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1. Introduction

When workers have incomplete information about their own job-finding process, search

outcomes convey valuable information. Differences in search outcomes that may initially

be caused by luck can induce different updating of workers’ beliefs about their own job-

finding process, which will influence workers’ search behavior in the future and lead to

further differences in their re-employment rates and wages. In this paper, we develop an

equilibrium framework to characterize this endogenous heterogeneity generated by learning

from search and analyze its interactions with job creation and wage determination.

Our theory sheds new light on how unemployment can affect workers’ labor market out-

comes and wage determination. As a particular illustration, our theory provides a novel

explanation for why longer unemployment durations are likely to be followed by lower re-

employment rates and wages (see Addison and Portugal, 1989). It thus complements com-

mon human-capital explanations, which emphasize that workers’ skills depreciate during

unemployment (Pissarides, 1992) or that unemployment durations may signal differences

in labor productivity (Lockwood, 1991). These explanations alone are unlikely to explain

the effects of unemployment on workers’ labor market outcomes. For instance, Addison

and Portugal (1989) find that re-employment wages and rates fall significantly over short

unemployment durations, and they do so for low-skilled as well as high-skilled workers,

even after trying to control for observed and unobserved heterogeneity.1 Our broader view

of human capital emphasizes a distinction between a worker’s matching ability and labor

productivity, and a distinction between exogenous and endogenous heterogeneity. These

distinctions can be useful for devising new empirical strategies to discriminate between

duration dependence in workers’ search behavior and the effect of uncontrolled worker

heterogeneity (Heckman and Borjas, 1980).

One contribution of our paper is to integrate search and learning into an equilibrium

framework. The need for an equilibrium framework arises because when workers change

their search behavior as a result of learning, firms have an incentive to adjust vacancies

and wage offers to respond to these changes. Thus, learning affects the wage distribu-

tion. In turn, the availability of vacancies and the wage distribution can affect workers’

search behavior and, hence, the information contained in a worker’s search outcomes. The

equilibrium interactions between workers’ search, firms’ vacancy creation and the wage dis-

1Changes in wealth and search intensity during unemployment can also play a role. However, even
after trying to control for wealth effects and search intensity, Alexopoulos and Gladden (2007) find that
unemployment duration still has strong negative effects on a worker’s labor market outcomes.
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tribution are important for understanding the tensions between aggregate and individual

behavior, as reflected for instance in the relationship between wages and the duration of

vacancies as well as unemployment. Indeed, our analysis will use the properties of the

equilibrium wage function to establish a central result that a worker’s desired wages are a

strictly increasing function of the worker’s beliefs.

In our model, a worker’s ability is either high or low permanently. A high ability

implies that the worker has a higher probability of forming a productive match with a

random job. A worker has incomplete information about his ability and, hence, does not

precisely know his matching probability. We model search as a directed process as in Moen

(1997) and Acemoglu and Shimer (1999). That is, workers know the wage offers before

choosing where to apply.2 Directed search allows for sorting of the workers into jobs, which

makes an equilibrium block recursive in the sense that individuals’ decisions and market

tightness are independent of the distribution of workers. Block recursivity allows for a

tractable analysis of the equilibrium interactions between equilibrium wages and learning.3

Success and failure to find a match both convey useful information about a worker’s

type. Success in getting a match is good news about a worker’s ability. Failure is bad

news, which will induce a worker to search for jobs that will be easier to get. Those jobs

will come with lower wages as part of the equilibrium tradeoff between wages and market

tightness. Thus, learning from search induces not only reservation wages, but also desired

wages, to increase with beliefs. Firms offer different wages to cater to these workers, who

sort according to beliefs, resulting in a non-degenerate distribution of equilibrium wages

among ex post equally productive workers.

Endogenous heterogeneity in workers’ beliefs provides a rational explanation for dis-

couragement as the consequence of negative search outcomes. This is a natural explanation

for the negative effect of unemployment duration on future wages found by Addison and

Portugal (1989). As a worker becomes pessimistic, he searches for lower wages in order

to raise his job-finding probability. The flip side of this result is that vacancies that offer

high wages to target optimistic workers are filled more rapidly than low-wage vacancies,

consistent with the evidence in Barron et al. (1985) and Holzer et al. (1991). Moreover,

despite workers’ attempt to search for lower wages as the unemployment spell continues,

2See Peters (1984, 1991), Burdett et al. (2001) and Shi (2001) for analyses of directed search as a
strategic problem that leads to the competitive search equilibrium outcome as the market becomes large.

3Shi (2009) first formalizes this notion of block recursive equilibria and proves existence of such equilibria
in the context of on-the-job search where firms offer wage-tenure contracts to direct workers’ search. Menzio
and Shi (2009) establish existence of block recursive equilibria in a dynamic, stochastic environment with
on-the-job search.
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the average job-finding probability can fall with unemployment duration, as the evidence

indicates (e.g., Shimer, 2008). This is because the ability composition of workers in any

given cohort worsens with unemployment duration.

Our analysis provides a sharp characterization of learning from search, resolving a

number of problems inherent to the analysis of optimal learning from experience. These

problems arise because, as search outcomes generate variations in a worker’s posterior

beliefs about his ability, these variations are valuable to the worker only if the worker’s value

function is convex in beliefs. Because such convexity can make optimal decisions not unique

and the value function not differentiable, standard techniques in dynamic programming

(Stokey et al., 1989) cannot be used to study the policy function which is the key object

in our analysis.4 We resolve this difficulty by exploiting a connection between convexity of

the value function and standard monotone comparative statics results (e.g., Topkis, 1998,

and Milgrom and Shannon, 1994). The connection is not immediately obvious and, to our

knowledge, has not been examined.

Because a worker’s decision problem is formulated with dynamic programming, the

objective function involves the future value function, which is endogenous. Moreover,

we cannot presume properties of the objective function such as concavity, in contrast

with other applications of lattice-theoretic techniques to dynamic programming (e.g., Amir

et al., 1991, Mirman et al., 2008). In the end, we establish a set of useful results in

dynamic programming with optimal learning. First, convexity of the value function and

monotonicity of the policy function are closely related. Second, under a mild condition, the

value function is strictly convex and the policy function strictly monotone. Third, under

the same condition, optimal decisions obey the first-order condition and a general version

of the envelope theorem is valid. Finally, optimal decisions are unique if the worker’s search

history has ever contained a match failure.

Our emphasis on learning from search is close in spirit to that of Burdett and Vish-

wanath (1988). They consider the case in which workers learn about the unknown dis-

tribution of wages from the random arrival of wage offers and show that learning from

search can induce reservation wages to decline with unemployment duration. In contrast,

we analyze workers’ learning about their ability, study an environment where wages and

vacancies are endogenously determined, and focus on desired wages rather than reservation

wages.

4Although the literature on optimal learning (e.g., Easley and Kiefer, 1988) recognizes the analytical
difficulty caused by a convex value function, it has either ignored the difficulty or focused on corner
solutions (e.g. Balvers and Cosimano, 1993).
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2. The Model Environment

Time is discrete. All agents are risk neutral and discount the future at a rate r > 0. There is

a unit measure of workers, divided between employment and unemployment. The measure

of firms will be determined endogenously by free entry. An employed worker produces, after

which a separation shock makes him unemployed with probability δ > 0. An unemployed

worker searches for a job and receives the unemployment benefit per period, b ≥ 0.
Each worker has unknown ability i that is either high (H) or low (L). Ability is a

worker’s permanent characteristic, determined at the time when the worker first enters

the market. A new worker has ability i with probability pi, where pH = p ∈ (0, 1) and
pL = 1 − p. Ability determines a worker’s productivity as follows.5 Upon meeting a

randomly drawn firm, the productivity of a worker with ability i is realized to be y > 0

with probability ai, and y0 ≤ 0 with probability (1 − ai), while the cost of production

is normalized to 0. We refer to ai as a type-i worker’s productive units, and assume

0 < aL < aH < 1 so that a high-ability worker is more likely to be productive than a

low-ability worker. Clearly, a firm will hire a worker only when the worker is productive,

and labor productivity of every employed worker is y > 0.

A natural interpretation of a worker’s ability in our model is in terms of the worker’s skill

bundle, in the spirit of recent literature on human capital (see Lazear, 2004). According

to this view, workers are heterogeneous with respect to the specific composition of their

skill bundle, and different firms demand different skill bundles. A firm must review a

worker’s application in order to determine whether a worker’s skill bundle fits the firm.

However, to focus on workers’ learning about their human capital, we abstract from the

actual formation of heterogeneous matches by assuming, as above, that the skill bundle of

high-ability workers is relatively more likely to fit a random firm.

