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Abstract

This paper proposes and estimates a static non-parametric transferable utility

model of the marriage market. The model rationalizes the standard interpretation

of marriage rate regressions as well as pointing out its limitations. The model was

used to estimate US marital behavior in 1971/72 and 1981/82. The estimates show

that the gains to marriage for young adults fell substantially over the decade. It

also showed that the legalization of abortion had a significant quantitative impact

on the fall in the gains to marriage for young adults.

1 Introduction

Thirty years ago, Gary Becker (1973, 1974; summarized in Becker 1981) exposited a

static transferable utility model of the marriage market. It is the current benchmark

model of the marriage market.1 While implications of his model have been tested and

∗We thank Pierre Andre-Chiappori, Angelo Melino, Shannon Seitz and Adonis Yatchew, and seminar
participants at Boston University, Northwestern University, University of Chicago, Center for Applied
Microeconomics (Copenhagen), University of Rochester and the University of Toronto for useful com-
ments. We thank Julan Al-Yassin and Jasmin Kantarevic for excellent research assistance. Eugene
Choo acknowledges research support from the Connaught Funds. Siow also thanks SSHRC of Canada
for research support. Research on this paper was started when the second author was visiting the
department of economics at the University of Chicago. He thanks them for their hospitality.
1Researchers have used it to study the relationships between sex ratios and marital outcomes such as
female labor supply, marriage rates, the determination of dowries and differences in spousal ages (exam-
ples include Angrist 2002, Chiappori, et. al. 2001, Edlund 2000, Grossbard-Shectman 1993, Hamilton
and Siow 2000, Rao 1993, Seitz 1999, South and Lloyd 1992, South and Trent 1988). Bergstrom 1997
and Weiss 1997 provide surveys of the economics literature up to the mid-nineties. Casper and Bianchi
2002; and Waite, et. al. 2000 show his influence outside economics.
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applied, it has seldom been estimated.2 There are two problems that have to be solved

before a transferable utility model of the marriage market can be estimated. First,

equilibrium transfers in modern marriages are seldom observed. Second, individuals

may differ by age, religion, education, wealth, ethnicity, and so on. Different types

of individuals may not agree on the rankings of individuals of the opposite gender as

spouses. Thus an empirical model of the marriage market should not impose too much

apriori structure on the nature of preferences for marriage partners. However without

apriori structure, it is unclear what can be identified from the data.

To understand the identification problem, consider a society with I types of men

and J types of women participating in the marriage market. A type is defined by an

age range, ethnicity, education, geographic location and so on. Each individual chooses

who to marry or to remain single. For each type of man (woman), there are potentially

J (I) preference parameters to characterize his (her) utility from each type of spouse

and remaining single. In total, there are as many as 2 × I × J preference parameters.

What is observable to a researcher? In principle, the researcher observes the quantity

of each type of men in the marriage market, mi for type i men (I observations), the

quantity of each type of women, fj for type j women (J observations), and the quantity

of type i men married to type j women, µij (I×J observations). So the total number of

observables are I + J + I × J . For I, J > 2, the number of observables are less than the

number of unknown preference parameters. Thus any behavioral empirical model will

need to make identifying assumptions to reduce the number of unknown parameters.3

To finesse the identification problem, demographers use a reduced form approach in

the form of marriage matching functions, to estimate the behavior of the entire marriage

market. Marriage matching functions are also a fundamental building block of two-sex

models of population growth.4

A marriage matching function is defined as follows.5 Let M be the vector of available

men by types, i = 1, .., I at that time. The ı́’th element of the vector M is denoted by

mi. Let F be the vector of available women by types, j = 1, ..., J , where the j’th element

2Bergstrom and Lam 1994; Suen and Lui 1999 are exceptions.
3Bergstrom and Lam, Hamilton and Siow 2000, Seitz 1999, Suen and Lui, Wong 2003a estimate models
of the marriage market with strong identifying assumptions.

4See Pollak 1990a for a state of the art study.
5Our discussion borrows heavily from the excellent discussions in Pollak 1990b and 1990a.
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of the vector is denoted by fj. Usually, researchers associate types of individuals with

their ages. Let Π be a matrix of parameters. A marriage matching function is an I × J

matrix µ(M,F ; Π), whose i, j element is µij. Denote the number of unmarried men

of type i as µi0 and the number of unmarried women of type j as µ0j. The marriage

matching function µ(M,F ; Π) must satisfy:

µ0j +
I∑

i=1

µij = fj ∀ j (1)

µi0 +
J∑

j=1

µij = mi ∀ i (2)

µ0j, µi0, µij ≥ 0 ∀ i, j (3)

Equations (1), (2) and (3) are accounting constraints. (1) says that the total number

of men who marry j type women and the number of unmarried j type women must be

equal to the number of available j type women for all j. Similarly (2) says that the total

number of women who marry i type men and the number of unmarried i type men must

be equal to the number of available i type men for all i. (3) holds because the number

of unmarrieds of any type and gender, and the number of marriages between type i men

and type j women must be non-negative.

Demographers usually work with matching functions with a zero spillover matching

rule:

µij(M,F ; Π) = µij(mi, fj; αij)

That is, the number of i, j matches only depends on mi and fj. Schoen’s 1981 harmonic

mean mating rule, (the current workhorse in demography) given by

µij(M,F ) =
αijmifj

mi + fj

(4)

where αij > 0,
∑

j αij ≤ 1, and
∑

j αij ≤ 1, is a zero spillover matching rule. This

matching function will satisfy all the accounting constraints, (1), (2) and (3). While

zero spillover marriage matching functions are easy to estimate and use, as Pollak 1990b

pointed out, the zero spillover assumption is restrictive. Holding the parameters of the

marriage matching function, α′ijs, constant, changes in mi′ and fj′ where i′ 6= i or j′ 6= j
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do not affect µij.
6 Demographers have of course recognized the importance of spillover

(or substitution) effects in marriage matching function (McFarland 1972; Pollard 1997).

The problem is to specify marriage matching functions which include substitution effects

and yet remain identified.7

Another problem with marriage matching functions is that they are mostly specified

as reduced form and not derived from a model of the marriage market. It is unclear how

they may be used to study the impact of social interventions on the marriage market.

Instead of estimating an entire model of the marriage market, many researchers and

policy analysts have used marriage rate regressions to estimate the effects of different

interventions on marriage rates. The marriage rate of type j women, ρf
j , is:

ρf
j =

∑
i µij

fj

A marriage rate regression for type j women is defined as:

g(ρf
j ) = Xj

′β + uj

where g(.) is usually the linear or log function.8 Xj is a vector of characteristics, including

policy variables, which affect the marriage rate. uj is the error term of the regression

model. Marriage rate regressions are widely used (E.g. Angrist 2002, Angrist and

Evans 1999, Baker, et. al. 2003, Gruber 2000, South and Lloyd 1992, South and Trent

1988). The technique is flexible and easy to implement. The standard interpretation of

marriage rate regressions assumes that the marriage rate of a particular type of individual

is positively related to factors which increase the welfare gain to marriage for that type.

While easy to use, there are loose ends. First, the standard interpretation of marriage

rate regressions has not been derived. Second, how are the estimated effects from male

6Marriage rate regressions also suffer from a similar defect.
7Pollard and Höhn 1993/94 provide the most sophisticated matching function of this kind:

µij(M, F ) =
mifjaibj

1
2 (

∑
k mkakhkj + fkbkhik))

where ai, bj , and hij are weight functions that are specified by the analyst. When i and j refer to
the ages of the participants, the types of individuals are ordered by age. Using this natural ordering,
Pollard and Höhn suggested some plausible weight functions. But if types are also defined by ethnicity,
religion and other attributes that are not naturally ordered, then it is difficult to apriori specify the
weight functions. But without apriori restriction on the weights, the model is not identified.
8If individual data is used, then researchers estimate G(X ′

jβ), the probability that a type j individual
will marry.
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and female marriage rate regressions related? That is, a factor which affects the female

marriage rate must also affect the male marriage rate. This interdependence is ignored

in marriage rate regressions. In two different applications, Angrist and this paper show

that the estimated effects of the same factor on marital behavior from male and female

marriage rate regressions can be wildly contradictory.

This paper proposes and estimates a static non-parametric transferable utility model

of the marriage market. The model produces a simple marriage matching function with

spillover effects which will fit any observed cross-section marriage distribution.9 Our

marriage matching function has an intutitive normative interpretation. Because of its

normative interpretation, it can be used to do policy evaluations which are as easy to

do as marriage rate regressions but without the limitations discussed earlier.

