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Abstract

We construct an equilibrium theory of learning from search in the labor market,
which addresses the search behavior of workers, the creation of jobs, and the wage
distribution as functions of unemployment duration. In the model, each worker has
incomplete information about his job-finding ability and learns about it from his
search outcomes. The theory formalizes a notion akin to that of discouragement:
over the unemployment spell, unemployed workers update their beliefs about their
job-finding abilities downward and reduce their desired wages. One contribution of
the paper is to integrate learning from search into an equilibrium framework. We
show that the equilibrium exhibits wage dispersion among homogeneous workers,
and that workers with longer unemployment spells have lower permanent incomes.
Another contribution is to apply lattice-theoretic techniques to analyze learning from
experience, which is useful because learning generates convex value functions and, in
principle, multiple solutions to a worker’s optimization problem.
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1. Introduction

The estimated costs of unemployment to workers in terms of future wage losses are substan-

tial, and longer unemployment spells are associated with significantly larger losses (e.g.,

Nickell et al., 2002). In this paper, we construct a theory of learning from search and use it

to explain how this evidence can be consistent with a labor market equilibrium. The main

assumption is that each unemployed worker does not have precise knowledge of his job-

finding ability and, therefore, learns about this ability from search histories. We embed this

assumption into a model of directed search to characterize the search behavior of workers,

the creation of jobs, and the wage distribution. Employing lattice-theoretic techniques, we

show that in the labor market equilibrium, each unemployed worker reduces the wage he

searches for as his unemployment duration increases.

Learning from search captures a notion akin to discouragement. Search outcomes con-

tain useful information when workers have unknown search ability that determines how

likely they will be a good match to a random firm. After a worker fails to find a match, he

updates his beliefs about his own ability downward and, hence, becomes more pessimistic

about his probability of finding a job. In subsequent searches, the worker will lower his

desired wage in order to increase the probability of getting a match. Despite the intuitive

appeal of this mechanism, it has not been incorporated into an equilibrium analysis; in-

stead, the learning literature has focused on a single agent’s optimal stopping problem. In

the absence of an equilibrium framework, it is difficult to assess whether learning can occur

in the equilibrium or learning from search is a robust explanation for the dependence of

observed wage outcomes on workers’ unemployment spells. The objective of this paper is

to examine the interactions between search decisions, job creation and wage offers in order

to understand the equilibrium consequences of learning from search.

The main difficulty in analyzing learning from search in an equilibrium framework stems

from the need to address the interaction between individuals’ learning and aggregate prices.

To appreciate why, it is useful to consider the work of Burdett and Vishwanath (1988),

where workers learn about the unknown distribution of wages. In their model, each worker

receives a wage offer from an exogenous distribution and then decides whether to accept

the offer or to reject it and continue to search. A worker who receives an offer lower than

expected revises his beliefs about the wage distribution downward. Workers with longer

unemployment spells are precisely the workers who have drawn and rejected relatively lower

wages in the past, and so they perceive the jobs available to them as jobs offering low wages.

As a result, reservation wages are negatively related to unemployment spells. While this

1



is an interesting result, Burdett and Vishwanath (1988) examine only the workers’ side of

the labor market. In equilibrium, however, learning by the market participants will affect

the wage distribution by affecting firms’ decisions on wage offers.

To provide a tractable analysis of an equilibrium with learning from search, we change

two modeling aspects. First, we propose that the source of incomplete information is a

worker characteristic. We model this characteristic as a worker’s exogenous ability that

affects his efficiency units in search. The advantage of this modeling assumption is that this

fundamental characteristic does not change with learning. In contrast, when agents learn

about the wage distribution, the distribution itself changes as firms update their beliefs

and change their wage offers. Second, we model search as a directed and competitive

process.1 Similar to Acemoglu and Shimer (1999), this search process allows individuals

to sort themselves into submarkets, which makes the equilibrium analysis tractable by

eliminating the dependence of individuals’ decisions on the wage distribution.2

In more detail, our model is as follows. Each worker has an unknown permanent ability,

which is either high or low. Ability determines the worker’s efficiency units in search but,

once matched, all workers have the same productivity. The process of competitive search

is as follows. There is a continuum of submarkets, each of which is associated with a wage

and tightness. Firms and workers observe all such pairs and choose which submarket to

enter, understanding that a submarket with a higher wage has relatively fewer vacancies.

We refer to this choice as the agent’s search decision and the wage in the chosen submarket

as the worker’s desired wage. In each submarket, the number of matches is given by a

function of the number of vacancies and the total efficiency units of searching workers in

that submarket. In any given submarket, a worker with higher ability has a higher matching

probability than a worker with lower ability. However, this matching probability remains

unknown because an individual does not know his ability. Information is incomplete but

symmetric. In particular, all search histories are public information.

Search outcomes convey useful information about a worker’s type. When an unem-

ployed worker searches and fails to find employment, the worker views this search outcome

as bad news and revises his beliefs downward. Subsequently, he will choose to search for

1Peters (1984, 1991) formulates directed search as a strategic problem. Burdett et al. (2001) and Shi
(2001), among others, have further explored this strategic formulation. Competitive search is analyzed by
Moen (1997) and Acemoglu and Shimer (1999). In a large market, the two formulations often generate
the same equilibrium outcome.

2Acemoglu and Shimer (1999) analyze sorting according to workers’ wealth, unemployment benefits
and/or risk aversion. However, their result that competitive directed search induces sorting is more general
than their model’s specifics. We explore sorting according to workers’ beliefs about their own matching
abilities. Shi (2001) analyzes sorting according to workers’ skills.
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jobs that will be easier to get. Those jobs will necessarily come with lower wages as part of

the equilibrium tradeoff between wages and market tightness. Thus, learning from search

induces not only reservation wages, but also desired wages, to decline with unemployment

duration. As firms cater to the workers with different beliefs, there is a non-degenerate

distribution of equilibrium wages among ex ante identical workers (between submarkets).3

In addition to an equilibrium formulation of learning from search, we provide an analyt-

ical procedure for resolving a main theoretical problem in the analysis of optimal learning

from experience. This problem is caused by convexity of the value function. Because

search outcomes generate variations in a worker’s posterior beliefs about his ability, search

conveys valuable information only if these variations in beliefs are valuable to the worker,

that is, if the worker’s nonlinear value function is convex in beliefs. Although the literature

(e.g., Easley and Kiefer, 1988) recognizes that such convexity is likely to lead to multiple

solutions and to render the first-order conditions inapplicable, previous work has either ig-

nored the difficulty or focused on corner solutions (e.g. Balvers and Cosimano, 1993). We

resolve this difficulty by exploiting a connection between convexity of the value function

and the property of supermodularity in lattice-theoretic techniques.

This connection is not obvious at first glance and, to our knowledge, has not been ex-

amined. In our model, neither a worker’s current payoff nor his objective function is super-

modular as is often required in applications (see Topkis, 1998, and Milgrom and Shannon,

1994). We proceed in two steps. First, we use convexity of a worker’s value function to

show that a particular monotone transformation makes the worker’s objective function su-

permodular. This approach differs considerably from other applications of lattice-theoretic

techniques to dynamic programming (e.g., Amir et al., 1991, Mirman et al., 2007), which

assume the value function to be concave. Second, we establish that workers’ optimal deci-

sions (i.e., desired wages) are strictly decreasing with unemployment duration. Generally,

lattice-theoretic techniques establish only weak monotonicity. For strict monotonicity, the

literature has required strong assumptions on differentiability, e.g., Amir (1996) and Edlin

and Shannon (1998). Because such assumptions can be violated here, we establish strict

monotonicity in an alternative way, again by exploiting convexity of the value function.

In our model, learning from search induces sorting of workers according to their beliefs

about matching ability. Because beliefs are deteriorating during unemployment, work-

ers choose to sort themselves out according to unemployment duration even though they

3Workers who differ in ex post beliefs may also choose different levels of search intensity and labor
market participation. Although our analysis can shed light on such differences, we choose to abstract from
them in the interest of simplicity.
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have the same productivity once employed. This sorting mechanism is different from the

common argument that workers with lower productivity tend to have longer unemploy-

ment spells (Lockwood, 1991) or that workers’ skills deteriorate during unemployment

(Pissarides, 1992). Also, Blanchard and Diamond (1994) examine sorting among workers

of the same productivity by showing that unemployment duration can act as a device for

equilibrium selection. Specifically, they use a random-matching model to show that there is

an equilibrium in which firms give employment priority to workers with lower employment

durations even though there is no fundamental reason for such a bias. In their model, the

distribution of wages is degenerate, and the length of the unemployment spell has no effect

on a worker’s future wage. In contrast to this mechanism, sorting in our model is a result

of learning driven by the workers’ willingness to accept lower wages as their beliefs about

their ability deteriorate during unemployment. Finally, learning from search generates the

dependence of a worker’s job-finding probability on unemployment duration, which we will

discuss in Section 6.

