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1. STATE PRICE DENSITY ESTIMATION

1.1 Parametric or Nonparametric?

Option price data have characteristics which are both nonparametric and parametric

in nature.  The economic theory of option pricing predicts that the price of a call

option should be a monotone decreasing convex function of the strike price. It also

predicts that the state price density (SPD) which is proportional to the second

derivative of the call function, is a valid density function over future values of the

underlying asset price, and hence must be non-negative and integrate to one.  Except

in a few polar cases, the theory does not prescribe specific functional forms.  (Indeed

the volatility smile is an example of a clear violation of the lognormal parametric

specification implied by Black-Scholes.)  All this points to a nonparametric approach

to estimation of the call function and its derivatives.

On the other hand, multiple transactions are typically observed at a finite vector of

strike prices. Thus, one could argue that the model for the option price – as a function

of the strike price (other variables held constant) -- is intrinsically parametric.  Indeed

given sufficient data, one can obtain a good estimate of the call function by simply

taking the mean transactions price at each strike price.  Unfortunately, even with

large data-sets, accurate estimation of the call function at a finite number of points

does not assure good estimates of its first and second derivatives, should they exist.

To incorporate smoothness and curvature properties, one can select a parametric

family which is differentiable in the strike price, and impose constraints on

coefficients. Such an approach, however,  risks specification failures.

Fortunately, nonparametric regression provides a good reservoir of candidates for

flexible estimation.  Indeed, a number of authors have used nonparametric or

semiparametric techniques in the estimation or testing of derivative asset models.
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Among them are Aït-Sahalia (1996),  Jackwerth and Rubinstein (1996), Ghysels et

al. (1997), Aït-Sahalia and Lo (1998, 2000), Aït-Sahalia and Duarte (2000) , Broadie

et al (2000a,b), Garcia and Gencay (2000), Aït-Sahalia, Bickel and Stoker (2001),

Cont (2001), Cont and Fonseca (2002), Cont and Tankov (2002), Daglish (2002) and

Härdle, Kleinow and  Stahl (2002).

In earlier work, Yatchew and Bos (1997) showed how nonparametric least squares

can easily incorporate a variety of constraints such as monotonicity, concavity,

additive separability, homotheticity and other implications of economic theory. Their

estimator uses least squares over sets of functions bounded in Sobolev norm. Such

norms provide a simple means for imposing smoothness of derivatives of various

order.  There is a growing literature on the imposition and testing of curvature

properties on nonparametric estimators. (See Wright and Wegman (1980), Schlee

(1982), Friedman and Tibshirani (1984), Villalobas and Wahba (1987),  Mukarjee

(1988), Ramsay (1988),  Robertson, Wright and  Dykstra (1988),  Kelly and Rice

(1990),  Mammen (1991), Goldman and Ruud (1992),  Yatchew (1992), Mukarjee

and Stern (1994), Bowman, Jones, and Gijbels (1998), Diack and Thomas-Agnan

(1998),  Ramsay (1998),  Mammen and Thomas-Agnan (1999), Diack (2000),

Gijbels et al.(2000), Hall and Heckman (2000), Hall and Huang (2001),

Groeneboom, Jongbloed, and Wellner (2001),  Juditsky and Nemirovski (2002), and

Hall and Yatchew (2002).)

In the current paper, we combine shape restrictions with nonparametric regression to

estimate the call price function within a single least squares procedure.  Constraints

include smoothness of various order derivatives, monotonicity and convexity of the

call function and integration to one of the SPD.  Confidence intervals and test

procedures may be implemented using bootstrap methods. In addition to providing

simulation results we apply the procedures to option data on the DAX index for the

period January 4-15, 1999.



3

As an initial illustration of the benefits of smooth constrained estimation, particularly

when estimating derivatives, we have generated 20 independent transactions prices

at each of 25 strike prices.  Details of the data generating mechanism are contained

in Section 3 below. The top panel of Figure 1A depicts all 500 observations and the

‘true’ call function.  As is typical in market data, the variance decreases as the option

price declines.  The second panel depicts the estimated call function obtained by

taking the mean transactions price at each of the 25 strike prices.  The bottom panel

depicts our smooth constrained estimate.  Both estimates lie close to the true

function. 

