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ABSTRACT. We suggest a new method, with very wide applicability, for testing
semiparametric hypotheses about functions such as regression means and prob-
ability densities. The technique is based on characterising hypotheses in terms of
functionals which can be estimated root-n consistently, and constructing test statis-
tics in terms of estimators of the functionals. Since the tests are semiparametric
it is appropriate to assess them on the basis of their ability to detect departures
of size n=/2 from the null hypothesis. We show that they do indeed have this
property. Unlike tests constructed in a nonparametric setting their power does not
depend critically on choice of a bandwidth, and in particular, smoothing parameter
selection is not an issue that has to be addressed by users of the tests. Bootstrap
methods are suggested for calibrating the tests. In a regression setting, applica-
tions include tests of specification (such as partial linear and index models) against
nonparametric or semiparametric alternatives, and tests of monotonicity, concavity,
separability, equality of regression functions and base-independence of equivalence
scales. In a density setting, they include tests of radial symmetry and stochastic
dominance.
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1. INTRODUCTION

Rapidly increasing interest is being shown in hypothesis testing for infinite
parameter problems, where the quantity under test is a function. The function
is generally a regression mean or a probability density, although other contexts
arise, including hazard rate functions. Sometimes the null hypothesis under test is
qualitative in nature, for instance the assumption that the function is monotone or
convex, or that one distribution stochastically dominates another, but in other cases
it is more explicit. Examples in the latter context include index models, where it is
argued that the true function might be of lower dimension than the data. Related
hypotheses include those where it is supposed that the function is separable in some
sense, for example as an additive model in regression, or as a multiplicative model

in the case of a probability density.

Because such tests directly involve functions which, under at least the alter-
native hypothesis, are not known parametrically, then it is common to base them
on relatively conventional nonparametric curve estimators, for example those con-
structed using kernel methods. While this approach can have advantages from some
viewpoints, which we shall note two paragraphs below, in pragmatic terms it has two
distinct disadvantages: first, it requires choice of a smoothing parameter, generally
a bandwidth h; and secondly, when viewed as a test of semiparametric hypotheses,
its power is unduly susceptible to the choice of h, often being particularly low if A

is selected in a conventional manner.

In particular, if power is assessed in terms of ability to detect local semipara-
metric alternative hypotheses, then the nearest departures from the null hypothesis,
Hy, that are detectable are generally n=1/2h~¢ away, where n denotes sample size
and ¢ > 0 depends on the context of the test. See, for example, Fan and Li (1996),
Baltagi, Hidalgo and Li(1996) and Lavergne, and Vuong (2000), where ¢ = d/4 (and
d denotes dimension); and Anderson, Hall and Titterington (1998), where ¢ = d/2.
Since power obviously deteriorates with decreasing h, then, interpreting these quan-
tities from a semiparametric viewpoint, it is advantageous to select h fixed. That
choice, however, produces a test with asymptotically incorrect level, since the test
is almost invariably calibrated on the basis of an argument (either asymptotic or

bootstrap-based) which is invalid if the bandwidth does not converge to 0.
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The alternative hypotheses that we consider are of the type g = go +n "2 g1,
where g is a fixed function satisfying Hp, g1 is another fixed function, and n=%/2 g,
denotes a perturbation which, when added to gg, takes the latter out of the class Hy.
In assessing the performance of tests in a nonparametric, rather than semiparamet-
ric, setting it is appropriate to take the alternative to be g = go + 9,, gn, rather than
go+n~1/2 g1, where g, is a function chosen from a large class and whose complexity
may increase (usually through increasing frequency) with n. Again §,, converges to

—1/2

zero as n — oo, but this time more slowly than n . See Horowitz and Spokoiny

(2001) for an example of such tests in econometrics.

An advantage of the nonparametric approach is its ability to capture departures
g = go + 0n gn from Hy, uniformly in a large class of g,,’s. Its disadvantage, in a
semiparametric rather than a nonparametric sense, is that it cannot detect relatively
small departures of simpler type. There is no “free lunch”; the nonparametric test
has “spent” a significant amount of sample information in order to develop great
sensitivity to relatively complex, but more distant, departures from H,, and that
information cannot be effectively re-used to detect less sophisticated, but closer,

departures.

In practice it can be quite difficult, particularly from the viewpoint of calibra-
tion, to identify the type of local departure from Hy which is most plausible, and
to construct a test accordingly. Doing so requires, in effect, combining a very large
number of tests based respectively on a virtual continuum of different bandwidths.
Instead, the test is usually constructed pragmatically from nonparametric curve
estimators, using one bandwidth. This implicitly determines both g, and §,,, the
latter as a function of the bandwidth, and that decision is generally made with
only minor reference to the data. The method suggested by Horowitz and Spokoiny

(2001) is an exception.

These difficulties constitute a major motivation for the semiparametric tests
suggested in this paper. The tests address a very broad spectrum of hypotheses,
and are able to detect semiparametric departures of as little as n~1/2 from the
null. None of the tests is based on curve or function estimation, and in particular
none involves bandwidth choice, except at the calibration step (where bandwidth

selection has negligible impact on power). To the contrary, the tests are founded on



direct and explicit estimation of integrals of the unknown function over regions. Our
estimators are computed directly from the data, rather than via smoothing methods.
Reflecting this approach, the basis of our method is a new way of representing each
member of a very large class of hypotheses about functions, in terms of properties
of functionals of those functions. All the functionals are readily estimable root-n

consistently.

A second motivation is the desirability of unified procedures for testing a variety
of hypotheses in semiparametric settings. Apart from any conceptual and aesthetic
appeal, one of the benefits of unification is that it facilitates testing of combinations
of functional properties. For example, in the analysis of option pricing data, one
might want to test whether the call option price is a monotone decreasing convex
function of the strike price. Or, in examining demand data, one might want to

simultaneously test homotheticity and consistency with the optimisation hypothesis.

A third motivation stems from the observation that economic models typically
involve multiple explanatory variables. Even if the null is a highly structured semi-
parametric model, one cannot expect a great deal of power if the alternative is a
pure nonparametric model of high dimension; see the third paragraph above. Thus,
one would also like to test against plausible classes of semiparametric alternatives,

which our procedure accommodates easily.

This is not to say that other testing methodologies cannot handle a broad range
of hypotheses. Consider, for example, the residual regression approach. There, the
idea is to estimate a model which incorporates the restrictions of the null, and then
perform an “unrestricted” nonparametric regression of the estimated residuals on
all explanatory variables to see whether anything remains to be explained. The idea
has been used to construct tests of parametric or semiparametric (partial linear or
index) specifications against nonparametric alternatives (Fan and Li, 1996; Zheng,
1996) and tests of equality of nonparametric regression functions in a panel data
setting (Baltagi, Hidalgo and Li, 1996). The approach can readily be extended to
test properties such as monotonicity, convexity or separability, and it easily accom-
modates common features of economic data such as heteroscedasticity. However,
in addition to its dependence on bandwidth selection and lower power, it appears

difficult to extend the procedure to settings where the alternative is semiparametric.



For the sake of brevity and simplicity, when developing our tests we shall focus
on one-sample problems, where the hypotheses under test relate to the regression
mean or density for the population from which a particular dataset is drawn. Multi-
sample or multi-equation problems may be treated similarly, as we shall show in
section 6 where we shall treat tests of stochastic dominance and equality of non-
parametric regressions. Our methods also give tests based on integral functions,
sufficiently powerful to distinguish between the null hypothesis and an alternative

distant n—1/2

away. Indeed, early precursors of our method are the two-sample
tests proposed by Hall and Hart (1990) and King, Hart and Wehrly (1991). See
also Hall, Huber and Speckman (1997), Koul and Schick (1997), Kulasekera and
Wang (1997), Fan and Lin (1998) and Yatchew (1999). Reference to the tests pro-
posed by Cramér and von Mises, and by Kolmogorov and Smirnov (see e.g. Kendall

and Stuart, 1979, pp. 475-477), should also be made at this point.