There are three conceptual benefits for considering transferable utility models of the

marriage market. First, taking individual preferences as given, marriage market clearing

equilibrium must satisfy all the accounting constraints, (1), (2) and (3).

Second, the reduced form for equilibrium quantities of a market clearing model do

not include prices, i.e. equilibrium transfers. Thus the absence of observable transfers

to the researcher may not be a problem.

Third, transferable utility models provide a solution to the identification problem

discussed above. To see how the identification problem may be resolved, let the marital

output of an i type male and a j type female only depends on i and j. Then there are

I×J number of these marital outputs plus I +J outputs of the types being single. If the

behavior of the marriage market is characterized by these outputs alone, then we may be

able to estimate all the parameters which are necessary to determine marital behavior.

In particular, we do not have to estimate separate male and female preferences for

spouses. A well known property of transferable utility models of the marriage market

is that they maximize the sum of marital output in the society (For example, Roth

and Sotomayor 1990; Chapter 8). Thus behavior in transferable utility models can be

characterized by knowledge about marital output alone, and knowledge about male and

female preferences separately is not necessary. The novelty of this paper is to exploit

this property to specify a just identified econometric model of the marriage market, and

9Our marriage matching function also satisfies the conditions in Pollak 1990a, sufficient to generate a
well posed two-sex model of population growth.
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minimize apriori restrictions on male and female preferences for spousal types.10

In order to implement the above framework, we use McFadden’s (1974) well known

extreme value random utility model to generate demand and supply functions for dif-

ferent types of marriages. With our behavioral assumptions, the following marriage

matching function is obtained:

µij = Πij

√
(mi −

∑

k

µik)(fj −
∑

l

µlj)

The above equation says that the number of i, j marriages is proportional to the

geometric average of the unmarrieds of each type. The marriage matching function is

homogenous of degree one in M and F .11

Our model of the marriage market provides a normative interpretation to Πij. The

model assumes that the total surplus or payoff from a potential i, j marriage depends on

a systematic payoff that is common to all i, j match, and an idiosyncratic payoff related

to the two particular potential spouses. Realized i, j marriages generated higher payoffs

than other feasible marriages. The higher payoffs may be due to high systematic payoffs

related to the i, j match, or high idiosyncratic payoffs, or a combination of the two.

All else equal, matches that are frequently observed imply a relatively high systematic

payoff to that pairing while matches that are infrequent have low systematic payoffs.

We interpret Πij as measuring the systematic payoff to an i, j marriage relative to those

types not marrying. The systematic qualifier is important. Πij does not measure the

total (systematic and idiosyncratic) payoff to observed i, j marriages relative to those

types not marrying. Our interpretation of Πij says that the systematic gains to i, j

marriages are larger when the number of i, j marriages, suitably scaled, is larger. Scaling

is necessary because the number of i, j marriages may be high because there are more

type i men and type j women.

An important theoretical antecedent to our work is Dagsvik (2000).12 A comparison

with his work is provided in Section 6.

Using ages as the only types for males and females in the benchmark model, the

second part of the paper estimates Π using data from the 1970 and 1980 US Census, and

10Both Bergstrom and Lam; Suen and Lui used this property to estimate tightly parameterized models.

11Pollak 1990a argues that no scale effect is a reasonable requirement for marriage matching functions.
12Also see Johansen and Dagsvik 1999; Dagsvik, et. al. 2001.
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1971/72 and 1981/82 Vital Statistics. The baby boom generation came into marriageble

age between the two decades and thus there were substantial changes in the population

vectors between the decades. Our marriage matching function can capture some changes

in marital patterns in the US between 1971/72 and 1981/82 due to changes in population

vectors between the two periods. However our benchmark model could not capture the

drastic fall in the marriage rate among young adults in 1981/82.

Our first attempt to explain the fall in the marriage rate among young adult was

to expand the type space to include educational attainment. This expansion of the

type space did not explain the fall in the marriage rate. Put another way, the gains to

marriage fell between 1971/72 and 1981/82 for young adults of all educational groups.13

There were many social changes between 1970 and 1980 which could have affected

the gains to marriage over the decade. A major change was the national legalization

of abortion in 1973. Legal abortions were partially available in some states by 1970.

If the partial legalization of abortions in a state reduced the gains to marriage in that

state, we would expect to see lower gains to marriage in the early legalizing states

relative to later legalizing states in 1970 but not in 1980. Moreover this difference in

difference in the gains to marriage should be concentrated among women of child bearing

age. Using marriage rate regressions, Angrist and Evans 1999 showed that the marriage

rates of young men and women were lower in early legalizing states relative to later

legalization states in the early seventies. We show that the estimates of the number of

marriages affected are extremely sensitive to whether we use male or female marriage

rate regressions. Using our framework, we show that the partial legalization of abortion

in some states can explain up to twenty percent of the drop in the gains to marriage

among young adults in the seventies. In doing so, we extend the standard difference in

differences estimator to estimate the effect of a policy change on bivariate distributions.14

It should be clear that the empirical issues discussed here and the ability of trans-

ferable utility models of the marriage market to resolve many of these issues are known.

The main contribution of this paper is to provide an elementary parametrization which

exploits all the power of this framework.

13Demographers already noticed this decline in the marriage rate of young adults (E.g. Qian and Preston
1993; Qian 1998).

14Difference in differences estimators are usually used to estimate effects on the moments of a univariate
distribution.
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2 The model

We begin by describing a transferable utility model of marriage. There are I types of men

and J types of women. For a type i man to marry a type j woman, he must transfer τij

amount of income to her. There are I×J sub-marriage markets for every combination of

types of men and women. The marriage market clears when given equilibrium transfers,

τij, the demand by men of type i for type j spouses is equal to the supply of type j

women for type i men for all i, j.

To implement the above framework empirically, we adopt the extreme value random

utility model of McFadden to generate market demands for marriage partners. Each

individual considers matching with a member of the opposite gender. Let the utility of

male g of type i who marries a female of type j be:

Vijg = α̃ij − τij + εijg, where (5)

α̃ij : Systematic gross return to male of type i married to female of type j.

τij : Equilibrium transfer made by male of type i to spouse of type j.

εijg : i.i.d. random variable with type I extreme value distribution.15

Equation (5) says that the payoff to person g from marrying a female of type j con-

sists of two components, a systematic and an idiosyncratic component. The systematic

component, α̃ij − τij, is common to all males of type i married to type j females. The

systematic return is reduced when τij, the equilibrium transfer, is increased.

The idiosyncratic component, εijg, measures the departure of his individual specific

match payoff, Vijg, from the systematic component. We assume that the distribution of

εijg does not depend on the number of type j females, fj. Put another way, there are

sufficient number of females of type j such that his idiosyncratic payoff from choosing to

marry a type j female does not depend on fj. The payoff to g from remaining unmarried,

denoted by j = 0, is:

Vi0g = α̃i0 + εi0g (6)

where εi0g is also an i.i.d. random variable with type I extreme value distribution.

Individual g will choose according to:

Vig = max
j
{Vi0g, .., Vijg, .., ViJg} (7)

15The random variable εijg ∼ EV (0, 1), with the cumulative distribution given by F (ε) = e−e−ε

.
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We assume that the numbers of men and women of each type is large. Let µd
ij be the

number of i, j marriages demanded by i type men and µd
i0 be the number of unmarried i

type men. Then McFadden showed that (Appendix A includes a proof for convenience):

ln µd
ij = ln µd

i0 + α̃ij − α̃i0 − τij (8)

= ln µd
i0 + αij − τij

The term αij = α̃ij − α̃i0, is the systematic gross return to a i type male from an i, j

marriage relative to being unmarried. The above equation is a quasi-demand equation

by type i men for type j spouses. 16 Unlike the usual demand equation, the transfers

for non-type j women appear nominally absent in equation (8). But they are not absent

as these other transfers are all embodied in ln µd
i0.

Let Γ be Euler’s constant. Appendix A shows another well known result:

EVig = Γ + α̃i0 + ln(
mi

µd
i0

) (9)

EVig is the expected utility of a male of type i before he sees his realizations of his εijg

for all j. Equation (9) shows that it is proportional to the log of the ratio of the number

of available type i men relative to the number of type i men who choose to remain single.

The expected payoff if being single is the only option is given by EVi0g = Γ + α̃i0. If

ln( mi

µd
i0

) is observable, it measures the expected benefit of a type i male from being able

to participate in the marriage market where non participation means only choosing to

be single. Let

qi = ln
(mi

µd
i0

)
(10)

denote the expected gains to entering the marriage market for a type i male. As shown

in the appendix and section 3, the expected gains depends on preference parameters, α̃ij

and α̃i0, as well as transfers, τij.

