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Abstract

This paper deals with the identification and estimation of discrete games of incomplete

information with multiple equilibria when we allow for three types of unobservables for the

researcher: (a) payoff-relevant variables that are players’ private information; (b) payoff-relevant

variables that are common knowledge to all the players; and (c) non-payoff-relevant or "sunspot"

variables which are common knowledge to the players. The specification of the payoff function is

nonparametric, and the probability distributions of the unobservables is also nonparametric but

with finite support (i.e., finite mixture model). We show that if the number of players in the game

is greater than two and the number of discrete choice alternatives is greater than the number of

mixtures in the distribution of the unobservables, then the model is nonparametrically identified

under the same type of exclusion restrictions that we need for identification without unobserved

heterogeneity. In particular, it is possible to separately identify the relative contributions of

payoff-relevant and "sunspot" type of unobserved heterogeneity to observed players’ behavior.

We also present results on the identification of counterfactual experiments using the estimated

model.
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1 Introduction

Multiplicity of equilibria is a prevalent feature in games. An implication of multiplicity of equilibria

in the structural estimation of games is that the model implies more than one probability distribu-

tion of the endogenous variables conditional on structural parameters and exogenous variables. The

standard criteria used for estimation, such as likelihood or GMM criteria, are no longer functions of

the structural parameters but correspondences, and this makes the application of these estimation

methods impractical in many relevant cases. A substantial recent literature on the econometrics of

games of incomplete information proposes simple two-step estimators that deal with these issues.1

These two-step methods assume that the only unobservables for the researcher are variables that

are private information of the players, so there are no unobservables that are common knowledge

to players. A second key assumption maintained in almost all applications of two-step methods is

that the same equilibrium (or equilibrium "type") has been played in all the observations in the

data. The model may have multiple equilibria for the true value of the structural parameters, but

only one of them is present in the data.2 A weaker version of this assumption establishes that

we can partition the data into a number of subsamples according to the value of an exogenous

variable such that the same equilibrium is played within each subsample. That is, the potential

multiplicity of equilibria in the data should be explained by some observable exogenous variable.

Under this assumption, structural parameters in these models are identified given the same type of

exclusion restrictions as in games with equilibrium uniqueness (see Aguirregabiria and Mira, 2002a,

Pesendorfer and Schmidt-Dengler, 2003, and Bajari et al., 2010).

The assumption that all the data has been generated from a single equilibrium is very strong.

Authors in different areas of Economics have suggested that multiplicity of equilibria may be

necessary to explain important aspects of economic data. This type of arguments have been used

to explain macroeconomic fluctuations (Farmer and Guo, 1995), regional variation in the density of

economic activity (Krugman, 1991, and Bayer and Timmins, 2005, 2007) or local market variation in

firms’ strategic behavior (Sweeting, 2009, and Ellickson and Misra, 2008). In the context of most

empirical games of incomplete information, uniqueness of the equilibrium in the data, together

with the assumption that there are no common knowledge unobservables, imply that the actions of

players are independent of one another conditional on observables. This implication is likely to fail

1See Aguirregabiria and Mira (2007), Bajari et al. (2007), and Pesendorfer and Schmidt-Dengler (2008) as seminal

contributions in this literature. Other recent contributions to this topic in the context of games of incomplete

information are Berry and Tamer (2006); Sweeting (2008); and Bajari, Hahn, Hong and Ridder (2008).
2See Bajari, Hong, and Nekipelov (2013) for a recent survey of this literature.
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in most datasets. One possible interpretation of failure is that common knowledge unobservables

are present. Aguirregabiria and Mira (2007), Arcidiacono and Miller (2011), and Grieco (2012)

extend sequential estimation methods to allow for common knowledge unobservables in games of

incomplete information. A recent paper by de Paula and Tang (2012) relaxes the assumption of

a unique equilibrium in the data. De Paula and Tang interpret failure of independence in terms

of multiple equilibria and show that it is actually helpful to identify the sign of the parameters

that capture the strategic interactions between players. However, de Paula and Tang assume that

the model does not contain common knowledge unobservables. A relevant question is whether it

is possible to separate empirically the contribution of unobservables that affect the selection of an

equilibrium in the data (i.e., non-payoff relevant unobservables or "sunspots") from the contribution

of unobservables that are payoff-relevant.

In this paper, we study the nonparametric identification of games when we allow for three types

of unobserved heterogeneity for the researcher: payoff-relevant variables that are private information

of each player (PI unobservables); payoff-relevant variables that are common knowledge to all the

players (PR unobservables); and variables that are common knowledge to all the players, are not

payoff-relevant but affect the equilibrium selection ("sunspots" or SS unobservables). As far as

we know, this is the first paper to study identification of games with these three different sources

of unobservables. The specification of the payoff function is nonparametric, and the probability

distribution of common-knowledge unobservables is also nonparametric but with finite support (i.e.,

finite mixture model). We show that if the number of players in the game is greater than the number

of mixtures in the distribution of the unobservables, then the model is nonparametrically identified

under the same type of exclusion restrictions that we need for identification without unobserved

heterogeneity. In particular, it is possible to separately identify the relative contributions of payoff-

relevant and "sunspot" type of unobserved heterogeneity to observed players’ behavior. We also

study the identification of counterfactual experiments using the estimated model. The identification

of the probability distribution of the "sunspot" unobserved heterogeneity is particularly important

for the identification and implementation of these counterfactuals.

We follow a sequential approach to obtain our identification results. In a first step, we consider

the nonparametric identification of players’ strategies (defined as Conditional Choice Probabilities)

and the distribution of common-knowledge unobservables in the context of a nonparametric finite

mixture model. In a second step, we study the identification of payoffs and the separate identifica-

tion of PR and SS common-knowledge unobservables. The strongest identification assumptions are
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in the first step, while the identification conditions in the second step are quite mild. We show with

an example that the conditions for the nonparametric identification of the finite mixture model in

the first step are sufficient but not necessary. In particular, the standard exclusion restrictions that

we use in the second step can help us to relax the strong identification restrictions in the first step.

The rest of the paper is organized as follows. Section 2 introduces the class of models. Section

3 presents our identification results. We summarize and conclude in section 4.

2 Model

Consider a game that is played by  players which are indexed by  ∈ I = {1 2  }. Each
player has to choose an action from a discrete set of alternatives A = {0 1  }. The decision
of player  is represented by the variable  ∈ A. Each player chooses his action  to maximize

his expected payoff. The utility or payoff function of player  is Π(a−x  ε), where: Π() is

a real-valued function; a− ∈ A−1 is a vector with choice variables of players other than ; and

x ∈ X ,  ∈ Ω, and ε are vectors of exogenous characteristics of players and of the environment
(market). The variables in x and  affect players’ utilities and they are common knowledge for all

players. The vector ε represents characteristics that are private information of player .  and ε

are unobservable to the researcher and x is observable.