Section 2 introduces our approach to characterising hypotheses in terms of func-
tionals that can be estimated root-n consistently. There we quickly run through
ten examples, to give a flavour of the wide range of problems to which our method-
ology can be applied. Section 3 shows how to construct test statistics based on the
proposals in section 2, using the ten examples for illustration. Section 4 outlines
theoretical properties of the test statistic and suggests two methods for calibrating
the test. The most attractive is arguably the bootstrap-based one; the other is
founded on asymptotic properties of the test statistic under the null hypothesis.
Section 5 describes power of the test against local alternatives, and gives simple,
necessary and sufficient conditions for the test to be capable of detecting alterna-
tives that are distant n~1/2 from the null. The examples from section 2 are used
to show that these conditions hold very broadly. Numerical work, illustrating the
performance of our approach, is summarised in section 6. Finally, section 7 outlines

proofs of results in section 5.

Reviews of testing methods include those of Hart (1997), Yatchew (1998) and
Pagan and Ullah (1999). In the case of testing a parametric null hypothesis against
a nonparametric or semiparametric alternative (Examples 1, 2 and 8 in section 2),
earlier contributors include Bierens (1982, 1990), Eubank and Spiegelman (1990),
Eubank and Hart (1992), Wooldridge (1992), Azzalini and Bowman (1993), Hong
and White (1995), Bierens and Ploeberger (1997), Li and Wang (1998), Dette (1999)
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and Ellison and Ellison (2000). Work on testing for positivity, monotonicity and
convexity (Examples 3 and 4 in section 2) includes that of Schlee (1982), Yatchew
(1992), Yatchew and Bos (1997), Bowman, Jones and Gijbels (1998), Gijbels, Hall,
Jones and Koch (2000) and Hall and Heckman (2000). Tests for additive separability
(Example 5) have been suggested by Barry (1993), Eubank, Hart, Simpson and
Stefanski (1995) and Gozalo and Linton (2001). Fan and Li (1996) have proposed
tests for semiparametric versus nonparametric alternatives (Examples 7 and 9).
Horowitz and Hérdle (1994) gave a test for a parametric or semiparametric null

versus a semiparametric alternative (Example 10).

Performance criteria for nonparametric (as distinct from semiparametric) ap-
proaches to hypothesis testing have been discussed by, for example, Ingster (1982,
1993a,b), Hérdle and Mammen (1993), Inglot, Kallenberg and Ledwina (1994,
2000), Spokoiny (1996) and Lepski and Spokoiny (1999). Horowitz and Spokoiny
(2001) use the minimax approach introduced by Ingster as the basis for their ap-

proach.

2. CHARACTERISING A HYPOTHESIS BY A FUNCTIONAL

2.1. Nature of the characterisation. Let G denote a class of bounded functions g
from one Euclidean space to another, equipped with the supremum metric. Write
Go for a particular subset of G that is of special interest. Given data from a model
that features g, we wish to test a null hypothesis Hy of the form g € Gp, against
the alternative hypothesis H; that g € G\Gy.

If g was a regression mean then the data would typically be pairs of explanatory

and response variables (X;,Y;), generated by the model:

Yi=9(X;)+e, 1<i<n, (2.1)

where the ¢;’s were independent errors with zero mean. The distribution of the
pairs (X, ¢;) would generally not depend on choice of g € G. If g was a probability
density then the data would usually be in the form of a random sample from the

corresponding distribution.

Let A and © be sets, write P for the space of functions ¢ from A x © to the

real line, and let 9 (-, - | g) denote a particular element of P, indexed by g € G. We



want the functionals 9 (-, -|g) to characterise Gy, in the sense that
g € Gp if and only if, for some 0 € O, 1)(\,0|g) =0 for all A € A. (2.2)

Generally we choose A to denote a region, or the finite vector of mathematical
parameters that define a region, over which either g or some functional of it is
integrated. The quantity 6 represents a vector of statistical parameters. Usually
the latter are the parameters of a conventional model, or of the parametric part
of a semiparametric specification. In many instances, however, the role of 0 is

degenerate, and there (2.2) is equivalent to:

g € Gp if and only if ¥(A|g) =0 for all A € A. (2.3)

In a great many settings it is possible to choose the functionals (-, -|g) such
that (a) the characterisation (2.2) is achieved, and (b) each value of ¥(\,0|g) is
estimable root-n consistently from data, in either the regression or the density
estimation context. Property (b) is the key to constructing a powerful test based
on the characterisation. Section 3 will show how to ensure it holds in a wide
range of problems. In the remainder of the present section we shall outline ten
examples indicating the breadth of cases where (a) holds. Many more are possible,
particularly in the contexts of tests involving probability densities and multi-sample

or multi-equation problems.

2.2. Examples. In the first six examples © is degenerate. For simplicity, examples
1-4 and 8 are discussed in univariate settings, and there we take G to be a class
of bounded and continuous functions from the interval Z = [0,1] to the real line.
Nevertheless, each of these cases has a multivariate analogue which can be treated

using our methods. Examples 5, 7, 9 and 10 are intrinsically multivariate.

In each example we give the set Gy, which explicitly defines the null hypothe-
sis Hy; see the first paragraph of section 2.1. Then we show that either (2.3), or its
more general form (2.2), holds. The set G of all possible candidates for g is usually
the class of all functions that satisfy a smoothness condition, such as the existence
of two bounded derivatives, and, in the case of hypothesis tests about densities,
are probability density functions. However, in some instances G is restricted. Our

methodology copes well with this case, as we show in example 10.



In each example the definition of i that we give is chosen for its simplicity.
There are many generalisations, perhaps the simplest of which is to include a weight
function in the respective integral. This will alter properties of the test, and per-
haps slightly improve power against some alternatives. However, optimal choice of
the weight will depend on the particular alternative, and one usually has minimal

information about that aspect of the problem.

Example 1: Equality to a specific function. Put Gy = {go}, a singleton; the case
go = 0 is of particular interest. Take A to be the set of intervals A = (A1, A\2) with
0 < A1 < Az <1, and put ¥ = ¢ where

r(Mg) = A (9— g0). (2.4)

Then (2.3) holds. In a more general, multivariate setting, where each g might be
a function from a subset R of d-variate Euclidean space to the real line, we could
instead take A to be the set of all d-variate spheres, rectangles or similar scalable

sets contained in R, and again define 1)(\|g) as at (2.4).

Example 2: Linearity, and functions of specific type. Let Gy be the set of all linear
functions in G. Take ¢g, ¢1,... to be any complete orthogonal sequence on the
space of square-integrable functions from Z to the real line, in which ¢y and ¢,
are identically constant, and linear, respectively. (For example, {¢;} might be the
Jacobi sequence.) Let A = {2,3,...}, and put ¢(A|g) = [; g #». Once again, (2.3)
holds. See Example 8 for an alternative approach to testing this particular null

hypothesis.

The example above has obvious extension to the problem of testing the hy-

pothesis that g is a polynomial of specific degree, and to related settings.

Example 3: Monotonicity, convexity etc. Let Gy be the set of all nondecreasing
functions in G, let A be the set of all triples (A1, A2, A3) where each component lies

inZ and Ao — Ay = A3 — A2 > 0, and put ¢ = ¢ where

Ys(Ag) = min ( /A :?’g— /A Ag o) . (2.5)

Then (2.3) holds. The case where Gy is the set of all convex functions may be treated
similarly, as too may the case where the constraint is that the jth derivative ¢\ is

everywhere of a given sign for a particular j > 3.
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Example 4: Exceeding a given function. This is related to Examples 1 and 3, and
to testing for stochastic dominance; see section 6 below. Write Gy for the set of all

functions that never exceed a given function gy:
Go={9€G:9(x) <golz) forall z € T}.

