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Abstract

This paper addresses a fundamental identification problem in the structural estimation of

dynamic oligopoly models of market entry and exit. Using the standard datasets in existing

empirical applications, three components of a firm’s profit function are not separately identified:

the fixed cost of an incumbent firm, the entry cost of a new entrant, and the scrap value of an

exiting firm. We study the implications of this result on the power of this class of models to

identify the effects of different comparative static exercises and counterfactual public policies.

First, we derive a closed-form relationship between the three unknown structural functions and

the two functions that are identified from the data. We use this relationship to provide the

correct interpretation of the estimated objects that are obtained under the ‘normalization as-

sumptions’ considered in most applications. Second, we characterize a class of counterfactual

experiments that are identified using the estimated model, despite the non-separate identifi-

cation of the three primitives. Third, we show that there is a general class of counterfactual

experiments of economic relevance that are not identified. We present a numerical example that

illustrates how ignoring the non-identification of these counterfactuals (i.e., making a ‘normal-

ization assumption’ on some of the three primitives) generates sizable biases that can modify

even the sign of the estimated effects. Finally, we discuss possible solutions to address these

identification problems.
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1 Introduction

Dynamic models of market entry and exit are useful tools in the study of different issues and

questions on firm competition for which it is important to consider the endogeneity of the market

structure and its evolution over time. During recent years, the structural estimation of this class

of models has experienced substantial developments, both methodological and empirical, and there

are a growing number of empirical applications.1 In all of these applications, the answer to the

empirical questions of interest is based on the implementation of counterfactual experiments using

the estimated model. Sometimes, the purpose of a counterfactual experiment is to evaluate the

effects of a hypothetical public policy, such as a new tax or subsidy. In other instances, the main

purpose of the experiment is to measure the effects of a parameter change. For instance, we may

want to obtain the change in market structure, prices, firm profits, and consumer welfare if we

reduce the value of a parameter that captures entry costs by 25 percent.

To estimate dynamic structural models of market entry/exit, we distinguish two main compo-

nents in a firm’s profit function: variable profit and fixed cost. Parameters in the variable profit

function (i.e., demand and variable cost parameters) can be identified using data on firms’ quantities

and prices combined with a demand system and a model of competition in prices or quantities.2

The fixed cost is the part of the profit that derives from buying, selling, or renting inputs that

are fixed during the whole active life of the firm.3 The fixed cost is constant with respect to the

amount of output that the firm produces and sells in the market, however, this cost depends on

the amount and prices of fixed inputs, such as land or fixed capital, and on the firm’s current and

past incumbent status. The parameters in the fixed cost are estimated using data on firms’ choices

of whether to be active in the market, combined with a dynamic model of market entry/exit. The

identification of this fixed cost function is based on the principle of revealed preference. If a firm

chooses to be active in the market, it does so because the firm’s expected value of being in the

market is greater than its expected value of not being in the market. Therefore, a firm’s choice

1Examples of recent applications are: Ryan (2012) on environmental regulation of an oligopoly industry; Suzuki

(2013) on land use regulation and competition in retail industries; Hashmi and Van Biesebroeck (2012) and Kryukov

(2010) on the relationship between market structure and innovation, Sweeting (2011) on competition in the radio

industry and the effects of copyright fees; Collard-Wexler (Forthcoming) on demand uncertainty and industry dynam-

ics; Snider (2009) on predatory pricing in the airline industry; or Aguirregabiria and Ho (2012) on airlines network

structure and entry deterrence.
2See Berry and Haile (2010 and 2012) for recent identification results in the estimation of demand and supply

models of differentiated products.
3There is some abuse of language in using the term "cost" to refer to this component of a firm’s profit. This

fixed component of the profit may include the positive income/profits associated with sales of owned inputs, such as

land and buildings. Therefore, in this paper, we sometimes use "fixed profit" instead of "fixed cost" to denote this

component.
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reveals information about structural parameters affecting the firm’s profit and value.

This paper addresses a fundamental identification problem in the structural estimation of dy-

namic models of market entry and exit. Using the standard datasets in existing empirical applica-

tions, three key components of a firm’s fixed cost function are not separately identified: the fixed

cost of an incumbent firm, the entry cost of a new entrant, and the exit value, or scrap value, of an

exiting firm.4 This non-identification result can be considered an application to dynamic models of

market entry and exit of Proposition 2 in Magnac and Thesmar (2002) on the under-identification

of a general dynamic discrete choice model. In the existing applications of dynamic models of mar-

ket entry and exit, the approach to address this identification problem is to normalize one of three

functions to zero. This is often referred to as a ‘normalization’ assumption. The most common

‘normalization’ is making the scrap value equal to zero. This approach is used in applications such

as those presented by Snider (2009), Collard-Wexler (Forthcoming), Dunne et al. (2011), Varela

(2011), Ellickson et al. (2012), Lin (2012), Aguirregabiria and Mira (2007), or Suzuki (2013),

among others. In other papers, such as Pakes et al. (2007), Ryan (2012), Sweeting (2011) or Igami

(2012), the normalization involves making the fixed cost equal to zero.5

Using this non-identification result as a starting point, the purpose of this paper is to study

the implications of the ’normalization’ approach on the interpretation of the estimated structural

functions and, most importantly, on the identification of the effects of comparative static exercises

or counterfactual experiments using the estimated model. This issue is important because many

empirical questions on market competition, as well as on the evaluation of the effects of public

policies in oligopoly industries, involve examining counterfactual changes in some of these structural

functions (see Ryan 2012, Dunne et al. 2011, Lin 2012, and Varela 2011 among others). We find

that a ‘normalization’ is not always innocuous for some empirical questions. For those cases, we

propose alternative approaches to address this identification problem.

First, we derive a closed-form relationship between the three unknown structural functions and

the two functions that are identified from the data. We use this relationship to provide the correct

interpretation of the estimated objects that are obtained under the ‘normalization assumptions’

considered in applications. Second, we study the identification of counterfactual experiments. We

4This identification problem is fundamental in that it does not depend on other econometric issues that appear in

this class of models, such as the stochastic structure of unobservables, the non-independence between observable and

unobservable state variables, or the existence of multiple equilibria in the data. These issues may generate additional

identification problems. However, addressing or solving these other identification problems does not help separately

identify the three components in the fixed cost function.
5Although making the entry cost equal to zero is another possible normalization, this approach has not been

common in empirical applications.
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characterize a class of counterfactuals that are identified using the estimated model, despite the

non-separate identification of the three primitives. This class of identified counterfactuals consists

of an additive change in the structural function(s) where the change is known to the researcher. We

also show that there is a general class of counterfactual experiments of economic relevance that are

not identified. For instance, the effects of a change in the stochastic process of the price of a fixed

input that is an argument in the entry cost, fixed cost, and exit value functions (e.g., land price) is

not identified. We present numerical examples that illustrate how ignoring the non-identification

of these counterfactuals (i.e., making a ‘normalization assumption’ on some of the three primitives)

generates sizable biases that can modify even the sign of the estimated effects. Finally, we discuss

possible solutions to address these identification problems. We show that a particular type of

exclusion restrictions provides identification. Furthermore, in industries where the trade of firms is

frequent and where the researcher observes transaction prices (Kalouptsidi 2011), this information

can be used to solve this identification problem. In the absence of this type of data, the researcher

can apply a bounds approach in the spirit of Manski (1995). We derive expressions for the bounds

of the three functions using this approach.

The rest of the paper proceeds as follows. Section 2 presents the model of market entry and exit.

Section 3 describes the identification problem and the relationship between structural functions and

identified objects. Section 4 addresses the identification of counterfactual experiments and presents

numerical examples. In Section 5, we discuss different approaches to address this identification

problem. We summarize and conclude in Section 6.

2 Dynamic model of market entry and exit

2.1 Model

We start with a single-firm version of the model or dynamic model of monopolistic competition.

Later in this section, we extend our framework to dynamic games of oligopoly competition. Time is

discrete and indexed by . Every period  the firm decides to be active in the market or not. A firm

is defined as active if it owns or rents some fixed inputs that are necessary to operate in this market,

e.g., land, equipment.6 Let  ∈ {0 1} be the binary indicator of the firm’s decision at period ,

such that  = 1 if the firm decides to be active in the market at period , and  = 0 otherwise. The

firm takes this action to maximize its expected and discounted flow of profits, E (
P∞

=0 
 Π+),

where  ∈ (0 1) is the discount factor, and Π is the firm’s profit at period . We distinguish two

6In principle, a firm may be active in the market but producing zero output. However, whether way allow for that

possibility or not is irrelevant for the (non) identification results in this paper.
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main components in the firm’s profit at time : variable profits,  , and fixed profits (or fixed

costs), , with Π =   + . The variable profit is equal to the difference between revenue

and variable costs. It varies continuously with the firm’s output and it is equal to zero when output

is zero. If active in the market, the firm observes its demand curve and variable cost function and

chooses its price to maximize variable profits at period . This static price decision determines an

indirect variable profit function that relates this component of profit with state variables:

  =  (z ) (1)

where () is a real-valued function, and z is a vector of exogenous state variables affecting

demand and variable costs, e.g., market size, consumers’ socioeconomic characteristics, and prices

of variable inputs such as wages, price of materials, energy, etc.7

The fixed profit is the part of the profit that derives from buying, selling, or renting inputs

that are fixed during the active life of the firm and that are necessary for the firm to operate in

the industry. These fixed inputs may include land, buildings, some type of equipment, or even

managerial skills. We distinguish three components in the fixed profit: the fixed cost of an active

firm, , the entry cost of a new entrant, , and the scrap value of an exiting firm, . Each

of these three components may depend on a vector of exogenous state variables z that includes

prices of fixed inputs (e.g., prices of land and fixed capital inputs). This vector may have elements

in common with the vector z (e.g., the market size may affect both variable profit and fixed costs):