The random utility function for women is similar to that for men except that in

marriage with a type i men, a type j women receives a transfer, τij. Let γ̃ij denote the

systematic gross gain that j type women get from marrying i type men, and γ̃0j be the

systematic payoff that j type women get from remaining single. The term γij = γ̃ij− γ̃0j,

is the systematic gross gain that j type women get from marrying i type men relative

to not marrying.

16It is not a demand curve because µi0 = mi −
∑

j µij .
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Let µs
ij be the number of i, j marriages demanded by j type women and µs

0j the

number of type j women who want to remain unmarried. The quasi-supply equation of

type j women who marry type i men is be given by:

ln µs
ij = ln µs

0j + γij + τij. (11)

Again, the transfers for all the other types of men other than i is embodied in ln µs
0j.

Following (9), the expected gains to entering the marriage market for a type j female

is:

Qj = ln
( fj

µs
0j

)

There are I×J sub-marriage markets for every combination of types of men and women.

The marriage market clears when given equilibrium transfers, τij, the demand by men

of type i for type j spouses is equal to the supply of type j women for type i men for

all i, j.17

When the competitive marriage market for all i, j pair clears, the demand for i, j

marriages is equal to the supply:

µij = µd
ij = µs

ij (12)

Substituting (12) into equations (8) and (11) to get:

τij =
ln µi0 − ln µ0j + αij − γij

2
(13)

Substituting (13) into (11), we get:

ln µij − ln µi0 + ln µ0j

2
=

αij + γij

2
(14)

If we let πij = ln Πij =
αij+γij

2
, we can rewrite Equation (14) as:

Πij =
µij√
µi0µ0j

(15)

which is our marriage matching function.

Equation (15) has an intuitive interpretation. The right hand side of (15) is the

ratio of the number of i, j marriages to the geometric average of those types who are

17Chapter 9 of Roth and Sotomayor (1990) has a proof of the existence of market equilibrium for a
general transferable utilities model of marriage of which ours is a special case.
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unmarried. The log of the left hand side, ln Πij = πij, has the interpretation as the total

systematic gain to marriage per partner for any i, j pair relative to the total systematic

gain per partner from remaining single. Put another way, one expects the systematic

gains to marriage to be large for i, j pairs if one observes many i, j marriages. However

there are two other explanations for numerous i, j marriages. First, there are lots of i

type men and j type women in the population. Second, there are relatively more i type

men and j type women in the population than other types of participants. Scaling the

number of i, j marriages by the geometric average of the numbers of unmarrieds of those

types control for these effects.18

Equation (15) is homogeneous of degree zero in population vectors and the number

of marriages. From the point of view of the marriage matching function, if we assume

the systematic returns as defined by πij stays fixed, doubling M and F will result in a

doubling of µ. Thus our marriage matching function has no scale effect in population

vectors.

2.1 Identification

A point estimate for Πij is given by
µij√

µi0µ0j
. Equation (15) is non-parametric in the sense

that it fits any observed marriage distribution. That is, we do not impose any apriori

structure on the systematic gains to marriage. However our approach is completely

parametric with respect to the idiosyncratic gains to marriage. The marriage matching

function is also fully saturated in the sense that there are I × J elements in µ and there

are I × J parameters in Π. In order to maintain identification of the marriage matching

function, the behavioral restrictions underlying Equation (15) can only be relaxed by

imposing other restrictions.

Observing Πij however, is not sufficient for us to identify the individual specific

systematic returns, αij and γij. It is also not sufficient to estimate (αij − γij), which is

needed to identify the equilibrium transfers in Equation (13). In other words, knowing

the systematic gains to a match is not sufficient to determine whether men pay positive

18The term 2πij is not the expected total gain to marriage for an i, j couple that chooses to marry each
other. Observed i, j married couples get in total 2πij plus the idiosyncratic payoffs of each spouse
which is the result of optimizing behavior. Since they could have married other types or not marry,
the average total payoff of i, j couples who married each other relative to not marrying is weakly larger
than 2πij .
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or negative transfers to women in equilibrium. On the other hand, in applications

where τij is also observed, then equations (13) and (15) would allow us to identify αij

and γij.
19 In these cases, equations (13) and (15) are able to fit any observed marriage

distribution and transfer function. So the current model can be used to fit any finite type

competitive bilateral matching market if the matching distribution and the equilibrium

pricing functions are observed.

In addition to πij, equations (8) and (11) allows us to identify αij − τij and γij + τij,

that is:

ln
(µij

µi0

)
= αij − τij = nij

ln
(µij

µ0j

)
= γij + τij = Nij

We will refer to nij as the systematic gain to marriage for a type i male in an i, j marriage

relative to not marrying, and Nij as the systematic gain to marriage for a type j female

in an i, j marriage relative to not marrying.

3 Marriage rate regressions and policy evaluations

The expected gain to entering the marriage market for a type j female denoted by Qj,

is related to the marriage rate by:

Qj = ln
( fj

µ0j

)
= − ln

(
1−

∑
i µij

fj

)
≈

∑
i µij

fj

= ρf
j (16)

This approximation is accurate for small marriage rates. The marriage rate for type

j females is also related to the systematic net gains Nij in (??) according to:

ρf
j ≈ Qj = ln

(
1 +

∑
j

µij

µi0

)
= ln

(
1 +

∑
j

exp(γij + τij)
)

= ln
(
1 +

∑
j

exp(Nij)
)
. (17)

Equation (17) says that the marriage rate of type j women depends positively on the

systematic gross gains to marriage, γij, and equilibrium transfers, τij. Thus (17) provides

19In general, dowries should not be regarded as proxies for τij . Variations in dowry prices reflect variations
in τij only if the variations in dowry prices are not due to changes in the value of dowry as a means of
providing bridal wealth (Botticini and Siow 2003). See Edlund (2000) for an example of the problems
that arise when this caveat is ignored.
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a formal justification for the standard interpretation of marriage rate regressions, where

the marriage rate of type j females is assumed to vary positively with factors which

increase the gains to marriage for these women. Researchers estimate (17) with proxies

for γij and τij. For example, researchers who use the sex ratio of type i men to type

j women, mi

fj
, as a regressor are assuming that mi

fj
and τij are positively correlated.

However, when mi

fj
varies, in general the entire population vectors, M and F are also

varying. Thus it is difficult to generalize with the estimated coefficient of the marriage

rate, ρf
j , on the sex ratio, mi

fj
, from any particular sample.20 The difficulties with marriage

rate regressions discussed in the introduction also remain.

To avoid these difficulties and retain the convenience of marriage rate regressions,

consider the following regression model for the total systematic gains to an i, j marriage:

πij = Xij
′β + uij, (18)

where Xij denote the vector of variables (including policy variables) that affect the total

systematic gains to an i, j marriage. uij is an error term with mean zero and uncorrelated

with Xij. Since we can construct πij from equation (15), we can estimate β in equation

(18).

Policy changes will induce changes in πij as captured by (18). Changes in πij will

affect marital behavior via the marriage matching function described in equation (15).

So given estimates of β, one can predict the effect of changes in Xij on marriage behavior

including marriage rates.

Estimating (18) is as easy as estimating marriage rate regressions. So we preserve

the advantages of marriage rate regressions for doing policy evaluations of factors which

affect the marriage market. Unlike marriage rate regressions, we do not estimate separate

sets of regressions for different types of individuals or genders. Thus we will not run into

the interpretive difficulties discussed in the introduction with marriage rate regressions.

Also, we do not include the sex ratio as a regressor in (18). Instead, the section below

considers the impact of changes in population vectors on the marriage distribution.

20Instrumenting the sex ratio does not solve this problem.
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4 How M and F affect µ

Given the preference parameters of the system, Πij, we are often interested in how

variations in the supply population vectors, M and F, affect the distribution of marriages

as represented by µ. Let M t and F t be time varying population vectors. Then µt will

also be time varying. Our marriage matching function may be rewritten as

µt
ij = Πij

√
µt

i0 × µt
0j (19)

= Πij

√√√√(
mt

i −
J∑

k=1

µt
ik

)(
f t

j −
I∑

g=1

µt
gj

)
(20)

If we take Πij, M t and F t as exogenously given, equation (20) defines a I×J system

of quadratic equations with the I × J elements of µt as unknowns. This system can be

reduced to an I + J system with I + J number of unmarrieds of each type, µt
i0 and µt

0j,

as unknowns. This reduced system is defined by equations (21) and (22) below. If we

can solve for µt
i0 and µt

0j, then the µt
ij’s are fully determined by equation (19). To derive

this system of equations, we sum equation (19) over all i’s to get:

I∑
i=1

µt
ij =

I∑
i=1

Πij

√
µt

i0 × µt
0j

f t
j − µt

0j =
I∑

i=1

Πij

√
µt

i0 × µt
0j (21)

Similarly, summing equation (19) over all j’s, we get:

mt
i − µt

i0 =
J∑

j=1

Πij

√
µt

i0 × µt
0j (22)

Given population quantities M, F, µ and Π as defined in equation (15), local uniqueness

of µ∗ for new values of M∗ 6= M, F ∗ 6= F and holding Π fixed is given by the following

result.