In addition to these payoff relevant state variables, there are also common-knowledge, non-

payoff relevant state variables that do not have a direct effect on the payoff of any player, but

they affect players’ beliefs about behavior of other players, or more specifically, they affect players’

beliefs about which equilibrium, from the multiple ones the model has, is the one that they are

playing. We denote these non-payoff relevant variables as sunspots. We represent these sunspot

variables using the vector , that contains variables unobserved to the researcher.

EXAMPLE 1: Coordination game within the classroom (Todd and Wolpin, 2012). In an elementary

school class (e.g., 6th grade), the students and the teacher choose their respective levels of effort,

 ∈ A. Each student has preferences on her own end-of-the-year knowledge, Π. The teacher
cares about the aggregate end-of-the-year knowledge of all the students. A production function

determines end of the year knowledge of a student. According to this production function, a

student’s knowledge at the end of the year depends on her own effort, the effort of her peers, teacher’s

effort, and exogenous characteristics of the student, the classroom, and the school. This type of

game is an example of Coordination Game and its main feature is the strategic complementarity

between the levels of effort of the different players. Coordination games typically have multiple
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equilibria, and these equilibria can be ranked in terms of the levels of effort of the players, e.g.,

equilibrium with low effort, with intermediate effort, and with high effort. In this example, we can

distinguish three different types of unobservables from the point of view of the outside researcher.

The first type consists of payoff-relevant common-knowledge unobservables (PR unobservables, ),

e.g., classroom, school, teacher, and students characteristics that enter in the production function

of students’ knowledge and are known to all the players but not to the researcher. The second type

consists of private information unobservables (PI unobservables, ε), e.g., part of the students’ and

teacher’s skills, and their respective costs of effort, are private information of these players, and

they are also unknown to the researcher. Finally, in the presence of multiple equilibria, we may

think that it is not implausible that two classes with exactly the same (payoff relevant) inputs have

selected different types of equilibria. Apparently innocuous variations in the initial conditions in

the class may affect students’ and teachers’ beliefs about the effort of others, and therefore affect

the selected equilibrium. Part of these non-payoff variables affecting beliefs are unobservable to the

researcher (SS unobservables, ).

ASSUMPTION 1. (A) Payoff functions {Π :  ∈ I} are additively separable in the private infor-
mation component, i.e., Π = (a−x ) + (), where ε ≡ {() :  ∈ A} is a vector of
 + 1 real valued random variables; (B) ε is independent of common knowledge variables x, ,

and ; and (C) ε independently distributed across players with a distribution function () that

is absolutely continuous with respect to the Lebesgue measure in R+1.

The standard equilibrium concept in static games of incomplete information is Bayesian Nash

equilibrium (BNE). We assume that the outcome of this game is a BNE. Under this assumption, a

player’s strategy is a function only of payoff-relevant variables. It is a function of (π(x) ε) where

π(x) represents the vector of players’ payoff functions  associated with value (x ). If the game

has multiple equilibria, then the sunspot variables in  affect the selection of the equilibrium and

therefore the outcome of the game. We first describe a BNE and then we incorporate the equilibrium

selection mechanism when the model has multiple equilibria. Let σ = {(π(x) ε) :  ∈ I} be a
set of strategy functions where  is a function from X ×Ω×R+1 into A. Associated with a set of
strategy functions we can define a vector of choice probabilities P(π(x)σ) ≡ {(|π(x) ) :
( ) ∈ A× I} such that:


¡
 | π(x) 

¢ ≡ Z 1
©
(π(x) ε) = 

ª
(ε) (1)

where 1{} is the indicator function. These probabilities represent the expected behavior of player
 from the point of view of the other players, who do not know ε. By Assumption 1(C), players’
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actions are independent once we condition on common knowledge variables (x ) and players’s

strategies , such that Pr(1 2   |x  ) =
Q

=1 (|π(x) ).
Given beliefs about the behavior of other players, each player maximizes his expected utility.

Let  (x ) + () be player ’s expected utility if he chooses alternative  (not necessarily

an optimal choice) and the other players behave according to their respective strategies in σ. By

the independence of private information in Assumption 1, we have that:

 (x ) =
P

−∈−1

³Q
 6= ( |π(x) )

´
(a−x ) (2)

DEFINITION: A Bayesian Nash equilibrium (BNE) in this game is a set of strategy functions σ∗

such that for any player  and for any (x  ε),

∗ (π(x) ε) = argmax
∈A

n


∗
 (x ) + ()

o
(3)

We can represent this BNE in the space of players’ choice probabilities. This representation is

convenient for the econometric analysis of this class of models. Let σ∗ be a set of BNE strategies,

and let P(π(x)σ
∗) be the vector of choice probabilities associated with these strategies. By

definition, (|π(x) ∗ ) =
Z
1
©
∗ (π(x) ε) = 

ª
(ε). Solving the equilibrium condition

(3) in this expression we get that for any ( ) ∈ A× I:


¡
 | π(x) ∗

¢
=

Z
1

½
 = argmax

∈A
£


∗
 (x ) + ()

¤¾
(ε)

=

Z
1
©
()− () ≤ 

∗
 (x )− 

∗
 (x ) for any  6= 

ª
(ε)

= e

¡


∗
 (x )− 

∗
 (x ) for any  6= 

¢
(4)

where e() is the CDF of the vector of random variables { ()− () : for any  6=  }. As
shown in equation (2), the function  depends on other players’ strategies only through their choice

probabilities associated with . Therefore, the right hand side in equation (4) defines a function

Ψ(|π(x)P−), where P− ≡ {() : (  ) ∈ A × I−}. This function can be evaluated at
any set of choice probabilities P−, not just equilibrium probabilities. For arbitrary P−, we have
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that the function Ψ(|π(x)P−) is defined as:

Ψ(|π(x)P−) ≡
Z
1

(
 = argmax

∈A

ÃP
−

ÃQ
 6=

()

!
(a−x ) + ()

!)
(ε)

= e

ÃP
−

ÃQ
 6=

()

!
[(a−x )− (a−x )] for any  6= 

!
(5)

We call the functions Ψ best response probability functions because they provide the probability

that an action is optimal for player  given that he believes that his opponents behave according

to the probabilities in P−. Therefore, the vector of equilibrium probabilities P∗(π(x)) is such

that every player’s choice probabilities are best responses to the other players’ probabilities. That

is, P∗(π(x)) is a fixed point of the best response mapping Ψ(π(x)P) ≡ {Ψ(|π(x)P−) :
( ) ∈ A× I}:

P∗(π(x)) = Ψ
¡
x P∗(π(x))

¢
(6)

EXAMPLE 2: (i) Binary Probit game. A = {0 1} and (0) and (1) have a joint normal

distribution with zero means and variance-covariance matrix Σ. In this case, e1() is equal to

