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1 Introduction to Differencing

1.1 A Simple Idea

Consider the nonparametric regression model

y = f (x) + ε (1.1.1)

for which little is assumed about the function f except that it is smooth. In its
simplest incarnation, the residuals are independently and identically distributed
with mean zero and constant variance σ 2

ε , and the x’s are generated by a process
that ensures they will eventually be dense in the domain. Closeness of the
x’s combined with smoothness of f provides a basis for estimation of the
regression function. By averaging or smoothing observations on y for which
the corresponding x’s are close to a given point, say xo, one obtains a reasonable
estimate of the regression effect f (xo).

This premise – that x’s that are close will have corresponding values of the
regression function that are close – may also be used to remove the regression
effect. It is this removal or differencing that provides a simple exploratory tool.
To illustrate the idea we present four applications:

1. Estimation of the residual variance σ 2
ε ,

2. Estimation and inference in the partial linear model y = zβ + f (x) + ε,
3. A specification test on the regression function f , and
4. A test of equality of nonparametric regression functions.1

1 The first-order differencing estimator of the residual variance in a nonparametric setting ap-
pears in Rice (1984). Although unaware of his result at the time, I presented the identical
estimator at a conference held at the IC2 Institute at the University of Texas at Austin in May
1984. Differencing subsequently appeared in a series of nonparametric and semiparametric set-
tings, including Powell (1987), Yatchew (1988), Hall, Kay, and Titterington (1990), Yatchew
(1997, 1998, 1999, 2000), Lewbel (2000), Fan and Huang (2001), and Horowitz and Spokoiny
(2001).

1
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2 Semiparametric Regression for the Applied Econometrician

1.2 Estimation of the Residual Variance

Suppose one has data (y1, x1), . . . , (yn, xn) on the pure nonparametric regres-
sion model (1.1.1), where x is a bounded scalar lying, say, in the unit interval,
ε is i.i.d. with E(ε | x) = 0, Var (ε | x) = σ 2

ε , and all that is known about f is that
its first derivative is bounded. Most important, the data have been rearranged
so that x1 ≤ · · · ≤ xn. Consider the following estimator of σ 2

ε :

s2
diff = 1

2n

n∑
i=2

(yi − yi−1)
2. (1.2.1)

The estimator is consistent because, as the x’s become close, differencing tends
to remove the nonparametric effect yi − yi−1 = f (xi )− f (xi−1)+ εi − εi−1

∼=
εi − εi−1, so that2

s2
diff

∼= 1

2n

n∑
i=2

(εi − εi−1)
2 ∼= 1

n

n∑
i=1

ε2
i − 1

n

n∑
i=2

εiεi−1. (1.2.2)

An obvious advantage of s2
diff is that no initial estimate of the regression

function f needs to be calculated. Indeed, no consistent estimate of f is im-
plicit in (1.2.1). Nevertheless, the terms in s2

diff that involve f converge to zero
sufficiently quickly so that the asymptotic distribution of the estimator can be
derived directly from the approximation in (1.2.2). In particular,

n1/2
(
s2

diff − σ 2
ε

) D→ N (0, E(ε4)). (1.2.3)

Moreover, derivation of this result is facilitated by the assumption that the εi

are independent so that reordering of the data does not affect the distribution of
the right-hand side in (1.2.2).

1.3 The Partial Linear Model

Consider now the partial linear model y = zβ + f (x)+ ε, where for simplicity
all variables are assumed to be scalars. We assume that E(ε | z, x) = 0 and
that Var(ε | z, x) = σ 2

ε .3 As before, the x’s have bounded support, say the unit
interval, and have been rearranged so that x1 ≤ · · · ≤ xn. Suppose that the con-
ditional mean of z is a smooth function of x , say E(z | x) = g(x) where g′ is

2 To see why this approximation works, suppose that the xi are equally spaced on the unit
interval and that f ′ ≤ L . By the mean value theorem, for some x∗

i ∈ [xi−1, xi ] we have
f (xi ) − f (xi−1) = f ′(x∗

i )(xi − xi−1) ≤ L/n. Thus, yi − yi−1 = εi − εi−1 + O(1/n).
For detailed development of the argument, see Exercise 1. If the xi have a density function
bounded away from zero on the support, then xi − xi−1 ∼= OP (1/n) and yi − yi−1 ∼=
εi − εi−1 + OP (1/n). See Appendix B, Lemma B.2, for a related result.

