 0, and it is called

a transversality condition.

We can re-write the time t FOC with respect to yt as,

[Fy(yt, zt, t)− λtGy(yt, zt, t)] + πt+1Qy(yt, zt, t) = −(πt+1 − πt)

This is the standard intertemporal no-arbitrage condition. The left-hand-side of this expression

is the “dividend” that you would get from having an extra unit of yt (first term is the current

period return, while the second term is the extra value from having one more unit in the follow-

ing period). The right-hand-side is the change in the shadow price of yt+1, and can be thought
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of as the “capital gain.” These conditions characterize the optimal sequence
{
z∗t , y

∗
t+1

}T
t=0

for

a given initial y0 > 0. Plugging the optimal sequence into the objective function we get the

resulting maximum value function, as a function of the initial state y0

V (y0) ≡
T∑
t=0

F (y∗t , z
∗
t , t)

Then the derivative of the value function with respect to the initial stock, Vy(y0), is the shadow

price of initial y0.

1.2 Dynamic Programming (DP)

DP is an alternative way to solve dynamic optimization problems. Consider again the problem

above,

T∑
t=0

F (yt, zt, t) (4)

s.t.

yt+1 = yt +Q(yt, zt, t) (5)

G(yt, zt, t) ≤ 0 (6)

for t = 0, 1, 2, ...T . Let the resulting maximum value function as a function of the initial stock

be,

V (y0) ≡
T∑
t=0

F (y∗t , z
∗
t , t)

Suppose now that instead of starting at t = 0 we started the optimization at some other point

in time t = τ > 0. Then for decisions starting at time τ the only relevant information about

the past is summarized in the stock variable at time τ , that is yτ . Taking now yτ as given we

can start the whole problem at t = τ , that is, solve,

max

T∑
t=τ

F (yt, zt, t) (7)

s.t.

yt+1 = yt +Q(yt, zt, t) (8)

G(yt, zt, t) ≤ 0 (9)

for t = τ, τ + 1, τ + 2, ...T . Let the maximum value function of this problem be,

V (yτ , τ) ≡
T∑
t=τ

F (ŷt, ẑt, t)
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where {ẑt, ŷt+1}Tt=τ is the optimal sequence chosen from the point of view of time τ . The

shadow price on initial stock yτ is Vy(yτ , τ).

As an example, suppose that τ = 1. Then we could write the value function of the sub-

problem starting at time t = 1 as V (y1, 1). Consider the choice of decision maker about z at

time t = 0. The choice of z0 affects the current value of the objective F (y0, z0, 0) but also

affects next period’s stock y1 through the law of motion: y1 = y0 +Q(y0, z0, 0), which in turn

implies, if you are optimizing from t = 1 onwards, a maximum value of V (y1, 1). Then the

total value from choosing z0 at t = 0 can be broken into two terms, F (y0, z0, 0) which accrues

at once and V (y1, 1) which accrues thereafter. The choice of z0 at t = 0 should maximize the

sum of these two terms,

V (y0, 0) = maxz0 {F (y0, z0, 0) + V (y1, 1)}

s.t.

y1 = y0 +Q(y0, z0, 0)

G(y0, z0, 0) ≤ 0

More generally when contemplating the choice of zt for any two consecutive periods (t, t+1)

the decision maker should maximize,

V (yt, t) = maxzt {F (yt, zt, t) + V (yt+1, t+ 1)}

s.t.

yt+1 = yt +Q(yt, zt, t)

G(yt, zt, t) ≤ 0

This suggests an algorithm to solve the original optimization problem by starting at the end

and then working backward recursively.