Φ() where Φ() is the CDF of the standard normal and  is the standard deviation of (0)−(1).
Then,

Ψ(1|π(x)P−) = Φ
Ã
1



P
−

ÃQ
 6=

()

!
[(1a−x )− (0a−x )]

!
(7)

(ii) Multinomial Logit game. A = {0 1  } and the 0 are iid extreme value type 1 distributed
with dispersion parameter . In this example,

Ψ(|π(x)P−) =
exp

(
1



P
−

ÃQ
 6=

()

!
(a−x )

)
P

=0

exp

(
1



P
−

ÃQ
 6=

()

!
(a−x )

) (8)

Assumption 1 implies that the best response probability mapping Ψ is continuously differen-

tiable. Therefore, by Brower’s fixed point theorem, the mappingΨ(π(x) ) has at least one equilib-

rium. That equilibrium may not be unique. For some values of π(x) the model may have multiple

equilibria. The set of BNE associated with π(x) is defined as Γ(π(x)) ≡ { P : P = Ψ(π(x)P)
}. Doraszelski and Escobar (2010, Corollary 1) show that under our regularity conditions the set of
equilibria Γ(π(x)) is discrete and finite for almost all games π(x). Furthermore, each equilibria

belongs to a particular "type" such that a marginal perturbation in the payoff function implies also

a small variation in the equilibrium probabilities within the same type.
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DEFINITION. Let (π(x)P) be the function P−Ψ(π(x)P) such that (π(x)P) = 0 means
that P is an equilibrium for the game with payoffs π(x). Let π

0 and π1 be two vectors of payoffs

in the Euclidean space. And let P0 and P1 be BNEs associated with π0 and π1, respectively. We

say that P0 and P1 belong to the same type of equilibrium if and only if there is a continuous path

P() that satisfies the condition


¡
(1− ) π0 +  π1 P()

¢
= 0

for every  ∈ [0 1], and connects in a continuous form the equilibria P0 and P1, such that P(0) =

P0 and P(1) = P1.

We index equilibrium types by  ∈ {1 2 }, and we use Υ(π(x)) to represent the set of indexes
for the equilibrium types in the set of equilibria Γ(π(x)). That is, we can represent the set of

equilibria associated to a game with payoffs π(x) either in the space of CCPs using Γ(π(x)), or

in the space of indexes of equilibrium types using Υ(π(x)).

EXAMPLE 3: Consider the following very simple version of the coordination game within the

classroom that we have introduced in Example 1 above. A student’s choice set A is binary:  = 0
represents low effort and  = 1 indicates high effort. There are  students in class. The teacher’s

combination of skills and effort is considered ere exogenous and represented by the scalar variable

. A student’s utility function is a combination of the production function of the student’s end of

the year knowledge and her cost of effort. It has the form Π = (a− ) + (), and more

specifically,

Π =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 + 0 + 0 

µ
1

 − 1
X

 6= 

¶
+ (0) if  = 0

1 + 1 + 1 

µ
1

 − 1
X

 6= 

¶
+ (1) if  = 1

(9)

where 0, 0, 0, 1, 1, and 1 are parameters. This specification establishes that a student’s

payoff depends on his own effort, the teacher’s effort-skills, the average effort of the other students,

and his own private information cost of effort (or skills). Suppose that (0) and (1) are jointly

normal random variables, iid distributed across students with zero mean and ((0)−(1)) = 2,

. In this simple model, all the students are assumed identical except for their private information

variables, and therefore they all have the same best response probability function Ψ(1|πP−).

Furthermore, every student perceives the other students as identical and it is reasonable to assume

that she believes that all other students have the same probability of high effort  (), i.e., the

equilibrium is symmetric. Then, the best response probability function of any student in this
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model is:

Ψ(1|π  ()) = Φ (+  +    ()) (10)

with  ≡ (1−0),  ≡ (1−0), and  ≡ (1−0). Suppose that the effort of the teacher
and of the other students is strategic complement with the student’s own effort such that   0.

Then, the model is a Coordination Games and the best response probability function has an S form

as shown in Figure 1.

Figures 1 and 2 come from this example when the parameter values are  = 20,  = −731,
and  = 675, and the variable  that represents teacher’s effort-skills is an standardized index in

the interval [0 1]. Figure 1 presents the equilibrium mapping when teacher’s effort is  = 052. For

this level of teacher’s effort the model has three equilibria with low, middle, and high probability

of high students’ effort.

Figure 2 illustrates how the three type of equilibria vary continuously when we change in a

continuous way the index that measures teacher’s effort. Because   0 an increase in teacher’s

effort shifts the best response function downwards, i.e., teacher’s effort is to some extent a substitute

of student’s effort in the production function of knowledge. This figure shows also that some type

of equilibria exist only for values of  within an interval. The low-effort equilibrium type exists

only for values of  in the interval [048 10], while the high-effort equilibrium type exists only for

values of  in the interval [00 065]. The fact that some type of equilibria appear or disappear for

different values of  introduces a discontinuous relationship between teacher’s effort  and students’

effort as represented by the equilibrium  . This discontinuous relationship may be also associated

to "jumps" from one equilibrium type to other equilibrium type.

Assumption 1 has some other implications that are relevant for the identification and estimation

of the model. For instance, the probabilities Ψ(|π(x)P−) are bounded away from zero and

one. This is needed for the uniform convergence of the log-likelihood function and for consistency

and asymptotic normality of the maximum likelihood estimator. The following Lemma 1 is an

implication of Assumption 1 that plays an important role in the identification of the structural

model.

LEMMA 1 (Based on McFadden, 1978 and Hotz and Miller, 1993). Define the differential-expected-

payoff function:

eP (x ) ≡ P
−

ÃQ
 6=

( |π(x))
!
[(a−x )− (0a−x )] (11)
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Under Assumption 1, for any value of (x ), there is a one-to-one mapping between the  best

response (not necessarily equilibrium) CCPs of player , {(|π(x)) :  ∈ A− {0}}, and the 

differential-expected-payoffs for this player, {e (x ) :  ∈ A− {0}}.
3 Identification

3.1 Data and data generating process

Suppose that the researcher observes different realizations of the game; e.g., different classroom-

years, or  different markets or periods of time. We use the index  to represent a realization of

the game. For the sake of concreteness in our discussion, we consider that these multiple realiza-

tions of the game represent the same players playing the game at  different markets. For every

market , the researcher observes the vector x and players’ actions {1, 2,  }. For the
asymptotics of the estimators, we consider the case where the number of players  is small and

the number of realizations of the game is large (e.g., the number of markets  goes to infinity).

We assume that the distribution of the private information unobservables, , is known to the

researcher up to a scale parameter. We study the nonparametric identification of the distribution

of common-knowledge unobservables and of payoff functions  up to the scale parameter in  and

of using these data.