Here A may be taken to have the definition in Example 1, and ¢ = max(t)1,0)
where 1)1 is given by (2.4). Further examples, where Gy is the set of all functions
for which g0 — g(()j ) > 0 on Z, are similar. In particular, when 5 = 1 we may take

A to be as in Example 3 and put ¢(A|g) = ¥2(A|g — go), where 15 is given by (2.5).

Example 5: Separability. In the bivariate case, Gy is the set of functions g that
can be expressed as g(u, uz2) = g1(u1) + ga(uz) for all (uy,uz2) in a region R. Now,
g € Go if and only if, for any four points (z1,z2), (r3,22), (z1,74) and (x3,x4)

forming a rectangle, we have

g($1,$2) + 9(1133,$4) - 9@1@4) - 9@3@2) =0.

Hence, an equivalent condition is that, for any rectangle divided into four equal
quadrants, the sum of the integrals for the SW and NE quadrants equals the sum
for the NW and SE quadrants. Therefore we take A to be the set of all rectangles
divided in this way, with their sides aligned to the coordinate axes. If A € A has its
corners at (x1,x3), (3, x2), (r1,24) and (x3,x4) then we define

L(zotma) L(z14a3)

P(Ag) = / / g(u1,u) duy dus + / / g(u1, us) duy dus

L(z24w4) 3 (z1+ws)

(wz +x4) 3 (131 +x3)
/ / ’U,l, ’U,Q dU1 dUQ - / / ul, ’U,Q dU1 dUQ
Z2 3 (z1+z3) 3 (z24z4) z1

(2.6)

Then (2.3) holds.

Higher dimensional hypotheses of separability may be treated similarly. The
problem of testing for independence in density estimation is related. There, in the
bivariate case, one would take A to be the set of discs, rectangles or similar scalable

sets in the plane, and define

$(Ag) = A {9(e1,22) — g1(21) ga(w2)} dery dz (2.7)



where g1(z1) = [ g(x1,22) dzs and g2 is defined analogously.

Example 6: Radial symmetry. This property is of interest in density estimation for
d-variate distributions, partly because it mitigates the “curse of dimensionality.”
Under radial symmetry, Gy is the set of densities g such that g(x) varies only with
the distance of = from a given point. That point is generally known, and so we
may take it to be the origin. Without loss of generality g is expressed in polar
coordinates, as g(r,w) where r denotes distance from the origin and w is a (d — 1)-
variate vector of angles. Take O to be the set of possible values of w, let A be the set
of cross products of members of a class of scalable subsets of O, such as rectangles,

with compact subintervals of (0, 00), representing radius; and put

_ fog(r,w) dw

gl(T) fo doo

and
B(Ag) = / {9(r,w) — gu(r)} dr do. (2.8)

Then (2.3) holds. Elliptical symmetry may be accommodated by a suitable change

in coordinate system.

Example 7: Partial linear model. In a bivariate setting where the potential linear
relationship applies to the second component, Gy is the set of all functions g that can
be represented as g(xz1,z2) = g1(x1)+0x2 for a scalar parameter 0 and all (x1,x3) €
R. Take A to be the set of all discs (or rectangles or similar bivariate scalable sets)
contained in R, define R(x1) to be the set of all x5 such that (x1,x3) € R, and put

fR(xl){g(”I’.h-TZ) - 01'2} dl’g
R (1) "2

and
w0lg) = [ {gter,2) = gl21]6) ~ Oz} dy . (2:9)
A
Then (2.2) holds. Higher dimensional problems admit similar treatment.

A broad range of examples where © plays an important role arise in the context
of so-called specification tests, where parametric or semiparametric null hypotheses
are tested against semiparametric or nonparametric alternatives. Our remaining

three examples treat such cases.

Example 8: Parametric null hypothesis. Consider the parametric setting, where

Go = {91(:|0) : 0 € B}, O is a class of parameters, and for each 6 € ©, g;1(-|0) is a



continuous, known function on Z. Take A to be as in Example 1 and, analogously

to (2.4), put
v0l9) = [ g~ aa10)}.
A
Then (2.2) holds. This example can be extended to the multivariate case by arguing

as in the remark at the end of Example 1.

Example 9: Multiple index model. Assume G is a class of smooth, bounded functions
from a d-variate Euclidean space to the real line. Given 1 < r < d, let 7, denote
the set of all » x d matrices @ with orthonormal rows. We call g € G an r-variate
index model if, for some § € 7, and some function v of r variables, g(x) = y(0x)
for each x. Taking r = 1 gives the common “single index model”. For r > 2, a rule
for ordering the rows of # removes redundancy created by permuting the rows. We

shall assume this has been done.

Write Gy for the set of all r-variate index models. In the case where the domain
of g is a d-variate sphere (without loss of generality, the d-variate unit sphere Sy,
centred at the origin), we shall suggest a class of functionals (-, -|g) for which
(2.2) holds and A does not depend on #. More generally, when the domain is an

asymmetric region, A must be permitted to vary with 6.

Let Oigent be the “identity” version of #, where the component in position (i, 7)
equals 1 for 1 < ¢ < r and each other component is 0. Let A denote the class of
“cylinders” representable as the product of an r-variate sphere with a (d—r)-variate
rectangular prism, the former in an r-dimensional plane parallel to the one having
its axes in the directions of the unit vectors comprising the rows of #jqent, and wholly
contained within Sg. Given A € A and 6 € O, let Ay denote the result of rotating A
about its centre so that its spherical base is parallel to the plane defined by 6 rather
than Oigent. Let 7(A, 0) denote the cylinder that has the same axis of symmetry as
Ap but is as long as possible (in the direction of this axis) subject to being wholly
contained in S;. Put

Jxo @@
volg) = [ grde— 2 [ g de. (2.10)
Ao fT(A,o) Az J7(x0)
Then (2.2) holds.

Example 10: Linear versus linear index model. In the bivariate case, Gy is the

class of functions of the form g(z1,22) = a1 + asx; + aszzs for scalars ay, as, as,



and G is the set of g of the form g(z1,22) = g1(x1 + axy) for a scalar a and a
univariate function g; determined only semiparametrically. Here we take A to be
the set of discs, rectangles or similar scalable set in the plane, and, using a slight

reparametrisation, put

7,b(A,e|g):/A [ga(@1 4+ o) — {601 + 0y (@1 + O02)} | 1, 22) diy diy, (2.11)

where f is the design density. Then (2.2) holds. Higher dimensional problems may

be treated similarly.

Tests of various other properties, and combinations thereof, can be constructed,
in some cases by simple adaption of the above examples. To construct a test of the
relevance or significance of a variable in a regression model, e.g. a test of whether the
function g(x1,x2) is constant with respect to xs, set # = 0 in Example 7. Note that
by suitable definition of variables, homogeneity of degree zero and homotheticity

may be tested using such a test of significance.

3. CONSTRUCTING THE TEST STATISTIC

3.1. Encapsulating Hy in a single integral. Excepting the case of Example 2 in
section 2.2, a key property that all the functionals 1 in our examples enjoy is that

they are continuous in their argument A. In particular,

if, for some g and 6, ¥(A, @|g) is nonzero for A = Ay, say, (3.1)
then it is nonzero for all A in some neighbourhood of Ay. ’

This means that we can easily encapsulate characterisations such as (2.2) and (2.3)

in terms of integral functions of the functional ¥ (-, - |g).

This may be done in a variety of ways; we shall consider only one. Let A denote
a continuous real-valued function of a real variable, vanishing only at the origin and
strictly positive elsewhere. Let p denote a bounded, continuous, strictly positive

measure on A. Given ¢ € P (the latter defined in section 2.1), put

(o — / ALB(A 0)} u(dA) -

In view of property (3.1), and the fact that u is strictly positive on A, the charac-
terisation (2.2) is equivalent to: g € Gy if and only if infg(¢/(-,-|g))e = 0. In those

instances where the role of 0 is degenerate (see Examples 1-6 in section 2.2) we may



drop the infimum over 6, in which case (2.2) is equivalent to: g € Gy if and only if
J A{¥(-19)} n(dA) = 0.