 = − − + 

= −  (z)−  (1− )  (z) + (1− )   (z

)

(2)

where  (),  (), and  () are real-valued functions and  ≡ −1 is the indicator of the event

"the firm was active at period − 1", or, equivalently, the firm had the fixed input at period − 1.
The fixed cost is paid in every period during which the firm is active (i.e., when  = 1). The fixed

cost includes the cost of renting some fixed inputs and taxes that should be paid every period and

that depend on the amount of some owned fixed inputs, e.g., property taxes. The entry cost is paid

if the firm is active in the current period but was not active in the previous period (i.e., if  = 1

and  = 0), and the entry cost includes the cost of purchasing fixed inputs and transaction costs

7The variable profit function is   =  ( z

 )− ( z ), where  is the firm’s price, ( z ) is the demand

function, and   is the variable cost function that depends on output . Maximization of variable profit implies the

well-known condition of marginal revenue equal to marginal cost, ( z

 )+  [( z


 )]−(( z


 ) z


 )

[( z

 )] = 0, where  represents the marginal cost function. Using this condition we can get the optimal

pricing function  = ∗(z ), and plugging-in this optimal price into the variable profit function, we get the indirect
variable profit function (z ) ≡ ∗(z ) (

∗(z ) z

 )−  ((∗(z ) z


 ) z


 ).
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related to the startup of the firm. The firm receives a scrap or exit value if it was active in the

previous period but decides to exit in the current period (i.e., if  = 0 and  = 1). This scrap value

includes earnings from selling owned fixed inputs minus transaction costs related to closing the firm

such as compensations to workers and to lessors of capital due to breaking long-term contracts.

EXAMPLE 1. Consider the decision of a hotel chain about whether to operate a hotel in a local

market or small town. To start its operation (entry in the market), the firm should purchase or

lease some fixed inputs, such as land, a building, furniture, elevators, a restaurant, a kitchen, and

other equipment. If this equipment is purchased at the time of entry, the cost of purchasing these

inputs is part of the entry cost. Other components of the entry cost are the cost of a building permit

or, in the case of franchises, franchise fees. Some fixed inputs are leased. Therefore, a hotel’s fixed

cost includes the rental cost of leased fixed inputs. It also includes property taxes (that depend on

land prices), royalties to the franchisor, and the maintenance costs of owned fixed inputs. At the

time of its closure, the hotel operator may recover some money by selling owned fixed inputs such

as land, buildings, furniture, and other equipment. These amounts correspond to the scrap value.

¥

The one-period profit function can be described as:8

Π =

⎧⎨⎩
  (z


) if  = 0

(z )−  (z)− (1− )  (z) if  = 1

(3)

The vector of state variables of this dynamic model is {z, }, where z ≡ {z , z}. The vector
of state variables z follows a Markov process with transition probability function (z+1|z). The
indicator of incumbent status follows the trivial endogenous transition rule, +1 = .

In the econometric or empirical version of the model, we distinguish between two different

types of state variables: the variables that are observable to the researcher and those that are

unobservable. Here, we consider a general additive specification of the unobservables where every

8 In this version of the model, there is no "time-to-build" or "time-to-exit" such that the decision of being active

or not in the market is taken at period  and it is effective at the same period, without any lag. At the end of this

section we discuss variations of the model that involve "time-to-build" or/and "time-to-exit". These variations do not

have any incidence in our (non) identification results, though they imply some minor changes in the interpretation

of the identified objects.
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primitive function has an unobservable component:9

  =  [(z

 ) + 


 ]

 = 

h
(z) + 




i
 =  (1− ) [(z


) +  ]

 = (1− )  [(z

) +  ]

(4)

where ε ≡ {  

    


 } is the vector of state variables that are observable to the firm at period

 but unobservable to the researcher. Let z be the vector with all the observable exogenous state

variables, i.e., z = (z

  z


). We assume that the unobserved state variables in  are i.i.d. over time

and independent of (z ) (Rust 1994). Without loss of generality these unobserved variables have

zero mean. Allowing for serially correlated unobservables does not have any substantive influence on

the positive or negative identification results in this paper. Serial correlation in the unobservables

creates the so called "initial conditions problem", that is an identification problem of different

nature to the one we study in this paper. Whatever the way the researcher deals with the "initial

conditions problem", he still faces the problem of separate identification of the three components

in the fixed profit. The specification of the one-period profit function including unobservable state

variables is:

Π =  (  ) +  () =

⎧⎨⎩
  (z


) + (0) if  = 0

(z )−  (z)− (1− )  (z) + (1) if  = 1

(5)

where () is the component of the one-period profit that does not depend on unobservables, (0) ≡
 


 , and (1) ≡ 


 − 


 − (1− ) 


 .

The value function of the firm,  ( z ε), is the unique solution to the Bellman equation:

 ( z ε) = max
∈{01}

⎧⎨⎩ (  z) + () + 
X

z+1∈Z
(z+1|z)

Z
 ( z+1 ε+1)  (ε+1)

⎫⎬⎭
(6)

where  ∈ (0 1) is the discount factor, and() is the CDF of ε. Similarly, the optimal decision rule
of this dynamic programming problem is a function  ( z ε) from the space of state variables

9We incorporate here an additive error in the variable profit to allow for unobservables in all primitive functions of

the model; however, we admit that an additive error in the variable profit does not appear plausible. The estimation

of demand and variable costs should incorporate unobservables that enter nonlinearly in the variable profit, e.g.,

the  and  unobservables in the standard Berry-Levinsohn-Pakes (BLP) of demand and price competition in a

differentiated product industry (Berry et al. 1995). However, once demand and variable costs are estimated, this

type of nonadditive unobservables can be recovered as residuals and be treated as observables in the estimation of

the fixed costs, i.e., these unobservables are part of the vector z . This assumption is implicit in the model that we

consider in this paper.
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into the action space {0 1} such that:

 ( z ε) = arg max
∈{01}

{ (  z) +  ()} (7)

where

 (  ) =  (  z) + 
X

z+1∈Z
(z+1|z)

Z
 ( z+1 ε+1)  (ε+1) . (8)

By the additivity and the conditional independence of the unobservable ’s, the optimal decision

rule has the following threshold structure:

 ( z ε) = 1{e ≤ ̃ ( z)} (9)

where ̃ ( z) =  (1  z)−  (0  z) and e ≡ (0)− (1) ≡ ( +  − 

 ) +  (


 −  ).

For our analysis, it is helpful to define also the Conditional Choice Probability (CCP) function

 ( z) that is the optimal decision rule integrated over the unobservables:

 ( z) ≡ Pr ( ( z ε) = 1 |  =  z = z)

= Pr (e ≤ ̃ ( z))

= | (̃ ( z))
(10)

where | is the CDF of e conditional on  = .10 Note that  (0 z) is the probability of market

entry, and [1−  (1 z)] is the probability of market exit.

2.2 Extensions

We also study the identification of four extensions, or variations, of the basic model described

above: (a) model with no re-entry after market exit; (b) model with time-to-build and time-to-exit;

(c) model with investment, and (d) dynamic oligopoly game of market entry and exit.

(a) No re-entry after market exit and no waiting before market entry. Some models and empirical

applications of industry dynamics assume that a new entrant has only one opportunity to enter

and an incumbent can not reenter after exit from the market (e.g., Ryan 2012). This model is

practically the same as the one presented above, with the only difference that the value of not

entering for a new entrant is 0 and the value of exiting for an incumbent is the scrap value, i.e.,

 (0 0 z) = 0 and  (0 1 z) = (z) +  .

10The distribution of  depends on  if the entry cost and the scrap value contain unobservable components and

these unobservables are different, i.e.,  −  6= 0.
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(b) Time-to-build and time-to-exit. In this version of the model, it takes one period to make entry

and exit decisions effective, though the entry cost is paid at the period when the entry decision is

made, and similarly the scrap value is received at the period when the exit decision is taken. Now,

 is the binary indicator of the event "the firm will be active in the market at period + 1", and

 = −1 is the binary indicator of the event "the firm is active in the market at period ". For

this model, the one-period profit function is:

Π =

⎧⎨⎩
 [(z


 )−  (z) +  (z)] + (0) if  = 0

 [(z

 )−  (z)]− (1− )  (z) + (1) if  = 1

(11)

Given this structure of the profit function, we have that the Bellman equation, optimal decision

rule, and CCP function are defined exactly the same as above in equations (6), (9), and (10),

respectively.

(c) Model with investment. So far we have considered a model where the only dynamic decision of

a firm is to be active or not in the market. However, our (non) identification results extend to more

general models where incumbent firms make investments in product quality, capacity, etc. Here we

present a relatively simple model with investment. Suppose that there is a quasi-fixed input, say

capital, and the firm decides every period the amount of capital to use.. Let  ∈ {0 1 · · · }
denote the firm’s decision at period  where  is the largest possible capital level. When  is

zero, the firm is inactive in the current period. The firm’s variable profit depends on the current

amount of capital , e.g., the amount of capital may affect the quality of the product and therefore

demand, and also variable costs. The fixed profit depends both on current capital  and on the

amount of capital installed at previous period,  ≡ −1. The one-period profit function of this

firm is:

Π =

⎧⎨⎩
− (0  z) + (0) if  = 0

( z

 )−  ( z


)−  (  z


) + () if   0

(12)

where  (  z

) is the investment cost function, which represents the cost the firm incurs to

change its capital level from  to  taking z as given. We assume  (  z

) = 0 when  = .

In this specification,  ( 0 z

) represents the entry cost for a firm that decides to enter in the

market with an initial level of capital equal to . Similarly, − (0  z) represents the scrap value
of an incumbent firm with installed capital equal to . It is clear that our baseline model is a

special case of this general model when  = 1.