Let π be the vector of players’ payoff functions in the population under study. Assumption 2

summarizes all the conditions that we impose on the Data Generating Process (DGP).3

ASSUMPTION 2: The DGP can be described by the following conditions. (A) The realizations of

the unobservable variables in  and the observable exogenous variables in x are independent ran-

dom draws from a joint probability distribution . (B) Let (|x) be the conditional probability
function associated to the joint probability . The distribution  has finite support Ω ≡ {(1)
(2), , ()}, i.e., finite mixture model. (C) The variable , that represents the equilibrium type

selected in market , is independent of {ε} and independently distributed over  with probabil-

ity distribution ( |π(x)) on Υ(π(x)), where ( |π(x)) ≡ Pr( =  |π(x)). (D)

The observed vector of players actions in market , a ≡ {1, 2, ..., }, is a random draw

from a multinomial distribution Pr(a | x  ) such that

Pr(a|x  ) =
Y

=1
(|π(x) )

3Note that in the description of the DGP we do not need to specify the distribution of the vector of unobservable

sunspots  but only of the selected equilibrium type . The probability distribution of  appears implicitly in

the distribution (|(x)).
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(E) The vector P(π(x) ) ≡ {(|π(x) ) : ( ) ∈ A×I} containing the population
CCPs of every player in market , is a fixed point of the mapping Ψ(π(x)P), i.e., there is an

equilibrium type  ∈ Υ(π(x)) such that P(π(x) ) = Ψ(π(x) P(π(x) )).

Let (a|x) be the probability distribution of observed players’ actions conditional on observed
exogenous variables: (a|x) ≡ Pr(a = a | x = x). This probability distribution  is identified

from the data under very mild regularity conditions. Furthermore, this probability distribution

contains all the information from the data that is relevant to identify the structural parameters of

the model, {π, , }. According to the model and our assumptions on the DGP, we have the
following relationship between  and the structural parameters {π, , }:

(a|x) =
X
∈Ω

X
∈Υ(x)

(|x) ( |π(x))
∙
Q
=1

(|π(x)  ;π)
¸

subject to: P(π(x) ) = Ψ(π(x)P(π(x) ))

(12)

The system of equations in (12), together with the equilibrium conditions that define implicitly

the equilibrium CCPs, summarizes all the restrictions imposed by the model and the data for the

identification of the structural parameters. Therefore, given , the primitive functions {π, , }
are identified if this system of equations has a unique solution for {π, , }.

DEFINITION (Identification): Suppose that the distribution  is known to the researcher. The

model is fully (point) identified iff there is a unique value {π, , } that solves the system of

equations (12).

Since the two types of common knowledge unobservables,  and  , have finite supports, we can

define a scalar random variable  ≡ ( ) with discrete and finite support that contains the same

information as ( ). Variable  represents all the common knowledge unobserved heterogeneity.

Let (|x) be the PDF of , i.e., (|x) = P
 1{ = ( )} (|x) ( |π(x)). We also

present identification conditions for {π, } without the separate identification of  and .

3.2 Identification of Structural Functions

We are interested in two main questions: (a) Under which conditions is the payoff function identi-

fied?; and (b) Under which conditions is it possible to separately identify the relative contribution

of payoff-relevant common knowledge unobservables (PR) and ’sunspots’ (SS) as competing expla-

nations for non-independence of players’ actions in the data?

We follow a sequential approach to derive conditions for identification. In the first step of this

sequential approach, we derive conditions for the (nonparametric) identification of the probability
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function (a|x). In the second step, given (|), we obtain conditions for the identification of the
CCPs ( | x ) and the probability distribution (|x) from the system of equations:

(a|x) =
X


(|x)
∙
Q
=1

( | x )
¸

(13)

By Lemma 1, the identification of the CCPs (|) is equivalent to the identification of the
differential-expected-payoff function e (x ). In the third step, we consider the identification of
the payoff function ( −x ) given that the expected payoff e (x ) is known. Finally,
in step 4, we derive conditions for the identification of the distributions (|x) and ( |πx) given
the payoff function  and the distribution (|x).

In some of these four steps, we distinguish between conditions for point identification and

conditions to test some null hypotheses of interest. We are particularly interested in testing the

null hypotheses of "no common-knowledge unobserved heterogeneity" (i.e.,  is constant), "no SS

unobservables" (i.e.,  is constant), and "no PR unobservables" (i.e.,  is constant).

Before we present our identification results for the model with the two sources of unobserved

heterogeneity, it is helpful to discuss the identification of the model without any of these two sources

of heterogeneity. This case is a useful benchmark of comparison.

3.2.1 Model without PR or SS unobserved heterogeneity

Consider the model without any form of common knowledge unobserved heterogeneity, either payoff

relevant or sunspots. For any market ,  is a constant across markets, and  = (π(x)),

where () is a deterministic function. We omit  and  as arguments of primitive functions and

CCPs. The probability distribution that describes the equilibrium selection, , is degenerate: for

any ( x), we have that ( |x) = 1{ = (π(x))}, where 1{} is the indicator function and () is

a function from the space of payoffs into the set of indexes of equilibrium types. Conditional on

the value of x only one equilibrium is selected. This condition is a soft version of the assumption

"only one equilibrium is played in the data" that has been one of the cornerstones of the recent

literature exploiting the two-step approach.4

The system of equations in (12) that contains all the identifying restrictions of the model, now

becomes:

(a|x) =
Q
=1

(|x  = (π(x)),π) (14)

4 In most papers using the two-step approach it has been assumed, more or less explicitly, that only one equilibrium

is present in the DGP. Aguirregabiria and Mira (2007) refer to the possibility that different equilibria might be selected

across subsamples defined by the value of common knowledge variables, as long as the sample partition is known by

the researcher.
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or, what is equivalent, (|x) = (|x  = (π(x))π) for any player , where  is the marginal

distribution of  conditional on x in the population.

Step 1: Identification of . If x has a discrete and finite support, the probabilities  can be con-

sistently estimated using simple frequency estimators, e.g., b(|x) =
P

=1 1{ = ; x = x}P
=1 1{x = x}. The case of continuous variables in x is slightly more complicated because mul-

tiplicity of equilibria in the data, i.e. switching between equilibrium types for different values of

x, may generate discontinuity points in the CCP function. The researcher does not know, ex-ante,

the number and the location of these discontinuity points, and this complicates the application of

smooth nonparametric estimators, such as kernel or sieve estimators. If the model has multiple

equilibria this function may be discontinuous if only because some equilibria can appear and disap-

pear when we move continuously along the space of x. This point is illustrated in Figures 2A-2D.

These figures represent the equilibrium mapping Φ(20−731 +675   ) for four different values

of : 047, 050, 055, and 066. For any value of  in the interval [047 066], the model has multiple

equilibria. However, the model has a unique equilibrium for values   047 or   066. Suppose

that () is such that it always select the equilibrium with the highest value of  . Then, for values

of  in the interval (−∞ 066) the function  is continuous. However, at  = 066 the equilibrium

with the high probability disappears. Therefore, the function  has a discontinuity at  = 066.