For simplicity and definiteness, in the remainder of this paper we shall take
A(u) = u? and work with the square root of the corresponding criterion (1/). Other
choices of A give statistics with different asymptotic distributions and slightly dif-
ferent power properties, although their ability to distinguish alternatives that are

distant n~/2 from the null hypothesis remains unaltered.

Thus, we put L
1o = { [ 000 uian} / (3.2)

and ||¢|| = supy ||¢||s. Then || - || is @ norm on P. Defining
t(g) =t l¥ (-, -[9)lls (3.3)
we see that, in view of (3.1) and the fact that p is positive on A,
g € G if and only if t(g) = 0. (3.4)

Therefore we may assess the veracity of Hy by estimating ¢(g) and testing the
significance of its difference from zero. If the role of # is degenerate then we define

t(g) = v (-lg)|l, where ||9]|> = [(X)? u(dA). Result (3.4) continues to hold.

In all but the second of the ten examples described in section 2.2, the sets A
may be considered to be indexed by a finite number of discrete parameters which
vary in the continuum. For example, in the case of Example 1 these are the pairs
(A1, A2) with 0 < Ay < Ay < 1; for Example 3 they are triples (A1, Aa, A3) with
0 < A <Ay <Az <1and A3 — Ay = A2 — Aq; and so on. We should take u to
be an absolutely continuous and strictly positive measure on the class of param-
eters that determine A; see section 3.4 for examples. Asymptotic theory is more
straightforward if the measure p is bounded, but that may not be necessary in

practice.

In the contrary case of Example 2, where A is a countable discrete set, property
(3.1) is not well defined. There, however, if we take pu to be a bounded measure
which employs a strictly positive weight for each element of A, then (3.4) follows
directly from (2.1).



3.2. Test statistic. Assume we can construct a root-n consistent estimator @/b\( - 19)
of (-, -|g), using either the data at (2.1), in the event that g is a regression mean,
or a random sample from a distribution with density g, if the hypotheses concern

densities. Our test statistic is the following estimator of ¢(g):
T'=T(g) =t [g)lle- (3-5)

We reject Hy in favour of H; if T' is too large, where the meaning of “too large”

could be determined using bootstrap methods for calibration.

In cases where dependence of 1) on 6 is degenerate, @/b\()\|g) is an estimator of

¥ (A|g) and our test statistic is simply

T { / @ng)%(dm}m. (3.6)

For the sake of brevity, when considering ways of estimating ¢) we shall for the
most part consider only the regression case, where data (X;,Y;) are generated by
the model at (2.1). The setting where g is a probability density is similar, and in
fact is a little simpler since one does not need to account for the distribution of the

design points X;. We consider that aspect next.

3.3. Correcting for nonuniform design. We shall assume that the X;’s are inde-
pendent and identically distributed with density f; they may be multivariate. If
f is constant, i.e. if the X;’s are uniformly distributed, then the functions ¢ in
the examples in section 2.2 can easily be estimated by taking sums of the response
variables Y; over indices 7 corresponding to the X;’s lying in particular sets. When

f is not constant, however, we need to correct by multiplying by an approximation
to 1/f.

This is a familiar issue in the context of nonparametric regression. There, the
Nadaraya-Watson estimator solves the problem by explicitly estimating 1/ f; see for
example p. 130 of Wand and Jones (1995). We could adopt that approach here,
but it requires bandwidth choice and, furthermore, is not in the spirit of our work.
Moreover, we do not require a consistent estimator of f; a stochastically varying
estimator, for which the stochastic errors were approximately equally distributed
and therefore virtually cancelled one another in the sums that we shall use to

construct estimators of 1 functions, would be adequate.



With this in mind we suggest the following near-neighbour approximation
to 1/f; it does not require selection of a smoothing parameter. Assume the design
variables are d-variate, write D;(x) for the distance from x to the jth nearest X;
that does not equal x, and let D be a linear combination of the functions D;l, cho-
sen so that nug E{D(z)} ~ 1/ f(z), where vy = 7%/2/I'(1 + 1d) is the content of a
d-variate sphere of unit radius. Then, provided we multiply Y; by W; = nvg D(X;)
whenever we include the former in a series approximation to the integral i, we

correct for the design density.

We should construct our approximation to 1/f so that it does not introduce
bias terms to the asymptotic distribution of our root-n consistent estimator {p\
Such terms are intrinsically difficult to accommodate using bootstrap methods. It

is readily seen that this requires
nvg E{D(z)} = f(z)"t + o(n_l/z) . (3.7)

Assuming that f is bounded away from zero in a neighbourhood of x and has two
bounded derivatives there, (3.7) holds for d = 1,2,3 if we take simply D = D%.
Provided f has four bounded derivatives in the neighbourhood, and 1 < d < 7, it

suffices to take
B '3+ 2d_1) D‘f -T2+ 2d_1) Dg
I'(3+42d-1) —2T(2+2d-1)

where ' denotes the standard gamma function. Similar approximations are readily

obtained for larger values of d.

Standard arguments, based on the fact that D;(z) has a Binomial distribu-
tion, show that in either of these cases, and to first order, W; equals Z;/f(X;)
plus smaller order terms, where Z; has an exponential distribution with unit mean
and is independent of X;. The effect of Z; must of course be incorporated into

approximations to the distribution of the test statistic T'.

In some cases the non-uniformity of design density does not matter. Instances
in point are those of Examples 1, 4, 8 and 10, where a simple modification of v
to incorporate f overcomes difficulties. In particular, if in Example 1 we alter the

definition of ¢ = ¢ at (2.4) to

b(Ng) = /A (- g0) f, (3.8)



then no correction for f is required. We can estimate this version of ¢)(\|g) directly,
using

PAg)=n"" Y {Yi—go(Xi)}- (3.9)

it X, EN
(Recall that Example 1 is univariate, and that A is a subinterval of the support
interval T of the design density.) This estimator 1(\|g) is unbiased, as well as
root-n consistent, for 1)(A|g). Provided f is continuous and does not vanish on Z,
the functionals ¢ (-|g) at (3.8) characterise the null hypothesis in the sense of (2.3):
g = go if and only if /(A|g) = 0 for all A € A. Examples 4, 8 and 10 admit similar

treatments, as too do their multivariate counterparts.

3.4. Constructing the estimators {p\( -1 g). We shall briefly run through the ten
examples given in section 2.2, showing how in each case an estimator 12)\( | g) of
Y(-,-|g) can be constructed. In section 4.1 we shall refer back to these examples
when outlining the form taken by asymptotic theory for the statistic 7" at (3.6). It
will be clear from our constructions that the estimators @/b\ are root-n consistent; they
are means of order n independent random variables. In section 4.1 we shall note

that the estimators usually also satisfy central limit theorems; see formula (4.1).

At (3.9) we suggested one means of accommodating nonuniform design density
in the context of Example 1. Another approach is to employ the methods suggested

earlier in the previous section, using
Pp(Alg)=n"t Y {Yi - go(X0)} W
2 X;EX
as an estimator of 1 (X|g) = [, (9 — go), rather than using the statistic at (3.9) to

estimate the quantity at (3.8).