A worker learns about his ability from his labor market experience. After an infinitely

long history in the market, a worker would eventually learn his true ability. To rule out

this uninteresting case we assume that, with probability σ > 0, an exit shock forces a

worker (employed or unemployed) out of the market at the end of each period. An exiting

worker’s payoff is normalized to zero, and the worker is replaced with a new worker who

enters the market through unemployment so that the labor force remains constant.

The events in a period unfold as follows. First, new workers enter the market through

5We are very grateful to Daron Acemoglu and the referees for directing us toward this formulation. In
a previous version of the paper (Gonzalez and Shi, 2007), we formulated the problem as one of incomplete
information about the characteristics of local labor markets rather than individuals.
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unemployment, replacing the workers who exited the market in the previous period. Nature

determines a new worker’s ability. Second, an employed worker produces and gets the wage,

after which the job separation shock is realized. Meanwhile, unemployed workers search

for jobs and new matches are formed. Finally, the exit shock is realized.

There is a continuum of submarkets indexed by x that will be linked to matching rates

in that submarket. The domain of x is X = [0, 1/aH ]. A submarket x is characterized

by a wage level, W (x), and a tightness, λ(x). The functions W (.) and λ(.) are public

information, taken as given by agents and determined in equilibrium. A worker’s or a

firm’s search decision in each period is to choose x, i.e., the submarket to search.6 Search

is directed in the sense that an agent explicitly takes into account the tradeoff that a

submarket with a high wage has relatively fewer vacancies per worker in the equilibrium.

As in Moen (1997) and Acemoglu and Shimer (1999), a firm does not directly set wages;

rather, it chooses a pair (W,λ) from the menu {(W (x) , λ (x)) : x ∈ X}.7
In each submarket, the number of matches is given by a matching function. Since a

firm will hire a worker only when the worker is productive at the job, it is useful to specify

the matching function to determine the number of productive matches rather than the

number of contacts. Let v (x) denote the number of vacancies created in submarket x, and

ui(x) the number of type-i unemployed workers in submarket x, where i ∈ {H,L}. We
define the total productive units of workers searching in submarket x as

ue (x) = aHuH (x) + aLuL (x) . (2.1)

A function, F (ue (x) , v (x)), gives the number of productive matches in the submarket.

The index x is the matching rate for each productive unit in submarket x; that is,

x =
F (ue (x) , v (x))

ue (x)
.

For a type-i worker in submarket x, the probability of getting a productive match is aix.

Thus, given x, the lower a worker’s ability, the lower his matching probability. The match-

ing probability of a vacancy in submarket x is F/v = x/λ(x), where λ(x) ≡ v (x) /ue (x)

is the effective tightness in the submarket.

The above specification of the matching function uses workers’ productive units as an

argument, which are similar to the efficiency units of search commonly used in the literature

6Workers who differ in beliefs may also choose different levels of search intensity and labor market par-
ticipation. Although our analysis can shed light on such differences, we abstract from them for simplicity.

7It is inadequate to index the submarkets by the length of unemployment duration of the participating
workers. First, workers with the same unemployment duration can be heterogeneous in beliefs about their
ability if they had different employment histories. Indexing submarkets by unemployment duration alone
would not allow these workers to optimally make different search choices.
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where workers are heterogeneous. This specification enables us to focus on productive

matches by combining the process of making contacts (i.e., receiving applications) and the

process of evaluating the applicants. The only relevant information for worker’s learning

is contained in the matching probabilities, aHx and aLx.
8 This formulation significantly

simplifies the analysis of the learning problem, because neither workers nor firms need to

learn about the composition of high- versus low-ability workers in a submarket. In any

submarket x, a worker’s matching probability depends only on his own ability and x, while

a vacancy’s matching probability depends only on x. Thus, given the choice x, an agent’s

expected payoff is independent of the level and the composition of the productive units

in the submarket. Accordingly, free entry of firms into the submarket ensures that the

effective tightness and the wage in the submarket are functions only of x.

We impose the following standard assumption on the matching function:9

Assumption 1. (i) F (ue, v) ≤ min{uH + uL, v}; (ii) F is strictly increasing, strictly con-

cave and twice differentiable in each argument whenever x < 1/aH , (iii) F is linearly

homogeneous; (iv) F (1, 0) = 0, F (1,∞) ≥ 1/aH , and x/λ(x) ≤ 1 for all x ≤ 1/aH .

Since F (1, λ) = x, we can solve λ and verify that Assumption 1 implies:

λ0(x) > λ(x)/x > 0, λ00(x) > 0, for all x ∈ (0, 1/aH ]. (2.2)

Moreover, x/λ(x) strictly decreases in x. That is, if it is easy for a worker to find a match

in a submarket, it must be difficult for a firm to find a match there.

The key feature of the model is the incomplete information about worker ability, which

implies that workers face a signal extraction problem. Search histories are informative

because low-ability workers are more likely to fail to get matches in any given submarket.

As we will show below, self-selection of workers into submarkets according to their own

information implies that firms do not need to know the workers’ histories.

3. Learning in Directed Search Equilibrium

3.1. Learning from Search

A worker learns about his a, the probability that he will be productive with a randomly

selected job. We refer to a worker’s expectation of a as his belief and denote it as μ. The

8In this sense, our matching function implicitly assumes that a worker who fails to get a job does not
know whether he has made a contact, i.e., whether his application has been considered by a firm.

9An example that satisfies the assumption is: F (ue, v) = uev/(ue + Bv) if v/ue ≤ 1/(aH − B), and
F (ue, v) = ue/aH otherwise, where B ∈ (0, aH) is a constant. In this example, λ(x) = x/(1−Bx).
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domain of μ is M ≡ [aL, aH ]. When a new worker first enters the market, the initial belief
is μ0 = paH + (1− p)aL, where p ∈ (0, 1). This initial belief is common to all new workers
and it is public information.10

The updating of beliefs depends on the particular submarket into which the worker

just searched. Consider an arbitrary period. The worker enters the period with Pi as the

prior probability of a = ai, where ai ∈ {aH , aL}, and μ as the prior belief computed from

these prior probabilities. After searching in the period, the worker either gets a match

(denoted as k = 1), or fails to get a match (denoted as k = 0). Bayesian updating yields

the following posterior probabilities:

P (ai|x, k = 1) = Piai/μ, P (ai|x, k = 0) = Pi(1− xai)/(1− xμ). (3.1)

The posterior belief is E(a|x, k) = aHP (aH |x, k) + aL [1− P (aH |x, k)]. Using the relation-
ship, μ = PHaH + (1− PH)aL, we can solve Pi in terms of μ:

PH = (μ− aL)/(aH − aL), PL = (aH − μ)/(aH − aL). (3.2)

Substituting (3.1) and (3.2), we express posterior beliefs as E (a|x, k = 1) = φ(μ) and

E(a|x, k = 0) = H(x, μ), where

φ(μ) ≡ aH + aL − aHaL/μ, (3.3)

H(x, μ) ≡ aH − (aH − μ)(1− xaL)/(1− xμ). (3.4)

If μ > aL, then E(a|x, k) > aL for both k = 0 and k = 1. Also, φ(μ) > μ > H(x, μ) for all

μ ∈ (aL, aH), φ0(μ) > 0, and φ00(μ) < 0. The sequence of beliefs, μ, is a Markov process,

and a worker’s belief is a sufficient statistic for the worker’s unemployment history. Note

that H(x, μ) is decreasing in x; that is, a higher x reduces the worker’s posterior belief

after the worker fails to find a match. However, φ is independent of x, because x does not

affect the likelihood ratio of a match success between the two types.

The value of x measures the informativeness of search. Intuitively, search outcomes

in a market with a higher x are more informative because such a market has a relatively

higher matching probability for a worker; if a worker fails to find a match in such a market,

the worker will more likely attribute the failure to low ability. This relationship between x

and the informativeness of search can be made precise using Blackwell’s (1951) criterion.

Consider the information revealed by search in two different submarkets, with x > x0.

10For simplicity we abstract from heterogeneity in the initial beliefs among new workers. Note that our
model does generate heterogeneous beliefs among workers with different employment histories.
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Let K and K 0 be the random number of matches associated with x and x0. Intuitively,

one can construct the random variable K 0 by “adding noise” to K as follows. First, let

the worker randomize with probability of success ax, where a ∈ {aL, aH}; then, whenever
the realization is a success, randomize again with success probability x0/x. The result is

a Bernoulli trial with probability of success equal to ax0. In other words, if x > x0, the

random variable, or experiment, K is sufficient for K 0 (see DeGroot, 1970, pp. 433-439).

3.2. A Worker’s Value Function

Consider first a worker with belief μ who is employed at wage w in a period. Denote

the worker’s value function, discounted to the end of the previous period, as Je(μ,w).