2. The Model

2.1. Agents, Markets and Matching

Time is discrete and all agents discount the future at a rate r > 0. There are large numbers

of workers and firms. A worker is either employed or unemployed. When employed, a

worker produces y > 0 units of goods. When unemployed, a worker searches for a job, and

the utility of leisure is normalized to zero. To focus on learning from search, we assume

that employment is an absorbing state.4 In this environment, the steady state distribution

of workers is non-trivial only if there is a flow into unemployment. For this reason, we

assume that the labor force grows at a constant rate n > 0. Thus, if L is the labor force

at the beginning of period t, a mass nL of new workers enters the labor market in period

t through unemployment. The number of firms is determined endogenously by free entry,

as described later.

Each worker has unknown ability, a, that is equal to either aH or aL, where aH > aL > 0.

A worker’s ability determines the worker’s effectiveness in the matching process, as specified

later.5 This unknown ability is a permanent characteristic, determined at the time when

4If a worker’s ability, described below, is a new draw every time a worker enters unemployment, then
it is straightforward to incorporate workers’ re-entry into unemployment through job separation.

5We are very grateful to Daron Acemoglu and the referees for directing us toward this formulation. In
a previous version of the paper (Gonzalez and Shi, 2007), we formulated the problem as one of incomplete
information about the characteristics of local markets rather than individuals.
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the worker enters the labor market. A new worker has ability aH with probability p, and aL

with probability (1− p), where p ∈ (0, 1). We call a worker with aH a high-ability worker,
and a worker with aL a low-ability worker. We will also use the notation ai ∈ {aH , aL}.
The timing of the events in a period is as follows. First, new workers enter the labor

market through unemployment and nature determines the ability of each new worker, while

the ability of a worker who was born in the past remains the same as before. Second, all

firms and unemployed workers make their search decisions. Third, after the matching

process is completed in the period, matched firms and workers exit the search process to

produce permanently, while unmatched workers remain unemployed.

Search is competitive, as follows. There is a continuum of submarkets indexed by

x, which will be related to matching rates in that submarket. The domain of x is X =

[0, 1/aH ]. A submarket x is characterized by a wage level,W (x), and a tightness, λ(x). The

functions W (.) and λ(.) are public information, taken as given by agents and determined

in the equilibrium. In each period, a worker’s or a firm’s search decision is to choose which

submarket to enter, i.e., x. Search is directed in the sense that an agent’s choice of a

submarket involves a tradeoff between the wage and the tightness, because a submarket

with a high wage has relatively fewer vacancies per worker in the equilibrium. Note that in

line with the formulations by Moen (1997) and Acemoglu and Shimer (1999), a firm does

not directly set wages. Instead, by choosing a submarket, a firm chooses a pair (w, λ) from

the menu {(w (x) , λ (x)) : x ∈ X}.6
Since workers differ in their search effectiveness, we define the total efficiency units of

workers searching in submarket x as

ue (x) = aHuH (x) + aLuL (x) , (2.1)

where ui (x), for i ∈ {L,H}, denotes the mass of unemployed workers with ability ai who
choose submarket x. Let v (x) be the number of vacancies created in submarket x, and

define the effective tightness in this submarket as λ (x) = v (x) /ue (x). We assume that

the number of matches in submarket x is given by a function, F (ue (x) , v (x)). The index

x is the matching rate for each efficiency unit of a worker in submarket x; that is,

x =
F (ue (x) , v (x))

ue (x)
.

6Although the submarkets can alternatively be indexed by workers’ unemployment duration, τ , it is
more convenient to index them by x. First, all the effects of τ on agents’ decisions eventually go through x
because a worker’s tradeoff is between the wage and the matching probability. Second, in contrast to the
discrete variable τ , x is a continuous variable which allows agents to make a continuous tradeoff between
w and x.
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For a worker with ability ai, the matching probability in submarket x is aix. Thus, given

x, the lower a worker’s ability, the lower his matching probability.

We impose the following standard assumption on the matching function F :

Assumption 1. The function F (ue, v): (i) is strictly increasing, strictly concave and twice

differentiable in each argument, (ii) is linearly homogeneous, and (iii) has F (u, 0) = 0 and

F (u,∞) > 1/aH for all u ∈ (0,∞).

One can determine the tightness λ(x) by F (1, λ(x)) = x and verify that λ(x) satisfies:

λ0(x) >
λ(x)

x
> 0, λ00(x) > 0, for all x ∈ (0, 1/aH ]. (2.2)

Note that for a vacancy in submarket x, the matching probability is F/v = x/λ (x). The

above properties of λ imply that a firm’s recruiting probability decreases in x. That is, if

it is easy for a worker to find a job at x, it must be difficult for a firm to recruit at x.

The following examples of the matching function satisfy Assumption 1 and will be

considered in various parts of our analysis:

Example 2.1. (i) One example of F is the CES function: F (ue, v) = [(1− α)uρe + αvρ]1/ρ,

where ρ < 1 and α ∈ (0, 1). In this case, λ(x) = [1 + (xρ − 1) /α]1/ρ. A special case of
this example is the Cobb-Douglas function, where ρ = 0, which leads to λ(x) = x1/α. (ii)

Another example is the urn-ball matching function: F (ue, v) = v
¡
1− e−ue/v

¢
. In this case,

λ(x) is implicitly defined by λ(x)
£
1− e−1/λ(x)

¤
= x.

The key feature of the model is the incomplete information about worker ability in

the matching process. Because the matching probability is less than one regardless of the

worker’s ability, failure to match does not automatically imply that the worker has low

ability. Thus, a worker who fails to obtain a match faces a signal extraction problem.

Search histories are informative because low-ability workers are more likely to fail to get

matches in any given period. In contrast to workers, firms do not face a signal extraction

problem. Given a firm’s choice of the submarket, the firm’s matching probability and

expected profit are determined independently of any particular worker’s ability.

Note that our formulation implies that there is no need for individual agents to learn

about the composition of workers’ abilities in a submarket. To see this, consider an arbi-

trary submarket x where the total efficiency units of workers are ue (x). Free entry of firms

into the submarket will ensure that the effective tightness will indeed be λ (x), and so a

worker’s or a firm’s matching probability and expected payoffs in the submarket will be
6



determined independently of the level and the composition of ue (x). This feature clearly

depends on the use of directed search, but it also depends on the matching function. If

we specified the matching function instead as F (uH (x) , uL (x) , v (x)) where the first two

variables are not perfect substitutes, then an agent’s matching probability and the wage

offered in the submarket would depend on the composition, (uH (x) , uL (x)). In this case,

a worker would use unemployment duration to make inference on this composition in addi-

tion to learning about his own ability. An equilibrium analysis would be complicated as the

composition evolves with unemployment duration. Although this role of unemployment

duration in the inference of the ability composition in each submarket is interesting, it is

not a necessary part of a worker’s learning about his own ability. By eliminating this role,

our formulation maintains tractability.

In the interest of clarity, let us emphasize the information structure. Information is

symmetric in the sense that all workers’ search histories and all statistics in each submarket

are common knowledge. In particular, every agent observes the number of vacancies,

the number of matches, and the composition of workers in each submarket. Despite the

availability of such public information, individual workers can still learn from their private

search histories.

2.2. Learning from Search

Workers update their beliefs about ability after observing whether or not they have a

match. The updating depends on the particular submarket into which the worker just

searched. To describe the updating process, it is convenient to express a worker’s belief in

terms of his expected type. Let the initial prior expectation of a for a worker who has not

yet searched be μ0 ∈ (aL, aH). From the distribution of new workers across ability types,

we can calculate: μ0 = paH + (1− p)aL, where p ∈ (0, 1). This mean belief is common to
all new workers and it is public information.