For Example 2 we take {b\()\|g) =n~1 Y. Y da(X;) Wi. In the case of Exam-
ple 3 we employ

(Alg) = min (n—l Yoo Ywi-nTt ) YW, 0)
1: A< X; <3 1A <X <o
as an estimator of ¢ = 1) defined at (2.5). Example 4 is similar to Example 1.
In Example 5 we estimate ¢ (A|g) at (2.6) using (Alg) = S1 + S» — S5 — S,

where Sq,...,S4 denote the sums of Y; W; over indices ¢ such that X; lies in the

rectangular regions over which the four respective integrals at (2.6) are taken. In



the related problem of testing independence of marginals of a probability density,
where data X; = (X1, X2i), 1 < i < n, are drawn from a bivariate distribution
with density g, and where 1(A|g) is given by (2.7) for rectangles A = A\ X Ay, we
estimate it by

n n n

Pp(Alg)=n"t Y I(X; €N { Y I(XeN) } {n_l > I(Xai € Az)}.
i=1 i=1 i=1

Example 6 also involves density estimation. There, if data X; = (R;, ),
1 < i < n, are recorded in polar coordinates, and if A is a class of sets A = Ay X A

where A; is a subset of the positive real line and Ay is a subset of O, then the

function 1 (\|g) defined at (2.8) is estimated by

12)\()\|g) =n"! ; I(X; €A — {n—l ; I(R; € )\1)} ﬁ‘; 5{:} .

In the context of Example 7, let A denote the set of rectangles A\ that have
their axes aligned with those of the coordinate system for the design points X; =
(X714, Xoi), write A = A\ X Ay where A; and Ay are intervals, let f; be the marginal
density of Xy;, let Wy; denote the version of W; for approximating fi(X1;) rather
than f(X;), and as our estimator of (X, 0|g) at (2.9), take

YA 0lg)=n"" D VW - | > (n—eXZi)Wli—G/a:zdmd@,

i: X;EN 1: X1,€A1 A
(3.10)

where |A2| denotes the length of the interval A,.

Example 8 is similar to Example 1. For Example 9 we estimate (A, 0|g) at
(2.10) by

~ dx
PN 0lg)=n"" D YiWi - b, Y; Wi (3.11)
. n dv
1: X;€Ng T(X,0) i: X, €7(N,0)
In the case of Example 10 we estimate 9(), 8|g) at (2.11) by
D\, 0)g) =nt 3 [Y; — {61 + 05 (X1i + 60 X2:)}] -

1: X1;+00X2;ENe

In some of these examples the estimator {b\ involves ratios of random variables;

see (3.10) and (3.11). From at least a practical viewpoint the denominators of these
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ratios must be kept reasonably large, to prevent unduly large stochastic fluctuations.

This means that the regions A should not be taken too small.

4. CALIBRATION

4.1. Asymptotic properties of T'. Calibration can be based on the large-sample dis-
tribution of T'. However, while this is feasible it is unattractive, since the limiting
distribution is a complicated function of a Gaussian process the properties of which
depend on unknowns. A bootstrap approach, outlined in section 4.2, is more at-
tractive. Nevertheless, large-sample properties of T are important to understanding

their analogues for the bootstrap version of 7', so we describe them here.

In all our examples, and in all circumstances where we anticipate our tests
being applied, A is either a set of vectors of given finite length, or a set of regions
determined by such vectors. Without loss of generality, the former is true. It
is generally the case that, under the null hypothesis, the estimator @/b\()\,0|g) of
(A, 0|g) converges weakly in the conventional sense of convergence of stochastic
processes, indexed by the finite vector (A, #). That is, for each g € Gy there exists

a Gaussian process (-, |g) with zero mean, defined on A x O, such that

n' 2 {0 1g) = $(- 19 = <0 9) (4.1)

weakly on A x ©. The limiting process (-, |g) has continuous sample paths, and
the convergence in (4.1) is in the sense of the uniform topology. The next paragraphs

but one discuss theoretical arguments.

Cases where v is defined in terms of a minimum, such as those arising in
Examples 3 and 4, should be treated slightly differently. There (4.1) does not hold,

although it is nevertheless true that

4 = min(x, 0) and ¢ = min(g, 0), where n*/2({ — x) — ¢ in distribution. (4.2)

Some cases of (4.1) are trivial to prove. For instance, if 12)\()\|g) at (3.9) is used to
estimate ¢ (A|g) at (3.8), if we assume the regression model (2.1) in which the errors
¢; are independent and identically distributed random variables with zero mean and
finite variance, and if the X;’s are independent and identically distributed with a

continuous, compactly supported density f, then (4.1) follows from conventional



invariance principles for sums of independent random variables. The case where
¢; = o(X;) d;, for a bounded, continuous, positive function o and independent and

identically distributed variables d;, is similar.

We claim that, under the null hypothesis,
nt?T - U (4.3)

in distribution, where the random variable U has a continuous distribution and
may be expressed as a functional of the stochastic process ¢ in (4.1). Of all our
ten examples the case of multiple-index models (Example 9) is the most awkward
to treat. A detailed and rigorous derivation, in the case of single-index models, of
(4.1), (4.3), and its bootstrap analogue (4.5), is given in the single index case by by
Delecroix, Hall and Vial (2002), and in the Université de Rennes doctoral thesis of
Celine Vial. In particular this work describes theory for the density corrections Wi.
Theory in the multiple-index case is similar. While the other nine examples are
simpler, it does not seem possible to treat all examples together in a reasonable
amount of space. Therefore, here and in section 4.2 we shall confine ourselves here

to outlining the general argument.

Note first that when the role of 6 is degenerate, as in Examples 1-6, (4.1)
simplifies to nl/z{b\(-|g) — ((:|g) under Hy. (The arguments here are simply A.)
Hence, n'/2T — U in distribution, where U2 = [ ((A|g)2du(\). When the role of
0 is not degenerate we may approximate the distribution of ||1/p\( -1 g)]|2 by that of

[ 1500,00)+ 0 = 6079 60) + 172 (A Bulg) Y )

— / {(0— 00) TV (N, 00) +n~ (), 90|g)}2 p(dA) ,

where 0y = argming [|¢(-,-|g)|le and Vip(A,0]g) is the vector of partial derivatives
of (X, 0|g) with respect to 0. It follows that n'/2T — U in distribution, where,
assuming 6 is a vector of length k,

Ut = int, [ 15TV0O00) + 0 bole)} (). (4.4)

Again the case where 9 is defined in terms of a minimum, as in Examples 3

and 4, needs a slightly different treatment. It can be deduced from (4.2), however,



that the result that n'/2T" converges in distribution to a random variable U remains

true.

4.2. Bootstrap calibration. For brevity we shall again confine attention to the
setting of regression. The case of density estimation is simpler. In regression the
bootstrap calibration step requires two estimators of g. One, usually a standard
nonparametric smoother to which we shall refer as g, is used only to compute resid-
uals (i.e. estimators of the errors ¢;). Therefore it does not need to be particularly
accurate; in asymptotic terms it is required only to be uniformly consistent for the
true g. However, it should have this property regardless of the validity of the null
hypothesis. The second estimator, to which we shall refer as ¢, should be an ele-
ment of the class Gy that determines the null hypothesis. It should be uniformly
consistent for g if the null hypothesis is correct, i.e. if g € Gy, but of course it will
be inconsistent otherwise. (In the last paragraph of this section we shall discuss

calculation of §.) We also need an estimator f of the design density f.

To implement the bootstrap we first compute residuals Y; — g(X;) and centre

them, to obtain centred residuals €;; then we resample €],..., e, randomly with
replacement from the centred residuals, and sample X7,..., X randomly from

the distribution with density f; we bootstrap the model at (2.1) by taking Y =
G(X7)+e€!; and we compute the statistic 7, being the version of T" for the bootstrap
data (X, Y;*) rather than the original data (X;,Y;). As the critical point for the
test we use the a-level point, #(c) say, of the distribution of 7 (conditional on the
data). It is an approximation to the a-level point of the unconditional distribution

of T. We reject Hy at level o if T > £(cv).

Under the null hypothesis the conditional distribution of n'/2 T* has the same
weak limit, U say, as the unconditional distribution of n'/2 T, noted at (4.3). That
is, if g € Gp then

Py(n'?T* <2|D) - P(U <), (4.5)

uniformly in z, where D denotes the set of data (X1,Y7),...,(X,,Y,) generated
by the model at (2.1). (See below for discussion of regularity conditions, and Dele-
croix, Hall and Vial (2002) for a rigorous treatment in the single index case.) In
particular, n'/2 f(a) converges in probability to the a-level point of the distribution

of U. Therefore the bootstrap-calibrated test has asymptotically correct level. This



remains true if we allow g to vary with n, converging to go € Gy as n — o0o. This
is the setting of local alternative hypotheses, to be discussed in section 5. In the
case of converging local alternatives the limiting distribution of n'/2 T, referred to

above, is that where g = gg.