Note that something similar occurs when () selects the equilibrium with the lowest value of  .

The discontinuity of the probability function  does not imply that the model is not identified.

Müller (1992) studies the nonparametric (kernel) estimation of a single-variable regression function

with ’change-points’ or discontinuities. Delgado and Hidalgo (2000) extend the analysis to mul-

tivariate nonparametric regression models. The methods proposed in these papers use one-sided

kernels to estimate the limits of the regression function from the left and from the right. These

papers show the consistency and asymptotic normality of kernel estimators of regression functions

with unknown discontinuity points.

Step 2: Identification of e (x). Given that (|x  = (π(x)),π) = (|x), Lemma 1 implies
that we can uniquely identify {e (x) :  ∈ A− {0}} from {(|x) :  ∈ A− {0}}.

Step 3: Identification of payoff function. The problem of identification at this step can be described

in terms of obtaining a unique solution for the payoff function π from the system of equations:

e (x) = P
−

−(|x) [(a−x)− (0a−x)] , (15)

where −(a−|x) ≡
Q

 6=( |x), and given that we know the differential-expected-payoffs e .
12



The following Proposition provides sufficient conditions for the identification of the payoff function.

PROPOSITION 1. Suppose that: (i) x = {x  :  ∈ I} where  ∈ Z and the set Z is discrete

with at least  + 1 points; (ii) (exclusion restriction) (a−x) depends on (x ) but not on

{ :  6= }; (iii) (rank condition) for any value of (x ), the matrix Q−(x ) with dimension
|Z|−1× ( +1)−1 and elements the probabilities −(a−|x) ≡

Q
 6= ( |x) (with fixed (x )

and every possible value of { :  6= }) has full column rank; and (iv) the payoff associated to
choice alternative 0 is normalized to zero, (0a−x) = 0. Under these conditions, the payoff

functions  are identified.

Proof: In the Appendix.

Step 4: Identification of the equilibrium selection function ( |π(x)) = 1{ = (π(x))}. Given
the identification of the payoff function, we know the form of the equilibrium Ψ(xπP) and we

can compute all the equilibria that the model has for each value of x in the sample. Then, we

identify the equilibrium selection function (π(x)) at every value of x observed in our sample.

More precisely, for every value of x, the index (π(x)) should be the value that uniquely solves the

following optimization problem.

(π(x)) = arg min
∈Υ((x))

°°Q(x)−P(π(x) )°° (16)

where Q(x) and P(π(x) ) are  × 1 vectors of choice probabilities for every player and choice
alternative conditional on x such that Q(x) contains the empirical probabilities estimated from the

data, and P(π(x) ) contains the equilibrium probabilities implied by the model when the payoffs

are π and the equilibrium type is  .

Testing the hypothesis of "no common-knowledge unobserved heterogeneity". This version of the

model imposes the following testable restrictions on the probability distribution : (a|x) =Q
=1(|x). These restrictions are direct implications of Assumption 1 and of "no common-

knowledge unobserved heterogeneity", i.e., the random variable  ≡ ( ) is in fact a constant.

Therefore, this assumption can be easily tested using a test of the null hypothesis of independence

of players’ actions conditional on x. For instance, for a binary choice game with two players the

testable restriction is (0 0|x)(1 0|x) = (0 1|x)(0 0|x).

3.2.2 Model with both PR and SS unobserved heterogeneity

Step 1: Identification of . The conditions for the nonparametric identification of the joint proba-

bility distribution (a|x) are exactly the same as in the model without unobserved heterogeneity.

13



Step 2: Identification of expected payoffs e . By Lemma 1, the vector of expected payoffs {e (x ) :
 ∈ A−{0}} is identified if and only if the vector of CCPs {(|x ) :  ∈ A−{0}} is identified.
The identification of CCPs is based on the set of restrictions:

(a|x) =
(x)X
=1

(|x)
∙
Q
=1

( | x )
¸

(17)

where (x) represents the number of points in the support of the distribution (|x). This

system of equations describes a nonparametric finite mixture model. The identification of this

class of models has been studied by Hall and Zhou (2003), Hall, Neeman, Pakyari and Elmore

(2005), Allman, Matias, and Rhodes (2009), and Kasahara and Shimotsu (2013). Identification

is based on the independence between the  players’ actions {} once we condition on (x ),
and it does not exploit any variation in the exogenous variables in x. Hall and Zhou (2003) study

nonparametric identification for a mixture with two branches (i.e., using our notation , takes

only two values):  (1 2   ) = 
Q

=1 (| = 1)+ (1 − )
Q

=1 (| = 2), where the

observed variables  can have either discrete or continuous support. They show that with  > 3
the primitives of the model, { (| = 1), (| = 2) :  = 1 2  }, are identified under very
mild regularity conditions (Theorem 4.3 in Hall and Zhou, 2003). Hall et al. (2005) and Allman

et al (2009) study the more general case with  ≥ 2 mixtures, present identification results and
computational methods to estimate the model. Allman et al (2009) show that when  > 3 a

necessary and sufficient condition is that the probability distributions {(|) :  = 1 2  } are
linearly independent. When the support of the variables  is discrete with  + 1 possible values,

a necessary condition for this linear independence is that  ≤  . This result establishes an upper

bound for  in our game: i.e.,  ≤  . These papers also show that, together with the condition

 > 3, this necessary condition is, in general, sufficient.
Sufficient order conditions establish upper bounds on the number  of mixture weights and

components that can be identified, depending on the number of players and choice alternatives.

Note that the true number of mixture components is in general not known by the researcher. In our

model, the support of the PR unobservables  is a primitive of the model, and therefore in some

cases it may be assumed to be known to the researcher. However, the support of  depends on the

number of equilibria of the model that are selected in the DGP, which is an endogenous object.

Therefore, it seems reasonable not to impose restrictions on the number of mixture components for

 but to identify it from the data. Kasahara and Simotsu (2012) provide conditions for identification

(and estimation) of a lower bound on the number of mixture components. The following Proposition

2 is an application to our model of a number of identification results in Hall and Zhou (2003), Hall,
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Neeman, Pakyari and Elmore (2005), and Kasahara and Shimotsu (2012).

PROPOSITION 2. (A) Upper bounds on the number of identifiable components: In order to

identify 2 or more mixture components, we need at least 3 players. With  > 3we have  6  .

(B) Identifying a lower bound on the number of mixture components: Let 1 and 2 be two discrete

random variables which summarize outcomes from one realization of our game (i.e., subvectors of

the action vector {a1, a2, ..., a}) such that 1 and 2 are independent conditional on (x )

Let C(12) be a matrix describing the (population) joint distribution of (1 2) Then the rank of

C(12) is a lower bound of the true number of mixture components .