Consider the updating process for an arbitrary worker. Let Pi be the prior probability

with which a = ai, where ai ∈ {aH , aL}. Let μ be the expected value of a according to
this prior belief and refer to μ simply as the belief. Note that the prior distribution of a is

Bernoulli, with mean μ. From the definition of μ, we can solve Pi in terms of μ:

PH =
μ− aL
aH − aL

, PL =
aH − μ

aH − aL
. (2.3)

Let k ∈ {0, 1} be the matching outcome in the current period, where k = 0 if the worker
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fails to get a match and k = 1 if the worker succeeds in getting a match. Then,

P (ai|x, k = 1) = ai
μ
Pi, P (ai|x, k = 0) = 1− xai

1− xμ
Pi. (2.4)

The conditional distribution of a is Bernoulli with mean E(a|x, k) = aHP (aH |x, k) +
aL [1− P (aH |x, k)]. Substituting P (aH |x, k) from (2.4) and PH from (2.3), we have:

E (a|x, k = 1) = aH + aL − aHaL/μ;

E(a|x, k = 0) = aH − 1−xaL
1−xμ (aH − μ).

(2.5)

Note that if the initial mean belief μ0 exceeds aL, E(a|x, k) > aL for both k = 0 and k = 1.

The updating process above has two preliminary properties. First, the sequence of

mean beliefs is a Markov process. Second, a worker’s mean belief, μ, is a sufficient statistic

for the worker’s unemployment history. Denote the domain of μ as M = [aL, aH ].

The value of x measures the informativeness of search. Search in a market with rela-

tively higher x is more informative in the sense of Blackwell (1951). Consider the infor-

mation revealed by search in two different submarkets, with x > x0. Let K and K 0 be

the random number of matches associated with x and x0. Intuitively, one can construct

the random variable K 0 by “adding noise” to K as follows. First, let the worker random-

ize with probability of success ax, with a ∈ {aL, aH}; then, whenever the realization is
a success, randomize again with success probability x0/x. The result is a Bernoulli trial

with probability of success equal to ax0. In other words, if x > x0, the random variable, or

experiment, K is sufficient for K 0 (see DeGroot, 1970, pp.433-439).

The informational content of x is asymmetric with respect to the matching outcome.

After a successful match, a worker’s posterior, P (a|x, k = 1), and the posterior mean belief,
E(a|x, k = 1), are independent of x, because the probability of getting a match is linear in
x regardless of the worker’s type. However, after a match failure, a worker’s posterior and

the posterior mean belief both depend on x.

Because our focus is on unemployed workers’ decisions, it is useful to explicitly write

the posterior belief of a worker who fails to find a job as E(a|x, k = 0) = H (x, μ), where

H(x, μ) ≡ aH − 1− xaL
1− xμ

(aH − μ). (2.6)

One can verify the following properties (the verification is omitted here):

Lemma 2.2. The function H(x, μ) satisfies: (i) H1 < 0; (ii) H2 > 0, (iii) H11 =
2μ
1−xμH1 <

0 and H22 =
2x
1−xμH2 > 0; (iv) μ(1− xμ)H12 −H1 − μ2H2 = −aHaL.
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Property (i) states that a higher x reduces the worker’s posterior beliefs after the

worker fails to find a match, as discussed above. In particular, property (i) implies that

H(x, μ) < μ for all x > 0 and μ > aL. Thus, a worker’s beliefs about his ability decrease

over time as the number of search failures increases. Of course, if a worker’s beliefs have

reached aL, there is no further updating; that is, H(x, aL) = aL for all x. Property (ii)

states that, for any given x, a worker with higher prior beliefs will also have higher posterior

beliefs. Properties (iii) and (iv) will be useful later.

2.3. The Value of Search

Consider an unemployed worker who enters a period with belief μ. Let V (μ) be his value

function. If he chooses to search in submarket x, the expected probability of finding a

match is xμ. In principle, some workers may have incentive to engage in the following “ex-

perimentation”: searching during a period solely to gather information and, thus, refusing

to enter a match once they learn that a match has occurred. This may occur because a

worker who found a match in submarket x will revise his belief upward (see (2.5)). We

do not think that this form of experimentation is important in practice, unless it is as-

sociated with heterogeneous matches, which is not the case here. Thus, we rule out such

experimentation by focusing on the case in which search is sufficiently costly that a worker

always prefers to accept a match that he searches for.

Assumption 2. Labor productivity satisfies: y/c ≥ (1 + r) aHλ (1/aH).

This sufficient condition implies that a worker prefers getting the lowest equilibrium

wage every period starting now to remaining unemployed in the current period and then

getting the full surplus from a match every period starting with next period. Intuitively,

the condition requires that the opportunity cost of rejecting a match, as reflected by y,

should be sufficiently high to a worker.7 Stronger than necessary, this condition significantly

simplifies the analysis and the exposition of our main results. As in Burdett and Vishwanath

(1988), one can relax the condition by introducing a constant cost of search per period,

which further increases a worker’s opportunity cost of rejecting an offer. For simplicity,

however, we have not included such a cost of search.

7The discount rate in Assumption 2 reflects both workers’ and firms’ discount rate. For a worker, a
higher discount rate lowers the benefit from experimentation for any given wage. However, when firms
discount future at a higher rate, the present value of a filled job falls, and the wage rate in every submarket
must be lower in order to induce firms to enter, which implies that the loss of the current wage from
experimentation falls. With a common discount rate, the effect through firms’ discount rate dominates.

9



Because employment is permanent, the present value of the job isW (x)/r. If the worker

does not find a job in the current period, he will revise the beliefs to H(x, μ) and continue

to search in the next period. In this case, the expected value from the next period onward

will be V (H(x, μ)). Thus, the expected payoff of searching in a submarket x is:

R(x, μ) ≡ xμ
W (x)

r
+ (1− xμ)

V (H(x, μ))

1 + r
. (2.7)

Under Assumption 2, the value of search under beliefs μ is given by:

V (μ) = max
x∈X

R(x, μ). (2.8)

Denote the set of optimal decisions asG(μ) = argmaxx∈X R(x, μ) and a selection fromG(μ)

as g(μ). A worker’s desired wage is w(μ) = W (g(μ)). In contrast, a worker’s reservation

wage can be defined in the conventional way as the lowest permanent income that a worker

will accept to forego search. This is given by rV (μ).

2.4. Free Entry of Firms and the Equilibrium Definition

There is free entry of firms into the market. After incurring a vacancy cost c ∈ (0, y), a
firm can post a vacancy for a period in any one of the submarkets. Let J be the net value

of a vacancy. With free entry, J = 0. Recall that the matching probability of a firm in any

submarket x is x/λ (x) and that employment is permanent. Thus, a firm’s optimal choice

of the submarket solves the following problem:

J = max
x∈X

∙
−c+ x

λ(x)

y −W (x)

r

¸
. (2.9)

As said earlier, the firm faces no signal extraction problem, because all elements in the

above problem are public information.

The first-order condition of the above problem is a differential equation for the wage

function. Without an initial condition, this equation has a continuum of solutions, which

means that there is a continuum of choices of x that are optimal for the firm. That is, a firm

is willing to enter any submarket, provided that the wage in the submarket is consistent

with the free-entry condition, J = 0.

With (2.9), the free-entry condition yields the following wage function:

W (x) = y − rc
λ(x)

x
. (2.10)
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Recall that x ≤ 1/aH and that λ (x) /x is increasing in x. For future reference, it is useful

to note that, for all x ∈ X, the function W (x) is twice continuously differentiable, and

that it has the following properties:

(i) 0 < W (x) ≤ y; (ii) W 0(x) < 0, (iii) 2W 0(x) + xW 00(x) < 0. (2.11)

Assumption 2 ensures (i), while (2.2) implies (ii) and (iii). Part (ii) says that a higher

employment probability occurs together with a lower wage. This negative relationship is

necessary for providing a meaningful tradeoff between the two variables in directed search.

As such, part (ii) is necessary for inducing firms to enter the submarket. Part (iii) is

implied by λ00(x) > 0, and it says that the function xW (x) is strictly concave in x.

Focus on stationary symmetric equilibria. An equilibrium consists of workers’ choices

of x, firms’ choices of x, and a wage function W (x), that meet the following requirements.

(i) Given the wage function, all workers with the same belief μ at the beginning of a period

use the same search policy x = g(μ). (ii) A firm’s choice solves the problem in (2.9). (iii)

Conditional on unsuccessful search, a worker’s beliefs are updated according to H(g(μ), μ).

(iv) Consistency: for every submarket x with positive entry, the mass of all firms who

choose x divided by the efficiency units of workers who choose x is equal to λ(x). (v)

Free-entry: for each submarket, the wage function W satisfies (2.10).