After producing and obtaining the wage w, the separation shock forces the worker into

unemployment with probability δ and then, independently, the exit shock forces the worker

out of the market with probability σ. If the worker remains employed after the two shocks,

the continuation value is Je(μ,w). If the worker is separated from the job but remains in

the market, the continuation value is denoted V (μ). If the worker is out of the market, the

continuation value is 0. Thus, the Bellman equation for Je is:

(1 + r)Je(μ,w) = w + (1− σ) [(1− δ)Je(μ,w) + δV (μ)] .

The above equation yields:

Je(μ,w) =
1

A

∙
w

1− σ
+ δV (μ)

¸
, where A ≡ r + σ

1− σ
+ δ. (3.5)

Now consider an unemployed worker who enters a period with belief μ. If he chooses to

search in submarket x, the expected probability of finding a (productive) match is xμ. If he

fails to find a match, his belief is updated downward to H(x, μ) as defined by (3.4). In this

case, his continuation value is (1−σ)V (H(x, μ)), which takes into account the probability

of exogenous exit. If the worker succeeds in finding a match in the current period, his

belief is updated upward to φ(μ) as defined by (3.3). In this case, the worker can choose

whether or not to accept the match. We will impose Assumption 2 below to guarantee that

a worker always accepts a match, and so the worker’s continuation value after finding a

match is (1− σ)Je(φ(μ),W (x)). Thus, under Assumption 2, the worker’s expected return

to searching in submarket x, excluding the unemployment benefit, is (1−σ)R(x, μ), where

R(x, μ) ≡ xμJe(φ(μ),W (x)) + (1− xμ)V (H(x, μ)). (3.6)

Since the value functions are discounted to the end of the previous period, then

(1 + r)V (μ) = b+ (1− σ)max
x∈X

R(x, μ). (3.7)
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Denote the set of optimal decisions in (3.7) as G(μ) and a selection from G(μ) as g(μ).

When choosing a submarket x, the worker faces two considerations. One is the familiar

tradeoff between the wage and the matching probability in models of directed search.

That is, a submarket with a higher x has a higher job-finding probability and a lower

wage. Another consideration is learning from the search outcome. As discussed earlier,

search in a submarket with a high x (i.e., a low wage) is more informative than search in

a submarket with a low x. The value of this information is captured by the features of the

value function, to be described later in Theorems 3.1 and 4.1.

It is useful to note that the set of solutionsG(μ) generically contains only a finite number

of values. That is, given beliefs μ, a worker prefers to search in only a few submarkets

and possibly only one submarket. Over time, the worker switches from one submarket

to another not because he is indifferent between these submarkets, but because search

outcomes induce the worker to update beliefs.

In principle, workers may have incentive to engage in the following “experimentation”:

searching during a period solely to gather information and, thus, refusing to enter a match

once they learn that a match has occurred. This may occur because a worker who finds a

match will revise his belief upward to φ(μ). We do not think that this form of experimen-

tation is important in practice, unless it is associated with heterogeneity among productive

matches, which does not exist here. Thus, we rule out such experimentation by focusing

on the case in which employment is sufficiently valuable to a worker so that the worker

always prefers to accept a match that he searches for.

Assumption 2. Define x∗ by the solution to λ0(x∗) = aHλ(a
−1
H ) and note that x∗ ∈

(0, 1/aH). Assume that labor productivity satisfies:

(y − b)/c > [A+ aHx
∗]λ0(x∗)− aHλ(x

∗).

This sufficient condition implies that a worker prefers getting the lowest equilibrium

wage every period starting now to remaining unemployed in the current period and then

getting the highest possible wage from a match starting next period (see Appendix A). In-

tuitively, the condition requires that the opportunity cost of rejecting a match, as reflected

by (y−b), should be sufficiently high to a worker.11 Stronger than necessary, this condition
11The discount rate in Assumption 2, appearing through A, reflects both workers’ and firms’ discount

rate. For a worker, a higher discount rate lowers the benefit from experimentation for any given wage.
However, when firms discount future at a higher rate, the present value of a filled job falls, and wages in all
submarkets must be lower in order to induce firms to enter. In this case, the loss of the current wage from
experimentation falls. With a common discount rate, the effect through firms’ discount rate dominates.
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significantly simplifies the analysis and the exposition of our main results. As in Burdett

and Vishwanath (1988), one can relax the condition by introducing a direct cost of search

per period, which further increases a worker’s opportunity cost of rejecting an offer. For

simplicity, however, we have not included such a cost of search.

Remark 1. Since x∗λ0(x∗) > λ(x∗), Assumption 2 implies: y − b > cAλ(x∗)/x∗, which

in turn implies y − b > cAλ0(0). The last inequality says that there are feasible wages at

which employment is better than unemployment for a worker.

3.3. Free Entry of Firms and the Equilibrium Definition

There is free entry of firms into the market. After incurring a cost c ∈ (0, y), a firm can

post a vacancy for a period in any one of the submarkets. Denote the value of a job filled

at wage w, discounted to the end of the previous period, as Jf(w). Then,

(1 + r)Jf(w) = y − w + (1− σ)(1− δ)Jf(w). (3.8)

The matching probability for a vacancy in submarket x is x/λ (x), and the continuation

value of a match is (1− σ)Jf(W (x)). Solving Jf from (3.8) and using A defined in (3.5),

we can express a firm’s value of a vacancy in submarket x as

Jv(x) = −c+ x

λ(x)

y −W (x)

A
. (3.9)

A recruiting firm chooses x to maximize Jv(x). In equilibrium, a firm is willing to

enter any submarket, provided that the wage in the submarket is consistent with the free-

entry condition. Precisely, Jv(x) and the number of vacancies, v(x), satisfy Jv (x) ≤ 0 and
v (x) ≥ 0 for all x ∈ X, where the two inequalities hold with complementary slackness.

Thus, for all x such that v(x) > 0, the wage function is:

W (x) = y − cAλ(x)/x. (3.10)

Conversely, for any feasible wage level specified in (i) below, we require the number of

vacancies to be positive. The wage function has the following properties:

(i) b+ caH [x
∗λ0(x∗)− λ(x∗)] ≤W (x) ≤ y − cAλ0(0),

(ii) W 0(x) < 0, (iii) 2W 0(x) + xW 00(x) < 0.
(3.11)

Part (i) specifies the interval of feasible wages, where x∗ is defined in Assumption 2. The

upper bound on wages comes from the fact that λ(x)/x ≥ λ0(0). The lower bound on

wages comes from Assumption 2 and the fact that λ(x)/x ≤ aHλ(a
−1
H ) = λ0(x∗). The lower
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bound on wages is strictly greater than b because x∗λ0(x∗) > λ(x∗). Also, Assumption 2 is

sufficient for the wage interval in (i) to be non-empty.

Parts (ii) and (iii) of (3.11) are implied by (2.2), which is in turn implied by Assumption

1 on the matching function. Part (ii) says that a higher employment probability occurs

together with a lower wage. This negative relationship is necessary for providing a mean-

ingful tradeoff between the two variables in directed search. As such, part (ii) is necessary

for inducing firms to enter the submarket. Part (iii) is implied by λ00(x) > 0, and it says

that the function xW (x) is strictly concave in x. In general, [xW (x)] is non-monotone

because there is a tradeoff between the matching probability and the wage in a submarket.

Focus on stationary symmetric equilibria. Such an equilibrium consists of workers’

choices of x, a wage function, W (x), value functions, (Je, V, Jf , Jv), and a sequence of

beliefs that meet the following requirements. (i) Given the wage function, all workers

with the same belief μ use the same optimal search policy x = g(μ) ∈ G(μ) that solves

(3.7). (ii) A worker with beliefs μ updates beliefs according to φ(μ) upon getting a match

and according to H(g(μ), μ) upon failing to get a match. (iii) The value functions satisfy

(3.5), (3.7), (3.8) and (3.9). (iv) Free-entry: the wage function W (x) satisfies (3.10). (v)

Consistency: for every submarket x with positive entry, the mass of all vacancies in x

divided by the productive units of workers who choose x is equal to λ(x).

In the above definition, we have left out the distributions of workers and wages, which

will be characterized in Section 6. We deliberately do so to emphasize the property that

individuals’ decisions and matching probabilities are independent of such distributions.