Under a fixed alternative hypothesis the limit of the conditional distribution of
n'/2 T* is the same as the limit that the unconditional distribution of n*/2 T would
have if the true g were g1, the limit of §. Therefore #(a) = Op(n_l/z). However,
if the null hypothesis is not true, and if the alternative g is fixed, then g # g; and
n'/2 T diverges to infinity with probability 1. Therefore the probability of rejecting

H, converges to 1 in the case of a fixed alternative.

Finally we discuss regularity conditions. We assume data are generated by
the model (2.1), where the variables Xy,..., X,, are independent and identically
distributed with a density f which is bounded away from zero on the support of
functions in G. Regularity conditions needed on f depend on context. For instance,
in the case of Example 1, if we use @/b\()\|g) at (3.9) to estimate 1) (A|g) at (3.8) then we
require only the conditions given below (3.9). If we have to use the density correction
W;, however, then the smoothness assumed of f should increase with dimension, as
noted below (3.7). In each of our examples no more than two continuous derivatives

are required of ¢ in order for the asymptotic properties discussed above to hold.

The estimators g, g and f should be constructed using sufficient smoothing to
ensure convergence of these derivatives of the estimator to those of their limits. Let
g1 denote the in-probability limit of §; it equals the true value of g if g € Gy, or (in
the case of converging local alternatives) if ¢ — go € Gp. The limiting distribution
of T generally depends on the vector of first derivatives of g, through the term
V(A 0p) appearing at (4.4). Bounded second derivatives are important in con-
trolling remainder terms when deriving the weak convergence theory in section 4.1.
Therefore the smoothing parameters used to construct ¢ should be chosen so that g
and its first two derivatives converge uniformly, in probability, to their counterparts

for g;. The convergence rates are unimportant.

Assume too that g converges uniformly to the true g; again the convergence rate
is not important. Finally, we need the estimator f of f to be consistent and to have

enough bounded derivatives to ensure condition (3.7) holds. As indicated there, we



should assume uniform consistency of the first two derivatives, for dimensions up
to three, and uniform consistency of the first four derivatives, for dimensions from

four to seven.

Finally we draw attention to methods for calculating ¢ in the cases of our nine
regression examples. In Examples 1 and 4, no estimator is needed, and in Exam-
ple 2, simple linear regression suffices. In Example 3, spline methods (e.g. Wright
and Wegman, 1980; Villalobos and Wahba, 1987; Ramsay, 1988; Kelly and Rice,
1990; Mammen and Thomas-Agnan, 1999), isotonic regression (e.g. Friedman and
Tibshirani, 1984; Mammen, 1991) or kernel methods (e.g. Hall and Huang, 2001)
can be used. For Example 5, a variety of estimators of additive regression mod-
els are available; see e.g. Stone (1985), Hastie and Tibshirani (1991), Linton and
Nielsen (1995) and Linton (1997). For Example 7, estimators suggested by Robinson
(1988) and Speckman (1988) are appropriate. Example 8 uses standard parametric
methods. In Example 9, techniques proposed by Powell, Stock and Stoker (1989),
Hérdle, Hall and Ichimura (1993), Ichimura (1993), Klein and Spady (1993) can be

used.

5. POWER AGAINST LOCAL ALTERNATIVES

In developing theory for the power of our tests against local alternatives, we
assume the null hypothesis is characterised as at (3.4) where ¢(g) is defined by (3.2)
and (3.3), and that the test statistic 7" is given by (3.5) or (3.6). We suppose
for simplicity that the set A does not depend on #. This was the case for all our
examples, and instances where it does not hold may be treated using arguments
similar to those below. Assume too that {b\ at (3.5) is a root-n consistent estimator

of 1, in the sense that for each gy € Gy and any sequence g = g,, converging to gy,

For the sake of definiteness, let us confine attention to the regression setting
where data (X;,Y;) are generated by the model (2.1). There, using arguments in
section 4.1, (5.1) follows quite generally from the assumption that the distribution
of the pairs (X, ¢;) does not depend on g. In particular, when (4.1) holds or where
instead (4.2) is valid, (5.1) follows via those results if the measure p used to define

the norm || - || is bounded.



Treat 1(A, 0]-) as a functional from G to the real line, and suppose the Gateaux
derivative of the functional exists for perturbations away from g¢ in the direc-

tion of g;:

w(/\7 0|907gl) = (%1_1;% 6_1 {w(/\7 0|90 + 691) - w(/\7 0|90)} .

Put 0y = argming (|9 (-, -|g0)||e, assumed unique; let Vi) (A, #]g) denote the vector of

partial derivatives of ¢(\, #|g) with respect to #; and consider the constraint:

inf [[$(, [g0, 91) +w VY (,-|g0)]|, > 0, (5.2)

or, if the role of € is degenerate:
14|90, g1)I[ > 0. (5.3)

Proposition 1 below gives conditions under which the test based on 7" is capable
of distinguishing local alternative hypotheses that are distant n='/2 from G,. We
shall need the following smoothness conditions:

the derivatives of 1(A,0|g) with respect to 6 and g are well def-

ined and continuous, in neighbourhoods of 6y and gy respective- (5.4)
ly, uniformly with respect to A; and (A, 0|go,91) is continuous )

in # lying within a neighbourhood of 6y, again uniformly in .

Proposition 1. Assume (5.1) and (5.4) hold. If the test based on T' has asymptotic
level a < 1, then (5.2) [or, if the role of 0 is degenerate, (5.3)] implies that the test
is capable of detecting departures of size n='/2, in the direction of g1, from go € Go.
That is, if g = go +n~"2cgy where go € Gy and ¢ > 0, and if (5.2) [or (5.3)] is
valid, then

lim liminf P, ( test rejects Hy) = 1. (5.5)

C—>00 TN —00
Conversely, if the approximation to 1) by @/b\ is not better than Op(n_1/2), in the sense

—1/2

that T —t is not of smaller order than n (uniformly in ¢ in a neighbourhood of

go € Go), then (5.2) is necessary for (5.5).

Of course, we want the test to be able to distinguish local alternatives that are
not in Gy. Hence, in view of Proposition 1, we would like the following property to

be satisfied:

condition (5.2) [or (5.3)] holds for all gg € Gy and all g, € G(go), (5.6)



where G(go) denotes the set of functions g; € G that feature in the local alternatives
go + dg1 that we consider. Conditions (5.6) and (3.4), and the result that v is
estimable root-n consistently in the sense of (5.1), are the main requirements we

wish the class of functions (-, -|g) to fulfil.

Usually we take G(go) to be the set of all g1 such that for all sufficiently small |4,
go+0g1 ¢ Go. However, in some cases we narrow the field slightly; see the discussion

following Proposition 2 below.

The validity of (5.6) is virtually guaranteed by (3.4), and so we really need
only assume (3.4), as well as root-n consistency of {b\ for 1. To appreciate why, first
note that in the neighbourhood of gy € Gy there generally exists a uniquely defined
0 = 0(g), say, at which || (-,-|g)||¢ achieves its minimum. Assuming the functional
1 is smooth, and g — go in a smooth manner (let us take g = go+dg1, where 6 — 0,
for simplicity), the convergences of both 6(g) and [|¢(-,-|g)|l¢(g) to their respective

limits, 6y and 0, are expressible in Taylor expansions:

0(g9) =00+ 601 +0(9), [lv(--19)llecg) =6 b1+ 0(d),

where 6, and (; do not depend on 4. In general, neither 6, nor 3; vanishes, and
in particular, £(g) converges to zero only linearly, i.e. at rate §. Only in rare cases
does t(g) converge to zero at a faster rate than 6. Our next result shows that (5.6)

is equivalent to ¢(g) converging to zero at no faster than a linear rate.