In the above definition, we have left out the steady-state conditions on worker flows

and the wage distribution, which will be characterized in Section 6. We deliberately do

so in order to emphasize the model’s feature that individuals’ decisions and matching

probabilities can be analyzed without any reference to the wage distribution. Instead, all

that is required for such an analysis is the wage function W (.) and the tightness function

λ(.), which are determined by firms’ free-entry condition and the matching function. This

feature makes the analysis tractable by reducing the dimensionality of the state variables

for individuals’ decision problems significantly.8 In contrast, if search were undirected, an

individual’s search decision would depend on the wage distribution which, in turn, would

evolve as individuals learn about his ability.

3. Learning in Competitive Search Equilibrium

Let us analyze a worker’s optimization problem, (2.8). When choosing a submarket x,

the worker faces two considerations. One is the familiar tradeoff between wages and the

matching probability in models of directed search. That is, a submarket with a higher x

8See Shi (2006) for an exploration of this feature in the context of wage-tenure contracts.
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has a lower wage and a higher job-finding probability. Another consideration is learning

from the search outcome. As discussed earlier, search in a submarket with a high x (i.e.,

a low wage) is more informative than search in a submarket with a low x. To see how the

model captures the value of search, we examine the value function.

It is easy to see that the mapping defined by the right-hand side of (2.8) is a contraction.

Using the features in (2.11), standard arguments show that a unique value function V exists,

which is positive, bounded and continuous onM = [aL, aH ] (see Theorem 4.6 in Stokey and

Lucas, 1989, p.79). Moreover, the set of maximizers, G, is nonempty, closed, and upper-

hemicontinuous. Existence of the optimal decision, together with the characterization of

the steady-state distribution in section 6, establishes existence of an equilibrium.

Lemma 3.1. Under Assumption 2, there exists an equilibrium where all matches are

accepted.

The following lemma describes additional properties of the value function (see Appendix

B for a proof):

Lemma 3.2. V is strictly increasing, strictly convex, and almost everywhere differentiable.

Monotonicity of the value function determines the behavior of reservation wages, de-

fined as rV (μ). Because V (μ) is strictly increasing, the reservation wage strictly falls

with a worker’s unemployment duration as his beliefs about his own ability deteriorate.

Put differently, a worker’s permanent income strictly declines over unemployment spells.

Similarly, with strict monotonicity of V , (2.8) implies that a worker’s reservation wage is

always strictly lower than the desired wage, i.e., rV (μ) < W (g (μ)) for all μ > aL.

In contrast to reservation wages, desired wages are much more difficult to analyze since

they depend on optimal learning from search. Search generates information by creating

variations in the worker’s posterior beliefs. As is well known in the learning literature,

such variations are valuable to the individual if the value function is strictly convex in

beliefs. The information content of search depends on both the search choice, x, and the

prior belief, μ. A higher x generates more information in the sense that, for fixed μ, a

higher x causes a mean-preserving spread in the distribution of the posterior expectation

E(a|x, k). To see this, note that the search outcome k is a random variable, where k = 1

with probability ax and k = 0 with probability (1− ax). Using (2.5), one can verify that

the expectation of E(a|x, k) with respect to k and a is equal to μ, which is independent of

x. The variance is:

V ar(E(a|x, k)) = E £(E (a|x, k))2¤− μ2 =
x (aH − μ)2 (μ− aL)

2

μ (1− xμ)
.
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This variance increases in x, for any fixed μ. However, given x, the above variance is not

monotone in μ. Instead, the variance is maximal at some intermediate value of μ, becoming

zero at the boundary points, aL and aH . This feature reflects the fact that information

is relatively less useful when prior beliefs are already extreme. Consequently, the value of

information becomes negligible as the prior approaches μ = aL or μ = aH .

Despite such non-monotonicity of the value of information in μ, the optimal choice,

g (μ), is monotone in μ, as we will establish in the next section. The reason is that the

opportunity cost of learning from search also depends on the beliefs, μ. To see this, note

that a worker with beliefs μ will search in submarket x rather than x0 < x whenever the

value of information gained by doing so exceeds the opportunity cost of learning. The op-

portunity cost of searching in submarket x as opposed to x0 < x is μ [x0W (x0)− xW (x)] /r.

As beliefs deteriorate with unemployment duration, this opportunity cost decreases, mak-

ing it possible that the optimal choice of x increases with unemployment duration. As it

will become clear in the next section, monotonicity of the optimal search decision relies

crucially on convexity of the value function.

4. Monotonicity of Workers’ Desired Wages

In this section, we establish the central result that a worker’s desired wage, w (μ), increases

with the worker’s beliefs and, hence, decreases with the worker’s unemployment duration.

Because w(μ) = W (g(μ)), where W (.) is decreasing, monotonicity of w(μ) is equivalent

to the feature that the worker’s optimal choice of the submarket, x = g(μ), is decreasing

in μ. Let us define z = −x and refer to z, rather than x, as the worker’s search decision.

This transformation will be useful for what follows, and it enables us to attach the label

monotone decisions naturally to the feature that z increases in the beliefs. After the

transformation, the objective function in (2.8) becomes R(−z, μ), and the feasible set of
choices is −X 3 z. The domain of μ is M = [aL, aH ].

Before undertaking the task, note that strict convexity of the value function implies that

the objective function R (−z, μ) is not necessarily single-valued or differentiable. Thus,
the optimal decision is not necessarily unique or interior, and the first-order condition

may not be applicable.9 Although these difficulties are well known in the literature on

optimal learning (e.g., Easley and Kiefer, 1988), this literature has either ignored them or

focused on corner solutions (e.g., Balvers and Cosimano, 1993). We need to examine all

9In different modeling environments, there are techniques to generate smooth optimal choices and
differentiable value functions, e.g., Santos (1991). However, those techniques require the value function to
be concave, which is violated here.
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solutions in order to characterize how optimal search behavior and desired wages depend

on unemployment duration.

In the presence of the above difficulties, a natural way to establish monotonicity of

the workers’ search decision is to use supermodularity in lattice-theoretic techniques (see

Topkis, 1998). In our model, supermodularity of the objective function is equivalent to

the feature of increasing differences in (z, μ), because these variables lie in closed intervals

of the real line.10 However, the connection between supermodularity and the dynamic

programming problem in (2.8) is far from obvious. In (2.8), the value function is strictly

convex and the current payoff function, −μzW (−z)/r, is not supermodular in (μ, z). The
opposite features are often required in applications of supermodularity to dynamic pro-

gramming, which use concavity of the value function and supermodularity of the current

payoff function, recursively via the Bellman equation, to establish that the objective func-

tion is supermodular.11

However, monotonicity of optimal choice is invariant to transformations of the objec-

tive function that are monotone in the choice variables. Although the objective function

R(−z, μ) is unlikely to be supermodular in (μ, z), it is possible to transform the objective

function into a supermodular function. To that end, we transform (2.8) as

V (μ) = μ max
z∈−X

R̂(z, μ),

where R̂ is defined as follows:

R̂(z, μ) ≡ 1

μ
R(−z, μ) = −zW (−z)

r
+

µ
z +

1

μ

¶
V (H(−z, μ))

1 + r
. (4.1)

Denote Z(μ) = argmaxz∈−X R̂(z, μ) and z(μ) ∈ Z(μ). Clearly, the set of optimal choices

for x is G(μ) = −Z(μ), and a typical selection is g(μ) = −z(μ). Denote the greatest
selection of Z(μ) as z̄(μ) and the least selection as z(μ).

The following theorem states the result on monotonicity (see Appendix C for a proof):

Theorem 4.1. Let z ∈ −X and μ ∈M. The function R̂(z, μ) is strictly supermodular in
(z, μ). Thus, every selection z(μ) is an increasing function. Similarly, every selection g(μ)

from G (μ) is a decreasing function, and the wage w(μ) is an increasing function.

10Let z ∈ Z and μ ∈ M , where Z and M are partially ordered sets. A function f(z, μ) has increasing
differences in (z, μ) if f(z1, μ1) − f(z1, μ2) ≥ f(z2, μ1) − f(z2, μ2) for all z1 > z2 and μ1 > μ2. If the
inequality is strict, then f has strictly increasing differences. In our model, Z, M and Z ×M (under the
product order) are all lattices. In this case, the feature of increasing differences implies supermodularity
(see Topkis, 1998, p.45).
11Examples include Amir et al. (1991), Mirman et al. (2007), and Becker and Boyd (1997, pp. 277-284).
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The main task in the proof of this theorem is to establish strict supermodularity of

R̂, after which monotonicity of z(μ) follows from Topkis (1998, p.79) and Milgrom and

Shannon (1994). Three aspects of the proof are worth noting. First, every solution for

z is an increasing function of the beliefs. This strong result comes from the feature that

R̂(z, μ) is strictly supermodular. Second, strict convexity of the value function plays an

important role for strict supermodularity of R̂ and, hence, for monotone optimal choices.