For analyzing the former, it is sufficient to know the wage function W (.) and the tight-

ness function λ(.), which are determined by firms’ free-entry condition and the matching

function. After completing this analysis, we can simply aggregate individuals’ decisions to

find equilibrium distributions of workers and wages. This property, referred to as block

recursivity of an equilibrium (see Shi, 2009), makes the analysis tractable by significantly

reducing the dimensionality of the state variables in individuals’ decisions. Block recursiv-

ity is a consequence of directed search. In our model, directed search allows the workers to

sort according to beliefs about their ability. Since each submarket attracts only the workers

with particular beliefs, firms that post vacancies in that submarket calculate the expected

profit with only such workers in mind — they do not need to consider how other workers

with different beliefs are distributed. Free entry of firms will guarantee that each submar-

ket will have exactly the effective tightness specified for that submarket. If search were

undirected, instead, an individual’s search decision would depend on the wage distribution

which, in turn, would evolve as individuals learn about their ability.
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3.4. Existence of an Equilibrium

Let us analyze a worker’s problem, (3.7). It is easy to see that the right-hand side of (3.7)

is a contraction mapping on V . Using (3.11), standard arguments show that a unique value

function V exists, which is positive, bounded and continuous on M = [aL, aH ] (see Stokey

et al., 1989, p. 79). Moreover, the set of maximizers, G, is nonempty, closed, and upper

hemi-continuous. The following theorem summarizes the existence result and some other

features of the equilibrium (see Appendix A for a proof):

Theorem 3.1. Under Assumptions 1 and 2, there exists an equilibrium where all matches

are accepted. In the equilibrium, g(μ) > 0 for all g(μ) ∈ G(μ) and all μ ∈ M . Moreover,

V is strictly increasing, (weakly) convex, and almost everywhere differentiable.

Let us explain the results in the theorem. First, optimal choices of x are strictly positive.

A worker who chooses x = 0 never finds a match and does not learn anything from search

(i.e., H(0, μ) = μ). Since there are feasible wages at which employment is strictly better

than unemployment (see Remark 1), a worker will choose x > 0. Second, the value function

of an unemployed worker is strictly increasing in the worker’s beliefs. Because a worker with

higher beliefs can always choose to enter the same submarket as does a worker with lower

beliefs and, thereby, can obtain a match with a higher expected probability, the former

gets a higher expected payoff. Third, the value function is (weakly) convex in beliefs, as is

standard in optimal learning problems (see Nyarko, 1994). Search generates information by

creating variations in the worker’s posterior beliefs. Such variations can never be harmful

to the worker because the worker can always choose to ignore the information. Weak

convexity of the value function reflects this fact.

A worker’s reservation wage can be defined in the conventional way as the lowest per-

manent income that a worker will accept to forego search. This is given as (r + σ)V (μ).

Monotonicity of the value function determines the behavior of reservation wages. Because

V (μ) is strictly increasing, the reservation wage strictly falls over each unemployment

spell as the worker’s beliefs about his own ability deteriorate. Put differently, a worker’s

permanent income strictly declines over each unemployment spell. Similarly, with strict

monotonicity of V , (3.7) implies that a worker’s reservation wage is always strictly lower

than the desired wage, i.e., (r + σ)V (μ) < W (g (μ)) for all μ > aL.

Our focus is on a worker’s desired wage, which is defined as w(μ) = W (g(μ)). Desired

wages are much more difficult to analyze than reservation wages, because they depend on

optimal learning from search. As it will become clear in the next section, monotonicity of

the optimal search decision relies crucially on convexity of the value function.
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4. Monotonicity of Workers’ Desired Wages

In this section, we establish the result that a worker’s desired wage, w (μ), is an increasing

function of beliefs. Because w(μ) =W (g(μ)), where W (.) is decreasing, it is equivalent to

establish the result that a worker’s policy function for the submarket to search, x = g(μ),

is a decreasing function. For what follows, we define z = −x and refer to z, rather than x,
as the worker’s search decision. Then, the objective function in (3.7) becomes R(−z, μ),
and the feasible set of choices is −X = [−a−1H , 0]. The domain of μ is M = [aL, aH ].

A difficulty in proving monotonicity of the policy function arises from the feature inher-

ent to learning that the value function is convex in beliefs. This feature implies that optimal

choices may not be unique or interior, and the value function may not be differentiable.12

In this context, standard techniques in dynamic programming for proving policy functions

to be monotone are not applicable (e.g., Stokey et al., 1989, pp. 80-87).13 A natural

approach is to use lattice-theoretic techniques associated with a supermodular objective

function (see Topkis, 1998). In our model, R is supermodular in (z, μ) if and only if R has

increasing differences in (z, μ), because the latter variables lie in closed intervals of the real

line.14

The connection between lattice-theoretic techniques and the dynamic programming

problem in (3.7) is far from obvious. First, because [−zW (−z)] is non-monotone in z,

the current payoff in the objective function, [−μzW (−z)], is not supermodular in (μ, z).
Second, whatever features one imposes on the value function to make the objective function

supermodular must be confirmed as those of the fixed point of the Bellman equation,

(3.7). In other applications of lattice-theoretic techniques to dynamic programming, this

confirmation is achieved by assuming supermodularity of the current payoff function and

using concavity of the value function recursively via the Bellman equation (e.g., Amir et

al., 1991, and Mirman et al., 2008). This approach is not applicable here, because the

12One can attempt to impose strong assumptions to make R concave in z and then use the first-order
condition to characterize the optimal choice of z. However, such assumptions will invariably require
restrictions on the degree of convexity of the value function. It is difficult to verify that these restrictions
can be satisfied by the fixed point of the Bellman equation, (3.7).
13In different modeling environments, there are techniques to establish differentiability of value functions

and optimal choices in dynamic programming, e.g., Santos (1991). However, those techniques also require
the value function to be concave. On the other hand, the literature on optimal learning (e.g., Easley and
Kiefer, 1988) has either ignored the difficulty arising from a convex value function or focused on corner
solutions (e.g., Balvers and Cosimano, 1993).
14Let z ∈ Z and μ ∈ M , where Z and M are partially ordered sets. A function f(z, μ) has increasing

differences in (z, μ) if f(z1, μ1) − f(z1, μ2) ≥ f(z2, μ1) − f(z2, μ2) for all z1 > z2 and μ1 > μ2. If the
inequality is strict, then f has strictly increasing differences. Because Z, M and Z ×M are all lattices in
our model, the feature of increasing differences implies supermodularity (see Topkis, 1998, p. 45).

13



current payoff is not supermodular and the value function is convex.

To proceed, we note that optimal choices remain unchanged if we divide the objective

function R by the state variable μ. This transformation eliminates the first difficulty above,

i.e., the ambiguous effect of the non-monotone function [−zW (−z)] on modularity of the
objective function. Accordingly, we express (3.7) as

(1 + r)V (μ) = b+ (1− σ)μ max
z∈−X

R̂(z, μ),

where R̂ is defined as R̂(z, μ) ≡ μ−1R(−z, μ), that is,

R̂(z, μ) = − zW (−z)
A(1− σ)

− δ

A
zV (φ(μ)) + (z + μ−1)V (H(−z, μ)). (4.1)

Next, note that the second term on the right-hand side of (4.1), with negative sign,

is associated with the value of the information contained in a match success. This term

is strictly submodular in (z, μ) because searching in a high-z market has a relatively low

chance of success, while the payoff of success increases in a worker’s belief. To ensure that

R̂ is supermodular, it is necessary to restrict this submodular term. The value of the

information contained in a match success is regulated by the job separation rate δ, because

a worker will use such information only when he will become unemployed again in the

future. Accordingly, we impose an upper bound on δ:

Assumption 3. The job separation rate satisfies 0 < δ ≤ δ̄, where δ̄ > 0 is defined in

Part (iii) of Lemma A.1 in Appendix A.

Denote Z(μ) = argmaxz∈−X R̂(z, μ) and z(μ) ∈ Z(μ). Clearly, G(μ) = −Z(μ) and
g(μ) = −z(μ). Denote the greatest selection of Z(μ) as z̄(μ) and the smallest selection as
z(μ). Every selection z(μ) is an increasing function if for all μa and μb inM , with μa > μb,

it is true that z(μa) ≥ z(μb) for all z(μa) ∈ Z(μa) and all z(μb) ∈ Z(μb). If z(μa) > z(μb)

for all μa > μb in the preceding definition, then every selection z(μ) is strictly increasing.

We state the following theorem (see Appendix B for a proof):

Theorem 4.1. Maintain Assumptions 1, 2 and 3. Part 1: R̂(z, μ) is strictly supermodular

in (z, μ), and so every selection z(μ) is an increasing function. Part 2: The following

statements are all equivalent to each other: (i) V (μ) is strictly convex for all μ; (ii) Every

selection z(μ) ∈ Z(μ) is strictly increasing in μ; (iii) For all μ > aL, {−a−1H } /∈ Z(μ), and

so Z(μ) is interior; (iv) {−a−1H } /∈ Z(aH); (v) The following condition holds:

(y − b)/c < (A+ 1)λ0(a−1H )− aHλ(a
−1
H ). (4.2)
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Part 1 states that the policy function, z(μ), is a (weakly) increasing function, and so

desired wages are an increasing function of beliefs. These results are implied by strict

supermodularity of R̂ (see Topkis, 1998, p. 79). R̂ is strictly supermodular because a

worker’s expected value in the case of a match failure, (1 + μz)V (H(−z, μ)), is strictly
supermodular and Assumption 3 ensures that this supermodular component dominates

the submodular component, −δ
A
μzV (φ(μ)) , that is associated with a match success.