Proposition 1 Let Πij =
µijq

(mi−
PI

k=1 µik)(fj−
PJ

g=1 µgj)
and M and F be the vectors of mi

and fj respectively. For M∗ and F ∗ close to M and F , µ∗ is uniquely determined.

The proof using the implicit function theorem is given in Appendix B.
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5 Limitations

In this section, we would like to draw attention to two limitations of our approach.

The first arise from using the extreme value random utility model of McFadden to

model demand. The “independence of irrelevant alternative” limitation on substitution

patterns in that model of demand is well known.21 At present, we do not know how

restrictive our substitution patterns are on the marriage matching function. However a

marriage matching function which allows for spillover effects and remains econometrically

identified will need to have strong restrictions on these effects.

Another limitation of our static approach to the marriage market is that it ignores

dynamic considerations. In particular, the value of delaying marriage at time t depends

on future opportunities for marriage. Future opportunities are related to current pop-

ulation vectors M t and F t and the decisions that these individuals make. If future

opportunities affect the value of not marrying, then Πt
ij should be a function of these

future opportunities and some exogenous preference parameters, which we denote by Ω,

i.e. Πt
ij = Π(M t, F t, Ω).

A simple way to test for the presence of these dynamic considerations is to test

if Πt
ij is related to M t and F t. We will not want to simply regress Πt

ij on M t and F t

because Πt
ij is constructed using M t and F t. So if there is measurement error in observed

population vectors, the measurement error will induce a correlation between observed

population vectors and our constructed Πt
ij. One way to get around this measurement

error problem is to use M t′ and F t′ as instruments for M t and F t, t 6= t′.

If we find that Πt
ij is correlated with population vectors at time t, after controlling

for measurement error, this correlation is consistent with individuals being concerned

about future opportunities in the marriage market. Of course the correlation may also

be due to other forms of misspecification of our marriage matching model.

If there are scale effects, Πt
ij may also be correlated with population vectors at time

t. Scale effects are not ruled out by our model per se. Since Πt
ij measures the systematic

gain to marriage for an i, j pair, this gain can in principle depend on the population

vectors. But unless we know the form of this dependence, forecasting with the model

becomes infeasible.

21For example, refer to page 113 of McFadden (1974) for a discussion.
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A discussion of the results from these specification tests is given in Section 7.3 of the

paper.

6 Dagsvik’s model

The marriage matching function in Dagsvik(2000) is defined by

θij =
µij

µi0µ0j

(23)

where θij are unrestricted. The term θij has a similar normative interpretation as our

Πij. His model is also non-parametric and will fit any observed marriage distribution.

Thus given data from a single cross section, we cannot differentiate between his model

and ours in terms of fit of the data.

Empirically the two marriage matching functions differ in that Dagsvik’s model has

scale effects. For the simple case of one type of male and one type of female, it is easy to

check that Dagsvik’s model satisfies increasing returns to scale in the population vectors.

The two models also employ different specification of payoffs to marriage. In his model,

the payoff that male g of type i gets from marriage to female k of type j is defined by:

V ′
ijgk = α̃′ij + εijgk.

α̃′ij denotes the systematic return to i type male from an i, j match. εijgk denotes the

idiosyncratic returns from a match between individual g and the j type female individual

k.22 So if he is matched with another female k′ of type j, he will get a different payoff.

Likewise for the payoffs of the females when they choose between different males. Since

individuals in Dagsvik’s model value every potential spouse differently, he cannot use

price taking behavior (equilibrium transfers) to clear the marriage market. Instead, he

uses the deferred acceptance algorithm and stable matching as an equilibrating device.

Stability per se is not the difference between his model and ours because our equilibrium

is also stable.

In contrast, our model assumes that for any type j, there are sufficient number of

females of that type such that male g is indifferent between them. Likewise for any

22The random variable εijgk is also assumed to have type I extreme value distribution.
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type i males, female k has enough males of that type to choose from such that she is

indifferent between them. So fj does not directly affect the idiosyncratic payoff that male

g gets from choosing to marry a female of type j. Likewise for female k. Given these

indifference assumptions about within type spouses, we can use types specific transfers

to clear the marriage market. Thus we have a transferable utilities model of the marriage

market whereas Dagsvik (2000) has a non-transferable utilities model.

Analytically, our model is easier to derive. While there are differences between the

two models, we are more similar to each other than other marriage matching functions.

Both matching functions are built from explicit, albeit different, models of the marriage

market. We follow his lead in using extreme value random utility functions.23

7 Changes in the estimated gains to marriage over

the seventies

The objective of the empirical work is to estimate the marriage distributions by ages in

1971/72 and 1981/82. Data from the 1970 and 1980 US Census were used to construct

the population vectors. Marriage records from the 1971/72 and 1981/82 Vital Statistics

were used to construct the bivariate distributions of marriages. A state has to report the

number of marriages to Vital Statistics to be in the sample. This requirement eliminated

10 states in 71/72 and 9 states in 81/82.24

For each period, we investigate a two year rather than one year marriage distribution

because the two year distribution has less thin cells. For each period, we examine the

marital behavior of individuals between the ages of 16 and 75 implied by the population

vectors and preference parameters estimated from our model. Details on the construction

of the data used are left to Appendix A.

In our sample of states, there were 16.0 million and 19.6 million available men and

women respectively between the ages of 16 to 75 in 1970 (that is, these individuals were

unmarried at the time of the census). There were 3.24 million marriages in 1971/2.

23Logan, et. al. 2001 also used extreme value utility functions and stable matching to construct their
model of a small marriage market. Because they do not derive a closed form marriage matching
function, their empirical model is significantly more difficult to estimate.

24Arizona, Arkansas, Colorado, Nevada, New Mexico, New York, North Dakota, Oklahoma, Texas, and
Washington were excluded in 71/72 and 81/82. Colorado was added in 81/82.
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Table 1: Data Summary

US Census data in

1970 1980 ∆

Number of Available Males (M t) 16.0 mil 23.4 mil 46%

Number of Available Females (F t) 19.6 mil 27.2 mil 39%

Average age of Available Males 30.4 29.6

Average age of Available Females 39.1 37.1

Vital Statistics data in

1971/72 1981/82 ∆

Number of Marrieds (µt) 3.24mil 3.45 mil 6.5%

Average age Married Males 27.1 29.1

Average age Married Females 24.5 26.4

There were 23.4 million and 27.2 million available men and women respectively in 1980.

Although the available population increased by more than 39% over the decade, there

were only 3.45 million marriages in 1981/2, an increase of 6.5%. A summary of the data

set is in Table 1 below.

Figure 1a and 1b show the bivariate age distributions of the marrieds in 1971/2 and

1981/2 respectively. In both years, most marriages occured between young adults and

there was strong positive assortative matching by age.

In Figure 2, we graph the 1970 and 1980 age distributions of the population vectors.25

For both decades, there are more available men than women in the early ages and the

reverse is true in the later ages. These gender differences are due to the fact that there

are relatively more widows and the lower remarriage rate of divorced women. The higher

remarriage rate of divorced men reduced the availability of younger women. The arrival

25The average age of available men and women in 1970 were 30.4 and 39.1 respectively. This gender
difference reflected the larger fraction of available older women. The average age of the married men
and women in 1971/2 were 27.1 and 24.5 respectively, reflecting the usual gender difference in ages of
marriage. The statistics for 1980 are similar, as shown in Table 1.
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of the baby boomers to the marriage market in 1980 is readily visible from the increase

in the population of the availables. This arrival should have had a substantial impact on

the marriage market. However, the number of young marrieds in 1980 barely increased.

7.1 Estimating the net gains to marriage by gender

Our model allows us to estimate the systematic net gain relative to not marrying, for

each party in any i, j marriage. The 1971/72 estimates for type i males, given by

n71
ij = ln(

µ71
ij

µ71
i0

), and j type females, given by N71
ij = ln(

µ71
ij

µ71
0j

) are compared in Figure 3.