Insert Figure 1A 

Figure 1B contains estimates of the first derivative.  The upper panel depicts first-

order divided differences of the point means, (these are the slopes of the lines joining

the consecutive means in the middle panel of Figure 1A).  By the mean value

theorem, they should provide a reasonable estimate of the true first derivative near

the point of approximation. But as can be seen, the estimate deteriorates rapidly as

one moves to the left and the variance in transactions prices increases. The bottom

panel depicts the first derivative of the proposed smooth constrained estimate which

by comparison is close to the first derivative of the true call function.  

Insert Figures 1B

Figure 1C illustrates estimates of the second derivative of the call function. The

upper panel depicts second-order divided differences of the point means.  (These are

the slopes of the lines joining consecutive points in the top panel of Figure 1B.)   The

estimates gyrate wildly around the true second derivative. The lower panel depicts

the second derivative of the smooth constrained estimate which tracks the true

function reasonably well (note the change in scale of the vertical axis). 
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Insert Figure 1C

A number of practical advantages ensue from the procedures we propose.  First,

various combinations of constraints can be incorporated in a natural way within a

single least squares procedure.  Second, our ‘smoothing’ parameter has an intuitive

interpretation since it measures the smoothness of the class of functions over which

estimation is taking place by using a (Sobolev) norm. If one wants to impose

smoothness on higher order derivatives, this can be done by a simple modification

to the norm.  Third, call functions and SPDs can be estimated on an hour-by-hour,

day-by-day or ‘moving window’ basis, and changes in shape can be tracked and

tested.  Fourth, our procedures readily accommodate heteroskedasticity and time

series structure in the residuals.

In the following, we consider two types of generating mechanisms for the “x”

variable.  In the first,  x is drawn from a continuous distribution as would be the case

if one were estimating the call function as a function of “moneyness”.  In the second,

x is drawn from a discrete distribution at a finite set of strike prices as depicted in the

upper panel of Figure 1A.  The paper is organized as follows.  The remainder of this

section outlines the relevant financial theory and establishes notation.  Section 2

outlines the estimator as well as inference procedures.  Section 3 contains the results

of simulations and estimation using DAX index options data. Section 4 contains our

conclusions.  Appendices contain proofs and derivations.

1.2 Financial Market Theory

Before proceeding, we briefly review some of the relevant financial theory.  Implicit

in the prices of traded financial assets are Arrow-Debreu prices or in a continuous
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(1)

(2)

setting, the state price density.   These are elementary building blocks for

understanding markets under uncertainty.  The existence and characterization of

SPDs has been studied by Black and Scholes (1973), Merton (1973), Rubinstein

(1976) and Lucas (1978) amongst many others.  Under the assumption of no-

arbitrage, the SPD is usually called the risk neutral density because if one assumes

that all investors are risk neutral, then the expected return on all assets must equal the

risk free rate of interest. Cox and Ross (1976) showed that under this assumption

Black-Scholes equation follows immediately. Other approaches have been proposed

by Derman and Kani (1994) and Barle and Cakici (1998).

 Let  x  be the strike price for a call option which will expire at time T.  Let  t  be the

current time,  r  the interest rate, the time to expiry and  the dividend yield.   Let

 and  denote prices of the underlying asset at times  t  and  T  respectively.

Then the call pricing function at time t is given by:

where the function   is the state price density.  It  assigns probabilities to various

values of the asset at time of expiration given the current asset price, the time to

expiry, the current risk-free interest rate and the corresponding dividend yield of the

asset.  As stated earlier, the call function is monotone decreasing and convex in  x.

Breeden and Litzenberger (1978) show that the second derivative of the call pricing

function with respect to the strike price is related to the state price density by:
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(3)

We will focus on data over a sufficiently brief time span so that we may take the time

to maturity, the underlying asset price, the interest rate and dividend yield to be

roughly constant.  Our objective will be to estimate the call function subject to

monotonicity and convexity constraints and the constraint that the implied SPD is

non-negative and integrates to a value not exceeding one. 

We will use the following notational conventions.  For an arbitrary vector  and

matrices , B  we will use , ,   and  to denote elements.