Thus from part (B) of the Proposition, lower bounds on the number of mixture components are

easily identifiable.5 For instance, in a simple game with only two players we could set 1 = 1 and

2 = 2 If the number of actions  + 1 is large, one may use data reduction so that each point in

the support of the  variables corresponds to several actions. In a game with 3 players, 1 could be

any function of the actions chosen by players 1 and 2 and 2 the action of player 3 or a function of

it. Clearly, different definitions of variables 1and 2 are possible and different lower bounds may

be obtained depending on the researcher’s choice. Intuitively,  variables with larger supports may

give more accurate lower bounds but will be estimated with less precision in any given sample.

The conditions for identification of mixture components and weights in part (A) of Proposition

2 are more stringent. For instance, in binary choice games (with 3 players) we can identify a

mixture with only two branches. It is apparent that in general we will not be able to identify

many "branches" non-parametrically in Step 2. This is a limitation with important implications

for identification of primitives using this sequential approach.

Given the identification of the CCPs ( | x ), the application of Lemma 1 implies identifi-
cation of expected payoffs e (x ).
Step 3: Identification of payoff function. The identification of the payoff function π is based on the

system of equations:

e (x ) = P
−

ÃQ
 6=

( |x )
!
[(a−x )− (0a−x )] (18)

Suppose that the conditions of Proposition 2 hold such that the distribution  and the CCPs

{(|x )} are identified. In particular, the number of mixture components for the unobserved
heterogeneity, (x), is known to the researcher.

6 However, the researcher has not identified yet

5Kasahara and Simotsu (2013) describe a fairly simple algorithm for estimation of the identifiable bound.
6Note that we allow for the number of mixtures (x) to vary with the vector of exogenous observables x.
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which part of this heterogeneity is PR and which part is SS. It should be clear that the worst-case

scenario for the identification of the payoff function  is when all the unobserved heterogeneity is

payoff relevant, i.e., (x) = (x). Our identification strategy is agnostic but allows for this worst-

case scenario. Note that this working assumption does not introduce any bias in the estimation of

the payoff function. Furthermore, once the payoff function has been recovered we will be able to

identify whether for two different values of  the payoff function is the same, and therefore these

two values of  represent variation in non-payoff-relevant unobserved heterogeneity. That procedure

will be part of the identification of the probability distributions of  and  at step 4.

The following Proposition provides sufficient conditions for the identification of the payoff func-

tion.

PROPOSITION 3. Suppose that the conditions of Proposition 2 hold such that the distribution 

and the CCPs {(|x )} are identified. And suppose that: (i) As a working hypothesis allow the
payoff function to depend freely on the whole unobserved component , i.e., (a−x ); (ii)

x = {x  :  ∈ I} where  ∈ Z and the set Z is discrete with at least +1 points; (iii) (exclusion
restriction) (a−x ) depends on (x  ) but not on { :  6= }; (iv) (rank condition) for
any value of (x  ), the matrix P−(x  ) with dimension |Z|−1× (+1)−1 and elements
the probabilities

Q
 6= ( |x ) (with fixed (x  ) and every possible value of { :  6= })

has full column rank; and (v) the payoff associated to choice alternative 0 is normalized to zero,

(0a−x ) = 0. Under these conditions, the payoff functions  are identified.

Proof: In the Appendix.

EXAMPLE 4. Consider a binary choice game,  ∈ {0 1} with two players,  and . For simplicity,
the vector of observable exogenous variables x includes only the variables  and  , where  ∈
Z = {(1)  

(2)
 } and  ∈ Z = {(1)  

(2)
 }. Suppose that in step 2 the researcher has identified

 ≥ 2 mixtures or points in the support of the unobservable . Then, for any value of ( ), we
have the following system of two equations with two unknowns for player :" e (1  (1)  )e (1  (2)  )

#
=

⎡⎣ 1− 

³
1 |  (1)  

´
; 

³
1 |  (1)  

´
1− 

³
1 |  (2)  

´
; 

³
1 |  (2)  

´ ⎤⎦ ∙
(1 0  )

(1 1  )

¸
(19)

If the estimated CCPs for player  are such that 

³
1 |  (1)  

´
6= 

³
1 |  (2)  

´
(i.e., if

 always depends on ), then we have that [1 − 

³
0 |  (1)  

´
] 

³
1 |  (2)  

´
6= [1 −



³
0 |  (2)  

´
] 

³
1 |  (1)  

´
and the matrix P− is non-singular. Therefore, we can solve
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for (1 0  ) and (1 1  ) in this system of equations to obtain:

(1 0  ) =
e (1  (1)  ) 

³
1 |  (2)  

´
− e (1  (2)  ) 

³
1 |  (1)  

´


³
1 |  (2)  

´
− 

³
1 |  (1)  

´

(1 1  ) =
e (1  (2)  ) 

³
1 |  (1)  

´
− e (1  (1)  ) 

³
1 |  (2)  

´


³
1 |  (2)  

´
− 

³
1 |  (1)  

´
(20)

Step 4: Identification of the probability distributions for the two types of unobserved heterogeneity.

Suppose that the conditions in Propositions 2 and 3 hold such that the researcher has identified

the distribution (|x) and the payoff functions . Now, we want to identify the probability
distributions (|x) and ( |(π(x)). There are two sets of restrictions that we can exploit to
identify these distributions: (1) the payoff  depends on  but not on  ; and (2) by definition,

(|x) = 1{ = ( )} (|x) ( |π(x)).
The set of restrictions (1) provide a simple approach to identify the number of points in the sup-

port in the distribution (|x), i.e., (x). Let Π(x) be the matrix with dimension ( +1)
−1

× (x) that contains all the payoffs {(a−x )} for a given value of x. More specifically,
each column corresponds to a value of  and it contains the payoffs (a−x ) for every value

of (a−) with   0. If two values of  represent the same of value of , then the corresponding

columns in the matrix Π(x) should be equal. Therefore, the column rank of matrix Π(x) should

be equal to (x). That is, we can identify the number of mixtures (x) as:

(x) =  ( Π(x) ) (21)

The information in matrix Π(x) not only identifies the number of points in the support of

the PR unobservables, but also the points of support themselves and, together with the set of

restrictions (2), the distributions of these unobservables. Once we identify the columns of Π(x)

that are different and the ones that are the same, we can label each column (i.e., each value of )

with two values, one for  and other for  . For instance, supposes that (x) = 7 such that Π(x)

has seven columns that we label as  = 1 2  7. Suppose the rank of Π(x) is 4: columns 1, 2,

and 4 are equal to each other, and columns 6 and 7 are also equal to each other. Then, it is clear

that (x) = 4. We label columns {1 2 4} with  = 1, column {3} with  = 2, column {5} with
 = 3, and columns {6 7} with  = 4. For each value of  with more than one column in matrix
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Π(x) we consider a different value of  . That is,

{ = 1}⇔ { = 1 &  = 1}; { = 3}⇔ { = 2 &  = 4}; { = 7}⇔ { = 4 &  = 7}
{ = 2}⇔ { = 1 &  = 2}; { = 5}⇔ { = 3 &  = 5};
{ = 4}⇔ { = 1 &  = 3}; { = 6}⇔ { = 4 &  = 6};

(22)

These relationships are a description of the mapping  = ( ), and this mapping is identified.