In the 1971/2 and 1981/2 marital records, there were many age pairs which had

no marriage. This is a common problem in empirical discrete choice applications and is

encountered throughout the empirical section of this paper. We employ kernel smoothers

to deal with this thin cell problem. The smoother estimates a function at any age by

averaging or smoothing local neighbouring data points. For example the non-parametric

estimator of the net gains in 1971/2 from an i, j marriage to a j type female is given by,

N̂71
ij =

I∑

k=1

ωi(k) · ln (µ71
kj

µ71
0j

)
(24)

where ωi(k) =
(Ib)−1K( i−k

b
)

(Ib)−1
∑I

m=1 K( i−m
b

)

We used the normal kernel as the kernel weighting function, K(·). The bandwidth for

the estimator denoted by b defines the width of the interval over which local averaging

takes place.26 For an age pair where zero marriage is encountered, a weighted average

of neigbouring points with positive marriages are used to construct an estimate at that

point. The non-parametric estimator proposed in equation [24] is standard and discus-

sions of the approach may be found in a number references. A recent text by Yatchew

2003 provides an excellent overview. A similar estimator can be constructed for age i

males.

Figure 3a plots n̂71
ij and N̂71

ij for 20 and 30 year old males and females by the ages of

their spouses and Figures 3b plots them for 40 and 50 year old males and females. In

Figure 3a, the distribution of N̂71
i,20 n̂71

20,j are right skewed, with the 20 years old female

26To ensure that we do not under or over-smooth, numerous values of the smoothing parameter were
attempted.
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receiving the largest systematic net gain when she marries a slightly older male while

the 20 years old male receiving the largest systematic net gain when he marries a slightly

younger female.

Comparing the distribution of systematic net gain for a 30 years old female, N̂71
i,30,

with her 20 years old counterpart, we find the distribution for a 30 years old female to

be more dispersed. Again she receives the largest net gain when she marries someone

slightly older. If we consider the distribution for 30 year old males, n̂71
30,i, we also find

the distribution to be more dispersed than for his 20 year old counterpart. Again his

largest net gain is to marrying someone slightly younger. 27

Figure 3b compares the systematic net gains to marriage for 40 and 50 years old

males and females. We observe that the net gains to marriage fell substantially by age.

The net gains to marriage for 40 old males were higher than for 40 year old females and

the marriage rate is also higher. The distribution of net gains to marriage for 40 year

old females is similar to that of 50 year old males! Put another way, the age distribution

of spouses of 40 year old females in 1970 is similar to the age distribution of spouses of

50 year old males. Finally, the net gains to marriage for 50 year old females were lower

than the other groups.

From Figure 3, we also observe that the estimated net gains are negative which re-

flects the fact that the systematic net gains to marriage is smaller than not marrying.

This is not surprising since at any age, most individuals do not marry.28 The behav-

ioral assumption of the model predicts a match to occur only when the match specific

idiosyncratic utility is large.

Most of the features of the empirical distributions in Figures 3a and 3b are expected;

What is new is that our model provides a normative interpretation of these empirical

distributions. It is important to remember that our estimates of net gains reflect both

preferences and equilibrium transfers.

27According to equations (16) and (17) stated earlier, the area below the transformed net gains, exp(nij)
and exp(Nij) is proportional to the type specific marriage rates. Comparing the areas under the

respective transformed distributions, the area under exp(n̂71
20,j) is smaller relative to that of exp(N̂71

i,20)
suggesting that the marriage rate of 20 year old females is larger than that of 20 year old males. For
30 year old individuals we observe the converse, that is, the marriage rate for males is higher than his
30 year old female counterpart. These transformed distributions not shown in the current version are
available from the authors on request. These qualitative results are also apparent from Figure 4.

28nij > 0 implies µij > µi0 which is counterfactual for all i, j.
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7.2 Estimating the systematic gains to marriage

Figure 4 shows the 1971/2 and 1981/2 marriage rates by age. For both decades, the

marriage rates for women are higher than that for men in the early ages and lower in

the later ages. Marriage rates for both men and women were noticebly lower in 1981.

The decline in marriage rates was particular sharp for young adults.

Within the context of our model, the marriage rate of a type of individual measures

the expected gains to entering the marriage market relative to not entering for that type.

In this light, Figure 4 shows two relevant features. First, the expected gains to entry

rise rapidly by age, peak around mid-twenties and then slowly decline with age. The

expected gains are larger for young women than men and reverse for older individuals.

Second, the expected gains to entering the marriage market for both men and women

fell substantially over the decade. It is clear that a constant total systematic gains to

marriage model over the decade cannot fit the data. It should also be clear that any

increasing returns to scale marriage matching function, where the marriage rate should

have increased over the decade, will provide a even worse fit.

In order to quantify the changes in the systematic gains to marriage over the decade,

we first estimate a benchmark model of the marriage market where the type space only

consists of the ages of individuals. That is, i = 16, .., 75 denotes the age for men,

j = 16, ..75 denotes the age for women, t = 71 and t = 81 denotes the period 1971/72

and 1981/82 respectively. For year t, we estimate the total systematic gains to marriage

by:

πt
ij = ln


 µt

ij√
µt

i0µ
t
0j




To deal with the thin cell problem, we employ a non-parametric locally smoothed esti-

mate of πt(·) at any age pair (k, l).29

29

π̂t(k, l) =
J∑

j=1

I∑

i=1

ωij(k, l) · πt
ij (25)

where ωij(k, l) =
(IJb2)−1K( i−k

b ) ·K( j−l
b )

(IJb2)−1
∑I

i=1

∑J
j=1 K( i−k

b ) ·K( j−l
b )

The parameter b denotes the bandwidth and K(·) denotes the kernel weight. Like in the previous
application, we used the normal kernel and attempted numerous bandwidth parameters.
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Figure 5 shows the smoothed non-parametric plot of π̂71
ij . Compared with Figure

1a, the distribution of the estimated total gains are less peaked and less concentrated.

In particular, the total gains are larger off the age diagonal and for older individuals

than would be predicted from bivariate marriage distribution of Figure 1a. Like the

estimates of the net gains from marriage in the previous section, we observe that the

estimated systematic total gains relative to remaining single is also negative. This reflect

the empirical fact that most available individuals do not marry. As far as we know, we

have just presented the first estimates of the systematic gains to marriage relative to

not marrying between any two age pairs for the US.

As discussed earlier, Figure 1a shows the standard result that there is strong positive

assortative matching by age. Beginning with Becker, economists have investigated con-

ditions for observing positive assortative matching by traits in the marriage market.30

These investigations assume that if a trait of an individual has a natural ordering, then

marital output is increasing or decreasing in that trait.31 Figure 5 shows that system-

atic marital output is not monotonic in either male or female ages. Thus the theoretical

investigations into the conditions for positive assortative matching do not apply in our

context. The rationale for observing positive assortative matching by age in Figure 5

is more mundane. Approximately along the age diagonal, systematic marital output is

higher than off the age diagonal. That is, individuals match assortatively by age because

they ‘suit’ each other best! Although not shown, the plot of π̂81
ij is qualitatively similar.

7.3 Testing model mispecification

A strong implication of our model, as given in equation (15), is that πt only reflect

preference parameters and is independent of population vectors. To the extent that

dynamic considerations and scale effects are important, πt will be a function of the

population vectors at time t. Table 2 presents some regressions of π̂71
ij on demographics

and 1970 population vectors. We also include results using ln θ̂71
ij from equation (23) as

a dependent variable to test Dagvik’s model as well.

30Also see Shimer and Smith 2000, Legros and Newman 2002.
31Most of these investigations implicitly or explicitly focus on income of the participants. Holding other

factors constant, the assumption that a spouse with more income is better is natural.
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Table 2

OLS IV OLS IV

Dependent var. ln
( µij√

µi0µ0j

)
ln

( µij

µi0µ0j

)

ln(m70
i ) 0.0321 0.2136 -0.6156 -0.1484

(0.12) (0.09) (2.27) (0.06)

ln(f 70
j ) -0.7038 -6.7777 -1.3368 -6.6350

(2.81) (1.54) (5.32) (1.52)

Observations 2771 2771 2771 2771

R2 0.93 0.93

Instruments ln(m80
i ) ln(m80

i )

ln(f 80
j ) ln(f 80

j )

Robust t statistics in parentheses. Ninth order polynomial present in all regressions.

We present results from OLS and instrumental variable (IV) regressions.32 IV re-

gressions were carried out because π̂71
ij and ln θ̂71

ij are constructed with 1970 population

vectors. So if there is measurement error in our measure of the population vectors, this

may induce correlations between π̂71
ij , ln θ̂71

ij and the population vectors even when there

is no true relationship. We use the 1980 population vectors as instruments for the 1970

population vectors. In all regressions, we also include ninth order age polynomials of

ages, i and j.