Occasionally, we will need to refer to sub-matrices of a matrix.  In this case we will

adopt the notation   to refer to those elements which are in rows a through

b and columns c through d.  Given a function , we will denote derivatives using

bracketed superscripts, e.g., .

2. Constrained Nonparametric Procedures

2.1 Nonparametric Least Squares

We begin with constrained nonparametric least squares estimation of a function of

one variable on the interval .   Given data , let 

and .  (The  will be strike price or “moneyness” and  the option

price.)  With mild abuse of notation we will use  x and  y  to denote the variable in

question in addition to the vector of observations on that variable.  Our model is

given by:

We will assume that the regression function  is four times differentiable, which in
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(4)

(5)

(6)

a nonparametric setting, will ensure consistent and smooth estimates of the function

and its first and second derivatives.  (Other orders of differentiation can readily be

accommodated using the framework below.)   We will assume that the  lie in the

interval . (For example, if the x variable is ‘moneyness’ then  would

typically be the interval [.8, 1.2].)  For the time being assume the residuals  are

independent and heteroskedastic.  Let   be the diagonal matrix with diagonal

values   .

Let   be the space of four times continuously differentiable scalar functions, i.e.,

where is the set of continuous

functions on .  On the space  define the  norm,

in which case   is a complete, normed, linear

space,   i.e., a Banach space.  Consider the following inner product:

with corresponding norm:

and define the Sobolev space  as the completion of  with respect to

.   We are interested in the following optimization problem:
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(7)

(8)

which imposes a smoothness condition with smoothing parameter L.  By varying this

parameter, we control the smoothness of the ball of functions over which estimation

is taking place. 

Using techniques well known in the spline function literature, it can be shown that

the infinite dimensional optimization problem (6) can be replaced by a finite

dimensional optimization problem as we outline below, (see e.g., Wahba (1990) or

Yatchew and Bos (1997)). 

Since the evaluation of functions at a specific point is a linear operator, by the Riesz

Representation Theorem, given a point   there exists a function   in    called

a representor such that   for any  .      Let

  be the representors of function evaluation at     respectively.

(Details of the calculation of representors are contained in Appendix B.)  Let   be

the   representor matrix whose columns (and rows) equal the representors

evaluated at  ; that is,  .   If one

solves:

where  c  is an  vector,  then the minimum value is equal to that obtained by

solving (6).    Furthermore, there exists a solution to (7)  of the form:

where  solves (7).   First and second derivatives may be estimated by

differentiating  (8):  
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(9)

(10)

and

Define    to be the  matrix whose columns (and rows) are the first derivatives

of the representors evaluated at .    Define   in a similar fashion.  Then

the estimates of the call function and its first two derivatives at the vector of observed

strike prices are given by    ,   and 

where  . 

Proposition 1: Suppose one is given data    where  ,

the   are independently distributed with    and  

for some K.  The  are i.i.d. with continuous density   on  bounded away

from zero.   Let   satisfy (6).  Then  for    and

. #

The result establishes the consistency of the estimator and its first two derivatives.

It also establishes the rate of convergence of the estimator which equals the optimal

rate for four-times differentiable nonparametric functions of one variable (see Stone

(1980, 1982)).  The rate of convergence will be useful for implementing residual

regression tests of hypotheses on  . One can replace the true variances in equation

(6) with consistent estimates (or even with ones).  



10

(11)

(12)

2.2 Imposition of Constraints

Optimization problem  (7)  allow easy incorporation of various restrictions. Suppose

one wants to impose the constraint that    is monotone decreasing at each . Then

one restricts the first derivative (9) to be negative at these points.  To impose

convexity, one can require the second derivative (10) to be positive.  Then the

quadratic optimization problem (7) can be supplemented with the monotonicity

constraints:

and the convexity constraints:

Suppose we solve (7) subject to monotonicity and convexity constraints (11) and

(12).   Then  the conclusions of Proposition 1 continue to hold as long as the true

function  is strictly monotone and convex (see Yatchew and Bos (1997)).  This is

because, as sample size grows, and the estimate of the function and its first two

derivatives approach their true counterparts, the smoothness constraint alone will be

sufficient to ensure that the estimated function will be monotone and convex.  That

is, the monotonicity and convexity constraints will become non-binding.