(d) Dynamic oligopoly game of entry and exit. We follow the standard structure of dynamic

oligopoly models in Ericson and Pakes (1995) but including firms’ private information as in Do-
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raszelski and Satterthwaite (2010).11 There are  firms that may operate in the market. Firms are

indexed by  ∈ {1 2 }. Every period , the  firms decide simultaneously but independently

whether to be active or not in the market. Let  be the binary indicator for the event "firm  is

active in the market at period ". Variable profits at period  are determined in a static Cournot

or Bertrand model played between those firms who choose to be active. This static competition

determines the indirect variable profit functions of the  firms:

  = 

h
(a− z ) + 




i
(13)

where   is the variable profit of firm ; a− is the  − 1 dimensional vector with the binary
indicators for the activity of all the firms except firm ; and 


 is a private information shock

in the variable profit of firm  that is unobservable to other firms and to the researcher. Note

that the variable profit functions,  , can vary across firms due to permanent, common knowledge

differences between the firms in variable costs or in the quality of their products.

The three components of the fixed profit function have specifications similar to the case of

monopolistic competition, with the only differences that the functions can vary across firms, and the

unobservable 0 are private information shocks of each firm:  =  [(z

)+


 ];  = 

(1− ) [(z

) +  ]; and  = (1− )  [(z


) +  ], where ε ≡ {       } is

a vector of state variables that are private information for firm , they are unobservable to the

researcher, and i.i.d. across firms and over time with CDF .

Following the literature on dynamic games of oligopoly competition, we assume that the outcome

of the dynamic game of entry and exit played by the  firms is a Markov Perfect Equilibrium

(MPE). In a MPE, firms’ strategy functions depend only on payoff relevant state variables. Let

 (k z ε) be a strategy function for firm , where k is the vector { :  = 1 2  } with
firms’ indicators of previous incumbent status,  ≡ −1. A MPE is a N-tuple of strategy

functions, { :  = 1 2 } such that every firm maximizes its value given the strategies of the

other firms:

 (k z ε) = arg max
∈{01}

©
 (k z) +  ()

ª
(14)

where

 (k z) ≡  (k z) + 
X

z+1∈Z
(z+1|z)

Z
 
 ( z+1 ε+1)  (ε+1) , (15)

11 In Ericson and Pakes (1995), there is time-to-build in the timing of firms’ decisions. Here we consider a version of

the dynamic game without time-to-build. As described below, all our results on (non-)identification apply similarly

to models with or without time-to-build.
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and  (k z) is the expected profit of firm  at period  given that the other firms follow strate-

gies { :  6= }. This expected profit is equal to (1−)   (z

)+ [


 (k z


 )−  (z


)−

(1− )  (z

)], where  (k z


 ) is the expected variable profit

R
(− (k z ε−)  z )

 (ε−).

As we did in the model for a monopolistic firm, we can represent firms’ strategies using CCP

functions:
(k z) ≡ Pr ( (k z ε) = 1 | k = k z = z)

= | ³ ̃P (k z)
´ (16)

where ̃P (k z) is the differential value function 
P
 (1k z)− P (0k z), and 

P
 ( k z) is equiv-

alent to the conditional choice value function  ( k z) but when we represent players’ strategies

using CCPs.

3 Identification of structural functions

3.1 Conditions on data generating process

Suppose that the researcher has panel data with realizations of firms’ decisions over multiple mar-

kets/locations and time periods. We use the letter  to index markets. The researcher observes a

random sample of  markets with information on { z,  :  = 1 2   ,  = 1 2  },
where  and  are small (they can be as small as  =  = 1) and is large. For the identification

results in this section, we assume that is infinite and  = 1. For most of the rest of the paper, we

assume that the variable profit functions () are known to the researcher or, more precisely, that

they have already been identified using data on firms’ prices, quantities, and exogenous demand

and variable cost characteristics. However, we also discuss the case in which the researcher does

have data on prices, quantities, or revenue to identify the variable profit function in a first step.

We want to use this sample to estimate the structural ‘parameters’ or functions of the model:

the three functions in the fixed profit,  (z

),  (z


), and (z


); the transition probability of the

state variables, ; and the distribution of the unobservables |. Following the standard approach
in dynamic decision models, we assume that the discount factor  is known to the researcher.

Finally, the transition probability function {} is nonparametrically identified.12 Therefore, we

assume that {()  } are known, and we concentrate on the identification of the functions
 (),  (), (), |0, and |1.
12Note that (z

0|z) = Pr(z+1 = z
0 | z = z). Under mild regularity conditions, we can consistently estimate

these conditional probabilities using a nonparametric method such as a kernel or sieve method.
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All of our identification results apply very similarly to the model of monopolistic competition

and to the dynamic game of oligopoly competition. Given the identification of the variable profit

function () and given players’ CCP functions, it is clear that the expected variable profit of

firm  in the dynamic game is also identified.13 From an identification point of view, a relevant

difference between the monopolistic and oligopoly models is that in the oligopoly case, the CCP

function of a firm depends not only on its own incumbent status  but also on the incumbent

status of all firms, as represented by vector . Because a firm’s fixed profit does not depend on

the incumbent status of the other firms, one may believe that this exclusion restriction might help

separately identify the three components of a firm’s fixed profit. However, this conjecture is not

correct. The oligopoly model provides additional over-identifying restrictions that can be tested;

however, these over-identifying restrictions do not help in the separate identification of the three

components of the fixed cost. Therefore, for notational simplicity, we omit the firm subindex for

the rest of the paper and use the notation of the monopolistic case. When necessary, we comment

on some differences to the dynamic oligopoly game and on why the additional restrictions implied

by the dynamic game do not help in our identification problem.

3.2 Identification of the distribution of the unobservables

We might consider a semiparametric version of our model where the conditional distributions |0
and |1 are parametrically specified and known to the researcher up to the scale parameters
|0 ≡ p(e| = 0) and |1 ≡ p(e| = 1), e.g., a Probit version of the model. In that
model, the identification of the scale parameters |0 and |1 requires the following type of exclusion
restriction: there is a special state variable  included in z such that this variable enters in the

variable profit function () (a function that has been identified using data on prices and quantities)

but not in the fixed profit. It turns out that this exclusion restriction, together with a large support

condition, is also sufficient for the nonparametric identification of the distribution functions |0
and |1. Proposition 1 establishes the nonparametric identification of |0 and |1.
PROPOSITION 1. Suppose that the following conditions hold: (a) the vector of unobservables

ε is independent of z; (b) |0 and |1 are strictly increasing over the real line; and (c) the
vector of state variables z includes a ‘special’ state variable, , such that  is included in z




but not in z (i.e., it enters in the variable profit function but not in the fixed profit function),

the variable profit function () is strictly monotonic in , and conditional on  and on the

13Note that the expected variable profit P (k z) is equal to


− [


 6=  (k z)
 (1− (k z))1− ] (− z).

Therefore, given  and CCPs { :  6= }, the expected variable profit function P is known.
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other state variables in z, the distribution of  has support over the whole real line. Under these

conditions, the distributions |0 and |1 are nonparametrically identified. Furthermore, given
(), the nonparametric estimation of these distributions can be implemented separately from the

estimation of the other structural functions in the fixed profit.

So far, we have assumed that the researcher has data on prices and quantities and the variable

profit function  can be identified using this information and independently of the dynamic decision

model. Nevertheless, in many empirical applications of models of market entry and exit there is

not data on prices and quantities. In that context, the specification of the (indirect) variable profit

function typically follows the approach in the seminal work by Bresnahan and Reiss (1990, 1991a,

1991b, and 1994). This specification has the following features: (i) variable profit is proportional to

market size; (ii) market size does enter in the fixed profit; and (iii) the researcher observes market

size. In the monopolistic case, this specification is   =  (z

 ), where  represents market size

and () may be a constant or a function that depends on variables other than market size. In

the model of oligopoly competition we have   =  [(z

 ) −

P
 6= (z


 ) ], where  still

represents market size, and 0 and 0 are parameters or functions of exogenous variables other

than market size. It is possible to extend Proposition 1 to this specification of the variable profit,

with the only difference that now 0 and 0 are identified up to a scale parameter.

For the rest of the paper, we assume that the conditions of Proposition 1 hold and that the

distributions |0 and |1 are identified.
3.3 Identification of functions in the fixed profit

By definition, the CCP function  ( z) is equal to the conditional expectation E( |  = ,

z = z) and therefore, it is nonparametrically identified using data on {, , z}. Given the
CCP function  ( z) and the inverse distribution −1| , we have that the differential value function
̃ ( z) is identified from the expression:

̃ ( z) = −1| ( ( z))  (17)

Under the conditions of Proposition 1, function ̃ ( z) is nonparametrically identified everywhere,

such that we can treat ̃ ( z) as a known/identified function. ̃ ( z) is the value of being active

in the market minus the value of not being active for a firm with incumbent status “” at previous

period. This differential value is equal to the inverse function of | evaluated at  ( z), that
is the probability of being active in the market for a firm with incumbent status “” at previous

period.

12



Functions ̃ ( z), (z), and | summarize all the information in the data that is relevant for
the identification of the three functions in the fixed profit. We now derive a closed-form relationship

between these identified functions and the unknown structural functions , , and . Given that

by construction ̃ ( z) is equal to  (1  ) −  (0  ), and given the definition of conditional

choice value function in equation (8), we have the following system of equations: for any value of

( z),

̃( z) = (z)− [ (z) +  (z)] +  [ (z)−  (z)] + 
X
z0∈Z

(z
0|z) £̄ ¡1 z0¢− ̄

¡
0 z0

¢¤
(18)

where ̄ ( z) is the integrated value function
R
 ( z ε) (ε), i.e., the value function integrated

over the distribution of the unobservables in ε. This system summarizes all the restrictions that

the model and data impose on the structural functions.