Third, strict supermodularity of R̂ relies only on the properties of the value function, V ,

and the updating function, H, not directly on those of the wage function,W . In particular,

strict supermodularity of R̂ does not require the current payoff function, −μzW (−z)/r, to
be supermodular.

Monotonicity of optimal choices is a general result that holds even when optimal choices

are corner solutions and multiple solutions. However, as a general result, the above theorem

allows the possibility that a solution z(μ) is only a weakly increasing function. In the next

section, we address strict monotonicity and other issues.

5. Strict Monotonicity and Uniqueness of the Optimal Path

In this section, we answer two further questions. First, when are desired wages strictly

declining with unemployment duration? I.e., when are optimal choices, z(μ), a strictly

increasing function of beliefs? Second, if optimal choices are not unique, is there any

discipline on the set of paths of optimal choices? To answer these questions, we impose

the following assumption, which ensures that optimal choices are interior solutions:

Assumption 3. Labor productivity satisfies: y/c < (r + aL/aH)λ
0 ¡a−1H ¢− aLλ

¡
a−1H
¢
.

As shown in Appendix D, this assumption ensures that the objective function, R̂(z, aL),

is strictly increasing in z at z = −1/aH , so that even a worker with beliefs μ = aL will find

it optimal to choose z > −1/aH . Since z(μ) is increasing, this assumption is sufficient for
all workers’ choices to be interior.

It should be noted that Assumptions 2 and 3 can hold simultaneously. For instance, a

sufficient condition for this to be the case is that labor productivity satisfies:

(r + aL/aH)λ
0 ¡a−1H ¢− aLλ

¡
a−1H
¢
> y/c ≥ (1 + r)aHλ

¡
a−1H
¢
.

For the above interval of y/c to be non-empty, it is sufficient that

r + aL/aH >

∙
λ0 (1/aH)
aHλ (1/aH)

− 1
¸−1

.
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The right-hand side of the above inequality is positive, because λ0 (x) > λ (x) /x for all

x ∈ (0, 1/aH ] (see (2.2)). With each of the two matching functions in Example 2.1, one can
find a non-empty parameter region in which the above condition is satisfied. In particular,

when the matching function is Cobb-Douglas, the above condition becomes r + aL/aH >

α/ (1− α), which is satisfied when α is small.

In Appendix D, we establish the following lemma.

Lemma 5.1. Under Assumption 3, an unemployed worker’s optimal choices are interior.

Moreover, the derivative V 0(H(−z(μ), μ)) exists for all z(μ) ∈ Z(μ). Thus, optimal choices

obey the first-order condition, R̂1(z(μ), μ) = 0, where

R̂1(z(μ), μ) =
z(μ)W 0(−z(μ))−W (−z(μ))

r
+ V (H(−z(μ),μ))

1+r

−
³
1
μ
+ z(μ)

´
V 0(H(−z(μ),μ))

1+r
H1(−z(μ), μ).

In addition to ensuring interior solutions, this lemma describes a limited sense of dif-

ferentiability of the value function: the value function is differentiable in future periods at

the posterior beliefs induced by optimal choices, i.e., along the path of optimal choices.

Despite the fact that the value function may still fail to be differentiable in the first period

and at beliefs off the optimal paths, the limited sense of differentiability is enough for the

first-order condition to be applicable in every period. In turn, the first-order condition

enables us to establish strict monotonicity of optimal choices, as stated in the following

theorem (see Appendix E for a proof):

Theorem 5.2. Under Assumption 3, every selection of optimal choices, z(μ), is a strictly

increasing function. Therefore, along every path of optimal choices, desired wages are

strictly declining with unemployment duration.

As it is the case with supermodularity, strict monotonicity of optimal choices relies

on the properties of V (.) and H (.), but not those of the wage function W directly. Not

surprisingly, strict convexity of the value function plays a critical role for strict monotonicity

of optimal choices. It is worth noting that Amir (1996) and Edlin and Shannon (1998) also

establish strict monotonicity of optimal choices but, in our model, their methods would

require the value function to be continuously differentiable.12 We do not rely on this

requirement because it does not hold in our model.

12In particular, Edlin and Shannon (1998) assume that the objective function, R̂(z, μ), has increasing
marginal differences. To compute marginal differences, R̂(z, μ) must be continuously differentiable with
respect to z. Because R̂ depends on z through the future value function, as well as W , it is differentiable
with respect to z only if the value function is so.
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Let us now turn to the set of optimal paths. When there are multiple solutions, optimal

choices may evolve over time in many ways. One case is that multiple choices occur in

every period, in which case the path of optimal choices branches out. Another case is

that multiplicity occurs only in the first period. Clearly, the path of optimal choices is

more predictable in the second case than in the first case. To know more about the set of

paths of optimal choices, we establish a link between multiplicity of optimal choices and

differentiability of the value function at all possible beliefs. The following lemma states

the link (see Appendix F for a proof):

Lemma 5.3. Maintain Assumption 3. For each μa in the interior of (aL, aH), let μ
+
a

denote the limit to μa from the right (above) and μ
−
a the limit from the left (below). Then,

V 0(μ+a ) = R2(−z̄(μa), μa) and V 0(μ−a ) = R2(−z(μa), μa). Moreover, V 0(μ+a ) ≥ V 0(μ−a ),

where the inequality is strict if and only if z̄(μa) > z(μa).

This lemma says that, at arbitrary beliefs μ ∈ (aL, aH), the value function is differen-
tiable if and only if the beliefs induce a unique choice to be optimal. If multiple choices

are optimal at particular beliefs, then the right derivative of the value function is strictly

greater than the left derivative. Denote the set of such beliefs as

N = {μ ∈ (aL, aH) : z̄(μ) > z(μ)}.

Because V is almost everywhere differentiable, the set N has measure zero in M .

For any μ0 in the interior of M , let {μτ}∞τ=0 be a path of beliefs generated by optimal
choices; i.e., μτ = H(−z(μτ−1), μτ−1) with z(μτ−1) ∈ Z(μτ−1), for τ = 1, 2, .... For arbitrary

initial beliefs, μ0, the following theorem characterizes the entire set of paths of beliefs and

optimal choices (see Appendix F for a proof):

Theorem 5.4. For any μ0 ∈ (aL, aH), let z(μ0) be an arbitrary selection from Z(μ0) and

let μ1 = H(−z(μ0), μ0) be the posterior beliefs induced by z(μ0). Given μ1, μτ is unique,

Z(μτ) is a singleton, and V 0(μτ ) exists for all τ = 1, 2, .... If μ0 /∈ N , then Z(μ0) is

also a singleton, in which case the entire path {μτ}∞τ=0 is unique and V 0(μτ) exists for

all τ = 0, 1, 2, .... If μ0 ∈ N , then z̄(μ0) > z(μ0), H(−z̄(μ0), μ0) > H(−z(μ0), μ0) and
V 0(μ+0 ) > V 0(μ−0 ).

This theorem states that the paths of optimal choices and induced beliefs are unique

almost everywhere. The only case of non-uniqueness occurs when the worker’s initial prior

belief lies in the set N , which has measure zero. Even in this case, non-uniqueness occurs
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only in the first period of search. Given any optimal choice in the first period and the

induced posterior, future paths of optimal choices and induced beliefs are unique from

that point onward. Thus, no matter where initial beliefs lie, the worker will choose search

decisions optimally to keep the beliefs out of the set N from the second period onward.

More precisely, whenever the search decision will induce the posterior beliefs to be close

to a particular level in the set N , it is optimal to modify the decision so as to keep the

posterior beliefs above that level. This result is a consequence of the value of learning, as

captured by strict convexity of the value function.

To understand why a worker chooses optimally to avoid the set N in future periods,

suppose counterfactually that the worker’s choice in some period τ induces the posterior

beliefs to lie in N ; that is, μτ+1 = H(−zτ , μτ) ∈ N for some τ ≥ 0, where zτ = z(μτ).