Next we turn to imposing unimodality.  Suppose the current asset price lies in the

interval   and that one wants to impose the constraint that the state price

density is unimodal with the mode in this same interval.   Since the SPD is

(proportional to) the second derivative , one needs to impose constraints on its

derivative, that is on .     Define    to be the  matrix whose columns (and

rows) are the third derivatives of the representors evaluated at .    Then one
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(13)

(14)

imposes the constraints:

The first set of   inequalities ensures that the SPD has a positive derivative at

strike prices below the current asset price, the remaining   inequalities provide

for a negative derivative at higher strike prices.

Finally, since the integral under the density cannot exceed one, we have:

where the exponential term reflects the proportionality factor relating the second

derivative to the SPD as in equation (2).

2.3 Testing Monotonicity and Convexity

Suppose one wants to test monotonicity and convexity. The residual regression test

considered by Fan and Li (1996) and Zheng (1996) can be adapted to produce a test

of these properties.  The basic idea underlying the procedure is that one takes the

residuals from the “restricted regression” which imposes the constraints to be tested,

then performs a kernel regression of these residuals on the explanatory variable  x

to see whether there is anything left to be explained.  If so, then the null hypothesis

is rejected.
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(15a)

(15b)

(15c)

Proposition 2: Suppose  is strictly monotone and convex and  is the smooth

constrained estimator obtained by solving (7) subject to monotonicity and convexity

constraints (11) and (12).  Let , .  Let K be a kernel function

(such as the normal, uniform or triangular kernel), and define

then

Let the estimated variance of U  be given by:

Then,   .    Hence    . P 

The test described in Proposition 2, may be performed using the indicated asymptotic

normal approximation. Alternatively, it may be implemented using the bootstrap as

we describe below.  It is consistent against non-monotone or non-convex alternatives.
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(16)

(17)

(18)

2.4 Multiple Observations

As we indicated in the introduction, option price data often consist of multiple

observations at a finite vector of strike prices.  We will need to modify our set-up to

incorporate this characteristic.   Let   be the vector of  k  distinct strike

prices.  (In Figure 1A, there are k=25 distinct strike prices with 20 observations at

each price so that n=500.)  We will assume that the vector  X  is in increasing order.

Let   be the residual variances at each of the distinct strike prices.

Let  B  be the  matrix such that:

We may now rewrite (6) as 

Noting that the representor matrix  is in this case , the analogue to (7)

becomes: 

where  c  is a  vector.  Monotonicity and convexity constraints (11) and (12) can

be added noting that  and  are now also   matrices.

Even if the number of distinct strike prices k does not increase, the call function can

be estimated consistently at .  However, as was pointed out by a referee,
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(19)

(20)

this does not assure that estimates of derivatives are estimated consistently.  Indeed,

no “nonparametric” estimator can consistently estimate derivatives at a point without

an accumulation of observations in the neighborhood of the point, though of course

a sufficient condition for consistency of the first two derivatives is that the function

 is a linear combination of the representors .   

Proposition 3: Suppose one is given data    where  ,

the   are independently distributed with   and    are sampled from a

discrete distribution whose support is    with corresponding probabilities

.  Suppose m  lies strictly inside the ball of functions   and  m  is

strictly monotone decreasing and strictly convex and is a linear combination of the

representors .   Let   be the -dimensional vector of

average transactions prices at the  strike prices.  Let  minimize (18) with the

added constraints (11) and (12) and define ,

  and .  Let   be the 

diagonal matrix of variances of the point mean estimators, i.e., .

Then , ,  and

.  Furthermore,
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(21a)

(21b)

(21c)

Proposition 3 states that as data accumulate at each strike price, the inequalities

implied by the smoothness, monotonicity and convexity constraints eventually

become non-binding, the estimator becomes identical to the point mean estimator and

the call function m is estimated consistently at the observed strike prices. Moreover,

because the true call function is here assumed to be a linear combination of the

representors at the observed strike price, the first and second derivatives are also

estimated consistently. 