3 For extensions to the heteroskedastic and autocorrelated cases, see Sections 3.6 and 4.5.
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bounded and Var(z | x) = σ 2
u . Then we may rewrite z = g(x)+u. Differencing

yields

yi − yi−1 = (zi − zi−1)β + ( f (xi ) − f (xi−1)) + εi − εi−1

= (g(xi ) − g(xi−1))β + (ui − ui−1)β

+ ( f (xi ) − f (xi−1)) + εi − εi−1

∼= (ui − ui−1)β + εi − εi−1. (1.3.1)

Thus, the direct effect f (x) of the nonparametric variable x and the indirect
effect g(x) that occurs through z are removed. Suppose we apply the OLS
estimator of β to the differenced data, that is,

β̂diff =
∑

(yi − yi−1)(zi − zi−1)∑
(zi − zi−1)2

. (1.3.2)

Then, substituting the approximations zi − zi−1
∼= ui − ui−1 and yi − yi−1

∼=
(ui − ui−1)β + εi − εi−1 into (1.3.2) and rearranging, we have

n1/2(β̂diff − β) ∼= n1/2 1
n

∑
(εi − εi−1)(ui − ui−1)

1
n

∑
(ui − ui−1)2

. (1.3.3)

The denominator converges to 2 σ 2
u , and the numerator has mean zero and

variance 6 σ 2
ε σ 2

u . Thus, the ratio has mean zero and variance 6 σ 2
ε σ 2

u /(2σ 2
u )2 =

1.5 σ 2
ε /σ 2

u . Furthermore, the ratio may be shown to be approximately normal
(using a finitely dependent central limit theorem). Thus, we have

n1/2(β̂diff − β)
D→ N

(
0,

1.5 σ 2
ε

σ 2
u

)
. (1.3.4)

For the most efficient estimator, the corresponding variance in (1.3.4) would be
σ 2

ε /σ 2
u so the proposed estimator based on first differences has relative efficiency

2/3 = 1/1.5. In Chapters 3 and 4 we will produce efficient estimators.
Now, in order to use (1.3.4) to perform inference, we will need consistent

estimators of σ 2
ε and σ 2

u . These may be obtained using

s2
ε = 1

2n

n∑
i=2

((yi − yi−1) − (zi − zi−1)β̂diff)
2

∼= 1

2n

n∑
i=2

(εi − εi−1)
2 P→ σ 2

ε (1.3.5)

and

s2
u = 1

2n

n∑
i=2

(zi − zi−1)
2 ∼= 1

2n

n∑
i=2

(ui − ui−1)
2 P→ σ 2

u . (1.3.6)
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4 Semiparametric Regression for the Applied Econometrician

The preceding procedure generalizes straightforwardly to models with multiple
parametric explanatory variables.

1.4 Specification Test

Suppose, for example, one wants to test the null hypothesis that f is a linear
function. Let s2

res be the usual estimate of the residual variance obtained from
a linear regression of y on x . If the linear model is correct, then s2

res will be
approximately equal to the average of the true squared residuals:

s2
res = 1

n

n∑
i=1

(yi − γ̂1 − γ̂2xi )
2 ∼= 1

n

n∑
i=1

ε2
i . (1.4.1)

If the linear specification is incorrect, then s2
res will overestimate the residual

variance while s2
diff in (1.2.1) will remain a consistent estimator, thus forming

the basis of a test. Consider the test statistic

V = n1/2
(
s2

res − s2
diff

)
s2

diff

. (1.4.2)

Equations (1.2.2) and (1.4.1) imply that the numerator of V is approximately
equal to

n1/2
1

n

∑
εi εi−1

D→ N
(
0, σ 4

ε

)
. (1.4.3)

Since s2
diff, the denominator of V , is a consistent estimator of σ 2

ε , V is asymp-
totically N (0,1) under H0. (Note that this is a one-sided test, and one rejects for
large values of the statistic.)