To gain further intuition, consider a hypothetical lottery that gives a “prize” of E (a|z, k)
when k = 0 (i.e., match failure) and 0 when k = 1 (i.e., match success), where k = 0

occurs with probability (1 + zμ). The expected value of the lottery conditional on k = 0

is α ≡ (1+μz)H(−z, μ). Note that α increases in z and is strictly supermodular in (z, μ).
Lowering z (i.e., increasing x = −z) always lowers α, because it reduces the probability
and the expected size of the prize. This effect of a lower z has the flavor of a winner’s curse.

In addition, the curse gets worse as μ is higher, because the marginal impact of lowering z

on α increases in μ. That is, with a higher μ, lowering z reduces the probability of winning

the prize by a larger amount, in which case a match failure indicates that the expected

prize is even more likely to be low. Now note that supermodularity of α translates into

supermodularity of (1 + μz)V (H(−z, μ)), because V is convex and strictly increasing.

Let us make three remarks on part 1. First, convexity of the value function plays an

important role in the proof of strict supermodularity of R̂, as explained above. Second,

because R̂ is strictly supermodular, every selection of z, rather than just the greatest

or the smallest selection, is an increasing function. Third, it can be verified that strict

supermodularity of R̂ is sufficient but not necessary for the original function R(−z, μ) to
have strict single crossing in (z, μ), as defined by Milgrom and Shannon (1994) (see the

Supplementary Material, Gonzalez and Shi, 2009). Although strict single crossing is enough

for proving the policy function to be weakly increasing, we need strict supermodularity of

R̂ to establish strict monotonicity.

Part 2 states the necessary and sufficient condition for the policy function to be strictly

increasing and establishes the equivalence between strict monotonicity of the policy func-

tion and strict convexity of the value function. In general, strong conditions are required

for the policy function to be strictly monotone.15 In our model, only a very mild condition,

(4.2), is necessary and sufficient for every selection z(μ) to be a strictly increasing function.

15See Amir (1996) and Edlin and Shannon (1998). Their methods would require the value function
to be continuously differentiable. In particular, Edlin and Shannon (1998) assume that the objective
function, R̂(z, μ), has increasing marginal differences. To compute marginal differences, R̂(z, μ) must be
continuously differentiable with respect to z. Because R̂ depends on z through the future value function,
as well as W , it is differentiable with respect to z only if the value function is so.
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Condition (4.2) is equivalent to statement (iv), which requires that a worker with the most

optimistic belief μ = aH should find it not optimal to search for the lowest wage, i.e.,

search in the submarket with the lowest z. If (4.2) is not satisfied, then it is optimal for all

workers to search for the lowest wage, regardless of their beliefs. In this sense, (4.2) can

be viewed as a regularity condition for learning to be a useful explanation for the fact that

wage losses upon re-employment increase with unemployment duration.16

To see the role of (4.2), let us first explain statements (i) through (iii) in Theorem 4.1.

The equivalence between (i) and (ii) relies on the following standard property of optimal

learning: The value function V is strictly convex in beliefs if and only if there do not exist

μa and μb inM , with μa > μb, and a choice x0 such that x0 is optimal for all μ ∈ [μb, μa] (see
Nyarko, 1994). Because every selection z(μ) is weakly increasing, as established earlier,

this standard property implies that the value function is strictly convex if and only if every

selection z(μ) is strictly increasing. It is easy to see that statement (ii) in Theorem 4.1

implies (iii) which, in turn, implies (iv).

The key step in the proof of part 2 is to show that (iv) implies (i). That is, if the

value function is not strictly convex, then a worker with the most optimistic belief should

search for the lowest wage. To understand this result, suppose that the value function is

not strictly convex. In this case, there is an interval of beliefs [μb, μa], with μa > μb, such

that the optimal choice is the same under such beliefs. This must mean that under such

beliefs, local variations in the positive or negative signal are not valuable to the worker. In

particular, the value function must be linear in the interval of beliefs induced by a match

success, [φ(μb), φ(μa)]. In this case, strict concavity of the function [−zW (−z)] implies that
the payoff function is strictly concave in z and, hence, the optimal choice of z is unique for

all μ ∈ (μb, μa). For this unique choice to be constant for all μ ∈ (μb, μa), it must be at
the corner z = −a−1H ; otherwise, strict supermodularity of R̂ would imply that the optimal
choice should strictly increase in μ. Repeating the above argument, we know that for any

positive integer i, the value function must be linear over beliefs in [φi(μb), φ
i(μa)] and that

the optimal choice under such beliefs must be the singleton {−a−1H }, where φi is defined as
φi(.) = φ(φi−1(.)). Because φi(μ) converges to aH for all μ ∈ (aL, aH), the choice {−a−1H }
must also be optimal when μ = aH .

The above explanation for why (iv) implies (i) relies on the assumption δ > 0.17 If

16The condition in the theorem can hold simultaneously with Assumption 2. To see this, note that the
right-hand side of the condition in Assumption 2 is strictly increasing in x∗ and, hence, is less than the
right-hand side of the condition given in the theorem (since x∗ < 1/aH).
17The equivalence between statements (i) and (ii) in Theorem 4.1 does not require δ > 0. However, the

equivalence between these two statements and other statements does require δ > 0.
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δ = 0, instead, the information revealed by a match success is not valuable to the worker,

because the worker will never be unemployed again. In this case, the above induction does

not apply and so, for some belief μ = μa > aL, the worker may find it optimal to choose

z = −a−1H . Once this happens, it is optimal for the worker to choose z = −a−1H for all

μ ≤ μa, in which case the value function is linear in the subinterval [aL, μa].

It is useful to clarify the role of the equilibrium wage function for the results obtained

so far. In contrast to a model of decision theory, our model requires the wage in each

submarket to be consistent with free entry of firms. This equilibrium requirement results

in the wage function W (−z), as given by (3.10). Given the standard assumptions on the
matching technology in Assumption 1, the wage function has the properties listed in (3.11).

These properties are not important for the policy functions z(μ) and w(μ) to be weakly

increasing. The latter relies on strict supermodularity of R̂, which requires only that the

value function V be weakly convex. However, the equilibrium wage function is critical

for the policy functions to be strictly increasing. In particular, in the above explanation

for why statement (iv) implies (i), we have explicitly used property (iii) in (3.11) that

the function [−zW 0(−z)] is strictly concave. If the wage function were exogenous, or if it
had no connection to the matching technology, it would not be clear how it should satisfy

(3.11). In this sense, the equilibrium structure of the model is essential for our analysis to

capture the intuitive link between learning from search and discouragement.

5. Further Characterization of Equilibrium Paths

Condition (4.2) is necessary and sufficient for optimal choices to be interior for all μ > aL

(see Theorem 4.1). We explore this feature to provide a sharper characterization of an

equilibrium than in the previous section. In particular, we establish the validity of the

first-order condition, a generalized version of the envelope theorem, and a discipline on the

set of paths of optimal choices. Together with monotonicity of the policy function, these

results provide an operational way to do dynamic programming when the value function

is convex. Since we maintain Assumptions 1 — 3 and condition (4.2) in this section, the

results rely on strict supermodularity of R̂. Since we focus on symmetric equilibria, all

workers with beliefs μ use the same selection z(μ).

Let us introduce some notation. For any μ, let μ+ denote the limit to μ from the

right, μ− the limit from the left, f 0(μ+) the right-hand derivative of any function f , and

f 0(μ−) the left-hand derivative. Recall that φ(μ) is the posterior belief reached from the

prior μ through a match success. Denote the posterior belief reached through a match
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failure with an optimal choice as h(μ) ≡ H(−z(μ), μ). For any S in the σ-algebra of M ,

denote φ(S) = {φ(μ) : μ ∈ S} and h(S) = {h(μ) : μ ∈ S}. For any μ ∈ M , construct

Υ(μ) = {Υi(μ)}∞i=0 by Υ0(μ) = {μ} and Υi+1(μ) = {φ(Υi(μ)), h(Υi(μ))} for i = 0, 1, ...,∞.
We call Υ(μ) the tree of equilibrium beliefs generated from μ and Υi(μ) the ith layer of

the tree. Given μ and the optimal choice z(μ), beliefs in the next period will be φ(μ) with

mean probability −z(μ)μ, and h(μ) with mean probability [1 + z(μ)μ].