Finally, using the restrictions (|x) = 1{ = ( )} (|x) ( |x ), we have that

(1|x) = (1|x) +(2|x) +(4|x) ; ( = 1|x  = 1) =
(1|x)

(1|x) +(2|x) +(4|x)
(2|x) = (3|x) ; ( = 2|x  = 1) =

(2|x)
(1|x) +(2|x) +(4|x)

(3|x) = (5|x) ; ( = 3|x  = 1) =
(3|x)

(1|x) +(2|x) +(4|x)
(4|x) = (6|x) +(7|x) ; ( = 4|x  = 2) = 1

( = 5|x  = 3) = 1

( = 6|x  = 4) =
(6|x)

(6|x) +(7|x)
( = 7|x  = 4) =

(7|x)
(6|x) +(7|x)

(23)

PROPOSITION 4. Under the conditions of Propositions 1 and 3, the points of support of the unob-

servables  and  and the probability distributions of these unobservables, (|x) and ( |x ),
are nonparametrically identified.

Testing the hypotheses of "no SS unobserved heterogeneity" and "no PR unobserved heterogeneity".

As a Corollary of Proposition 4, we have simple tests for these null hypothesis. If there is not SS

unobserved heterogeneity, then the number of points in the support of , (x), should be equal

to the points of support of  for any value of x in the sample. Therefore, taking into account that

(x) = (Π(x)) and that (x) = cols(Π(x)), we have that testing for the null hypothesis

of "no SS unobserved heterogeneity" is equivalent to testing for:

0 : For every value of x the matrix Π(x) has full column rank. (24)

If there is not PR unobserved heterogeneity, then for any value of x in the sample the number of

points in the support of  should be equal to the 1. This implies that testing for the null hypothesis

of "no PR unobserved heterogeneity" is equivalent to testing for:

0 : For every value of x the matrix Π(x) has rank equal to 1. (25)

Therefore, the tests for these null hypotheses can be described in terms of tests of the rank of a

matrix of statistics. This type of tests have been proposed and developed by Cragg and Donald

18



(1993, 1996, 1997) and Robin and Smith (2000), among others, and have been applied to differ-

ent econometric problems such as detecting the number of factors in factor models, the number

cointegration relationships, or the identifiability of IV estimators.

3.2.3 Identification without sequential approach

All the previous identification results are based on the sequential approach that we have described

above. The proposed exclusion restrictions are quite natural in the estimation of games, and they

are necessary for nonparametric identification even in games without unobserved heterogeneity.

However, the conditions for the identification of the nonparametric finite mixture in step 1 seems

quite stringent. An important question is whether these restrictions are really necessary for iden-

tification. More precisely, if we do not follow a sequential approach to identify/estimate the model

but estimate jointly all the structural functions, it may be possible that we can obtain nonpara-

metric identification even when the conditions in Proposition 2 are not satisfied. In particular,

the exclusion restrictions that we use to identify the payoff function in step 3 may provide over-

identifying restrictions that are useful to identify the distribution of the unobservables and to relax

the conditions in step 1. The following example shows that this is exactly the case.

EXAMPLE 5: Consider a two-players binary choice game. For simplicity, the vector of observed

exogenous variables x includes only the player-specific variables 1 and 2 associated to the exclusion

restrictions: x = (1 2) with  ∈ Z. The set Z is discrete and it has |Z| elements. Without loss
of generality suppose that there is only PR unobservables  (i.e., this is a worst case scenario for

the identification of the payoff function because it implies the largest possible number of payoff

parameters). The random variable  has a discrete support Ω with |Ω| elements. This model
does not satisfy the identification conditions in Proposition 2 (identification step 2). Suppose that

the exclusion restriction and the normalization assumption in Proposition 3 holds. Under these

conditions, the structural parameters in this model are: (1) the 4 ∗ |Z| ∗ |Ω| payoffs 1(1 0 1 ),
1(1 1 1 ), 2(1 0 2 ), and 2(1 1 2 ); and (2) the (|Ω|− 1) ∗ |Z|2 free probabilities in the
distribution (|1 2). To identify these parameters, the model imposes the following restrictions:

(1 2|1 2) =
X
∈Ω

(|1 2) 1(1 | 1 2 ) 2(2 | 1 2 ) (26)

for (1 2) ∈ {0 1} × {0 1}, and with  0 satisfying the equilibrium restrictions:

(1 | 1 2 ) = Φ ((1 0  ) + (1|1 2 ) [(1 1  )− (1 0  )]) (27)
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The number of restrictions implied model is equal to the number of free probabilities in , that is

3 ∗ |Z|2. Therefore, the order condition of identification is satisfied if:

3 ∗ |Z|2| {z } ≥ 4 ∗ |Z| ∗ |Ω|+ (|Ω|− 1) ∗ |Z|2| {z }
# Restrictions # Parameters

(28)

And this condition is equivalent to (4 − |Ω|) |Z| ≥ 4 |Ω|, and equivalent to {|Ω| ≤ 3 and |Z| ≥
4|Ω| (4 − |Ω|)}. This condition is satisfied for |Ω| = 2 and |Z| ≥ 4, and for |Ω| = 3 and |Z| ≥
12. In general, there is continuum set of values of the primitives for which the rank condition of

identification is also satisfied.

Example 5 shows that if the exclusion restriction provides enough overidentifying restrictions,

then the identifying restrictions in Proposition 2 are not necessary conditions for the nonparametric

identification of this model.

3.3 Predictions and counterfactual experiments

Let (π0  0 , 
0) be the true structural functions in the population under study. Suppose that

the researcher has consistently estimated these primitive functions and is interested in using these

estimates to make predictions about the effects on players’ behavior (choice probabilities) of a

counterfactual change in the economic environment or in the primitives of the model. We consider

three different types of prediction exercises in a given market  = 0:

(a) Change in x from the observed value x0 to a counterfactual x∗ within X , keeping
(π0  0 , 

0) constant.

(b) Change in x from the observed value x0 to a counterfactual x∗ outside X , keeping
(π0  0 , 

0) constant.

(c) Change in π from the estimated π0 to a counterfactual π∗, keeping x0 and 0

constant.

Of course, the interesting case is when the set Υ(π(x∗)) of equilibrium types in the counterfactual

scenario contains multiple equilibria. Otherwise, we know that the single equilibrium is selected

with probability one and we have a very standard exercise of prediction or counterfactual experiment

using a structural model.