Using the definition of the integrated value function ̄ ( z), we can express it as follows:

̄ ( z) =

Z
max
∈{01}

{ (  z) + ()}  (ε)

=  (0  z) +

Z
max{0 ; e ( z)− e} | (e)

=  (0  z) + (̃ ( z)  |),

(19)

where (̃ ( z)  |) represents the function R ̃(z)−∞ [̃( z)−e] | (e). Note that the arguments
of function , i.e., functions ̃ and |, are identified. Therefore, function  is also a known or

identified function. Plugging expression ̄ ( z) =  (0  z) + (̃ ( z)  |) into equation (18),
and taking into account that  (0 1 z) −  (0 0 z) =  (z), we have the following system of

equations that summarizes all the restrictions that the data and model impose on the unknown

structural functions , , and .

̃( z) = (z)− [ (z) +  (z)] +  [ (z)−  (z)] + 
P

z0∈Z
(z

0|z) (z0)

+ 
P
z0∈Z

(z
0|z) £(̃ (1 z0)  |1)− (̃ (0 z0)  |0)¤ (20)

To study the identification of functions , , and , it is convenient to sum up all the identified

functions in equation (20) into a single term. Define the function( z) ≡ ̃( z)−Pz0∈Z (z
0|z)

[(̃ (1 z0)  |1)− (̃ (0 z0)  |0)]. It is clear that function ( z) is identified. This function

has also an intuitive interpretation. It represents the difference between the firm’s value under two

different ’ad-hoc’ strategies: the strategy of being in the market today, exiting next period, and

13



remaining out of the market forever in the future, and the strategy of exiting from the market today

and remaining out of the market forever in the future. Using this definition for function ( z),

we can rewrite the system of equations (20) as follows:

( z) = (z)− [ (z) +  (z)] +  [ (z)−  (z)] + 
P

z0∈Z
(z

0|z) (z0) (21)

This system of equations provides a closed form expression for the relationship between the unknown

structural functions and the identified function ( z).

PROPOSITION 2. The structural functions  (z),  (z), and  (z) are not separately identi-

fied. However, we can identify two combinations of these structural functions which have a clear

economic interpretation: (a) the sunk part of the entry cost when entry and exit occur at the same

state z, i.e.,  (z) −  (z); and (b) the sum of fixed cost and entry cost minus the discounted

expected scrap value in the next period, i.e.,  (z) +  (z)− 
P
z0∈Z (z

0|z)  (z0).

 (z)−  (z) = (1 z)−(0 z)

 (z) +  (z)− 
P

z0∈Z
(z

0|z) (z0) = −(0 z) + (z)
(22)

3.4 ‘Normalizations’ and interpretation of estimated functions

In empirical applications, the common approach to address this identification problem is to restrict

one of the three structural functions to be zero at any value of z. This is often referred to as a

‘normalization’ assumption. Although most papers in the literature admit that setting the fixed

cost or the scrap value to zero is not really an assumption but a ‘normalization’, these papers

do not derive the implications of this ‘normalization’ on the estimated parameters and on the

counterfactual experiments using the estimated model. Based on our derivation of the relationship

between identified objects and unknown structural functions in the system of equations (21), or

equivalently in (22), we can obtain the correct interpretation of the estimated functions under any

possible normalization. Ignoring this relationship can lead to misinterpretations of the empirical

results.

Table 1 reports the relationship between the estimated structural functions and the true struc-

tural functions under different normalizations. Functions c, b, and b represent the estimated
vectors under a given normalization, and they should be distinguished from the true structural

functions , , and . The expressions in Table 1 are derived as follows. First, the esti-

mated functions c, b, and b satisfy the identifying restrictions in (21) and (22). In particular,b (z) − b (z) = (1 z) − (0 z) and c (z) + b (z) − 
P
z0∈Z (z

0|z) b (z0). Of course,
14



Table 1: Interpretation of Estimated Structural Functions Under Various "Normalizations"

Estimated Functions

Normaliz. b (z) c (z) b (z)
b (z) = 0 0

() + ()

− [(+1)|= ]
()− ()

c (z) = 0 ()

+
∞P
=0

[(+)|= ]
0

()

+
∞P
=0

[(+)|= ]

b (z) = 0 ()− ()
() + ()

− [(+1)|= ]
0

these conditions are also satisfied by the true values of these functions. Therefore, it should be true

that for any normalization we have the following:

b (z)− b (z) =  (z)−  (z) 

c (z) + b (z)− 
P
z0∈Z (z

0|z) b (z0) =  (z) +  (z)− 
P

z0∈Z
(z

0|z) (z0)
(23)

These expressions and the corresponding normalization assumption provide a system of equations

that we can solve for the estimated functions and thus obtain the expression of these estimated

functions in terms of the true functions. These expressions provide the correct interpretation of the

estimated functions.

Suppose that the normalization is b (z) = 0. Including this restriction into the system (23) and
solving for b (z) and c (z), we get that b (z) =  (z)−  (z), and c (z) =  (z)+  (z)

−Pz0 (z
0|z)  (z0). The estimated entry cost is in fact the entry cost minus the scrap value at

the same state, i.e., the ‘ex-ante’ sunk entry cost.14 And the estimated fixed cost is the actual fixed

cost plus the difference between the current scrap value and the expected, discounted next period

scrap value. When the normalization is b (z) = 0, we can perform a similar operation to obtain

14The ‘ex-ante’ sunk entry cost is not necessarily equal to the ‘ex-post’ or realized sunk cost because the value of

the state variables affecting the scrap value may be different at the entry and exit periods.
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that b (z) =  (z)−  (z), and c (z) =  (z)+  (z) −Pz0∈Z (z
0|z)  (z0). That is,

the estimated scrap value is equal to the ‘ex-ante’ sunk entry cost but with the opposite sign, and the

estimated fixed cost is equal to the actual fixed cost plus the difference between current entry cost

and expected discounted next period entry cost. When the normalization is applied to the fixed cost,

such thatc (z) = 0, obtaining the solution of the estimated functions in terms of the true functions
is a bit more convoluted because the solution of the system of equations is not point-wise or separate

for each value of z, but instead we need to solve recursively a system of equations that involves every

possible value of z. We have the recursive systems [ b (z) −  (z)] =  (z) + 
P
z0 (z

0|z)
[ b (z0) −  (z0)] and [ b (z) −  (z)] =  (z) + 

P
z0 (z

0|z) [ b (z0) −  (z0)]. Solving

recursively these functional equations, we get that b (z) =  (z)+
P∞

=0 
 E[(z+) | z = ],

and b (z) =  (z)+
P∞

=0 
 E[(z+) | z = ]. That is, the estimated entry cost is equal to

the actual entry cost plus the discounted and expected sum of the current and future fixed costs of

the firm if it would be active forever in the future. A similar interpretation applies to the estimated

scrap value.

EXAMPLE 2. Suppose an industry where firms need to use a particular capital equipment to

operate in the market. For some reason (e.g., informational asymmetries) there is not a rental

market for this equipment, or it is always more profitable to purchase the equipment than to rent

it. Let  be a state variable that represents the current purchasing price of the equipment. Suppose

that the entry cost is () = 0+ , where 0  0 is a parameter that represents costs of entry

other than those related to the purchase of capital. The fixed cost depends also on the price of

capital through property taxes that firms should pay every period they are active: () = 0+

, where  ∈ (0 1) is a parameter the captures how the property tax depends on the price of the
owned capital. The scrap value function is () =  , where  ∈ (0 1) is a parameter that
captures the idea that there is some capital depreciation, or a firm-specific component in the capital

equipment, such that there is a wedge between the cost of purchasing capital and the revenue from

selling it. Now, consider the identification of these functions. For simplicity, suppose that the real

price of capital  is constant over time, though it varies across markets in our data such that we

can estimate the effect of this state variable. When the normalization is b () = 0, we have thatb () = 0 + (1 − )  such that b () −  () = − . An interpretation of b () as the
true entry cost, instead of the sunk entry cost, implies to underestimate the effect of the price of

capital on the entry cost. The estimated fixed cost is c () = 0 + ( + (1− )) , such thatc ()− () = (1− )  and ignoring the effects of the normalization and treating c () as
16



the true fixed cost leads to an over-estimation of the effect of the price of capital on the fixed cost.

That is, we over-estimate the impact of the property tax on the fixed cost. Similar arguments can

be applied when the normalization is b () = 0. In particular, c () = 0 + ( + (1 − )) ,

such that the over-estimation of the incidence of the property tax on the fixed cost is (1 − ) 

that is even stronger than before. When we normalize the fixed cost to zero, both the scrap value

and the entry cost are overestimated by (0 +  ) (1− ). The estimated effect of the price of

capital on the cost of entry includes not only the purchasing cost but also the discounted value of

the infinite stream of property taxes. ¥

3.5 Extensions

Similar identification problem arises in the four extensions considered in Section 2.2.

(a) No re-entry after market exit and no waiting before market entry. In this extension,  (0  z)

is equal to   (z). The system of equations corresponding to (20) is:

̃( z) = (z)− [ (z) +  (z)] +  [ (z)−  (z)] + 
P
z0∈Z (z

0|z)  (z)

+
P
z0∈Z (z

0|z) (̃ (1 z)  |1)
(24)

Define the function ( z) ≡ ̃( z)− 
P
z0∈Z (z

0|z) (̃ (1 z0)  |1). With this new definition
of ( z), we have exactly the same system of equations as (21). The relationship reported in

Table 1 is directly applicable to this extension.

(b) Time-to-build and time-to-exit. Most of the expressions for the basic model still hold for this

extension, except that now the one-period payoff  (  z) has a different form. In particular, now

 (1  z) −  (0  z) = − (z) − (1 − )  (z), and this implies that the expression for the

differential value function ̃( z) is:

̃( z) = − (z)− (1− )  (z) + 
X
z0∈Z

(z
0|z) £̄ ¡1 z0¢− ̄

¡
0 z0

¢¤
(25)

Also, now we have that  (0 1 z) −  (0 0 z) =  (0 1 z) −  (0 0 z) = (z) −  (z) +  (z).