Columns (1) and (2) show OLS and IV results for our model. Columns (3) and (4)

show OLS and IV results for Dagsvik’s model. In column (1), the 1970 female population

vector can still explain variations in π̂71
ij even after controlling for demographics (using

a ninth order polynomial in ages). This result suggests that π̂71
ij is possibly correlated

with the population vectors in 1970, a violation of our model. The estimated negative

coefficient however suggests that this correlation could also be induced by measurement

error in population vectors. In the IV regression (column (2)), the correlation between

32We also estimated models where the observations are weighted by the geometric average of the popu-
lation vectors, and with median regressions. The results are similar to those obtained here.
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our estimate of preferences and population vectors become statistically insignificant.

However, given the large standard errors, it is premature to conclude that there is no

model mispecification.

The results for Dagsvik’s model in columns (3) and (4) are similar to what we found

for our model. In fact in the OLS results (column (3)), the estimated coefficients for

both population vectors are statistically different from zero. Thus there is some marginal

evidence to prefer our model to his. The evidence in Table 2 does not support the

hypothesis that scale effects are quantitatively important in the US marriage market in

the early seventies.

8 Drop in the gains to marriage

Figure 6 shows the plot of the change in the gains to marriage over the decade, ∆π̂ij =

π̂81
ij − π̂71

ij . As alluded to earlier, the striking feature of the data is the sharp drop in the

estimated total gains to marriage to young adults in 81/2. The drop is particular visible

along the age diagonal as shown in Figure 6b.

We explored two factors which may have caused the fall in the total gains to marriage.

First, in an earlier draft of this paper, we expanded the type space to include three levels

of education (less than high school, high school graduate and college graduate). College

graduates delay marriage relative to non-college graduates. We expected more adults

to have obtained college degrees in 1980. So if we account for educational attainment,

we may be able to explain part of the drop in the gains to marriage. Introducing

educational attainment in an expanded type space significantly improved the fit of the

model. Nonetheless, we were still unable to account for most of the estimated drop in

the gains to marriage among young adults over the decade. The reason why including

educational attainment did not explain the drop is shown in Figure 7. While the fraction

of adults who have a college degree in 1980 was much larger than in 1970, the increase was

concentrated among older adults. Among adults younger than 25 years old, there was

essentially no difference in college attainment between 1970 and 1980. Thus educational

attainment did not play a large role in affecting the drop in the gains to marriage among

young adults over the seventies.
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9 Legalizing abortion and the fall in the gains to

marriage

Technological innovations and social changes like the invention of the pill and the legal-

ization of abortion in the seventies has affected the gains to marriage by changing the

opportunites available to women. In this section, we explore the role of differential ac-

cess to legal abortions across states in the seventies in affecting the gains to marriage.33

Before 1967, legal abortion was generally unavailable. Between 1967 and 1973, legal

abortion became easier to obtain in several states (reform states).34 The reform states

included in our analysis are: Alaska, California, Delware, Florida, Georgia, Hawaii,

Kansas, Maryland, North Carolina, Oregon, South Carolina and Virginia.

In January 22, 1973, due to the United States Supreme Court ruling in Roe v. Wade,

legal abortions became available in the entire country. This ruling is less restrictive on

access to abortion than what were available previously in the reform states.

If partial availability of legal abortions in a state reduced the gains to marriage in

that state, we would expect to see lower gains to marriage in reform states relative to

non-reform states in 1971/2 but not in 1981/2. Moreover this difference in difference in

the gains to marriage should be concentrated among women of child bearing age and

the men who marry them.

In order to empirically study the impact of the partial legalization of abortions on

the gains to marriage, consider an expansion of the type space of individuals. A type of

an individual is now defined by his or her age, whether the individual lives in a reform

state (r for male and R for female), or non-reform state (n for male and N for female),

and time, t. We will use the convention s and S to denote the states of residences for

a male and female respectively, where s ∈ {r, n} and S ∈ {R, N}. We assume that

all individuals at time t, living in a reform state or otherwise, are available to other

individuals at the same time t in one national marriage market. So an individual living

in a reform state at time t may marry someone living at same time in either a reform

33Akerlof, et. al. 1996 argued that the legalization of abortion may substantially reduce the gains to
marriage. Also see Goldin and Katz 2002 and Siow 2002.

34Thirteen states passed “Model Penal Code” legislation. Alaska, Florida, Hawaii, New York and Wash-
ington enacted even more liberal laws. California’s restrictive abortion laws were struck down by the
state courts. See Merz, Jackson and Klerman 1995 for details.
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or non reform state, and vice versa.

Let t = 71 refer to the marriage market in the years 1971 and 1972, and t = 81 refer

to 1981 and 1982. The number of i, j marriages between male and female individuals

from states (s, S) respectively at time t is denoted by µsS
ijt.

To provide a benchmark for our analysis, consider the marriage rate regression, where

ρS
jt is the marriage rate of age j females living in state S at time t:

ρS
jt = h(j) + ht(j) · (1−Djt) + hR(j) ·Dr

j + hR
t (j) ·DR

j ·Djt + vS
jt (26)

We use the notation D to denote dummy variables and h(x) to denote some general

nonparametric function which has x as its argument. The variable Djt takes a value of

1 for t = 1971/72 and zero otherwise; DR
j takes a value of 1 if the female individual is

from a reform state, and zero otherwise; vS
jt is an error term with mean zero.

The terms ht(j) and hR(j) allow for age specific time trend and age specific state

effect respectively. Then hR
t (j) measures the impact of living in a reform state at t = 71

on the marriage rate of type j females. The function hR
t (j) can be estimated non-

parametrically by the difference in differences (DD) estimator. Let

∆2ρf
j = [ρR

j71 − ρR
j81]− [ρN

j71 − ρN
j81], (27)

Then a non-parametric estimator of hR
t (k) at age k is given by,

ĥR
t (k) =

J∑
j=1

ωj(k) ·∆2ρf
j (28)

where ωj(k) =
(Jb)−1K( j−k

b
)

(Jb)−1
∑J

j=1 K( j−k
b

)

The function K(·) is the kernel weights and b is the appropriate bandwith for the esti-

mator. A similar estimator can be constructed for age i males.

The systematic gains to marriage can be parameterized in a similar manner. Let the

marriage gains to an age i male living in state s with an age j female living in state S

at time t, πsS
ijt, be given by:

πsS
ijt = g(i, j) + gt(i, j) · (1−Dijt) + grR(i, j) ·DrR

ij + gnR(i, j) ·DnR
ij (29)

+ grN(i, j) ·DrN
ij + grR

t (i, j) ·DrR
ij ·Dijt + gnR

t (i, j) ·DnR
ij ·Dijt

+ grN
t (i, j) ·DrN

ij ·Dijt + εsS
ijt
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The notational convention adopted in equation [26] applies. The dummy variable

Dijt takes a value of 1 for age combinations in years t = 1971/72 and zero otherwise;

the variable DrN
ij takes a value of 1 for couples where the male resides in the reform

states, r, and the females in the non-reform state, N and zeros otherwise, and so on.

The function g(i, j) captures the systematic gain to marriage for an age i male in a non-

reform state with an age j female in a non-reform state in 1971/72. It forms the base

gains to marriage that varies according to the ages of the couples, (i, j). The functions

grR(i, j), gnR(i, j) and grN(i, j), captures the remaining fixed effects arising from the

state of residence of the couple. For example, grR(i, j) is the increment in systematic

gains added to the base g(i, j) if the couples are both from the reform states.

The increment to the gains to marriage in years 1981/82 for an (i, j) pair is captured

by the function gt(i, j). This time effect is assumed to be independent of the state of

residence. The function gsS
t (i, j) is the increment to the gains to marriage in t = 1971/72

between a male in state s and female in state S for state combinations sS 6= nN . If

we expect the legalization of abortion in the reform states to have lowered the gains to

marriages among young adults who both reside in those states, then grR
t (i, j) < 0 for

young couples. The mean zero error term is denoted by εsS
ijt.

Our model for the systematic gains to marriage in equation [29] has some advantages

over the marriage rate formulation in equation [26]. First, the formulation using the

systematic gains satisfies all the restrictions of a marriage matching function while the

marriage rate models of the form in equation [26] do not impose any restriction between

different marriage rates. Second, our model can distinguish between the effect of the

legalization of abortion on the systematic gains to marriage for age i males with different

types of females. For example, grR
t (i, j) need not be the same as grR

t (i, j′).