Proposition 3  provides for asymptotic scalar and vector confidence regions of the

call function, its first derivative and the SPD.  For example, if one is interested in

confidence intervals at strike price  ,  the asymptotic pivots are:

We note that the   and the  may be estimated using the sample variance and

sample proportion of observations at each distinct strike price.
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2.5 Bootstrap Procedures

Percentile and percentile-t procedures are commonly used for constructing

confidence intervals. The latter are often found to be more accurate when the statistic

is an asymptotic pivot (see Hall (1992) for extensive arguments in support of this

proposition).  On the other hand, percentile methods might be better when the

asymptotic approximation to the distribution of the pivot is poor as a result of small

sample size or slow convergence.  

 Table 1 contains an algorithm for constructing percentile confidence intervals for the

call function and its first two derivatives at .  As there are multiple observations

at each strike price, we can accommodate heteroskedasticity by resampling from the

estimated residuals at each strike price or we can use the wild bootstrap (see Wu

(1986) or Härdle (1990, p.106-8, 247)). The procedures are applicable with the

obvious modifications for a general confidence level ".  Algorithms for constructing

percentile-t confidence intervals may be constructed with modest additional effort.

Table 2 summarizes the bootstrap algorithm for implementing the residual regression

test in Proposition 2.

Table 1: Percentile Confidence Intervals for   ,   and   

1. Calculate   and  by solving (18) subject to (11) and (12).  Calculate the

estimated residuals  .

2.a) Construct a bootstrap data-set    where    and    

is obtained by sampling from  using the wild bootstrap.

 b) Using the bootstrap data-set obtain by solving (18) subject to (11) and (12). 

Calculate and save ,   and .

3. Repeat steps 2 multiple times.  

4. To obtain a 95% point-wise confidence intervals for  ,   and   

obtain .025 and .975 quantiles of the corresponding bootstrap estimates.
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Table 2: Bootstrap Residual Regression Test of Monotonicity and Convexity

1. Calculate   and  by solving (18) subject to (11) and (12).  Save the estimates of

the regression function   and the residuals .

2.  Calculate   , ,  and as in Proposition 2.

3.  Sample using the wild bootstrap from   to obtain     and construct a

bootstrap data set ,  where  .

    (b) Using the bootstrap data set,  estimate the model under the null and calculate

, ,  and  .

    (c)  Repeat Steps (a) and (b) multiple times, each time saving the value of the

standardized test statistic .  Define the bootstrap critical value for a 5 percent

significance level test to be the 95th percentile of the .

4.  Compare , the actual value of the statistic, with the bootstrap critical value.

3.  Numerical Results

3.1 Simulations

In order to solve the various constrained optimization problems described in this

paper, we used GAMS – General Algebraic Modeling System (see  Brooke,

Kendrick, and Meeraus 1992) which is a general package for solving a broad range

of linear, nonlinear, integer, and other optimization problems subject to constraints.

In their simulations, Aït-Sahalia and Duarte (2000) calibrate their model using

characteristics of the S&P options market.  We calibrate our experiments using DAX

options in January 1999 which expire in February of that year. At that time the DAX

index was in the vicinity of 5000 (see Table 4 below).   The 25 distinct strike prices

range over the interval 4400 to 5600 in 50 unit increments.  We set the short term
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interest rate r  to 3.5% , the dividend yield * to 2%,  the time to maturity J to .15 and

the current price (value) of the index S to 5100.    We assume the volatility smile

function is linear in the strike price, i.e., .  Let

 be the forward price.   Define   and

.  Then the “true” call  function is given by

 where  is the standard normal cumulative

distribution function.  At each strike price, the residual standard deviation is set to

10% of the option price.  For a given observation with strike price , the “observed”

option price is given by    where the  are i.i.d. standard normal.

We have already seen the ‘true’ call function, its first derivative and SPD plotted in

Figures 1A,B, and C above. In each of the simulations below we assume there are 20

observations at each of the 25 strike prices for a total of 500 observations.