Therefore, the system of identifying restrictions (21) becomes:

( z) = − (z)− (1− )  (z) + 
P
z0∈Z

(z
0|z) [(z0)−  (z0) +  (z0)] (26)

where ( z) has exactly the same definition as before in the model without time-to-build. Given

this system of equations, Proposition 2 also applies to this model with the only difference that now
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Table 2: Interpretation of Estimated Structural Functions in the Model with Time-to-Build

Estimated Functions

Normaliz. b (z)  E(c ¡z+1¢ |z = z) b (z)
b (z) = 0 0

()

+ [(+1)|= ]

− [(+1)|= ]

()− ()

c (z) = 0 ()

+
∞P
=1

[(+)|= ]
0

()

+
∞P
=1

[(+)|= ]

b (z) = 0 ()− ()

()

+ [(+1)|= ]

− [(+1)|= ]

0

we have the following relationship between true functions and identified objects:

 (z)−  (z) = (1 z)−(0 z)

 (z) + 
P

z0∈Z
(z

0|z) [ (z0)−  (z0)] = −(0 z) + 
P

z0∈Z
(z

0|z) (z0)
(27)

The first equation is exactly the same as in the model without time to build. The second equation is

slightly different: instead of current value of variable profit minus the fixed cost, (z)−(z), now
we have the discounted and expected value of this function at the next period, i.e., 

P
z0∈Z (z

0|z)
[ (z0) −  (z0)]. Table 2 reports the relationship between estimated functions and unknown

structural functions.

(c) Model with investment. Under mild regularity conditions the CCPs  (| z) are identified, and
given CCPs we can also identify the differential value function ̃(  z) ≡ (  z)− (0  z).

The model implies the following restrictions:

̃ (  z) = ( z)−  ( z)−  (  z) +  (0  z) + 
P
z0∈Z

 (z
0|z) £̄ ( z0)− ̄ (0 z0)

¤
(28)

The same logic used to derive (19) implies that ̄ ( z) =  (0  z)+ (̃ (  z)  ̃|) where

(̃ (  z)  ̃|) ≡  (0  z)+
R
max0{0  ̃ (  z) − ̃()} ̃| (̃). Using the definition

of  (  z), we have that  (0  z) −  (0 0 z) =  (0  z) −  (0 0 z) = − (0  z), that is

18



the scrap value of a firm with  units of capital. Therefore, we have that ̄ ( z) − ̄ (0 z) =

− (0  z)+ (̃ (  z)  ̃|)− (̃ ( 0 z)  ̃|0). Define the function  (  z) ≡ ̃ (  z)−

P
z0  (z

0|z) [(̃ (  z)  ̃|)− (̃ (  z)  ̃|)], that is identified from the data. Then, the

restrictions shown in (28) can be written as:

 (  z) = ( z)−  ( z)−  (  z) +  (0  z)− 
X
z0∈Z

 (z
0|z)  (0  z0)

(29)

Note that  ( z) in equation (21) is a special case when  = 1 and  = 1. Using this expression,

we can also obtain a system of equations that correspond or extend the ones in (22). For any   0

and any ( z):

− (  z) +  (0  z) +  ( 0 z) =  (  z)− ( 0 z)

 ( z) +  (  z)−  (0  z) + 
X
z0∈Z

 (z
0|z)  (0  z0) = − (  z) +  ( z)

(30)

The same logic used to prove Proposition 2 implies no identification of structural cost func-

tions  ( z) and  (  z). However, we can still identify the difference between entry cost

( ( 0 z)) and scrap value (− (0  z)) for the same z as we have

 (  z)− ( 0 z) =  (0  z) +  ( 0 z) (31)

The relationship between estimated functions under some normalization and structural cost func-

tions is similar to that of the baseline model. For example, when we normalize scrap value (i.e.,b (0  z) = 0), our estimates of investment cost function b (  z) and fixed cost function
 ( z) are written as

b (  z) =  (  z) +  (0  z)−  (0  z)

c ( z) =  ( z)−  (0  z) +  E
£
(0  z+1) | z = z

¤ (32)

(d) Dynamic oligopoly game of entry and exit. Proposition 2 can be easily extended to the dynamic

oligopoly game. In particular, the additional structure in the dynamic game does not help to the

identification of the components in the fixed profit. Equation (21) also applies to the dynamic

game, only with the following modifications: (i) all the functions are firm-specific and should have

the firm subindex ; (ii) function  includes as an argument also the past incumbent statuses

of the other firms, − , such that we have ([ − ] z); and (iii) the expected variable profit

function depends on firms’ CCPs and it includes as an argument the incumbent statuses of all

19



the firms, i.e., P ( z
). Given this modified version of equation, (21), it is straightforward to

extend the two parts of Proposition 2 to the dynamic game model. For the same reason, the

relationship reported in Table 1 is still applicable to this extension. Note that the dynamic game

provides over-identifying restrictions. For instance, we have that for every value of − the following

equation should hold:  (z
)−  (z

) = (1−  z)−(0−  z). This implies that the value

of (1−  z) − (0−  z) should be the same for any value of − , which is a testable over-

identifying restriction.

4 Counterfactual experiments

4.1 Definition and identification of counterfactual experiments

Suppose that the researcher is interested in using the estimated structural model to obtain an

estimate of the effect on firms’ entry-exit behavior of a change in some of the structural functions

such that the environment is partly different from the one generating the data. Let θ0 = {0 0,
0, 0, 0, 0 } represent the structural functions that have generated the data. And let θ∗ = {∗,
∗, ∗, ∗, ∗, ∗ } be the structural functions in the hypothetical or counterfactual scenario.
Define ∆ ≡ {∆ ∆ ∆ ∆, ∆ ∆} ≡ θ∗ − θ0. We refer to ∆ as the perturbation in the

primitives of the model defined by the counterfactual experiment. The goal of this counterfactual

experiment is to obtain how the perturbation ∆ affects firms’ behavior as measured by the CCP

function. In other words, we want to identify ∆ ( z) associated to ∆, where

∆ ( z) ≡  ( z ; θ0 +∆)−  ( z ; θ0). (33)

The parameter perturbations that have been considered in the counterfactual experiments in

recent empirical applications include regulations that increase entry costs (Ryan 2012, Suzuki 2013),

entry subsidies (Das et al. 2007, Dunne et al. 2011, Lin 2012), subsidies on R&D investment (Igami

2012), tax on revenue (Sweeting 2011), market size (Bollinger 2012, Igami 2012), economies of scale

and scope (Aguirregabiria and Ho 2012, Varela 2011), a ban on some products (Bollinger 2012, Lin

2012), regulation on firms’ predatory conduct (Snider 2009), demand fluctuation (Collard-Wexler

Forthcoming), time to build (Kalouptsidi 2011), or exchange rates (Das et al. 2007).

In the derivation of our identification results on counterfactual experiments, we exploit some

properties of the mapping that relates functions  and  . Lemma 1 below describes the mapping

and its properties.15

15Lemma 1 is related but quite different to Proposition 1 in Hotz and Miller (1993). That Proposition 1 establishes

that for every value of the state variables ( z), there is a one-to-one mapping between CCPs  and differential
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LEMMA 1: Define e ≡ {( z) : for all ( z)} and e ≡ { ( z) : for all ( z)}. For given
( ), there is a mapping e( e ; ) from the space of vectors e into the space of vectors e such

that e = e( e ; ). The definition of this mapping is, e( e ; ) ≡ {( z e ; ) : for all
( z)} with:

( z e ; ) ≡ −1| ( ( z))− 
P
z0∈Z

(z
0|z)

ÃZ −1|1 ( (1z0))
−∞

[−1|1 ( (1 z0))− e] |1 (e)
!

+ 
P
z0∈Z

(z
0|z)

ÃZ −1|0 ( (0z0))
−∞

[−1|0 ( (0 z0))− e] |0 (e)
!

(34)

The mapping e( e ; ) is one-to-one (invertible).
For some counterfactual experiments, we need to distinguish two components in the vector of

state variables: z ≡ (z z), where z is the subvector of the state variables z that affect

the scrap value, and z represents the rest of the state variables. Without loss of generality, we

can always represent the transition probability of the observable state variables as (z+1|z) =
(z


+1|z) (z+1 |z z+1).

Let ∆( z) be then a function that represents the change in function  associated to the

change in parameters ∆, i.e., ∆( z) ≡ ( z ; θ0 + ∆) − ( z ; θ0). Given Lemma 1, it

should be clear that ∆ ( z) is identified if and only if ∆( z) is identified. For some of our

results below on the (non) identification ∆ ( z), it is useful to prove them by showing the (non)

identification of ∆( z). Using the definition of ∆( z), and taking into account equation (21)

relating  with the structural functions, we have the following equation that relates ∆( z) with

the structural functions and the parameter perturbation ∆:

∆( z) = ∆(z
)− [∆ (z

) +∆ (z
)] +  [∆ (z

)−∆ (z
)]

+ 0
P

z0∈Z
0(z

0|z) ∆(z
0)

+ 0
P

z0∈Z
∆(z

0|z) [0(z0) +∆(z
0)]

+ ∆

P
z0∈Z

[0(z
0|z) +∆(z

0|z)] [0(z0) +∆(z
0)]

(35)

PROPOSITION 3: Suppose that ∆ implies changes only in functions  , , , and  such

that ∗ = 0 and ∗ = 0. And suppose that the researcher knows the perturbation ∆ =

values . In binary choice version of our model, Hotz-Miller Proposition simply establishes that for every value ( z),
the distribution function | that relates  ( z) = |(( z)) is invertible. In contrast, Lemma 1 establishes the
invertibility of the mapping between vector  and vector  . This invertibility is not point-wise because every value
( z) depends on the whole vector  .
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{∆ (z
), ∆ (z

), ∆ (z
), ∆ (z

), ∆ (z
0|z)} (though he does not know neither θ0 nor

θ∗). Then, ∆( z), ∆ ( z), and  ( z ; 0 +∆) are identified.