In this case, multiple choices will be optimal in period (τ + 1), which induce the left

derivative of V (μτ+1) to be lower than its right derivative. The derivative of the future

value function captures an implicit (opportunity) cost of learning bad news. Thus, the

discrete fall in V 0(μτ+1) from the right side of μτ+1 to the left side implies that learning

slightly more about one’s ability in the current period increases the cost of learning by a

discrete amount. The worker can avoid this discretely larger cost by choosing zτ slightly

above z(μτ ), which will keep the posterior slightly above μτ+1. In contrast to this discrete

increase in the benefit, the increase in the cost of zτ is a marginal reduction in the matching

probability. Thus, the net gain from increasing zτ slightly above z(μτ) is positive. This

contradicts the optimality of zτ .

6. Steady State Distributions

We now analyze the aggregate characteristics of the market. One purpose of this analysis

is to clarify that the learning process in previous sections is consistent with aggregation.

The other purpose is to distinguish the duration dependence at an individual’s level from

the aggregate duration dependence.

Let Û , E and L denote the economy-wide unemployment, employment and labor force

at the beginning of period t. The aggregate number of searchers in period t, denoted as U ,

includes both Û and the number of newborns, nL. Let f denote the average job-finding

rate in the economy. Denoting next period’s variables with a prime, we have:

U = Û + nL, L = Û +E, E0 = E + fU, Û 0 = (1− f)U.

Use lowercase letters to denote the ratios of these variables to the labor force, with u =
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U/ [(1 + n)L], û = Û/L, and e = E/L. Focus on the equilibrium in which these ratios are

stationary. The above equations yield:

u =
n

n+ f
, e =

(1 + n)f

n+ f
û =

(1− f)n

n+ f
.

Aggregation works out as expected (e.g., Acemoglu and Shimer, 1999). To be more

specific, let τ denote a worker’s unemployment duration and μτ denote the worker’s belief

after τ periods of search. Define Qi(τ) as the probability with which a worker with ability

ai ∈ {aL, aH} fails to find a match in τ consecutive periods. Then,

Qi(τ) =
τ−1Y
s=0

[1− aig (μs)] .

Note that the ratio QH(τ)/QL(τ) decreases in τ :

QH(τ)

QL(τ)
=

∙
QH(τ − 1)
QL(τ − 1)

¸ ∙
1− aHg (μτ−1)
1− aLg (μτ−1)

¸
<

QH(τ − 1)
QL(τ − 1) .

Define LH,t−τ = pLt−τ and LL,t−τ = (1− p)Lt−τ , where nLt−τ = nLt/ (1 + n)τ is the mass

of new workers who entered the labor market τ periods before t, and p is the proportion

of new workers who are endowed with ability aH . At the beginning of period t, the mass

of unemployed workers with ability ai who have already searched for τ periods, denoted as

Ûi,t(τ), is Ûi,t(τ) = nLi,t−τQi(τ), and the mass of all unemployed workers who have already

searched for τ periods, denoted as Ût(τ), is Ût(τ) = ÛH,t(τ)+ ÛL,t(τ). Total unemployment

in period t is:

Ut =
∞X
τ=1

Ût(τ) + nLt,

and the aggregate unemployment rate is:

u =
Ut

(1 + n)Lt
=

∞X
τ=1

Ût(τ)

(1 + n)Lt
+

n

1 + n
.

An implication of our analysis is that learning from search generates unambiguously

negative duration dependence in desired wages: workers lower their desired wages over

their unemployment spell because lower-paid jobs are easier to get. Consequently, positive

duration dependence in job-finding probabilities, controlling for the worker’s ability, is

the equilibrium counterpart of negative duration dependence in desired wages. However,

without controlling for the worker’s ability, the job-finding probability may either increase

or decrease with unemployment duration. This ambiguity arises from the fact that the
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ability composition of workers in the market changes endogenously with unemployment

duration. Workers with longer unemployment durations are precisely those who have failed

to find a match previously and, at every duration, they are more likely to be workers with

low job-finding ability. To see this, note that the average job-finding probability is given by

the ratio of new matches, g (μτ) {aH [Ût(τ)− ÛL,t(τ)]+ aLÛL,t(τ)}, to total unemployment,
Ût(τ). Although g (μτ ) increases with τ , the proportion of low-ability unemployed workers

increases in τ as given below:

ÛL,t(τ)

Ût(τ)
=

n(1− p)Lt−τQL(τ)

pnLt−τQH(τ) + (1− p)nLt−τQL(τ)
=

∙
1 +

µ
p

1− p

¶
QH(τ)

QL(τ)

¸−1
.

ÛL,t(τ)/Ût(τ) increases in τ , because QH (τ) /QL (τ) decreases in τ , as shown earlier. As a

result, the average efficiency of search decreases in τ .

The ambiguous dependence of the average job-finding probability on unemployment

duration could help explain the lack of evidence of negative duration dependence after

controlling for unobserved heterogeneity (Devine and Kiefer, 1991, Machin and Manning,

1999).13 As a related piece of evidence, Shimer (2004) finds that average search intensity

tends to increase during recessions, when the returns to search are expected to be relatively

low. He points out that this finding presents a problem to standard search models of the

labor market, which build in a complementarity between search intensity and the returns

to search. Although the context is different here, choosing a submarket with a higher x

has the same effect as choosing higher search intensity, since both increase the worker’s

job-finding probability.

7. Conclusion

In this paper, we have proposed an equilibrium theory of learning from search in the labor

market, which addresses the search behavior of workers, the creation of jobs, and the

wage distribution as functions of unemployment duration. The main assumption is that

unemployed workers have incomplete information about their job-finding abilities and,

therefore, learn about the abilities from their search outcomes. The theory formalizes a

notion akin to that of discouragement. That is, over the unemployment spell, unemployed

workers update their beliefs about their job-finding abilities downward and reduce not only

reservation wages, but also desired wages.

13There is some evidence of an effect of unemployment benefits on the job search behavior. This different
mechanism is considered in Burdett (1977) and Mortensen (1977).
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One contribution of the paper has been to integrate learning from search into an equi-

librium framework where search is a directed process. By severing the direct dependence

of search behavior on the wage distribution, the directed search framework has simplified

the task of addressing jointly the workers’ search behavior, the incentives to create jobs,

and the wage distribution in equilibrium. Another contribution has been to explore a

connection between convexity of a worker’s value function in beliefs and the property of

supermodularity. This connection enabled us to employ monotone comparative statics to

establish the properties of desired wages over unemployment despite the potential pres-

ence of non-differentiable value functions and multiple solutions to a worker’s optimization

problem. This connection is likely to be useful in many other learning problems, because

convexity of the value function in beliefs is a natural consequence of learning.

By providing an equilibrium theory of learning from search and discouragement, our

model has also provided a novel mechanism for generating wage dispersion. The learning

process turns ex ante identical workers into ex post heterogeneous workers who differ in

posterior beliefs about their job-finding probabilities. This mechanism implies that differ-

ences in unemployment duration among homogeneous workers may be a factor underlying

wage dispersion, particularly among workers who earn relatively low wages. This expla-

nation contrasts with others that also build on search frictions (e.g. Burdett and Judd,

1983, and Burdett and Mortensen, 1998). An empirical investigation of the contribution of

this explanation to the large wage dispersion that is observed among similar workers (e.g.,

Mortensen, 2003) is one avenue for future research.

Other extensions of our model may consider workers’ labor force participation, job

destruction and on-the-job search. These theoretical extensions do not change the nature

of our analysis, but they may provide a useful structural framework for empirical studies

of the wage distribution and the distribution of unemployment durations.

21



Appendix

A. Proof of Lemma 3.1

Suppose that the worker chooses to reject a match in submarket x and continue to search
in the next period. Then, his expected payoff of entering a submarket x to search is:

Re(x, μ) ≡ xμ
V (aH + aL − aHaL/μ)

1 + r
+ (1− xμ)

V (H(x, μ))

1 + r
. (A.1)

Given the analysis leading to Lemma 3.1, it suffices to show that Assumption 2 is sufficient
for V (μ) = maxx∈X R(x, μ) ≥ maxx∈X Re(x, μ) for all μ ∈ M , where M = [aL, aH ] and
X = [0, 1/aH ]. A sufficient condition for this is that W

¡
a−1H
¢ ≥ y/ (1 + r). Using the

definition of W , this condition amounts to Assumption 2. QED

B. Proof of Lemma 3.2

Let TV (μ) denote the right-hand side of (2.8). The value function, V , is a fixed point of
the mapping T . Let C1(M) be the set containing all bounded, continuous and increasing
functions on M . Let Cs

1(M) be the subset of C1(M) that contains all strictly increasing
functions. Similarly, let C2(M) be the subset of C1(M) that contains all convex functions,
and Cs

2(M) be the subset of C2(M) that contains all strictly convex functions. We need
to show that V ∈ Cs

1(M) ∩ Cs
2(M).