For any age combination (i, j) with observed marriages, the systematic gains, πsS
ijt is

estimated by π̂sS
ijt = ln

(
µsS

ijt

/√
µsS

i0tµ
sS
0jt

)
. The increment in the gain to marriage for an

i, j pair in 1971/72 who lived in reform states, grR
t (i, j) can be estimated by the DD

estimator:

∆2πrR
ij = (π̂rR

ij71 − π̂rR
ij81)− (π̂nN

ij71 − π̂nN
ij81) (30)

Similarly, we can define a non-parametric estimate of grR
71 (·, ·) at any age combination
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(k, l) as

ĝrR
71 (k, l) =

J∑
j=1

I∑
i=1

ωij(k, l) ·∆2πrR
ij (31)

where ωij(k, l) =
(IJb2)−1K( i−k

b
) ·K( j−l

b
)

(IJb2)−1
∑I

i=1

∑J
j=1 K( i−k

b
) ·K( j−l

b
)

Note the similarity between ∆2πsS
ij and the standard DD marriage rate estimator, ∆2ρf

l ,

for l = i, j. Although ∆2πsS
ij is defined for an age pair (i, j), and state pair (s, S) rather

than for male or female ages alone, it is as easy to estimate as equation [27].

Data:

Using information on the place of residence from the US Census, and the marriage

records from the Vital Statistics, we classify the data described in Section 7 according

to whether the place of residence of an individual is a reform or non-reform state. Table

3 provides a summary of the data used.

The sample of available males and females on the marriage market from the non-

reform states is considerably larger than that of the reform states. The increase in the

population observed over the decade in the two groups of states also differ in magnitude.

In the reform states, the population of available males and females increased by 50.4

% and 54.6 % respectively, compared to a more modest increase of 38.2 % and 30.7 %

for available males and females respectively in the non-reform states. The average age

of males and females in the two groups of states are comparable to the numbers of the

entire sample reported in Table 1.

As expected, marriages between individuals in the same state of residence are more

likely relative to marriage between individuals living in different states. There are 2.1

million marriages between couples in the non-reform states, (µnN), compared to 1.05

million between couples in the reform states, (µrR), in 1971/72. The number of cross-

marriages in 1971/72, (µrN , µnR), is around 40,000. The changes in the total number

of marriages across the four groups over the decade differ in magnitude and sign. Mar-

riages between reform state males and non-reform state females decreased by 14.8 %

while marriages between males from non-reform states and females from the reform

states decreased by almost 30 %. In the reform states where there was little change in

access to legalized abortion over the decade, we find total marriages increase by 17 %
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Table 3: Data summary based on place of residence

US Census data in

1970 1980 ∆

No. of available males in reform states (M r) 5.76 mil 9.24 mil 60.41%

No. of available females in reform states (F r) 6.70 mil 10.36 mil 54.63%

No. of available males in non-reform states (Mn) 10.25 mil 14.17 mil 38.24%

No. of available females in non-reform states (F n) 12.90 mil 16.86 mil 30.70%

Aver. age of available males in reform states 30.00 29.62

Aver. age of available females in reform states 38.93 36.93

Aver. age of available males in non-reform states 30.64 29.53

Aver. age of available females in non-reform states 39.22 37.24

Vital Statistics data in

1971/72 1981/82 ∆

No. of marriages in rR states (µrR) 1.05 mil 1.26 mil 17.17%

No. of marriages in rN states (µrN) 45,456 38,730 -14.80%

No. of marriages in nR states (µnR) 39,367 30,358 -29.68%

No. of marriages in nN states (µnN) 2.10 mil 2.11 mil 0.56%

Aver. age married males in reform states 27.5 29.6

Aver. age married males in non-reform states 26.9 28.9

Aver. age married females in reform states 24.8 26.8

Aver. age married females in non-reform states 24.4 26.2
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while in the non-reform states where legalized abortion became more accessible, total

marriages only increased by .56 %. It is this differential change in marriage patterns in

the four groups and the changes in the population of marriage market participants that

provide identification of the fall in marriage gains due to legalizing abortion.

Results:

Figure 8(a) shows estimates of the decrease in marriage rates in the reform states

from the DD marriage rate estimators, ĥN
t (k). Consistent with the findings in Angrist

and Evans 1999, ĥl
t(k) are negative for both young males and young females. There

is evidence of a small increase in the marriage rate of males, and a smaller increase in

the marriage rates of females, between the ages of 30 to 40. As explained later, it is

problematic that the estimated effects for males are significantly larger than that for

females.

Figure 9 shows estimates of ̂grR
t (i, j). The figure shows the systematic gains to

marriage for young adults in 1971/72 living in reformed states fell relative to those living

in non-reformed states. Other effects are less easy to detect from the figure. Figure 8(b)

shows a slice along the diagonal of the ̂grR
t (·, ·) distribution, that is, ̂grR

t (i, i) for same

aged spouses. This slice of the distribution is informative because there are many same

aged spouses. The drop in the gains to marriage for same age spouses, between the

ages of 19 to 26, in reform states is substantial. We also see a small increase in the

gains to marriage for same age spouses, between the ages of 27 to 40. An explanation

of these gains is that these are young individuals who would have gotten married young

had abortion not been legalized. This social change allow these individuals to delay

marriage to an older age.

We interpret the effects displayed in Figures 8 and 9 as due to the partial legalization

of abortion on marriage rates and the gains to marrage. The standard DD argument for

identification is based on the claim that the policy intervention of interest generates year

and location specific interaction effects that would otherwise not be there. In addition to

the standard argument, we also expect partial legalization to affect young adults more

than older adults which is consistent with the evidence in Figures 8 and 9.

In order to quantify the effect of the partial legalization of abortion on marriage

rates, we use the two estimators, ∆2πsS
ij and ∆2ρk

l (k = m, f), to do a counterfactual
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experiment. Consider an experiment where the non-reform states also partially legalize

abortion in 1971/72 like the reform states. The estimates from the DD marriage rate

equation [27], allow us to contruct a counterfactual marriage rate for male and female

in the non-reform states. Using our estimate of ĥs
71(k), let the counterfactual marriage

rates for males and females be denoted by ρ̃n
i71 and ρ̃N

j71 respectively, where

ρ̃s
k71 = ρs

k71 − ĥs
71(k) where (s, k) ∈ {(n, i), (N, j)}.

Using the counterfactual marriage rates in the non-reform states and the observed

rates in the reform states, we construct an aggregate male and female marriage rate in

the scenario where there was no differential access to abortion in 1971/72.

A comparable counterfactual marriage rate can be constructed using the DD marriage

gains estimator. We first estimate ĝrR
71 (i, j), ĝrN

71 (i, j), and ĝnR
71 (i, j) according to equation

[30]. Using these estimates, we construct gains to marriage in the non-reform states in the

counterfactual scenario that abortion was partially legalized in these states in 1971/72.

Using our estimates of ̂gsS
71 (i, j), these counterfactual marriage gains, π̃nN

ij71, π̃rN
ij71, and

π̃nR
ij71 are estimated according to this equation,

π̃sS
ij71 = π̂sS

ij71 − ̂gsS
71 (i, j) where sS ∈ {nN, rN, Rn}, ∀ i, j

We subsequently compute the number of marriages that would have been observed

using these counterfactual marriage gains and the observed marriage gains for the reform

states, π̂rR
ij71.

Let the counterfactual aggregate marriage rates in 1971/72 constructed using the DD

marriage rate and DD marriage gains estimator be denoted by Cρ
j71 and Cπ

j71 respectively.

The graphs in Figure 10 (a) and (b) compares the change in actual marriage rates for

age k, ∆ρl
k = ρl

k81−ρl
k71, l = m, f , with ∆ρρl

k = C l
k71−ρl

k71 and ∆πρl
k = Cπ

k71−ρl
k71.

35 As

discussed earlier, marriage rates for males and females fell over the decade. Both ∆ρρl
k

and ∆πρl
k suggest that a quantitatively significant part of the fall in aggregate marriage

rates for young adults over the decade is attributable to the lack of partial legalization

in the non-reform states in 1970. ∆πρm
22 suggests that 20% of the observed fall in the 22

35Non-reform states went from no legalization to full legalization between 1970 and 1980. This change can
be conceptually decomposed into (1) no legalization to partial legalization, and (2) partial legalization
to full legalization. We are asking how much of the change in marriage rates over the decade can be
attributed to the conceptual change from no legalization to partial legalization.
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year old male marriage rates can be attributed to partial legalization compared to the

31% estimate from ∆ρρm
22. The estimates of female marriage rate decrease attributable

to the partial legalization of abortion is more modest.