Proposition 3 establishes that the non-identification of the three functions in the fixed profit

does not imply an identification problem for counterfactuals that can be described as additive

changes in these functions. In contrast, the following Proposition 4 shows that there are relevant

counterfactual experiments that are not identified.

PROPOSITION 4: Suppose that ∆ implies changes in the discount factor or in the transition

probability of the state variables, such that ∆ ≡ ∗ − 0 6= 0 or/and ∆ ≡ ∗ − 0 6= 0,

where the researcher knows both (0 0 ) and (
∗ ∗ ). Despite the knowledge of these primitives

under the factual and the counterfactual scenarios, the effect of these counterfactuals on firms’

behavior, as represented by ∆( z), ∆ ( z), and  ( z ; 0 +∆), is NOT identified.

4.2 Bias induced by normalizations

Suppose that a researcher has estimated the structural parameters of the model under one of the

‘normalization’ assumptions that we have described in Section 3.4. Furthermore, suppose that

given the estimated model, this researcher implements counterfactual experiments by applying the

same ‘normalization’ assumption that has been used in the estimation. For instance, the model

has been estimated under the condition that the scrap value is zero, and this condition is also

maintained when calculating the counterfactual equilibrium. In this section, we study whether and

when this approach introduces a bias in the estimation of the counterfactual effects. We find that

this approach does not introduce any bias for the class of (identified) counterfactuals described in

Proposition 3. For the class of counterfactuals in Proposition 4, this approach provides a biased

estimation. Of course, this bias is not surprising because, as shown in that Proposition, that class

of counterfactual experiments is not identified. More interestingly, we show that the magnitude of

this bias can be economically very significant.

Given a normalization used for the estimation of the model (not necessarily c0(z) = 0), letc0(z) be the estimated scrap value function. And letd∆( z) be the estimate of ∆( z) when

we use c0 instead of the true value 0. Using the general expression for ∆( z) in equation

(35), the bias induced by the normalization is:

d∆( z)−∆( z) = 0
P

z0∈Z
∆(z

0|z)
hc0(z0)− 0(z0)

i
+ ∆

P
z0∈Z

[0(z
0|z) +∆(z

0|z)]
hc0(z0)− 0(z0)

i (36)
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PROPOSITION 5: If the counterfactual experiment is such that ∆ = 0 and ∆ = 0, then the

bias d∆( z)−∆( z) is zero, and the ‘normalization’ assumption is innocuous for this class of

experiments. Otherwise, the biasd∆( z)−∆( z) is not zero and the ‘normalization’ assumption

introduces a bias in the estimated effect of the counterfactual experiment.

Proposition 5 defines the class of counterfactual experiments for which the ‘normalization’

assumptions introduce a bias. This class consists of those experiments involving a change in the

transition probability of a state variable that enters into the scrap value function or a change in

the discount factor. While most of the counterfactual experiments in recent applications examine

the impacts of the change in structural functions other than transition functions, several studies

have examined the change in firms’ behavior under different transition functions. For instance,

Collard-Wexler (Forthcoming) examines the effect of demand uncertainty on industry dynamics

and market structure by implementing a counterfactual experiment that changes the transition

probability function of state variables affecting demand. The normalization used consists of setting

the scrap value to zero. This normalization is innocuous, and the predictions of the counterfactual

experiment are unbiased if the state variables affecting demand do not have any impact on the

scrap value. In another example, Das et al. (2007) examines the change in firms’ decisions to

enter foreign markets if the currency of their home country is devalued by 20 percent. In this

case, the normalization of zero scrap value is innocuous only if all scrap values derive from selling

domestic assets. If part of the scrap value derives from selling foreign assets (e.g., subsidiaries),

their normalization is not any more innocuous because the value of these assets depends on the

exchange rate.

Propositions 3 to 5 are also extended to the four extensions considered in Section 2.2 and 3.5.

The extension to the first three models is straightforward, while the extension to a dynamic oligopoly

game requires some clarifications. In a dynamic game, Lemma 1 holds for given
³
  ̃−

´
where

̃− =
n
̃0 6=

o
. Thus, what ̃

³
̃ ;  ̃−

´
maps is not player ’s equilibrium policy in the

counterfactual environment but the best response of player  to other players’ policy ̃− . To

obtain an equilibrium, we need to find a fixed point of this best-response mapping.16

4.3 Numerical example

In this section, we present a simple example that illustrates how the bias induced by the nor-

malization assumption can be sizeable and economically significant. Consider a retail industry in

which market entry requires land ownership. Examples include big-box stores and hotels. Let 

16 In case of multiple equilibria, this best-response mapping has more than one fixed point.
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represent the land price in market  at period . The form of the entry cost, fixed cost, and scrap

value functions are as follows:  () = 0 + 1 

,  (


) = 0 + 1 


, and  () =

0+1 

, where 0, 1, 0, 1, 0, and 1 are parameters. Variable profits do not depend

on land price:  () = 0, where 0 is a parameter. The stochastic process of land price is

described by the following AR(1) process: +1 = 0+1 

+ +1, where +1 is an iid

shock with standard normal distribution.

Suppose that there are two groups of markets in the data, types  and . For instance, each

group of markets may represent a metropolitan area or a region. Each group consists of a large

number of local markets. Suppose that the only differences between these two groups of markets

are the stochastic processes of land price:

Type  : +1 = 0 + 1  +  +1

Type  : +1 = 0 + 1  +  +1

where  is   (0 1). All structural cost functions are the same in all local markets, whether

they belong to type  or type . However, this is not known to the researcher. The researcher

observes that the stochastic processes of land prices are different between the two groups; however,

he does not know whether this difference is the only structural difference between the two groups.

Given a dataset generated from this model, the researcher observes, or estimates consistently,

the CCP functions for each group of markets. For every value of land price , he knows the

entry probabilities of potential entrants in market type H and market group L, i.e., (0 ) and

(0 ), respectively, and the probabilities that an incumbent stays in the market, i.e., (1 )

and (1 ). The researcher also knows the variable profit 0, the discount factor , and the

parameters
n


0 


1 

 :  = 
o
in the stochastic process of land price. Suppose that the main

interest of this researcher is to understand the contribution of different structural factors to the

differences in the CCP functions in the two groups of markets. More specifically, he is interested

in estimating what part of this difference in CCP functions can be attributed purely to the dif-

ferences in the stochastic processes of land prices, rather than to the differences in cost functions.

Unfortunately, as shown in Proposition 5, the researcher cannot obtain an unbiased/consistent esti-

mator of this effect. Performing this experiment requires the knowledge of the scrap value function

 (); however, the functions  ()   (), and  () are not separately identified from the

data. Suppose that the researcher makes a normalization assumption on these functions and uses

the same normalization to implement the counterfactual experiment. The goal of this numerical

exercise is to quantify the extent to which this approach introduces a bias in the estimated effect
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Figure 1: Stationary Distribution of Land Price: Type H vs Type L

of the counterfactual experiment.

For our numerical example, we consider the following values for the parameters in the data

generating process:

0 = 65 ; 1 = 1 ; 0 = 09 ; 1 = 096

0 = 01 ; 1 = 003 ; 0 = 11 ;  = 095

0 = 10 ; 1 = 09 ;  = 05

0 = 09 ; 1 = 09 ;  = 05

Under this setting, the average land price of group H is ten percent higher than that of group L

(100 vs. 90), while the standard deviation of land price is the same (13). Figure 1 illustrates the

distributions of these two groups.

Figure 2 shows the CCPs of both a potential entrant and an incumbent in each group of markets.

The observed difference in the CCPs of these two groups is entirely due to the difference in the

stochastic processes of the land price (though the researcher does not know this fact). For every

land price, the probability of entry and the probability of staying in the market is higher for group

H than for group L because, at any level of the current land price, a firm’s expectation about the

future land price is lower in group L than in group H. As a result, a new entrant in group L is more

likely to postpone his entry because the future entry cost is (more) likely to be lower. Similarly,

an incumbent in group L is more likely to exit today because the scrap value is (more) likely to be
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Figure 2: Estimated CCPs

lower in the future. For a given value of land price , there are more entries and fewer exits in type

H markets than in type L markets. On average, land prices are lower in group L, which implies

that once we average over all possible land prices, there are more entries and fewer exits in type L

markets than in type H markets. For a potential entrant, the unconditional probability of being in

the market is 7.1 percent in group H and 10.4 percent in group L, and these probabilities are 94.7

percent and 96.5 percent, respectively, for an incumbent.

Having a probability of staying in a market that declines with land price is not by itself evidence

of a scrap value that depends on land price. This correlation can also be generated by a model

in which the scrap value is constant and the fixed cost of an incumbent firm increases with land

price (e.g., property taxes or a leasing price that depends on the price of land). In fact, such a

development is the case in our example, where both effects play a role in generating this dependence.

Figure 3 presents the estimated entry cost and fixed cost functions in group  with a zero
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scrap value normalization. With this normalization, the estimated entry cost function is smaller

and less sensitive to a change in land price than the true function, i.e., b() = ()− () =

[56 + 04]  [65 + ] = (). In contrast, the estimated fixed cost function is larger for most

levels of land price and more sensitive to a change in land price than the true function. Under

the normalization of the scrap value to zero, the researcher may interpret that the effect of the

land price on the probability of exit derives only from the fixed operating cost; however, this effect

may also derive from the dependence of the scrap value with respect to the land price, as in this

example.