As we will see later, this test procedure may be used to test a variety of
null hypotheses such as general parametric and semiparametric specifications,
monotonicity, concavity, additive separability, and other constraints. One simply
inserts the restricted estimator of the variance in (1.4.2). We refer to test statistics
that compare restricted and unrestricted estimates of the residual variance as
“goodness-of-fit” tests.

1.5 Test of Equality of Regression Functions

Suppose we are given data (yA1, xA1), . . . , (yAn, xAn) and (yB1, xB1), . . . ,

(yBn, xBn) from two possibly different regression models A and B. Assume
x is a scalar and that each data set has been reordered so that the x’s are in
increasing order. The basic models are

yAi = f A(xAi ) + εAi
(1.5.1)

yBi = fB(xBi ) + εBi
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Introduction to Differencing 5

where given the x’s, the ε’s have mean 0, variance σ 2
ε , and are independent

within and between populations; f A and fB have first derivatives bounded.
Using (1.2.1), define consistent “within” differencing estimators of the variance

s2
A = 1

2n

n∑
i

(yAi − yAi−1)
2

(1.5.2)

s2
B = 1

2n

n∑
i

(yBi − yBi−1)
2.

As we will do frequently, we have dropped the subscript “diff ”. Now pool
all the data and reorder so that the pooled x’s are in increasing order:
(y∗

1 , x∗
1 ), . . . . . . , (y∗

2n, x∗
2n). (Note that the pooled data have only one subscript.)

Applying the differencing estimator once again, we have

s2
p = 1

4n

2n∑
j

(
y∗

j − y∗
j−1

)2
. (1.5.3)

The basic idea behind the test procedure is to compare the pooled estimator
with the average of the within estimators. If f A = fB , then the within and
pooled estimators are consistent and should yield similar estimates. If f A = fB,

then the within estimators remain consistent, whereas the pooled estimator
overestimates the residual variance, as may be seen in Figure 1.1.

To formalize this idea, define the test statistic

ϒ ≡ (2n)
1/2
(
s2

p − 1/2

(
s2

A + s2
B

))
. (1.5.4)

If f A = fB , then differencing removes the regression effect sufficiently
quickly in both the within and the pooled estimators so that

ϒ ≡ (2n)
1/2
(
s2

p − 1/2

(
s2

A + s2
B

))
∼= (2n)

1/2

4n

(
2n∑
j

(
ε∗

j − ε∗
j−1

)2 −
n∑
i

(εAi − εAi−1)
2 −

n∑
i

(εBi − εBi−1)
2

)

∼= (2n)
1/2

2n

(
2n∑
j

ε∗2
j − ε∗

j ε
∗
j−1 −

n∑
i

ε2
Ai − εAiεAi−1 −

n∑
i

ε2
Bi − εBiεBi−1

)

∼= 1

(2n)1/2

(
n∑
i

εAiεAi−1 +
n∑
i

εBiεBi−1

)
− 1

(2n)1/2

(
2n∑
j

ε∗
j ε

∗
j−1

)
.

(1.5.5)

Consider the two terms in the last line. In large samples, each is approx-
imately N (0, σ 4

ε ). If observations that are consecutive in the individual data
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A

B

Within estimators of residual variance

A

B

Pooled estimator of residual variance

Figure 1.1. Testing equality of regression functions.
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sets tend to be consecutive after pooling and reordering, then the covariance
between the two terms will be large. In particular, the covariance is approxi-
mately σ 4

ε (1−π), where π equals the probability that consecutive observations
in the pooled reordered data set come from different populations.