Figure 2A, B and C illustrate the impact of constraints on estimation.  The

‘unconstrained’ estimator consists of the point means at each strike price.  The

‘smooth’ estimator imposes only the Sobolev constraint as in equations (6) and (7)

with the  degree of smoothness identical to the true Sobolev norm of the underlying

function which is the square root of 1.812.  Monotonicity and convexity constraints

are imposed using equations (11) and (12).  Finally, we impose ‘unimodality’

constraints (13) which require the estimated SPD to be non-decreasing over the

lowest five strike prices and non-increasing over the highest five.  The purpose is to

improve the estimator of the SPD at the boundaries. In each case the “90% point-wise

intervals” contain the central 90% of estimates from 1000 replications. The “90%

uniform intervals” are obtained by taking the central 99.6% of the estimates at each

of the 25 distinct strike prices ( ).

As may be seen in Figure 2A, the improvement in estimation of the call function

resulting from adding constraints is barely discernible.  Figure 2B illustrates the
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impacts on estimation of the first derivative.  The benefits of adding shape constraints

are clearly evident (note that the vertical scale narrows as one moves down the

figure). The most dramatic impact of the constraints is on estimation of the SPD as

may be seen in Figure 2C.  Smoothness alone produces a very broad band of

estimates, so much so that the true SPD looks quite flat.  Adding monotonicity and

convexity improves the estimates substantially, though they are quite imprecise at

low strike prices. This is in part due to the much larger variance there.  The

‘unimodality’ constraints alleviate this problem.   

Table 3 summarizes the impact of imposing constraints on the MSE of the estimators

of the call function, its first derivative and the SPD.   The “unconstrained” estimator

is obtained by taking point means, their first-order and second-order divided

differences.  Consistent with Figure 2, the  average MSE of estimating the SPD falls

dramatically – indeed by three orders of magnitude -- when smoothness,

monotonicity, convexity and unimodality are imposed.  Even supplementing the

smoothness constraint with monotonicity, convexity and unimodality reduces the

MSE of the SPD estimator by an order of magnitude.

Table 3: Average MSE

Model Call Function First
Derivative

SPD

Unconstrained
Smooth
Smooth, Monotone, Convex
Smooth, Monotone, Convex, Unimodal

200.02
25.68
13.70
13.26

.1219

.0052

.0015
.00097

1.49 × 10-4

1.26 × 10-6

3.76 × 10-7

2.00 × 10-7

Next we turn to confidence interval estimation.  With multiple observations at each

strike price and under the assumptions of Proposition 3, asymptotic confidence

intervals can be estimated using (21a,b,c).  For bootstrap intervals we use the
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percentile method outlined in Table 1.  In each case we performed 100 bootstrap

draws.  Figure 3 contrasts asymptotic and bootstrap confidence intervals for our data

generating mechanism. (Recall there are 25 distinct strike prices with 20 observations

at each  one.)  In the top panel which corresponds to the call function, the asymptotic

confidence intervals (dashed lines) are somewhat broader than the bootstrap intervals

(dotted lines).  The middle and lower panels correspond to the first derivative and

SPD estimates.  In these two cases, confidence intervals based on the asymptotic

approximation are extremely poor relative to the bootstrap intervals.

Insert Figure 3

Next we turn to the accuracy of the bootstrap intervals. We produced 500 samples

and in each case obtained 100 bootstrap re-samples. The model which was estimated

was the fully constrained version with smoothness, monotonicity, convexity and

unimodality constraints.  The smoothness constraint was set at the true norm.

(Increasing the bound by 5% or 10% did not materially alter the conclusions below.)

 For the call function, the averages of the observed coverage frequencies across strike

prices were .9795 for 99% nominal confidence intervals, .94 for 95%, .899 for 90%

and .5185 for 50% intervals.  For the first derivative, the averages of the observed

coverage frequencies across strike prices were .9835 for 99% confidence intervals,

.9545 for 95%, .9095 for 90% and .4935 for 50%.  For the second derivative, the

averages were .994 for 99% confidence intervals, .978 for 95%, .953 for 90% and

.575 for 50%.  Thus, percentile bootstrap confidence intervals for the SPD in the fully

constrained model were, at least in these simulations, conservative.

Overall we found that while MSE improves and bootstrap confidence intervals

narrow as one adds constraints to the ‘smooth’ model, bootstrap coverage accuracy

deteriorates moderately.