We do not present a figure with the estimated entry cost and fixed cost functions in group L. In

this example and under this normalization, the estimated entry cost is the same for the two groups of

markets because the stochastic process of land price does not play any role in the estimated entry

cost under the zero scrap value normalization. The estimated fixed cost functions are different:c() = −0767 + 01692  for group , and c() = −0675 + 01692  for group . Given

these results, the researcher concludes that the sunk entry cost is the same in the two groups of

markets. Furthermore, he might even be willing to conjecture that the two groups have the same

entry cost function and the same scrap value function. However, this correct conjecture is still not

sufficient to identify the effect of a change in the stochastic process of land price. Furthermore,

given the difference in the estimated fixed cost function, the researcher cannot identify how much

of this difference can be attributed to the difference in the level of land prices and how much can

be attributed to possible actual differences in the fixed cost functions of the two groups.

Figure 4 presents the main results of a counterfactual experiment that measures to what extent

the differences in average land prices can explain the different firm turnover rates between type

 and type  markets.17 This experiment consists of solving for the equilibrium CCPs in a type

H market if we keep the structural cost functions at the estimated values for group H but replace

the stochastic process of land price with that of type L. The upper panel shows the true and the

estimated changes in the entry probability (i.e., the difference between counterfactual and factual

probabilities) where the estimated values are based on a zero scrap value normalization. Similarly,

the lower panel shows the change in the probability of staying in the market for an incumbent.

The true effect of this counterfactual experiment that consists of reducing the average land price

by ten percent is that both the new entrants and the incumbents are less likely to be in the market

at every land price, i.e., the schedules that represent the probability of entry and stay, as functions

of , move downward. The reduction in the average land price implies that, at any level of the

17The land price is discretized into 20 equally spaced distinct points between the first and ninety-ninth percentiles.
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Figure 3: Estimated Structural Cost Functions with  () = 0 Normalization
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Figure 4: The Estimated Change in CCPs
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current land price, a firm’s expectation about the future land price decreases. As a result, a new

entrant is more likely to postpone its entry because the future entry cost is likely to be lower and

an incumbent is more likely to exit today because the scrap value is likely to decrease in the future.

Despite this downward shift in these probability schedules with the lower mean land price, there

are on average more entries and fewer exits: the counterfactual change increases the unconditional

probability of being in the market from 7.1 percent to 10.4 percent for a potential entrant and from

94.7 percent to 96.5 percent for an incumbent.

The predictions are considerably different if we perform the same counterfactual experiment

using the estimated structural cost functions that are ‘identified’ from data under the zero scrap

value restriction. In contrast to the true effect, the estimated effect shows an upward shift in the

schedules that represent the probability of entry and the probability of stay for every possible land

price. For instance, for the mean land price in the original distribution ( = 10), the probability

of being in the market increases by 20 percentage points (from 53 to 73) for a new entrant and

by 12 percentage points (from 957 to 969) for an incumbent. This experiment also overestimates

the unconditional probability of being in a market in the next period by 47 percentage points for

a potential entrant (151 vs. 104) and by 14 percentage points for an incumbent (979 vs. 965).

This bias is generated by the difference between the estimated and true structural cost func-

tions. As shown in the first row of Table 1, imposing a zero scrap value restriction leads to an

overestimation of fixed cost and an underestimation of entry cost. In addition, fixed cost estimates

under this restriction depend on the land price, while both entry cost and scrap value do not.

Under the original distribution of land price, a firm’s equilibrium policy under this (incorrect) cost

structure is exactly equal to the policy under the true cost structure. However, if the distribution

shifts to the left, a firm is more likely to choose to be in the market for every land price level

because a firm expects lower fixed cost in the future. In this environment, firms do not consider

the change in entry cost and scrap value because they do not depend on the land price any more.

5 Identifying conditions

In this section we present a discussion of three approaches to deal with the non-identification of

the three structural functions in the fixed cost and some of the counterfactual experiments: (a)

partial (interval) identification; (b) exclusion restrictions, and (c) using data on firms’ value or

scrap values.
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5.1 Partial identification

There are weak and plausible restrictions on the fixed profits functions that provide bounds of our

estimates of these functions. For instance, suppose that the researcher is willing to assume that the

three components of the fixed profit are always positive, i.e., (z) ≥ 0, (z) ≥ 0, and (z) ≥ 0.
These restrictions, together with equation (22), imply sharper lower-bounds for the entry cost and

the scrap value. More specifically, we have that (z) ≥  (z) ≡ max{0 (1 z) − (0 z)},
and (z) ≥  (z) = − (z), such that the lower bounds for the entry cost function,
 (z), and for the scrap value function,  (z), are identified. That is, if the ‘ex ante’ sunk

cost is strictly positive (i.e., (1 z)−(0 z)  0), then the entry cost should be at least as large

as the sunk cost, and if the sunk cost is strictly negative (i.e., (1 z)−(0 z)  0), then the scrap
value should be at least as large as the negative sunk cost. Other restriction that seems plausible

is that the current scrap value should be greater than the discounted and expected value of future

scrap value, i.e., (z) ≥  E((z+1) | z = z). Combining this restriction with equation (22), we
have the following upper bound on the fixed cost function: (z) ≤  (z) ≡ −(1 z) + (z).

The restriction that current entry cost should be greater than the discounted and expected value of

future entry cost (i.e., (z) ≥  E((z+1) | z = z)) also provides an upper bound on the fixed
cost.

5.2 Exclusion restrictions

In some applications, the researcher may be willing to assume some observables in z enter only in

one of the three structural cost functions. Proposition 6 explains when these exclusion restrictions

help identification of structural cost functions, while Proposition 7 shows that this additional iden-

tification result extends the set of identified counterfactual experiments. For simplicity, we assume

that the space of the vector of exogenous state variables Z is finite and discrete. We use |Z| to
denote the number of elements in a finite set Z.

PROPOSITION 6: Suppose that the vector of exogenous state variables z is such that z = (z1 z

2)

with z1 ∈ Z
1 and z


2 ∈ Z

2. For any value z
0
2 ∈ Z

2, define the transition matrix F1(z
0
2 ) with

elements {(z01 |z1z02 )}. Suppose that the following conditions hold: (1) z2 does not enter the fixed
cost function, i.e.,  (z) =  (z1); (2) z


2 may enter either entry cost function  (z) or scrap

value function  (z), but not both; and (3) there exit two different values in Z
2, say z

0
2 and z12 ,

such that the matrix F1
(z12 ) − F1

(z02 ) has rank equal to |Z
1| − 1. Under these conditions, the

structural cost functions  (z)   (z) and  (z) are identified up to constant.
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A few remarks clarify the implication of Proposition 6. First, the normalization considered

in this proposition is less restrictive than the one considered before. In this proposition, the

normalization means to fix, say, scrap value for a particular realization of z1, while the normalization

considered before fixes scrap values to be zero for every possible realization of z1. Second, this

identification result does not require a large support for Z
2. The set Z

2 may contain as few

points as two. Larger |Z
2| does not bring full identification as the corresponding matrix never has

full column rank. Third, the key source of identification here is the variation in the transition

probabilities of z1 caused by the change in z

2. The required rank condition means that the impacts

of z2 on the transition probabilities must vary across different z

1. For instance, suppose that z


1 is

land price, and z2 represents the quality of public schools in the local market. It seems reasonable

to assume that land price z1 enters the three structural functions, but the quality of public schools

z2 does not enter any of them or at most one of them, say the scrap value. In this example, the

key source of identification will be that the current improvements in the quality of local public

schools will increase expected commercial land price in the next period. This seems reasonable as

the demand of land for residential purposes will increase and this may affect positively the price of

land for commercial purposes as well. Note that this condition on the transition probability of z1

is testable using the data. The assumption that is not testable is the restrictions that exclude z2

from some of the structural functions.

PROPOSITION 7: Let c (z), b (z), and b (z) be the identified functions (up to a constant)
under the conditions of Proposition 6. Then, the counterfactuals ∆( z), ∆ ( z), and  ( z ;

0 +∆) are identified even if ∆ 6= 0, as long as ∆ = 0.

Note that the identification of counterfactual experiments that change the discount rate  is

still not identified as it requires the complete identification of scrap value function  (z).

5.3 Using data on transaction prices from the acquisition of firms

In some industries, a common form of firm exit (and entry) is that the owner of an incumbent firm

sells all the firm’s assets to a new entrant. For instance, this is very frequent in the bulk shipping

industry, as shown in Kalouptsidi (2011), and it is also common in some retail industries intensive

in land input such as the hotel industry. Sometimes, the researcher has data on firm acquisition

prices. Under some assumptions, these additional data can be used to deal with the identification

problem that we study in this paper. We now illustrate this approach in a simple framework.

For simplicity, suppose that the industry is such that the only form of entry is by acquiring an
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incumbent firm, and similarly the only form of exit is by selling your assets to a new entrant. Then,

the entry cost has two components: (z) = (z)+  (z

), where (z


) represents the acquisition

price that the new entrant should pay to the exiting incumbent, and  (z

) represents costs of

entry other than the acquisition price. Similarly, the exit value of a firm has also two components:

(z) = (z) −  (z

), where  (z


) represents costs associated with market exit. We assume

that the acquisition price (z) is the solution of a Nash bargaining problem between the seller and

the buyer. Taking into account that ̄ (1 z)− ̄ (0 z) is the value of being an incumbent minus the
value of being a potential entrant, we have that the surplus of the buyer is ̄ (1 z)−̄ (0 z)−(z),
and the surplus of the seller is (z) − ̄ (1 z) + ̄ (0 z). The Nash bargaining solution implies

that:

(z) = ̄ (1 z)− ̄ (0 z) +   (z
)− (1− )  (z

) (37)

where  ∈ (0 1) is a parameter that represents the seller bargaining power.
Let  be the selling price of a firm, and suppose that the researcher observes this price when a

transaction actually occurs. For simplicity, to abstract from selection problems, consider that  is

a deterministic function of the observable state variables z plus a measurement error  that is not

a state variable of the model, has zero mean, and is independent of the observed state variables z

(i.e., classical measurement error):  = (z)+, with E(|z) = 0.18 Under these conditions, the
pricing function (z) is identified from the data. Now, the researcher has three sets of restrictions

to identify the three unknown functions (z),  (z
), and  (z

):

  (z
) +   (z

) = (1 z)−(0 z)

 (z) + (z) +  (z
)− 

P
z0∈Z

(z
0|z) [ (z0)−   (z

0)] = −(0 z) + (z)


P
z0∈Z

(z
0|z) [ (z0)−    (z

0) + (1− )   (z
0)] = e ( z)−( z)

(38)

where the third set of restrictions comes from combining the price equation in (37) with the defin-

ition of ( z) as ( z) ≡ e ( z)− 
P
z0 (z

0|z) [̄ (1 z0)− ̄ (0 z0)].