To show that V ∈ Cs
1(M), it suffices to show that T : C1(M) → Cs

1(M), which will
be accomplished by Lemma B.1 below. By the argument of contraction mapping, the
fixed point of T is strictly increasing. Similarly, to prove V ∈ Cs

2(M), it suffices to show
that T : C2(M) → Cs

2(M), which will be accomplished by the last two lemmas in this
proof. Because a convex function is almost everywhere differentiable (see Royden, 1988,
pp.113-114), V is almost everywhere differentiable.
Let G(μ) = argmaxx∈X R(x, μ), where R is defined by (2.7). Let g(μ) ∈ G(μ).

Lemma B.1. T : C1(M)→ Cs
1(M).

Proof. Suppose that V ∈ C1(M) in the definition of R. Pick any μa, μb ∈ M with
μa > μb. Denote gi = g(μi), where i ∈ {a, b}. We need to show that TV (μa) > TV (μb).
First, note that gb > 0: if gb = 0, instead, then R(gb, μb) = V (μb)/(1 + r), and

V (μb) = TV (μb) implies that V (μb) = 0, which contradicts the optimality of gb because
R(x, μb) > 0 for any x ∈ (0, 1/aH ] and any μb ∈ [aL, aH ]. With gb > 0, we have:

R(ga, μa)−R(gb, μb) ≥ R(gb, μa)−R(gb, μb)

≥ gb(μa − μb)
h
W (gb)

r
− 1

1+r
V (H(gb, μb))

i
> 0.

(B.1)

The first inequality comes from the fact that gi ∈ argmaxxR(x, μi) and the second one from
the fact that V (H(gb, μa)) ≥ V (H(gb, μb)). The last inequality comes from Assumption
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2, the result gb > 0, and the fact that V (H(gb, μb)) ≤ V (aH) < y/r. Hence, TV (μa) >
TV (μb). QED

Lemma B.2. If V ∈ C2(M), then R(x, μ) defined by (2.7) is convex in μ for any given x.
If V ∈ Cs

2(M), then R(x, μ) is strictly convex in μ.

Proof. We prove the second part of the lemma first. Let V be a strictly convex
function. Let μa and μb be two arbitrarily values in M , with μa > μb. Let θ ∈ (0, 1) be a
number. Denote μθ = θμa + (1− θ)μb. We show that

R(x, μθ) < θR(x, μa) + (1− θ)R(x, μb).

Denote Hi = H(x, μi), where i ∈ {a, b, θ}. Since ∂H/∂μ > 0, then Ha > Hθ > Hb.
Let σ = (Hθ −Hb) / (Ha −Hb). Note that σ ∈ (0, 1) and σHa + (1− σ)Hb = Hθ. If V is
strictly convex, then

V (Hθ) < σV (Ha) + (1− σ)V (Hb). (B.2)

With this result and the definition of R in (2.7), we have:

R(x, μθ) < μθx
W (x)
r
+ 1−μθx

1+r
[σV (Ha) + (1− σ)V (Hb)]

= θR(x, μa) + (1− θ)R(x, μb) +
V (Ha)
1+r

∆a +
V (Hb)
1+r

∆b,

where

∆a = (1− μθx)σ − θ(1− μax),
∆b = (1− μθx)(1− σ)− (1− θ)(1− μbx).

For i, j ∈ {a, b, θ}, we use (2.6) to compute:

σ =
(μθ − μb)(1− μax)

(μa − μb)(1− μθx)
=

θ(1− μax)

(1− μθx)
.

Now it is easy to see that ∆a = 0 = ∆b. Therefore, R is strictly convex.
If V is convex rather than strictly convex, then (B.2) holds as “ ≤ ” instead of “ < ”.

The rest of the proof can be easily adapted to show that R(x, μ) is convex in μ. QED

Lemma B.3. T : C2(M)→ Cs
2(M).

Proof. Pick any V0 ∈ C2(M). Denote V1(μ) = TV0(μ). Let μa and μb be two arbitrary
values in M , with μa > μb. Let θ ∈ (0, 1) be a number. Denote μθ = θμa + (1− θ)μb. We
need to show that

V1(μθ) < θV1(μa) + (1− θ)V1(μb).

We divide the proof in two cases: the case where V0 is strictly convex and the case where
V0 has linear segments.
Case 1: V0 ∈ Cs

2(M). In this case, the previous lemma implies that R(x, μ) is
strictly convex in μ for any given x. Shorten the notation g (μi) to gi, where g (μi) ∈
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argmaxxR(x, μi) and i ∈ {a, b, θ}. Then, V1(μi) = R(gi, μi), with V in (2.7) being re-
placed with V0. Strict convexity of V is proven below:

V1(μθ) = R(gθ, μθ) < θR(gθ, μa) + (1− θ)R(gθ, μb)
≤ θR(ga, μa) + (1− θ)R(gb, μb)
= θV1(μa) + (1− θ)V1(μb).

(B.3)

The first inequality comes from the fact that R is strictly convex in μ, and the second
inequality from the fact that R(x, μi) ≤ R(gi, μi) for all x.
Case 2: V0 is convex and has some linear segments. If any two of the elements,

V0(H(gθ, μθ)), V0(H(gθ, μa)) and V0(H(gθ, μb)), do not lie on the same linear segment of
V0, then the first inequality in (B.3) is still strict and V1 is strictly convex. Suppose that
all three elements lie on the same linear segment of V0. Temporarily denote this linear
segment as V0(H)/ (1 + r) = A+BH, with B > 0 (because V is strictly increasing). Using
(2.6), we can compute:

(1− μx)V0(H)/ (1 + r) = (1− μx)(A+BaH)−B(1− aLx)(aH − μ).

This is linear and differentiable in (μ, x). Restrict μ to be such that V0(H(x, μ)) lies on the
linear segment described above. In this case, R (x, μ) is strictly concave in x iff [xW (x)]
is so. The latter property is implied by (2.11). Thus, the solution g is unique and satisfies
the following first-order condition:

0 = R1(x, μ) = μ [(W + xW 0) /r −A−BaH ] +BaL(aH − μ).

Differentiating this first-order condition and using (2.11), we find that the solution g(μ)
satisfies g0 (μ) < 0. Thus, ga 6= gθ and gb 6= gθ. Because the solutions are unique in this
case, then R(gθ, μb) < R(gb, μb) and R(gθ, μa) < R(ga, μa). The second inequality in (B.3)
is strict, and so V1 is strictly convex. This completes the proofs of the current lemma and
Lemma 3.2. QED

C. Proof of Theorem 4.1

Take arbitrary za,zb ∈ −X and arbitrary μa,μb ∈M , with za > zb and μa > μb. Denote:

D =
h
R̂(za, μa)− R̂(za, μb)

i
−
h
R̂(zb, μa)− R̂(zb, μb)

i
.

We need to show D > 0. Temporarily denote Hij = H(−zi, μj) and Vij = V (Hij), where
i, j ∈ {a, b}. Computing D, we have:

(1 + r)D

za − zb
=

µ
1

μa
+ zb

¶
Vaa − Vba
za − zb

−
µ
1

μb
+ zb

¶
Vab − Vbb
za − zb

+ (Vaa − Vab) .

There are two cases to consider: μb = aL and μb > aL. First, suppose that μb = aL.
Then Vaa− Vba ≥ 0, with equality if and only if μa = aH ; Vab− Vbb = 0; and Vaa− Vab > 0.
Hence, D > 0 in this case. Next, consider the second case, where μb > aL. Here there
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are also two subcases to consider: μa = aH and μa < aH . We start with the second
subcase. Suppose that μa < aH . Because H1(−z, μ) < 0 and H2(−z, μ) > 0, then
Haa > max{Hab,Hba} ≥ min{Hab,Hba} > Hbb. Strict convexity of V (H) implies (see
Royden, 1988, p.113):

Vaa − Vba
Haa −Hba

>
Vab − Vbb
Hab −Hbb

and
Vaa − Vab
Haa −Hab

>
Vab − Vbb
Hab −Hbb

. (C.1)

Thus, the following (strict) inequality holds:

Hab−Hbb

Vab−Vbb

³
(1+r)D
za−zb

´
>

³
1
μa
+ zb

´
Haa−Hba

za−zb −
³
1
μb
+ zb

´
Hab−Hbb

za−zb + (Haa −Hab) .