21

(22)

In addition, we performed simulations in which the Sobolev smoothness parameter

was estimated as the minimum of the cross-validation function. In this setting, the

cross-validation function may be defined as:

where  is obtained by solving (6) or (18) while omitting the i-th observation.  We

found that even with much smaller samples, e.g., with two observations at each of the

25 strike prices, the estimated cross-validation parameter was close to the true value.

In previous work, Li and Wang (1998), considered asymptotic and bootstrap versions

of a residual regression test of a parametric null against a nonparametric alternative.

They found that the actual mean of the asymptotically N(0,1) test statistic to be

below zero and that the distribution was better approximated by the bootstrap.   (For

details, see Li and Wang (1998, page 155, Tables 1-2).)  We performed simulations

of the residual regression test of monotonicity and convexity in Proposition 2,

implementing both the asymptotic and (wild) bootstrap versions of the procedure (see

Table 2).  We too found that the mean of the test statistic was below zero.  For

example, with 25 distinct strike prices and the data generating mechanism described

at the beginning of this section, the mean and variance of the test statistic  of

Proposition 2 were -.27 and .97 respectively. 
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3.2 Applications to DAX Index Option Data

 

In this section we use the tools we have described to analyze data on DAX index

options over the two week period January 4-15, 1999.  Table 4 provides the closing

daily values of the DAX over the period.  During the first week, the index fluctuates

in a range above 5200. In the early part of the second week it begins to decline and

during the last three days of the sample period, the index remains below 5000.

Table 4:  DAX Index, January 4-15, 1999

Mon Jan 4

5290

Tues Jan 5

5263

Wed Jan 6

5443

Thurs Jan 7

5346

Fri Jan 8

5371

Mon Jan 11

5267

Tues Jan 12

5196

Wed Jan 13

4982

Thurs Jan 14

4903

Fri Jan 15

4974

We restricted our estimates to call options which trade at 100 point intervals between

4500 and 5500 and expire at the end of February.  Some trades do indeed take place

outside this range of strike prices, but there are few of them. In each case, the

smoothness parameter was selected using cross-validation. (For example, for January

4, the minimum of the cross-validation function was at L=1.3.)

We begin with data for January 4.  The upper panel of Figure 4 illustrates the

estimated SPD along with 90% point-wise bootstrap confidence intervals.  In

addition we have included uniform confidence bounds for the SPD by taking the

central 99% of the estimates at each of the 11 distinct strike prices ( ).  With

the DAX closing at 5290, one can expect that there is some probability mass beyond

the 5500 level.  Options at 5500 averaged 22Euro suggesting that the market assigned

a positive probability to the DAX exceeding 5500 at time of expiration of the

options.   Indeed our estimated SPD integrates to about .8. 
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The lower panel of Figure 4 depicts the estimated SPD for January 14.  By this time,

the DAX had dropped to about 4900.  The SPD is zero at both end points of our

estimation range and constraint (14) which requires that the integral of the SPD not

exceed one is binding and hence informative to the estimation process.

Insert Figure 4

Figure 5 plots the procession of daily estimated SPD’s over the full period January

4-18, 1999,  (January 9th and 10th were week-end days).  During the first week market

expectations as measured by the median of the SPD were that the DAX would be

substantially over 5000 at time of expiry of the options.  By the end of the second

week, expectations had moved sharply lower, consistent with the DAX index value,

and the SPDs become more highly concentrated, possibly a result of the fact that the

expiry date was drawing closer. 

Insert Figure 5

4. Conclusions

In this paper, we propose a nonparametric least squares estimator for modeling option

prices and state price densities as a function of the strike price.  The estimator readily

incorporates various constraints such as monotonicity and convexity.  We outline a

“residual regression” type test of these properties.  We also propose bootstrap

procedures for constructing confidence intervals around the estimated call function

and its derivatives.

Our methods can be readily extended in at least two ways.  First, time series structure

can be introduced into the residuals without complicating the optimization problem
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in equations (6) and (7).  Second, given appropriate data, the call function can be

estimated as a function of additional explanatory variables, such as the current asset

price and the time to expiry.  The nonparametric least squares problem in (7) remains

as given, but the representor matrix R must now be calculated using representors

which are functions of several variables.  This can be readily accommodated using

a generalization of the Sobolev inner product in (4).  The resulting multivariate

representors are simply products of the univariate representors used in this paper.