In Appendix C, we establish the following theorem:

Theorem 5.1. Let μ be any arbitrary value in the interior of (aL, aH). The following

results hold: (i) V 0(h(μ)) exists for all z(μ) ∈ Z(μ), and so optimal choices in every period

obey the first-order condition, R̂1(z(μ), μ) = 0. (ii) z̄(μ) is right-continuous and z(μ) is

left-continuous. (iii) V 0 satisfies the envelope conditions:

(1 + r)V 0(μ+) = (1− σ)R2(−z̄(μ), μ+), (1 + r)V 0(μ−) = (1− σ)R2(−z(μ), μ−).
(iv) V 0(μ) exists if and only if V 0(φ(μ)) exists and z̄(μ) = z(μ). (v) If V 0(μa) exists for a

particular (interior) μa, such as μa = h(μ) for any interior μ, then the optimal choice z(μ0)

is unique and the value function V (μ0) is differentiable at all μ0 ∈ Υ(μa).

Recall that the value function is differentiable almost everywhere (see Theorem 3.1).

Part (i) above states that a match failure induces posterior beliefs at which the value

function is differentiable, regardless of whether the value function is differentiable at the

prior belief. To explain this result, consider an arbitrary (interior) prior belief μ and let

the posterior belief following a match failure be μ0 = h(μ). If the value function is not

differentiable at μ0, the left-hand derivative of V (μ0) must be strictly lower than the right-

hand derivative. This implies that by searching for a wage slightly lower than w(μ) (i.e., in

a submarket slightly lower than z(μ)), the worker’s future marginal value falls by a discrete

amount even though the worker learns only slightly more about his ability when he fails

to find a match. The worker can avoid this discretely larger marginal loss by choosing

z slightly above z(μ), which will keep the posterior slightly above μ0. Since the cost to

increasing z is a marginal reduction in the matching probability, the net marginal gain

from increasing z slightly above z(μ) is positive. This contradicts the optimality of z(μ).

The above limited sense of differentiability of the value function is sufficient to en-

sure that optimal choices obey the first-order condition, as stated in part (i) of the above

theorem. Although the value function may fail to be differentiable if a worker has never

experienced a match failure, this potential failure does not invalidate the first-order condi-

tion. The reason is that for any given prior belief, μ, search choices in the current period
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do not affect the posterior belief in the case of a match success, φ(μ). Thus, optimal search

decisions are independent of whether or not the value function is differentiable at φ(μ).

As long as the value function is differentiable at h(μ), the worker’s objective function is

differentiable at optimal choices, and so the first-order condition applies.

Part (ii) of Theorem 5.1 describes one-sided continuity of the highest and the smallest

selection of optimal choices. Such continuity is needed for part (iii), which is a generalized

version of the envelope theorem. Part (iv) states that uniqueness of the optimal choice

under a belief μ is necessary, but not sufficient, for the derivative V 0(μ) to exist. For the

latter, the value function must also be differentiable at the posterior belief φ(μ).

Part (v) of Theorem 5.1 puts discipline on equilibrium paths. If initial beliefs lie outside

the measure-zero set where the value function is not differentiable, then the value function

will remain differentiable on the entire tree of beliefs generated by the equilibrium, in which

case the optimal choice is unique. Even if a worker’s initial beliefs lie in this measure-zero

set, the first match failure will take the worker out of this set, after which the value function

will be differentiable and the optimal choice unique.

6. Steady State Distributions and Worker Flows

We now determine the distribution of workers and discuss how current unemployment

durations and past unemployment spells can influence re-employment rates and wages.

Immediately before the labor market opens in a period, measure employed workers

with beliefs μ and type i ∈ {H,L} as ei(μ), and similarly, ûi(μ) for the unemployed. The
stationary distribution of workers over beliefs is {(eH(μ), eL(μ), ûH(μ), ûL(μ)) : μ ∈ Υ(μ0)},
where Υ(μ0) is the tree of equilibrium beliefs generated from μ0.

Consider unemployed workers of type i ∈ {H,L}. There are three cases. One is that
the unemployed workers are newborns. The measure of newborns with type i is:

ûi(μ0) = σpi, (6.1)

where pH = p and pL = 1− p. The outflow from and inflow into this group are both equal

to σpi, and so stationarity always holds for this group.

The second case of unemployed workers of type i is that these workers were un-

employed in the previous period, in which case their beliefs in the current period are

h(μ) = H(−z(μ), μ) for some μ ∈ Υ(μ0). All of these workers will move out of the group

in the period. The inflow will be type-i unemployed workers with beliefs μ who survive
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exogenous exit and fail to find a match in the current period; the probability of this joint

event is (1− σ)[1− aig(μ)]. Thus, stationarity requires:

ûi(h(μ)) = (1− σ)[1− aig(μ)]ûi(μ), μ ∈ Υ(μ0). (6.2)

The third case of unemployed workers of type i is that these workers separated from

their jobs in the previous period. These workers’ beliefs in the current period are φ(μ) for

some μ ∈ Υ(μ0). Again, all of these workers will move out of the group in the period. The

inflow will be type-i employed workers with beliefs φ(μ) who exogenously separate from

jobs and survive exogenous exit. Thus, stationarity requires:

ûi(φ(μ)) = (1− σ)δei(φ(μ)), μ ∈ Υ(μ0). (6.3)

Similarly, consider employed workers of type i with beliefs φ(μ). The outflow from the

group in the period is [σ + (1− σ)δ] ei(φ(μ)), which is generated by exogenous exit from

the market and exogenous job separation. The inflow will be type-i unemployed workers

with beliefs μ who find a match in the current period and survive exogenous exist; the

probability of this joint event is (1− σ)aig(μ). Thus, stationarity requires:

[σ + (1− σ)δ] ei(φ(μ)) = (1− σ)aig(μ)ûi(μ), μ ∈ Υ(μ0). (6.4)

The stationary distribution is determined by (6.1) — (6.4), together with the requirement

that the total measure of workers is one. Because the equilibrium is block recursive, optimal

choices are independent of the distribution, and so (6.1) — (6.4) are linear equations of the

measures of workers. It is straightforward to solve for these equations by going through

the nodes of the tree, starting at the root, μ0. Given the equilibrium tree of beliefs, Υ(μ0),

the stationary distribution of workers over such beliefs is unique.

In the stationary equilibrium, the set of active submarkets is {g(μ) : μ ∈ Υ(μ0)}. In
submarket g(μ), the measure of type-i workers is ui(g(μ)) = ûi(μ), where i ∈ {H,L}.
The total number of matches in this submarket is [aH ûH(μ) + aLûL(μ)]g(μ). The average

job-finding probability in submarket g(μ) is:

f(g(μ)) =
aH ûH(μ) + aLûL(μ)

ûH(μ) + ûL(μ)
g(μ). (6.5)

Given μ, this probability is stationary over time because the composition of workers in

the submarket is constant in the stationary equilibrium. Similarly, the average job-finding

probability in the entire economy is constant over time.

To see how unemployment duration influences re-employment rates and wages, let us

follow a given cohort of unemployed workers with beliefs μ. As established in Theorem
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4.1, workers search for lower wages as their beliefs about their ability deteriorate with

unemployment duration. Accordingly, discouragement is reflected in wage losses at re-

employment, providing a natural explanation for the negative effect of unemployment du-

ration on future wages found by Addison and Portugal (1989).18 This mechanism can also

help to explain why similar workers are paid different wages (see Burdett and Mortensen,

1998, and Mortensen, 2003). On re-employment rates, learning from search has two effects.

First, for any given ability ai, the job-finding probability aig(μ) increases in the course of

unemployment as workers search for lower wages that are easier to get. Second, as high-

ability workers are more successful in getting jobs and exiting from unemployment, the

average ability in the cohort remaining unemployed decreases with unemployment dura-

tion, which reduces the average job-finding probability in the cohort. More precisely, the

average job-finding probability in the cohort, given by (6.5), is an increasing function of

the ratio of high- to low-ability workers in the cohort, ûH(μ)/ûL(μ), which decreases as μ

decreases with unemployment duration. When this composition effect dominates the effect

of g(μ), the average job-finding probability will fall with unemployment duration.

Confounding the above composition effect, workers who become unemployed at the

same time can differ in their beliefs μ because their histories of past unemployment can

differ. This implication naturally suggests that an empirical investigation of job-finding

probabilities and re-employment wages should take into account not only the worker’s

most recent unemployment spell, as it is typically done in the empirical literature, but also

the history of the worker’s previous unemployment spells. Our theory suggests a simple

empirical strategy to take into account a worker’s labor market history. Because a worker’s

beliefs follow a Markov process, the effect of past labor market history is summarized by

the worker’s beliefs when entering the most recent unemployment spell. In turn, the

latter beliefs have a monotone relationship to the worker’s wage at the most recent job.

Thus, a worker’s pre-unemployment wage serves the role of summarizing the worker’s

previous experience in the labor market. This role complements conventional human capital

explanations that view wages as a summary of the workers’ human capital.