Proposition 2. Assume gy € Gy and g1 € G(go), and (5.4) holds. Put g = go+dg;.
Then (5.6) is equivalent to: |6| = O{t(g)} as 6 — 0.

Next we show that (5.6) holds for each of Examples 1-10. In the context
of Example 1, suppose go + dg1 ¢ Go for all sufficiently small §, and that g¢; is
continuous. Then g; cannot vanish identically. Now, 1(Algo,91) = [, g1, which
implies (5.3) and hence (5.6). For Example 2, assume go + 091 ¢ G where gy is a
linear function and g; is not, and that the measure u places strictly positive mass
on each of A = 2,3,... but zero mass on A = 0,1. Then 9(A|go,g1) = [, g1¢x, for
which (5.3), and hence (5.6), is satisfied.

Next we treat Example 3. Suppose g¢ is nondecreasing and that both gy and

g1 have continuous derivatives. If gy has a flat part on an interval 7 and is strictly



increasing elsewhere, then, excepting pathological cases where g; is also flat on
J but approaches the ends of J from an opposite direction to but with steeper
gradient than gg, go+dg; is not nondecreasing if and only if g; is not nondecreasing

on J. In the latter case, if (in the notation of Example 3) (A1, A3) C J, then

As Ao
(A1, A2, Azlgo, 91) = min (/ g1 —/ g1, 0) .
As At

Since g1 is not nondecreasing on J then this representation implies (5.3) and

hence (5.6).

Treatment of Examples 4, 5 and 6 is analogous to that of Examples 3, 1 and 1,
respectively. Examples 7-10 are similar to one another. In the case of Example 9,
if go(z) = v(6px) for all z, where v is an r-variate function; and if g; cannot be
written in this form for the same 6y, modulo permutations of rows of y; then (5.2)
holds, implying (5.6). In particular, (5.2) remains valid in the case of Example 9
even if both gy and g; are r-variate index models, as long as the corresponding

versions of f cannot be expressed as row-wise permutations of one another.

6. NUMERICAL PROPERTIES

6.1. Simulations of specification tests. We compared size and power properties of
the integral test of Example 8 to their counterparts for residual regression tests. As
stated earlier, the basic idea is to perform an initial “restricted” regression which
imposes the null hypothesis, and then to test whether the estimated residuals retain
any relationship with the explanatory variables; see Fan and Li (1996) and Zheng
(1996).

Specifically, suppose we obtain & = Y; — f(z;) from a restricted regression of y
on x. Let h denote the smoothing parameter, and with mild abuse of notation, let K
represent both a kernel function and the matrix with entries K;; = K{(z; —x;)/h},
for i # j, and K;; = 0. Write ¢ and é® for column vectors of length n, the ith
elements of which are respectively ¢; and ¢2. Let K (2) denote the matrix whose
respective components are the squares of those of K. If the null hypothesis is true
then éTKé/{2 (6 TK@e)11/2 has a limiting standard normal distribution. Li
and Wang (1998) have studied the performance of this statistic when the null is
parametric, and found that the normal approximation is poor, necessitating boot-

strap calibration. Thus, the absence of a simple distributional approximation for



our integral tests does not disadvantage them relative to residual regression tests,

as both require Monte Carlo simulation.

In simulating tests of a parametric null hypothesis we adopt the model used
by Héardle and Mammen (1993), Li and Wang (1998) and Dette (1999). Thus, we

assuime

Vi=2z,—zl+c(zi— 1) (zi— %) (wi —3) + e,

where the z;’s are uniformly distributed on [0, 1], each ¢; is normal N(0, o?) with
o = 0.1, and ¢ = 0 characterises the null hypothesis. Other choices of ¢ used in
the simulation study were ¢ = 0.5, 1.0 and 2.0. We employed the standard normal
kernel, and, as suggested by Dette (1999), took h = (¢2/n)?/°. In implement-
ing the integral test of Example 8 we estimated 6 using least squares rather than
equation (3.5). In each case we performed 1,000 simulations. Critical values were
obtained from 200 bootstrap samples. Increasing the latter number did not have a

material impact on numerical results.

Table 1 summarises the results. It can be seen that when the null hypothesis is
true, both tests exhibit rejection probabilities close to the nominal values. When the
null is false the integral-based test has higher power. We also performed simulations
using h = o, n~Y% =127/2n=1/5 a5 in Li and Wang (1998), and found that our

integral tests retained a moderate power advantage.

6.2 Simulations of tests of stochastic dominance. Let G, and G be cumulative
distribution functions with support contained in a finite interval, say [0,Z]. We say
that G, first-order stochastically dominates Gy if G4 (x) < Gp(z) for all z; that G,

second-order stochastically dominates Gy, if

/: Go(t) dt < /: Gy(t) dt

for all z; and that GG, third-order stochastically dominates Gy if

/Ow/OtGa(s)dsdtg/Om/Oth(s)dsdt

for all . Higher orders of stochastic dominance are defined similarly. Tests of these
properties are of importance in the analysis of income distributions (hence the

positive support) and in finance. Let A = {[0,z] C [0,Z]}. For first-order stochastic



dominance, given A € A define (A) = min[{Gp(\) — G4(A\)}, 0]; for second-order,
define

(A) = min [ /A (Gy(t) — Ga(t)) dt o] ;

and for third-order, put
t
() = min [// (Gy(s) — Gals)) ds dt, 0] |
AJO

Estimators @/b\()\) are obtained by substituting empirical distribution functions, @a

and @b, for G, and Gy, respectively.

Barrett and Donald (2003) considered Kolmogorov-Smirnov type tests of these
properties. We compared the performance of our tests to theirs, as follows. Let
r, and xp have distribution functions G, and Gy, respectively. We considered
the same five cases as Barrett and Donald (2003, pp. 85-86). Let z,, 2p, 2»r be
independent N (0, 1) random variables with respective parameters ({4, 04), (1, 0b)
and (pp,0p). In each case, x, = exp(o4 24 + Hg) With p, = 0.85,0, = 0.6. For
cases 1, 2 and 3, xp = exp(op zp + ip), with (up, 0p) equal to (0.85,0.6), (0.6,0.8)
and (1.2,0.2), respectively. For cases 4 and 5,

xp = I(u > 0.1) exp(op zp + ) + L (u < 0.1) exp(op 2 + i)

where the random variable u is uniformly distributed on [0, 1]. For these last two
cases, (up, op, iy, op) equal (0.8,0.5,0.9,0.9) and (0.85,0.4,0.4,0.9), respectively.
In case 1, GG, is identical to Gy. In cases 2, 4 and 5, the null hypothesis that
G, stochastically dominates Gy, is false at all three orders. In case 3, G, fails to

stochastically dominate Gy only at first order (see Table 2).

We drew samples of size n, = ny = 50 or 500 from G, and Gp. To apply
the bootstrap, we took samples from the pooled dataset of n, + n; observations,
and simulated the distribution of test statistics under the null hypothesis. Table 2
summarises the results of our simulations. There, “KS” refers to the Kolmogorov-
Smirnov type statistic proposed by Barrett and Donald (2003, p. 82) (see also
Abadie (2002)); and “IT” refers to the integral test defined at (3.6). As before, we
performed 1,000 simulations in each case and based critical values on 200 bootstrap
samples. For tests of first-order stochastic dominance, the IT procedures displayed
somewhat more power than the KS-type tests. For tests of second- and third-order

stochastic dominance, the I'T and KS procedures had similar power.
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6.3. Empirical application: equivalence scale estimation and testing of equality
of regression functions. A classic problem in welfare and development economics is
estimation of equivalence scales. To define the problem, suppose a couple needs, say,
$36,000 to achieve the same living standard as a single person earning $20,000. Then
the equivalence scale is said to be 1.8. One approach to estimating this quantity is
to first estimate food Engel curves for various family types. Equivalence scales are
estimated from the horizontal distances between these curves. (The basic intuition
is that families achieve similar levels of well-being if they expend comparable shares
of income on food.) In order that the procedure be valid, it is first necessary to test

whether the curves are horizontal translations of one another.