PROPOSITION 8: Given a value of the parameter that represents seller bargaining power, , the

set of restrictions in (38) identify the functions  (),  (), and ().

18This assumption is testable: it implies that the residual price  ≡ [− E(|z)] should be independent of firms’
entry and exit decisions. In general, unless the dataset is rich enough to include in z all the relevant variables

affecting the price of a firm, we should expect that this assumption will be rejected by the data. That is, we expect

 = (z ) + , where  is the vector of state variables observable to firms but unobservable to the researcher.

Allowing for this type of unobservables as determinants of the transaction price implies that we should deal with a

potential selection problem. We only observe the transaction price for those firm-market-period observations when

a firm is sold, but those firms that are sold can be systematically different in terms of unobserved state variables 

from those firms that are not sold, i.e., E(|z, firm is sold) 6= E(|z).
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6 Conclusion

The solution and estimation of dynamic structural models of oligopoly competition is a useful tool

in industrial organization and other fields of empirical microeconomics such as trade, health eco-

nomics, or public economics. Empirical applications of these models typically use panel data on

firms’ entry and exit decisions in multiple local markets, combined with information on exogenous

market and firm characteristics, and sometimes information on firms’ prices and quantities. In this

class of models, the functions that represent fixed operating cost, entry cost, and exit value play

an important role in firms’ entry and exit behavior. Furthermore, many public and managerial

policies can be described in terms of changes in some of these functions. This paper is motivated

by a fundamental identification problem: these three functions cannot be separately identified using

these data. The conventional approach to address this identification problem has been to ‘normal-

ize’ some of the structural parameters to zero. We study the implications of this ‘normalization’

approach. First, we obtained closed-form expressions that provide the correct interpretation of the

estimated objects that are obtained under the ‘normalization assumptions’ that have been consid-

ered in applications. Second, we show that there is a class of counterfactual experiments that are

identified and for which the normalization assumptions are innocuous. We also show that there

is a class of experiments for which the normalization assumptions introduce a bias. Using a sim-

ple numerical experiment, we show that this bias can be very significant both quantitatively and

economically. We also discuss alternative approaches to address this identification problem.
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APPENDIX

Proof of Lemma 1. By definition ( z) is equal to ̃( z)− 
P
z0 (z

0|z) [ (̃ (1 z)  |1)−
(̃ (0 z)  |0) ], where ̃ ( z) = −1| ( ( z)) and (̃ ( z)  |) ≡ R ̃(z)−∞ [̃( z)−e] | (e).
These expressions imply the mapping in equation (34). We can describe mapping e( e ; )
as the composition of two mappings: (1) the mapping from CCPs to differential values, i.e.,

̃ ( z) = −1| ( ( z)); and (2) the mapping from differential values to 0, i.e., ( z) =

̃( z) − 
P
z0 (z

0|z) [(̃ (1 z)  |1)− (̃ (0 z)  |0)]. The first mapping is point-wise for

every value of ( z), and in our binary choice model it is obviously invertible. Proposition 1 in

(Hotz and Miller 1993) establishes the invertibility of that mapping for multinomial choice models.

Therefore, we should prove the invertibility of the second mapping, between the vector e ≡ {e( z) :
for all ( z)} and the vector e ≡ {( z) : for all ( z)}. Define this mapping as e = e(e) wheree(e) ≡ {( z e) : for all ( z)} and:

( z e) ≡ e( z)− 
P
z0∈Z

(z
0|z)

ÃZ (1z0)
−∞

[e(1 z0)− e] |1 (e)
!

+ 
P
z0∈Z

(z
0|z)

ÃZ (0z0)
−∞

[e(0 z0)− e] |0 (e)
!

In vector form, we can express this mapping as:

e(e) ≡ ∙ e(0 e)e(1 e)
¸
=

∙ e(0 )−  F e(e)e(1 )−  F e(e)
¸

where F is the transition probability matrix with elements (z
0|z), and e(e) ≡ {e(z; e) : for all

z} with e(z; e) = Z (1z)
−∞

[e(1 z) − e] |1 (e)− Z (0z)
−∞

[e(0 z)− e] |0 (e). The mapping e(e) is
globally invertible if and only if its Jacobian matrix J(e) ≡ e(e)e0 is non-singular for every
value of e. It is simple to show that this Jacobian matrix has the following form:

J(e) = I− 

∙µ
1

1

¶
⊗
µ
F

e(e)
e0

¶¸
where I is the identity matrix. Given the form of function e(z; e), it is straightforward to show
that e(z; e)e(0 z) = |0(e(0 z)) = − (0 z), and e(z; e)e(1 z) = |1(e(1 z)) =  (1 z).

Therefore,
e(e)
e0 = [−{ (0 )} ; { (1 )}]

where { ( )} is diagonal matrix with elements { ( z)} for every value of z. The Jacobian
matrix J(e) is invertible for every value of e.

35



Proof of Proposition 1. The proof of this Proposition 1 is a direct application of Proposition

4 in Aguirregabiria (2010) to our model of market entry and exit. Proposition 4 in Aguirregabiria

(2010) applies to a general class of binary choice dynamic structural models with finite horizon,

and it builds on previous results by Matzkin (1992, 1994). Norets and Tang (2012) have extended

that result to infinite horizon dynamic decision models.

Proof of Proposition 2. (i) No identification. Let , , and  be the true values of the

functions in the population. Based on these true functions, define the functions: ∗ (z) =  (z)+

 (z); ∗ (z) =  (z) +  (z), and ∗ (z) =  (z)−  (z) + 
P
z0∈Z (z

0|z)  (z0), where
 (z) 6= 0 is an arbitrary function. It is clear that ∗, ∗, and ∗ also satisfy the system of

equations (21). Therefore, , , and  cannot be uniquely identified from the restrictions in (21).

(ii) Identification of two combinations of the three structural functions. We can derive equations in

(22) after simple operations in the system (21).

Proof of Proposition 3. Under the conditions of Proposition 3, we have that equation (35)

becomes:

∆( z) = ∆(z
)− [∆ (z

) +∆ (z
)] +  [∆ (z

)−∆ (z
)]

+ 0
P

z0∈Z
0(z

0|z) ∆(z
0)

(39)

The researcher knows all the elements in the right-hand-side of this equation, and therefore∆( z)

is identified. Given ∆( z) and ( z ; θ0), we obtain ( z ; θ0 +∆), and using the inverse

mapping e−1, we get e (θ0 +∆) = e−1( e(θ0 +∆);
0 ∗ ) and ∆ ( z).

Proof of Proposition 4. Under the conditions of Proposition 4 (and making ∆ = ∆= ∆=

∆ = ∆
= 0, for simplicity but without loss of generality), equation (35) becomes:

∆( z) = 0
P

z0∈Z
∆(z

0|z) 0(z0)

+ ∆

P
z0∈Z

[0(z
0|z) +∆(z

0|z)] 0(z0)
(40)

Since the scrap value 0 is not identified, none of the terms that form ∆( z) are identified.

Proof of Proposition 5. It follows simply from equation (36).

Proof of Proposition 6. Suppose z2 enters only in the entry cost  (z
). Under the conditions

of Proposition 6, the system of equations (22) becomes:

 (z1) +  (z1)− 
P

z01 ∈Z
(z

0
1 |z z1z2)  (z01 ) = −(1 z) + (z)

(41)
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The difference between this equation evaluated at z12 and at z02 is:

P
z01∈Z

[(z
0
1 |z z1 z12 )− (z

0
1 |z z1 z02 )]  (z01 ) =

1



£
(1 z z1 z

1
2 )−(1 z z1 z

0
2 )
¤


(42)

In matrix form, we can express this system of equations as

£
F1

(z12 )−F1
(z02 )

¤
sv =

1



£
Q(1 z12 )−Q(1 z02 )

¤
 (43)

Note that matrix F1
(z12 ) − F1

(z02 ) does not have full column rank because any matrix that is

a difference of transition matrices is singular. However, the rank of F1
(z12 ) − F1

(z02 ) can be

|Z
1| − 1. If that is the case, we can combine the system of equations (43) with a normalization

assumption on one single element of the vector sv (e.g., (z01 ) = 0 for some value z
0
1 ) to uniquely

identify the vector sv.

Proof of Proposition 7. The identified function b (z) is such that b (z) = 0 (z) +  where

0 (z) is the true scrap value function and  is an unknown constant. Given ∆ = 0, we can write

equation (40) as

∆( z) = 0
P

z0∈Z
∆(z

0|z)
h b ³z0´− 

i
= 0

P
z0∈Z

∆(z
0|z) b (z0)

where the last equality holds as we always have
P
z0∈Z∆(z

0|z) = 0. Therefore, we can

calculate ∆( z), and the effect of the counterfactual experiment on CCPs is identified.
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