It follows that under Ho : f A = fB ,

ϒ
D→ N

(
0, 2πσ 4

ε

)
. (1.5.6)

For example, if reordering the pooled data is equivalent to stacking data sets
A and B – because the two sets of x’s, xA and xB , do not intersect – then π ∼= 0
and indeed the statistic ϒ becomes degenerate. This is not surprising, since
observing nonparametric functions over different domains cannot provide a
basis for testing whether they are the same. If the pooled data involve a simple
interleaving of data sets A and B, then π ∼= 1 and ϒ → N (0, 2σ 4

ε ). If xA and
xB are independent of each other but have the same distribution, then for the
pooled reordered data the probability that consecutive observations come from
different populations is 1/2 and ϒ → N (0, σ 4

ε ).4 To implement the test, one may
obtain a consistent estimate π̂ by taking the proportion of observations in the
pooled reordered data that are preceded by an observation from a different
population.

1.6 Empirical Application: Scale Economies in Electricity Distribution5

To illustrate these ideas, consider a simple variant of the Cobb–Douglas model
for the costs of distributing electricity

tc = f (cust) + β1wage + β2 pcap

+ β3PUC + β4kwh + β5life + β6lf + β7 kmwire + ε (1.6.1)

where tc is the log of total cost per customer, cust is the log of the number of
customers, wage is the log wage rate, pcap is the log price of capital, PUC is a
dummy variable for public utility commissions that deliver additional services
and therefore may benefit from economies of scope, life is the log of the re-
maining life of distribution assets, lf is the log of the load factor (this measures
capacity utilization relative to peak usage), and kmwire is the log of kilometers
of distribution wire per customer. The data consist of 81 municipal distributors
in Ontario, Canada, during 1993. (For more details, see Yatchew, 2000.)

4 For example, distribute n men and n women randomly along a stretch of beach facing the sunset.
Then, for any individual, the probability that the person to the left is of the opposite sex is 1/2.
More generally, if xA and xB are independent of each other and have different distributions,
then π depends on the relative density of observations from each of the two populations.

5 Variable definitions for empirical examples are contained in Appendix E.
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Because the data have been reordered so that the nonparametric variable cust
is in increasing order, first differencing (1.6.1) tends to remove the nonpara-
metric effect f . We also divide by

√
2 so that the residuals in the differenced

Equation (1.6.2) have the same variance as those in (1.6.1). Thus, we have

[tci − tci−1]/
√

2
∼= β1[wagei − wagei−1]/

√
2 + β2[pcapi − pcapi−1]/

√
2

+ β3[PUCi − PUCi−1]/
√

2 + β4[kwhi − kwhi−1]/
√

2

+ β5[lifei − lifei−1]/
√

2 + β6[lfi − lfi−1]/
√

2

+ β7[kmwirei − kmwirei−1]/
√

2 + [εi − εi−1]/
√

2. (1.6.2)

Figure 1.2 summarizes our estimates of the parametric effects β using the
differenced equation. It also contains estimates of a pure parametric specifi-
cation in which the scale effect f is modeled with a quadratic. Applying the
specification test (1.4.2), where s2

diff is replaced with (1.3.5), yields a value of
1.50, indicating that the quadratic model may be adequate.

Thus far our results suggest that by differencing we can perform inference on
β as if there were no nonparametric component f in the model to begin with.
But, having estimatedβ, we can then proceed to apply a variety of nonparametric
techniques to analyze f as if β were known. Such a modular approach simplifies
implementation because it permits the use of existing software designed for pure
nonparametric models.