The previous argument also provides a novel explanation for Addison and Portugal’s

(1989) finding that unemployment duration increases with pre-unemployment wages after

controlling for skills. Workers with higher pre-unemployment wages are those who had

18Addison and Portugal (1989) control for observed heterogeneity by including, for example, schooling,
age, race, location, experience, and industry dummy. They also control for unobserved heterogeneity
by estimating a pre-displacement wage equation first and then imposing the resulted restrictions in the
post-displacement wage equation.
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relatively shorter durations in previous unemployment spells and, hence, are more opti-

mistic about their ability when entering the current unemployment spell. These workers

will search for jobs offering higher wages, which are relatively harder to get.

7. Conclusion

In this paper, we have proposed an equilibrium theory of learning from search in the labor

market. The main assumption is that unemployed workers have incomplete information

about their job-finding ability and learn about their ability from search outcomes. Success

and failure of search both convey useful information about a worker’s type. As workers

experience different search outcomes, their labor market histories and, hence, their beliefs

about their ability diverge. The theory formalizes a notion akin to discouragement. That

is, over each unemployment spell, unemployed workers update their beliefs about their job-

finding ability downward and reduce not only reservation wages, but also desired wages.

Firms cater to these workers by offering different wages. Thus, learning from search gen-

erates endogenous heterogeneity in workers’ histories that can be useful for understanding

how unemployment can affect workers’ labor market outcomes and wage determination.

Our paper integrated learning from search into an equilibrium framework to determine

jointly the workers’ search behavior, the incentives to create jobs, and the wage distribu-

tion. The equilibrium analysis was made tractable with directed search, which made the

equilibrium block recursive in the sense that search behavior and market tightness are in-

dependent of the wage distribution. Another contribution of the paper has been to provide

a set of results in dynamic programming when the value function is convex. We identified

a connection between convexity of a worker’s value function in beliefs and the property

of supermodularity, established the property that the policy functions are monotone, and

provided conditions under which the first-order condition and the envelope condition are

valid. These results are likely to be useful in other learning problems, because convexity

of the value function in beliefs is inherent to optimal learning from experience.

The equilibrium theory of learning from search provides a novel mechanism for gener-

ating endogenous heterogeneity among unemployed workers. The learning process turns

ex ante identical workers into ex post heterogeneous workers who differ in posterior beliefs

about their job-finding probabilities. Such endogenous heterogeneity makes a worker’s

entire labor market history relevant for his future labor market outcomes. With block

recursivity, it will be feasible and interesting to examine the interactions between such

endogenous heterogeneity and ex ante heterogeneity among workers and firms.
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Appendix
See the Supplementary Material (Gonzalez and Shi, 2009) for complete proofs.

A. Proof of Theorem 3.1

First, we prove existence of the equilibrium. Given the analysis leading to Theorem 3.1, it
suffices to show that Assumption 2 is sufficient for all matches to be accepted, in which case
V indeed obeys (3.7). Consider a worker with beliefs μ ∈M who gets a match in submarket
x ∈ X. The worker strictly prefers to accept the match if and only if Je(φ(μ),W (x)) >
V (φ(μ)), which is equivalent to W (x) > (r+ σ)V (φ(μ)). A sufficient condition is that the
inequality holds for x = 1/aH and μ = aH . Substituting V (aH) from (A.1) in Lemma A.1,
we rewrite this sufficient condition as (y−b)/c > [A+ aHxH ]λ

0(x∗)−aHλ(xH), where x∗ is
defined by λ0(x∗) = aHλ(a

−1
H ), and xH = g(aH). Since the right-hand side of the inequality

is maximized at xH = x∗, the inequality is ensured by Assumption 2.
Second, we prove that g(μ) > 0 for all g(μ) ∈ G(μ) and all μ ∈ M . Suppose that

g(μ) = 0 for some μ ∈ M , contrary to the theorem. In this case, (3.6) and (3.7) yield:
R(0, μ) = V (μ) = b/(r+ σ). Substituting this value of V for the future value function, we
obtain a lower bound on the payoff R, say, R̃(x, μ). Using Remark 1, we can prove that
some x0 > 0 maximizes R̃(x, μ) and achieves R̃(x0, μ) > R(0, μ). A contradiction.
Third, we prove that V is strictly increasing. Let TV (μ) denote the right-hand side of

(3.7). Since T is a contraction mapping, it suffices to prove that TV (μa) > TV (μb) for any
continuous and increasing function V and any μa, μb ∈M , with μa > μb (see Stokey et al.,
1989). Denote gi = g(μi) ∈ G(μi), where i ∈ {a, b}. We have:

R(ga, μa)−R(gb, μb) ≥ R(gb, μa)−R(gb, μb)

≥ gb(μa − μb)
n

W (gb)
A(1−σ) +

δ
A
V (φ(μb))− V (H(gb, μb))

o
> gb(μa − μb) [V (φ(μb))− V (H(gb, μb))] ≥ 0.

The first inequality comes from the fact that gi ∈ argmaxxR(x, μi) and the second one
from V (H(gb, μa)) ≥ V (H(gb, μb)). The strict inequality uses the fact that gb > 0 and
W (x) > (r + σ)V (φ(μ)) for all x and μ (see above proof). The last inequality comes from
φ(μb) ≥ H(gb, μb). Hence, TV (μa) > TV (μb).
Finally, (weak) convexity of V follows from standard arguments (e.g., Nyarko, 1994,

Proposition 3.2). Because a convex function is almost everywhere differentiable (see Roy-
den, 1988, pp. 113-114), V is almost everywhere differentiable. Q.E.D.

The proofs of the following lemmas are omitted:

Lemma A.1. Denote xi = g(ai), where i ∈ {H,L}. The following results hold: (i) The
optimal choice xi is unique and satisfies R1(xi, ai) ≥ 0, with strictly inequality only if
xi = 1/aH . The value function satisfies:

V (ai) =
Ab+ aixiW (xi)

(r + σ) [A+ aixi]
. (A.1)
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(ii) Condition (4.2) is necessary and sufficient for xH < 1/aH . Also, xL ≥ xH , with strict
inequality if xH < 1/aH . (iii) δ/A < V 0(a+L)/V

0(a−H) for all δ ≤ δ̄, where δ̄ is the smallest
positive solution to Ω(δ) = 0 and Ω is defined as

Ω(δ) =
r + σ

1− σ

µ
r + σ

1− σ
+ δ

¶2
− δ

∙µ
1 +

aL
aH

¶µ
r + σ

1− σ
+ δ

¶
+

aL
aH

¸
. (A.2)

Lemma A.2. For any given z, the functions μV (φ(μ)) and (1+zμ)V (H(−z, μ)) are convex
in μ if V (.) is convex, and strictly convex in μ if V (.) is strictly convex.

B. Proof of Theorem 4.1

First, we prove that R̂(z, μ) is strictly supermodular. Once this is done, the monotone
selection theorem in Topkis (1998, Theorem 2.8.4, p. 79) implies that every selection
from Z(μ) is increasing. To prove that R̂ is strictly supermodular, take arbitrary za,
zb ∈ −X and arbitrary μa, μb ∈ M , with za > zb and μa > μb. Denote D = [R̂(za, μa) −
R̂(za, μb)]−[R̂(zb, μa)−R̂(zb, μb)]. We need to showD > 0. Temporarily denote φj = φ(μj),
Hij = H(−zi, μj) and Vij = V (Hij), where i, j ∈ {a, b}. Computing D, we have:

D = D1 − [V (φa)− V (φb)](za − zb)δ/A ≥ D1 − V 0(a+H) [φa − φb] (za − zb)δ/A,

where the inequality follows from convexity of V and where D1 denotes:

D1 = (za + μ−1a )Vaa − (zb + μ−1a )Vba − (za + μ−1b )Vab + (zb + μ−1b )Vbb.

Denote H̃ = min{Hba,Hab}. Because H(−z, μ) is a strictly increasing function of z and μ
for all μ ∈ (aL, aH), then Haa > H̃ ≥ Hbb. Because V is convex, we have:

min

½
Vaa − Vba
Haa −Hba

,
Vaa − Vab
Haa −Hab

¾
≥ Vaa − V (H̃)

Haa − H̃
≥ Vaa − Vbb

Haa −Hbb
.

Substituting Vba, Vab and Vbb from these inequalities, and substituting H, we have:

D1 ≥ (za − zb)(φa − φb)[Vaa − V (H̃)]/[Haa − H̃] ≥ V 0(a+L)(za − zb)(φa − φb),

where the second inequality follows from convexity. Thus, a sufficient condition for D > 0
is δ/A < V 0(a+L)/V

0(a−H), which is implied by Assumption 3 (see Lemma A.1).
We next establish that the five statements (i) - (v) in Theorem 4.1 are equivalent.
(i) ⇐⇒ (ii): Optimal learning has the following standard property (see Nyarko, 1994,

Proposition 4.1): The value function is strictly convex in beliefs if and only if there do not
exist μa and μb inM , with μa > μb, and a choice z0 such that z0 ∈ Z(μ) for all μ ∈ [μb, μa].
Since z(μ) is an increasing function, as proven above, the standard property implies that
V is strictly convex if and only if every selection z(μ) is strictly increasing for all μ.
(ii) =⇒ (iii): Suppose {−a−1H } ∈ Z(μa) for some μa > aL so that (iii) is violated.