The details of these kinds of multivariate nonparametric regression procedures may

be found in Yatchew and Bos (1997). 
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Appendix A: Proof of Propositions

Proof of Proposition 1: By Yatchew and Bos (1997), Theorem 3.1.2.   converges

to  in mean squared error at the indicated rate of convergence. By Theorem 2.3 in

Yatchew and Bos (1997), all functions in the estimating set have derivatives up to

order 3 uniformly bounded in sup-norm.  Combining these two results ensures that

,  and convergence in sup-norm.   #

Proof of Proposition 2:  See Yatchew and Bos (1997) Theorem 5.1.1.  #

Proof of Proposition 3:  first note that  solves the unconstrained version of

optimization problem (18):

Now let   minimize (18) subject to (11) and (12).  Since  is a linear

combination of the representors at ,    and its first

two derivatives consistently estimate their true counterparts.  Hence, in addition, 

  and as sample size increases, the

smoothness constraint becomes non-binding in probability.  Furthermore, because the

first and second derivatives are estimated consistently, strict monotonicity and

convexity implies that these constraints also become non-binding in probability.

Thus .  

Using conventional central limit theorems,   and

equation (20) follows immediately. #
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Appendix B: Calculation of Representors

Our objective is to show how to construct representors.  Let   be a Sobolev space of functions

from  to  with inner product .    We choose the unit

interval to simplify exposition, though the arguments apply directly to arbitrary finite intervals.  We

also note that in the main part of the paper, . The resulting  representors of function evaluation

consist of two functions spliced together, each of which is a linear combination of trigonometric

functions.  The formulae are derived using elementary methods, in particular integration by parts and

the solution of a linear differential equation.  For additional details, see Yatchew and Bos (1997).

We construct a function    such that   for all  .  This

representor of function evaluation  will be of the form:

where La and Ra are both analytic functions.  For  of this form to be an element of ,  it

suffices that   Now write:

We ask that this be true for all   but by density it suffices to demonstrate the result for

all , the set of infinitely differentiable functions on the unit interval.  Hence assume that

.  Thus, integrating by parts, we have:
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letting i = k - j - 1 in the first sum, this may be written as

Similarly,     may be written as



33

Thus we require both  La and Ra  to be solutions of the constant coefficient differential equation

Boundary conditions are obtained by setting the coefficients of   f (i)(a), 1# i # d - 1,  f (i)(0),    0 # i

# d - 1  and   f(i)(1),  0 # i # d - 1   to zero and the coefficient of  f(a) to 1.  That is, 

Furthermore, for , we require,    This results in  (d-

1)+d+d+1+d = 4d   boundary conditions.  The general solution of the above differential equation

is obtained by finding the roots of its characteristic polynomial . This is

easily done by noting that    and thus the characteristic roots

are given by   , ,   where
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The general solution is given by the linear combination    where the

sum is taken over 2d linearly independent real solutions of the differential equation above. 

Let   and    where the   uk, 1 # k # 2d  are 2d  basis

functions of the solution space of the differential equation.  To show that ra exists and is unique, we

need only show that the boundary conditions uniquely determine the ak and bk.  Since we have 4k

unknowns (2d ak's and 2d bk's) and 4d boundary conditions, the boundary conditions constitute a

square 4d×4d linear system in the ak's and bk's.  Thus it suffices to show that the only solution of the

associated homogenous system is the zero vector.  Now suppose that  and  are the

functions corresponding to the solutions of the homogeneous system (i.e. with the coefficient of f(a)

in the boundary conditions set to 0 instead of 1).  Then, by exactly the same integration by parts, it

follows that    for all .   Hence ,   and  are all identically

zero and thus by the linear independence of the uk(x), so are the aa and bk. 
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Figure 1A: Data and Estimated Call Function
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Figure 1C: Estimated SPDs
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Figure 2B: Effects of Constraints on First Derivative Estimates
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Figure 2C: Effects of Constraints on SPD Estimates
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Figure 4: SPDs Using DAX Index Data
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