While the ∆ρρl
k and ∆πρl

k estimators provide qualitatively similar results, the quan-

titative predictions of the two estimators are very different. As mentioned earlier, a

shortcoming of the DD marriage rate estimator is the lack of consistency between the

estimated number of marriages from the male and female marriage rate equations. The

estimate from the female DD marriage rates estimator suggest that legalizing abortion

in the non-reform states would have resulted in 7080 less marriages in 1971/72 while

the estimate using the male marriage rates is 196,270.36 The latter estimate is larger

by a factor of 27 times!37 This kind of discrepancy from male and female marriage rate

regressions is not unusual. So while marriage regressions are easy to use and interpret,

the biases in these estimators can be substantial.

The estimate from the DD marriage gains estimator is around 45,440 less marriages

among individuals aged 16 to 75 years of age. In other words, the legalization of abortion

in the non-reform states in 1971/72 would have resulted in 1.4 % less marriages in that

period. Among young individuals the decrease is more pronounced. For males aged 16

to 25 years old, abortion legalization in the non-reform states would have lowered the

number of marriages in this group by 4.2 % while among 16 to 25 years old females,

the decrease is around 3.6 %. As suggested by the graphs in Figure 10, the effects is

reversed for older aged individuals. For males older than 26 years of age, this social

change would have increased the number of marriages in this group by 3.8 % and for

females older than 26 years of age, the increase is around 5.2 %.

10 Conclusion

This paper proposed and estimated a non-parametric transferable utility model of the

marriage market. The model was used to estimate US marital behavior in 1971/72

and 1981/82. The estimates show that the gains to marriage for young adults fell

36The total number of recorded marriages in 1971/72 is 3,235,806.
37While smaller, significant disparity remains if we limit ourselves to marriages for individuals less than

age thirty.
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substantially over the decade. The legalization of abortion had a significant quantitative

impact on the fall in the gains to marriage.

We discuss some avenues for future research. First, we need to understand better

the substitution effects in this model.

Second, we considered a static model of the marriage market. A dynamic transferable

utility model of the marriage market is needed. This research is currently in progress.

Third, an issue that arises in modelling dynamic marriage market models with search

frictions is the specification of the meeting technology. To date, economists have primar-

ily considered random meeting technology (E.g. Ayagari, et. al. 2000, Seitz, Hamilton

and Siow, Wong 2003a and 2003b). Our marriage matching function provides a method-

ology for generating non-random meeting technologies.

Fourth, we ignored cohabitation in this paper. Methodologically, cohabitation is

easy to incorporate. Cohabitation is another type of match in the marriage market.

The reason why we ignored cohabitation in the current empirical analysis is because we

cannot calculate the number of new entrants into cohabitation from census data.
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11 Appendix A

The derivations of (8) and (9) are known and included here for completeness.

11.1 Derivation of (8)

(5) may be rewritten as

Vijg = α̃ij − τij + εijg = ηij + εijg

As specified by (7), g solves

Vig = max
j
{Vi0g, .., Vijg, .., ViJg}

The probability that a type j woman is chosen is:

Pr{Vig = Vijg|η} = E{Πk 6=jF (εijg + ηij − ηik)}

=

∫ ∞

−∞
exp{−

∑

k 6=j

e−ε−ηij+ηik}e−ε−e−ε

dε

The index k runs from 0 to J .

Let

c = 1 +
∑

k 6=j

e−ηij+ηik

Also note that ∫
e−ε−ce−ε

dε =
e−ce−ε

c
(32)

Then (??) becomes:

Pr{Vig = Vijg|η} =

∫ ∞

−∞
exp{−ε− c exp(−ε)}dε

=

[
e−ce−ε

c

]∞

−∞

=
exp ηij∑
k exp ηik

So
Pr{Vig = Vijg|η}
Pr{Vig = Vi0g|η} = exp(ηij − ηi0) = exp(α̃ij − αi0 − τij) (33)

When there are many men of each type, we may approximate Pr{Vig = Vijg|η} with
µij

mi
. Then (8) follows from (33).
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11.2 Derivation of (9)

The index k runs from 0 to J . Observing male g of type i choose choice j, the expected

utility of that individual is:

EVijg = ηij + E(εijg|εijg + ηij > ηik + εikg ∀k 6= j)

E(εijg|εijg + ηij > ηik + εikg ∀k 6= j) (34)

=

∫∞
−∞ ε exp{−∑

k 6=j e−ε−ηij+ηik}e−ε−e−ε
dε

Pr{Vig = Vijg|η}
Using (32) and the fact

∫ ∞

−∞
xex exp(−φex)dx = −Γ + ln φ

φ

where Γ is Euler’s constant, ' 0.577215, (34) may be expressed as

E(εijg|εijg + ηij > ηik + εikg ∀k 6= j) = Γ + ln(
∑

k

exp ηik)− ηij

Thus

EVijg = ηij + E(εijg|εijg + ηij > ηik + εikg ∀k 6= j) = Γ + ln(
∑

k

exp ηik) (35)

which is independent of j. Since knowing the optimal choice of the individual is not

informative about his expected payoff, EVig = EVijg. Then (35) and (8) imply:

EVig = Γ + ln(
∑

k

exp(α̃ik − τik)) = Γ + α̃i0 + ln mi − ln µi0 (36)

which is (9).

12 Appendix B

To apply the implicit function theorem to the system (21) and (22), we need to show

that the Jacobian of the system is non-singular. The Jacobian is:


 DJ B

C DI



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where DJ is a J × J diagonal matrix where the jj element is −1 −∑I
i=1

µij

2µ0j
, and the

off diagonal elements are zero. DI is an I × I diagonal matrix where the ii element is

−1 − ∑J
j=1

µij

2µi0
and the off diagonal elements are zero. B is a J × I matrix whose ji

element is − µij

2µi0
. C is an I × J matrix whose ij element is − µij

2µ0j
.

As long as µi0 6= 0 and µ0j 6= 0, we know D−1
I and D−1

J exist. Then using the formula

for a partition inverse, the Jacobian is non-singular as long as

−
[
IJ −BD−1

I CD−1
J

]−1

D−1
J

exists.

Let A = BD−1
I CD−1

J , then (IJ − A) is invertible if there is a matrix norm ‖ • ‖
such that ‖A‖ < 1. Consider the maximum column sum matrix norm defined by,

‖A‖ = maxj

∑n
i=1 |aij|. Then:

‖CD−1
J ‖ = max

j

∑
i µij

2µ0j +
∑

i µij

< 1

‖BD−1
I ‖ = max

i

∑
j µij

2µi0 +
∑

j µij

< 1.

By definition of a matrix norm, ‖BD−1
I CD−1

J ‖ ≤ ‖BD−1
I ‖ · ‖CD−1

J ‖ < 1, and hence

(IJ − A)−1 exists. ¤

13 Appendix C: Data

Data used were extracted from the Integrated Public-Use Microdata (IPUMS henceforth)

Files of the US Census. The samples used were the 5% state samples for 1980, and the

1% Form 1 and Form 2 samples for 1970. The 1970 datasets were appropriately scaled

to be comparable with the 1980 files.38

To maintain consistency between states reporting marriages to the Vital Statistics

and the data collected from the respective US Census, some states to be excluded. This

result in the data from the following states being used: Alabama; Alaska; California

38State of residence in the 1970 census files can only be identified in the state samples (Form 1 and
Form 2 samples, both of which are 1% samples). This is the reason that the other samples were not
used for 1970 calculations. Further, the age of marriage variable is only available in Form 1 samples in
1970 which meant that only one sample, the Form 1 state sample, was used for calculations involving
married couples in the 1970 census.
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Connecticut; Delaware; District of Columbia; Florida; Georgia; Hawaii; Idaho; Illinois;

Indiana; Kansas; Kentucky; Louisiana; Maine; Maryland; Massachusetts; Michigan; Mis-

sissippi; Missouri; Montana; Nebraska; New Hampshire; New Jersey; New York State;

North Carolina; Ohio; Oregon; Pennsylvania; Rhode Island; South Dakota; Tennessee;

Utah; Vermont; Virginia; West Virginia; Wisconsin and Wyoming.39

The age range studied was 16 to 75 years of age. Education level was identified using

the “higradeg” variable in the 1970 and 1980 samples. This variable allowed us to

assign each person one of the following schooling types: less than highschool, highschool

graduate, and college degree or more.

We use the “marst” variable in the census to identify a person as either: never mar-

ried, currently married (spouse present), or previously married (divorced or widowed).

Further, the “marrno” variable (in 1970 and 1980 datasets) allows us to distinguish be-

tween married individuals in their first marriage and individuals in their second or later

marriage.

To calculate the number of unmarried individuals of each type, we simply collapse

the census data into counts by type. The process is straightforward and we don’t loose

any observations along the way.
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