Because every selection z(μ) is increasing, Z(μ) contains only the singleton {−a−1H } for all
μ < μa. In this case, (ii) does not hold for μ ≤ μa. Note that since z(μ) < 0 by Theorem
3.1, the result {−a−1H } /∈ Z(μ) implies that Z(μ) is interior.
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(iii) =⇒ (iv): This follows from aH > aL.
(iv) ⇐⇒ (v): See part (ii) of Lemma A.1 in Appendix A.
(iv) =⇒ (i): We prove that a violation of (i) implies that {−a−1H } ∈ Z(aH), which

violates (iv). Suppose that V is not strictly convex. Proposition 4.1 in Nyarko (1994)
implies that there exist μa and μb in M , with μa > μb, and a choice z0 such that z0 ∈ Z(μ)
and V (μ) is linear for all μ ∈ [μb, μa]. Since μa > μb, let μb > aL and μa < aH without
loss of generality. We deduce that V (μ) is linear for all μ ∈ [φ(μb), φ(μa)]: If V (μ) were
strictly convex in any subinterval of [φ(μb), φ(μa)], Lemma A.2 above would imply that
R(−z0, μ) is strictly convex μ in some subinterval of [μb, μa]. Similarly, V (μ) is linear for
all μ ∈ [Hb, Ha], where Hi denotes H(−z0, μi) for i ∈ {a, b}. Denote the slope of V as
V 0(φb) for μ ∈ [φ(μb), φ(μa)] and V 0(Hb) for μ ∈ [Hb, Hb]. For all μ ∈ [μb, μa], we have

R̂(z, μ) = −zW (−z)
(1−σ)A − δz

A
{V (φ(μb)) + V 0(φb)[φ(μ)− φ(μb)]}

+ 1
μ
(1 + zμ){V (Hb) + V 0(Hb)[H(−z, μ)−Hb]}.

Because (1 + zμ)H(−z, μ) is linear in z, the last two terms in the above expression are
linear in z. In this case, part (iii) in (3.11) implies that R̂(z, μ) is strictly concave in z and
twice continuously differentiable in z and μ for all μ ∈ [μb, μa]. Thus, the optimal choice
z(μ) is unique and, by the supposition, equal to z0. Since z0 < 0 (see Theorem 3.1), z0
satisfies the complementary slackness condition, R̂1(z0, μ) ≤ 0 and z0 ≥ −1/aH . Moreover,
in this case, strict supermodularity of R̂ implies R̂12(z, μ) > 0 and strictly concavity of R̂
in z implies R̂11(z, μ) < 0 for all μ ∈ [μb, μa]. If z0 > −1/aH , then R̂1(z0, μ) = 0, which
implies dz0/dμ = −R̂12/R̂11 > 0. This contradicts the supposition that z0 is constant for
all μ ∈ [μb, μa]. Thus, z0 = −1/aH .
Repeat the above argument for all μ ∈ [φi(μb), φi(μa)], where φi(μ) = φ(φi−1(μ)) and

i = 1, 2, .... For such μ, V is linear and Z(μ) is the singleton, {−a−1H }.
Take an arbitrary μc ∈ (μb, μa). Since Z(φi(μc)) = {−a−1H } for all positive integers i,

then limi→∞ Z(φi(μc)) = {−a−1H }. >From the definition of φ(μ), it is clear that φ(aH) =
aH , φ(aL) = aL, and φ(μ) > μ for all μ ∈ (aL, aH). Thus, limi→∞ φi(μ) = aH for every
μ ∈ (aL, aH) and, particularly, for μ = μc. Because Z is upper hemi-continuous, we
conclude that {−a−1H } ∈ Z(aH). Q.E.D.

C. Proof of Theorem 5.1

Fix μ ∈ (aL, aH) and use the notation h(μ) = H(−z(μ), μ).
Part (i): BecauseH(−z, μ) is increasing in z,H(−z+(μ), μ) = h+(μ) andH(−z−(μ), μ) =

h−(μ). Since V 0(h+(μ)) ≥ V 0(h−(μ)), we can prove that R̂1(z+(μ), μ) ≥ R̂1(z
−(μ), μ)

(see the Supplementary Material, Gonzalez and Shi, 2009). However, the optimality of
z(μ) requires R̂1(z

+(μ), μ) ≤ 0 ≤ R̂1(z
−(μ), μ). It must be true that R̂1(z−(μ), μ) =

R̂1(z
+(μ), μ) = 0, which requires that V 0(h−(μ)) = V 0(h+(μ)) = V 0(h(μ)).
Part (ii): Let {μi} be a sequence with μi → μ and μi ≥ μi+1 ≥ μ for all i. Because

z̄(μ) is an increasing function, {z̄(μi)} is a decreasing sequence, and z̄(μi) ≥ z̄(μ) for all
i. Thus, z̄(μi) ↓ zc for some zc ≥ z̄(μ). On the other hand, the Theorem of the Maximum
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implies that the correspondence Z(μ) is upper hemi-continuous (uhc) (see Stokey et al.,
1989, p. 62). Because μi → μ, and z̄(μi) ∈ Z(μi) for each i, uhc of Z implies that there is
a subsequence of {z̄(μi)} that converges to an element in Z(μ). This element must be zc,
because all convergent subsequences of a convergent sequence must have the same limit.
Thus, zc ∈ Z(μ), and so zc ≤ maxZ(μ) = z̄(μ). Therefore, z̄(μi) ↓ zc = z̄(μ), which shows
that z̄(μ) is right-continuous. Similarly, by examining the sequence {μi} with μi → μ and
μ ≥ μi+1 ≥ μi for all i, we can show that z is left-continuous.
Part (iii): Let μa be another arbitrary value in the interior of (aL, aH). Because z̄(μ)

maximizes R(−z, μ) for each given μ, then

(1 + r)V (μa) = b+ (1− σ)R(−z̄(μa), μa) ≥ b+ (1− σ)R(−z̄(μ), μa)
(1 + r)V (μ) = b+ (1− σ)R(−z̄(μ), μ) ≥ b+ (1− σ)R(−z̄(μa), μ).

For μa > μ, we have:

R(−z̄(μ), μa)−R(−z̄(μ), μ)
(1 + r)(μa − μ)

≤ V (μa)− V (μ)

(1− σ)(μa − μ)
≤ R (−z̄(μa), μa)−R(−z̄(μa), μ)

(1 + r)(μa − μ)
.

Take the limit μa ↓ μ. Under (4.2), V 0(H(−z̄(μa), μa)) exists for each μa (see part (i)). Be-
cause z̄(μa) is right-continuous, limμa↓μ z̄(μa) = z̄(μ). Thus, all three ratios above converge
to the same limit, 1

1−σV
0(μ+) = 1

1+r
R2(−z̄(μ), μ+), where R2(−z̄(μ), μ+) is given as

z̄(μ)
h
−W (−z̄(μ))

(1−σ)A − δ
A
V (φ(μ)) + V (H(−z̄(μ), μ))

i
−μz̄(μ)δ

A
V 0(φ+(μ))φ0(μ) + [μz̄(μ) + 1]V 0(H(−z̄(μ), μ))H2(−z̄(μ), μ).

Similarly, using left-continuity of z(μa), we can prove that V
0(μ−) = 1−σ

1+r
R2(−z(μ), μ−).

Part (iv): From the above expression for R2 and the relation R = μR̂, we can verify:

R2(−z̄(μ), μ+) ≥ R2(−z̄(μ), μ−)
≥ R̂(z(μ), μ−) + μR̂2(z(μ), μ

−) = R2(−z(μ), μ−).
The first inequality comes from strict convexity of V , and it is strict if and only if
V 0(φ+(μ)) > V 0(φ−(μ)). The second inequality comes from strict supermodularity of
R̂ (z, μ), and it is strict if and only if z̄(μ) > z(μ). Therefore, V 0(μ+) = V 0(μ−) if and only
if V 0(φ(μ)) exists and z̄(μ) = z(μ).
Part (v): Assume that V 0(μa) exists for a particular (interior) μa, such as μa = h(μ)

for any arbitrary interior μ. By part (iv), z(μa) is unique and V
0(φ(μa)) exists. Recall that

V 0(h(μa)) always exists, by part (i). Since V is now differentiable at all posterior beliefs
reached from μa under the optimal choice, we can take each of these subsequent nodes and
repeat the argument. This shows that the optimal choice is unique and the value function
is differentiable at all nodes on the tree generated from μa in the equilibrium. Q.E.D.
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