Start at the last period T for any yT . Given that there is no future beyond T , the contin-

uation value V (yT+1, T + 1) = 0. Then the problem in the last period T is,

maxzT {F (yT , zT , T )}

s.t.

yT+1 = yT +Q(yT , zT , T )

G(yT , zT , T ) ≤ 0

This is a static optimization problem. The solution is a policy function z(yT , T ) (that is a

rule that gives the optimal value of the control for any given value of the state), which in turn

yields the maximum value function V (yT , T ) = F (yT , z(yT , T ), T ).
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Next we move one period backwards, and solve the following maximization problem for

each value of the state yt,

V (yt, t) = maxzt {F (yt, zt, t) + V (yt+1, t+ 1)} (10)

s.t.

yt+1 = yt +Q(yt, zt, t)

G(yt, zt, t) ≤ 0

where we replace V (yt+1, t + 1) on the RHS above with V (yT , T ) that we derived in the first

step of the algorithm. The solution to this problem is a policy function z(yt, t) and a value

function V (yt, t) = F (yt, z(yt, t), t)+V (yt+Q(yt, z(yt, t), t), t+1). This step is repeated all the

way back to t = 0. The outcome of this algorithm is a sequence of policy functions {z(yt, t)}Tt=0

and a sequence of value functions {V (yt, t)}Tt=0.

This approach of optimization over time, of solving a succession of static optimization prob-

lems, is called dynamic programming, and was pioneered by Richard Bellman. The underlying

idea is that whatever the decision at time t the subsequent decisions should proceed optimally

for the subproblem starting at t + 1 is called the Bellman Principle of Optimality. Equation

(10) is called the Bellman Equation.

To characterize the solution to the problem at time t look at the maximization problem on

the RHS of (10),

maxzt {F (yt, zt, t) + V (yt +Q(yt, zt, t), t+ 1)}

s.t.

G(yt, zt, t) ≤ 0

where I have substituted the law of motion into the period t+ 1 value function. Letting λt be

the multiplier on the time t constraint yields the FOC for zt,

Fz(yt, zt, t) + Vy(yt+1, t+ 1)Qz(yt, zt, t)− λtGz(yt, zt, t) = 0

Notice that this is the same condition as that derived from the Lagrange method after you

recognize that Vy and π are both shadow prices. So the two methods lead to the same rule for

setting z.

When zt is chosen optimally then the Bellman equation holds with equality,

V (yt, t) = {F (yt, zt, t) + V (yt+1, t+ 1)}

Differentiate this with respect to yt and using the Envelope theorem on the RHS we get,

Vy(yt, t) = Fy(yt, zt, t) + Vy(yt+1, t+ 1) [1 +Qy(yt, zt, t)]− λtGy(yt, zt, t)
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2 Infinite Horizon, No Uncertainty

Suppose that T →∞, as is the case in many economic problems. Since there is no last period

anymore we cannot use backward induction to solve the dynamic programming problem. We

focus here on stationary economies. Stationarity means that conditional on the state, the value

and policy functions are independent of time, i.e., they are not indexed by t. Dropping the

time index from the value function and policy function they become z(y) and V (y) respectively.

We now denote the next period variables with a prime, e.g. yt and yt+1 would be y and y′

respectively. The Bellman equation is now,

V (y) = maxz {F (y, z) + V (y′)}

s.t.

y
′
= y +Q(y, z)

G(y, z) ≤ 0

The optimal policy is a time-invariant function of the current state z(y).

The value function V (y) enters both the RHS and the LHS of the Bellman (although

evaluated at different points, V (y′) on RHS and V (y) on LHS). Recall this is different from the

finite horizon case where V was indexed by a different time index on the RHS and LHS. The

same value function enters on both sides of the Bellman in the infinite horizon case and this

function is unknown. Thus in the infinite horizon case the Bellman equation is a functional

equation (FE) because the unknown is a function rather than a number. Thus here we obtain

the value and policy functions by simultaneously solving the maximization problem above

to get z(y) and by solving the functional equation to get V (y). This is conceptually more

complicated than backward induction. Important questions that have to be answered are:

does a solution exist to the FE? if yes, is it unique? What are the properties of the value

and policy functions? How do you find a solution of the FE? These questions are left for 1st

year Ph.D courses! See applications from class about how to use first order conditions and the

envelope theorem (Benveniste-Scheinkman) when the value function is differentiable, to derive

optimality conditions (Euler equations) from dynamic programs.
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