Prediction exercise (a) is relatively straightforward. Given that x∗ is within the support X , the
researcher has identified the payoff functions and the distribution of the unobservables (including
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the distribution of the ’sunspot’) for this value of x. That is, there is a market such that x = x
∗.

Therefore, the counterfactual CCPs and distributions of unobserved heterogeneity in market 0 when

the vector of observables is x∗ are just the factual CCPs and distribution of unobservables in market

.

Prediction exercise (b) and (c) are more challenging. The main problem comes from the extrap-

olation of the equilibrium selection distributions from (|π0
(x0)

) to (|π∗
(x∗)). To identify this

type of predictions or counterfactual experiments we exploit the assumption that the set of possible

equilibria Υ(π(x)) and the probability distribution (|π(x)) depend on (x ) and on the payoff
functions only through the vector π(x) of payoff values. Suppose two realizations of the game,

one with payoff function 0() and state variables (x0 0) and the other with payoff function 1()

and state variables (x1 1), and suppose that vector of payoffs is the same, i.e., π0
(x00)

= π1
(x11)

.

Then, these two realizations of the game have the same probability distribution  over equilibrium

types. Therefore, if the counterfactual payoff function π∗ and value x∗ are such that there is a

market  in the sample such that π0
(x)

= π∗
(x∗), then the implementation of predictions (b)

and (c) is very similar to the prediction exercise in (a): the counterfactual CCPs and distributions

of unobserved heterogeneity in market 0 are just the factual CCPs and distribution of unobservables

in market  with π0
(x)

= π∗
(x∗).

If there is not any market  such that π0
(x)

= π∗
(x∗), then we can exploit the smooth-

ness properties of function (|π(x)) within an neighborghood of π∗(x∗) with the same set of
equilibrium types as the ones for π∗

(x∗). A first condition that we need to make this inter- or

extra-polation is that there are markets in the data (in the population under study) that have

the same set of equilibrium types as the set of equilibria Υ(π∗
(x∗)) in the counterfactual scenario.

Define the set X (π∗
(x∗)) as:

X (π∗(x∗)) ≡
n
x ∈ X : Υ(π0(x)) = Υ(π

∗
(x∗))

o
(29)

Suppose that the set X (π∗
(x∗)) is not empty and that the distribution function (|π(x)) is a

smooth function within the set X (π∗
(x∗)) . Given these conditions, and under standard regularity

conditions on the bandwidth  and the kernel function (), the following kernel estimator is a

consistent estimator of the counterfactual distribution (|π∗
(x∗)) :

b( |π∗
(x∗)) =

P
=1

1
n
x ∈ X (π∗(x∗))

o
( |π0

(x)
) 

Ã
π0
(x)

− π∗
(x∗)



!
P
=1

1
n
x ∈ X (π∗(x∗))

o


Ã
π0
(x)

− π∗
(x∗)



! (30)
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Therefore, under these assumptions we can use b( |π∗
(x∗)) to perform counterfactual experiments

(b) and (c).

4 Conclusion

In empirical applications of games of incomplete information, we typically find that conditional

on observable exogenous variables players’ actions are correlated. One possible interpretation of

this correlation is that common knowledge unobservables are present. Some of these unobservables

may be payoff relevant while others may be ’sunspots’ that affect players’ beliefs and the selected

equilibrium but do not have a direct effect on players’ payoffs. This paper is motivated by the

following question: is it possible to separate empirically the contribution of unobservables that affect

the selection of an equilibrium in the data (i.e., non-payoff relevant unobservables or "sunspots")

from the contribution of unobservables that are payoff-relevant? Is it possible to conclude that we

need ’sunspots’ to explain players’ observed behavior?

We investigate this question by studying the nonparametric identification of games when we

allow for three types of unobserved heterogeneity for the researcher: payoff-relevant variables that

are private information of each player (PI unobservables); payoff-relevant variables that are com-

mon knowledge to all the players (PR unobservables); and variables that are common knowledge

to all the players, are not payoff-relevant but affect the equilibrium selection ("sunspots" or SS

unobservables). We show that if the number of players in the game is greater than the number of

mixtures in the distribution of the unobservables, then the model is nonparametrically identified

under the same type of exclusion restrictions that we need for identification without unobserved

heterogeneity. In particular, it is possible to separately identify the relative contributions of payoff-

relevant and "sunspot" type of unobserved heterogeneity to observed players’ behavior. We also

study the identification of counterfactual experiments using the estimated model.
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APPENDIX: Proofs of Propositions

Proof of PROPOSITION 1. For a given value of (x
 ), the system of equations e (x) ≡P

− −(|x) (a−x) can be written in matrix form as:

eπ
 (x

 ) = Q−(x ) π(x )

where: eπ
 (x

 ) is the |Z|−1 × 1 vector {e (  z−) : for every z−}; Q−(x ) is the
|Z|−1× ( +1)−1 matrix with rows {−(a−|x  z−) : for every a−}; and π(x ) is
the (+1)−1×1 vector {(a−x ) : for every a−}. Under the conditions of Proposition 1,
Q−(x )0 Q−(x ) is a non-singular matrix and we can uniquely identify the vector of payoffs

π(x
 ) as:

π(x
 ) =

£
Q−(x )0 Q−(x )

¤−1 h
Q−(x )0 eπ

 (x
 )

i

Proof of PROPOSITION 3. The proof is almost identical to the one for Proposition 1. For a

given value of (x
  ), the system of equations e (x ) ≡P− [

Q
 6= ( |x )] (a−x )

can be written in matrix form as:

eπ
 (x

  ) = P−(x  ) π(x  )

where: eπ
 (x

  ) is the |Z|−1 × 1 vector {e (  z− ) : for every z−}; P−(x  ) is
the |Z|−1× ( +1)−1 matrix with rows {Q 6= ( |x ) : for every a−}; and π(x  ) is
the ( + 1)−1 × 1 vector {(a−x ) : for every a−}. Under the conditions of Proposition
3 P−(x  )0 P−(x  ) is a non-singular matrix and we can uniquely identify the vector of

payoffs π(x
  ) as:

π(x
  ) =

£
P−(x  )0 P−(x  )

¤−1 h
P−(x  )0 eπ

 (x
  )

i
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Figure 1: Coordination Game. Three Types of Equilibria

Best response function: Ψ( ) = Φ(20− 732 + 675   )

Teacher’s effort:  = 052

Set of Equilibria: Υ( = 052) = {0054, 0521, 0937}
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Figure 2: Coordination Game. Equilibrium Types

Best response function: Ψ( ) = Φ(20− 732 + 675   )

(A)  = 047. Equilibrium: 0.938 (B)  = 050. Equilibria: 0.086; 0.462; 0.932

(C)  = 055. Equilibria: 0.028; 0.643; 0.917 (D)  = 066. Equilibrium: 0.001

28