Let X denote the logarithm of monthly income, and A and B be the numbers
of adults and children, respectively. We shall use a South African survey dataset
(see Yatchew, Sun and Deri, 2003), consisting of 4,949 observations and comprised
of 12 family types, represented by A =1,2,3 and B =0, 1,2, 3. Figure 1 illustrates
estimated Engel curves for food for four common family types. Let G be the class
of functions of the form g(X, A, B). The null hypothesis Hy consists of functions
of the form go{X — 611og(A + 02 B)}, where 601,05 lie between 0 and 1. The term
A = (A+ 605 B)% is interpreted as the equivalence scale, where 6 reflects the scale
economies of living together and 65 measures the adult equivalence of a child. See

Yatchew, Sun and Deri (2003) for additional details.

Define X = X —60; log(A+ 603 B). The set Ag is indexed by (a, b, A, B) where,
for each vector (A, B), Ag includes all intervals [a,b] on which X has positive

support. Define

b b
Wlab A B.019) = [ 90X AB) X~ [ 0n(X5) ;.
which we estimate using
¥(a,b,A,B,01g)= > 2Y;Di(X5|Ai,Bi)— Y. 2Y;Di(X),
i:a<Xgi<b i:a<X§i<b

A;j=A,B;=B

where D1(Xj;|A;, B;) denotes the distance to the nearest value of X}, within the
subset of the data that has A adults and B children, and D;(X},;) is the corre-
sponding value for the full dataset. We obtain (61, 6;) = (0.76,0.80). The implied

equivalence scale is 1.69 for couples, relative to singles, and 2.65 for couples with



two children. The test statistic for the underlying hypothesis has the value 6.79,
which is strongly significant; the 1% bootstrap critical value is 4.20. Therefore,
one would reject the null hypothesis that there exist horizontal translations of the
form 60y log(A + 03 B), which would cause the 12 individual regression curves to be
superimposed. In contrast, if one restricts the data to singles and couples with no
children (see Figure 1), the test statistic is 0.01058, with a bootstrap probability

estimate of 60%. The estimated equivalence scale is then 1.65.

7. THEORETICAL ARGUMENTS FOR SECTION 4

7.1. Proof of Proposition 1. Let t = (a), computed from data, denote the critical
point for the test. That is, the test amounts to rejecting Hy if T > £. Since the
asymptotic level of the test is strictly less than 1 then, in view of (5.1),f = O,(n~1/2)
as g — go. Property (5.1) also implies that

T(g) > t(g) — |9(,-19) = %(--|9)|| > t(g) — Op(n?),

uniformly in |c| < n'/2§, for some 6 > 0. Therefore, (5.5) will follow if we show
that
lim liminf n/2#(g) = co. (7.1)

cC—00 N—00

For () almost all A, and 6 in a neighbourhood of 6,

$(A,0lg) = (X, 0lg0) + 12 cip(X, Blgo, g1) + o(n~/?)
=n""2 (A, bolgo, g1) + (0 — 00)T V(A bolgo) + o(n /% + |0 — 6o])

Therefore,

nl/zt(g) = Hul)f HC’!/)( Tyt |90agl) + wT V/l/)( Tyt |90)H90 + 0(1) . (72)

Result (7.1) follows from this property and (5.2). Conversely, if the approximation
to ¢ by 9 is not faster than n~/2 then for constants C, 8 > 0 the probability that
t exceeds Cn~1/2 exceeds § for all sufficiently large n. Hence (5.5) implies (7.1),
which, in view of (7.2), implies (5.2).

7.2. Proof of Proposition 2. The argument leading to (7.2) shows that in the context

of Proposition 2,

t(g) = |6| lgf H@b( B |907gl) +wT V@b( B |90)H90 + 0(|6|)



as 0 — 0. Proposition 2 follows immediately.
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Table 1. Level and power of tests

n 25 50 100 200 400
c¢=0.0
Level RRT IT RRT IT RRT IT RRT IT RRT IT
.01 012 .012 018 .022 015 .016 013 .019 012 .013
.05 .049 .056 .064 .068 057 .072 .055 .052 037 .052
.10 086 .132 114 112 107 1122 095 .106 078 .108
c=0.5
Level RRT IT RRT IT RRT IT RRT IT RRT IT
.01 014 .017 .024  .038 016 .037 .030 .093 .061 .200
.05 .060 .087 073 104 065 .112 103 .215 145 .378
.10 121 .167 130 171 134 .195 182 .325 235 .499
c=1.0

Level RRT IT RRT IT RRT IT RRT IT RRT IT

.01 .033 .051 034 077 075 .195 159 453 407 .829

.05 097 .130 129 207 A72 371 .340 .668 584 .925

.10 161 .244 188 324 279 488 475  .766 704 951
c=2.0

Level RRT IT RRT IT RRT IT RRT IT RRT IT

.01 107 174 195 410 486 .823 854 991 998 1.00
.05 228 .380 362 .645 .690 .936 954 999 1.00 1.00
.10 322 .532 485 .761 794 961 975 .999 1.00 1.00

Caption for Table 1: Level and power of tests. We used the bandwidth h =
(02/n)?/%, as suggested by Dette (1999). The notation “RRT” and “IT” refers to
“residual regression test” and “integral test”, respectively.

Caption for Table 2: Level and power of tests of stochastic dominance. The no-
tation “KS” refers to the Kolmogorov-Smirnov tests in Barrett and Donald (2003),
and “IT” refers to the integral test.

Caption for Figure 1: Estimated Engel curves for food. The vertical axis shows
the proportion (between 0 and 1) of total monthly expenditure that is on food, and
the horizontal axis shows the natural logarithm of total monthly expenditure. Data
are from a South African survey and are further discussed by Yatchew, Sun and
Deri (2003).



Table 2. Level and power of tests of stochastic dominance

50

n,= n, 500 50 500 50 500
First-order Second-order Third-order
Case 1
H,: true H,: true H,: true
Level KS IT KS IT KS IT KS IT KS IT KS IT
.01 .009 .019 013 .013 013 .017 .010 .012 .019 .019 .014 .013
.05 .035  .035 .049 .052 .057 .055 053 .050 .053  .053 .052 .050
.10 .085 .108 .099  .099 117 .108 091  .094 .106  .103 .097 .097
Case 2
H,: false H,: false H,: false
Level KS IT KS IT KS IT KS IT KS IT KS IT
.01 288 213 1.0 1.0 116 .130 .882  .861 147 178 .884 .957
.05 536 .447 1.0 1.0 284 305 992 971 327 383 969  .989
.10 661 598 1.0 1.0 434 451 998 .988 476 526 987 .994
Case 3
H,: false H,: true H,: true
Level KS IT KS IT KS IT KS IT KS IT KS IT
.01 .002  .009 506  .857 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.05 .016 .053 .868 991 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.10 .036 .149 960 .999 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Case 4
H,: false H,: false H,: false
Level KS IT KS IT KS IT KS IT KS IT KS IT
.01 024 .041 271 .390 .039 .040 286 .293 .038 .037 279 271
.05 .093 131 479 .637 12700132 535 542 127 (116 506 .496
.10 156 .238 .625 753 .234 236 .682  .683 228 227 662  .647
Case 5
H,: false H,: false H,: false
Level KS IT KS IT KS IT KS IT KS IT KS IT
.01 .037 .099 790 955 .068 .072 776,729 .065 .057 .634 563
.05 141 257 939 .997 236 222 .920 .906 202 185 .856 791
.10 238 .399 982 1.00 362 335 972 953 307 .289 915 .889
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