More precisely, suppose we assemble the ordered pairs (yi −zi β̂diff, xi ); then,
we have

yi − zi β̂diff = zi (β − β̂diff) + f (xi ) + εi
∼= f (xi ) + εi . (1.6.3)

If we apply conventional smoothing methods to these ordered pairs such
as kernel estimation (see Section 3.2), then consistency, optimal rate of con-
vergence results, and the construction of confidence intervals for f remain
valid because β̂diff converges sufficiently quickly to β that the approximation
in the last part of (1.6.3) leaves asymptotic arguments unaffected. (This is in-
deed why we could apply the specification test after removing the estimated
parametric effect.) Thus, in Figure 1.2 we have also plotted a nonparametric
(kernel) estimate of f that can be compared with the quadratic estimate. In sub-
sequent sections, we will elaborate this example further and provide additional
ones.

1.7 Why Differencing?

An important advantage of differencing procedures is their simplicity. Con-
sider once again the partial linear model y = zβ + f (x) + ε. Conventional
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Variable Quadratic model Partial linear modela

Coef SE Coef SE
cust −0.833 0.175 – –
cust2 0.040 0.009 – –

wage 0.833 0.325 0.448 0.367
pcap 0.562 0.075 0.459 0.076

PUC −0.071 0.039 −0.086 0.043
kwh −0.017 0.089 −0.011 0.087
life −0.603 0.119 −0.506 0.131
lf 1.244 0.434 1.252 0.457

kmwire 0.445 0.086 0.352 0.094

s2
ε .021 .018

R2 .618 .675
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a Test of quadratic versus nonparametric specification of scale effect: V = n1/2(s2
res − s2

diff)/
s2
diff = 811/2(.021 − .018)/.018 = 1.5, where V is N (0,1), Section 1.4.

Figure 1.2. Partial linear model – Log-linear cost function: Scale economies in elec-
tricity distribution.
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estimators, such as the one proposed by Robinson (1988) (see Section 3.6),
require one to estimate E(y | x) and E(z | x) using nonparametric regressions.
The estimated residuals from each of these regressions (hence the term “double
residual method”) are then used to estimate the parametric regression

y − E(y | x) = (z − E(z | x))β + ε. (1.7.1)

If z is a vector, then a separate nonparametric regression is run for each com-
ponent of z, where the independent variable is the nonparametric variable x . In
contrast, differencing eliminates these first-stage regressions so that estimation
of β can be performed – regardless of its dimension – even if nonparametric
regression procedures are not available within the software being used. Simi-
larly, tests of parametric specifications against nonparametric alternatives and
tests of equality of regression functions across two or more (sub-) samples can
be carried out without performing a nonparametric regression.

As should be evident from the empirical example of the last section, dif-
ferencing may easily be combined with other procedures. In that example,
we used differencing to estimate the parametric component of a partial linear
model. We then removed the estimated parametric effect and applied conven-
tional nonparametric procedures to analyze the nonparametric component. Such
modular analysis does require theoretical justification, which we will provide
in Section 4.12.

As we have seen, the partial linear model permits a simple semiparametric
generalization of the Cobb–Douglas model. Translog and other linear-in-
parameters models may be generalized similarly. If we allow the parametric por-
tion of the model to be nonlinear – so that we have a partial parametric model –
then we may also obtain simple semiparametric generalizations of models such
as the constant elasticity of substitution (CES) cost function. These, too, may
be estimated straightforwardly using differencing (see Section 4.7). The key
requirement is that the parametric and nonparametric portions of the model be
additively separable.

Other procedures commonly used by the econometrician may be imported
into the differencing setting with relative ease. If some of the parametric vari-
ables are potentially correlated with the residuals, instrumental variable tech-
niques can be applied, with suitable modification, as can the Hausman endo-
geneity test (see Section 4.8). If the residuals are potentially not homoskedastic,
then well-known techniques such as White’s heteroskedasticity-consistent stan-
dard errors can be adapted (see Section 4.5). The reader will no doubt find other
procedures that can be readily transplanted.

Earlier we have pointed out that the first-order differencing estimator of β

in the partial linear model is inefficient when compared with the most efficient
estimator (see Section 1.3). The same is true for the first-order differencing esti-
mator of the residual variance (see Section 1.2). This problem can be corrected
using higher-order differencing, as demonstrated in Chapter 4.