Substituting Hij, we get:

Hab−Hbb

Vab−Vbb

³
(1+r)D
za−zb

´
>

³
1
μa
+ zb

´
aH−μa
za−zb

³
1+zbaL
1+zbμa

− 1+zaaL
1+zaμa

´
−
³
1
μb
+ zb

´
aH−μb
za−zb

³
1+zbaL
1+zbμb

− 1+zaaL
1+zaμb

´
+ (1 + zaaL)

³
aH−μb
1+zaμb

− aH−μa
1+zaμa

´
= (aH−μa)(μa−aL)

μa(1+zaμa)
− (aH−μb)(μb−aL)

μb(1+zaμb)
+ (1 + zaaL)

³
aH−μb
1+zaμb

− aH−μa
1+zaμa

´
= aHaL

μa−μb
μaμb

> 0.

The first equality comes from collecting terms according to (aH−μi). Hence, D > 0 in this
subcase as well. Finally, if μb > aL and μa = aH , the last string of inequalities becomes:

Hab−Hbb

Vab−Vbb

³
(1+r)D
za−zb

´
> −

³
1
μb
+ zb

´
aH−μb
za−zb

³
1+zbaL
1+zbμb

− 1+zaaL
1+zaμb

´
+ (1 + zaaL)

³
aH−μb
1+zaμb

´
= − (aH−μb)(μb−aL)

μb(1+zaμb)
+ (1 + zaaL)

³
aH−μb
1+zaμb

´
= aL(aH−μb)

μb
> 0.

Thus, the function R̂(z, μ) is strictly supermodular. Because −X is a lattice, the
monotone selection theorem in Topkis (1998, Theorem 2.8.4, p.79) implies that every se-
lection from Z(μ) is increasing. As a result, every selection g(μ) from G(μ) is decreasing,
and w(μ) =W (g(μ)) is increasing. QED

D. Proof of Lemma 5.1

First, we show that optimal choices are interior under Assumption 3. Consider the corner,
z = 0. For any prior beliefs, μ, the choice z = 0 yields zero expected wage in the period
and the posterior beliefs H(0, μ) = μ. The value of this choice is R̂(0, μ) = 0, which can
be increased by any choice z < 0. Thus, the choice z = 0 is never optimal.
Now consider the other corner, z = −1/aH . Since optimal choices, z(μ), are increasing

in μ, a sufficient condition for z > −1/aH is z(aL) > −1/aH . This condition is guaranteed
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if the objective function R̂ (z, μ) (defined in (4.1)) is strictly increasing in z at z = −1/aH .
In turn, a sufficient condition for the latter is that R̂ (z, μ) is strictly increasing in z at
z = −1/aH when H is fixed at H (1/aH , μ), because V (H (−z, μ)) is increasing in z.
Noting that H (1/aH , μ) = aL, we can write this sufficient condition as

r

1 + r
V (aL)−W (1/aH)− W 0 (1/aH)

aH
> 0. (D.1)

Because the choice z = −1/aH is always feasible, V (aL) ≥ μR̂ (−1/aH , μ), i.e.,

V (aL) ≥ 1 + r

r

µ
aL/aH

r + aL/aH

¶
W (1/aH) .

Substituting this inequality for V (aL), (2.10) for W , and computing W 0, we can verify
that Assumption 3 is sufficient for (D.1).
Next, we show that V 0(H(−z(μ), μ)) exists. For any real number r, define r− =

limε↓0(r − ε) and r+ = limε↓0(r + ε). Fix μ ∈ (aL, aH). Under Assumption 3, the op-
timal choice z(μ) is interior. Optimality requires R̂1(z

−(μ), μ) ≥ R̂1(z
+(μ), μ). Note that

a continuous, convex function has left and right derivatives. BecauseW (−z) is continuous,
V is continuous and convex, and H is continuously differentiable, then

R̂1(z
+(μ), μ) = z(μ)W 0(−z(μ))−W (−z(μ))

r
+ V (H(−z(μ),μ))

1+r

−
³
1
μ
+ z(μ)

´
V 0(H+(−z(μ),μ))

1+r
H1(−z(μ), μ),

R̂1(z
−(μ), μ) = z(μ)W 0(−z(μ))−W (−z(μ))

r
+ V (H(−z(μ),μ))

1+r

−
³
1
μ
+ z(μ)

´
V 0(H−(−z(μ),μ))

1+r
H1(−z(μ), μ).

Recall thatH1 denotes the derivative ofH (−z, μ) with respect to the first argument, rather
than to z. Since H1 < 0, the optimality condition, R̂1(z

−(μ), μ) ≥ R̂1(z
+(μ), μ), implies:

V 0(H−(−z(μ), μ)) ≥ V 0(H+(−z(μ), μ)).
Because V is convex, the reversed inequality holds. Thus,

V 0(H−(−z(μ), μ)) = V 0(H+(−z(μ), μ)) = V 0(H(−z(μ), μ)).
This implies that optimal choices in every period satisfy the first-order conditions. QED

E. Proof of Theorem 5.2

It suffices to show that the case z(μa) 6= z(μb) cannot occur for any pair (μa, μb) with
μa > μb. Suppose to the contrary that z(μa) = z(μb). Denote this common value as z

∗.
By Lemma 5.1, z(μa) and z(μb) are interior and satisfy first-order conditions. That is,

R̂1(z
∗, μa) = 0 = R̂1(z

∗, μb).
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Shorten the notation H(−z∗, μi) to Hi, where i ∈ {a, b}. Substituting R̂1(z∗, μi), we have:

(1 + r)
h
R̂1(z

∗, μa)− R̂1(z
∗, μb)

i
= V (Ha)− V (Hb)−

³
1
μa
+ z∗

´
V 0(Ha)H1(−z∗, μa) +

³
1
μb
+ z∗

´
V 0(Hb)H1(−z∗, μb).

Because V (H) is continuous and strictly convex, and because V 0(Hb) exists by Lemma 5.1,
we have: V (Ha)− V (Hb) > V 0(Hb) (Ha −Hb). Then,

(1 + r)
h
R̂1(z∗,μa)−R̂1(z∗,μb)

V 0(Hb)

i
≥ (Ha −Hb)−

³
1
μa
+ z∗

´
V 0(Ha)
V 0(Hb)

H1(−z∗, μa) +
³
1
μb
+ z∗

´
H1(−z∗, μb)

> (Ha −Hb)−
³
1
μa
+ z∗

´
H1(−z∗, μa) +

³
1
μb
+ z∗

´
H1(−z∗, μb).

The first inequality comes from substituting the inequality between the V ’s and the fact
that V 0 > 0; the second (strict) inequality comes from the facts that V is strictly convex,
Ha > Hb, and H1 < 0. Denote the last expression temporarily as f(μa). Because f is
differentiable, we can compute:

f 0(μa) = H1(−z∗, μa) + 1
(μa)2

H1(−z∗, μa)−
³
1
μa
+ z∗

´
H12(−z∗, μa)

= aHaL
(μa)2

> 0.

The second equality comes from property (iv) in Lemma 2.2. Because μa > μb, then
f(μa) > f(μb) = 0. That is, R̂1(z

∗, μa) > R̂1(z
∗, μb). This result contradicts the supposi-

tion that z(μa) = z(μb). QED

F. Proofs of Lemma 5.3 and Theorem 5.4

First, we prove the following lemma (which does require optimal choices to be interior):

Lemma F.1. z̄(μ) is right-continuous and z(μ) is left-continuous at each μ ∈M .

Proof. Pick an arbitrary μ ∈M . Let {μi} be a sequence with μi → μ and μi ≥ μi+1 ≥
μ for all i. Because z̄(μ) is an increasing function, then {z̄(μi)} is a decreasing sequence
and z̄(μi) ≥ z̄(μ) for all i. Thus, z̄(μi) ↓ A for some A ≥ z̄(μ). On the other hand, the
Theorem of the Maximum (see Stokey and Lucas, 1989) implies that the correspondence
Z(μ) is upper hemicontinuous (uhc). Because μi → μ, and z̄(μi) ∈ Z(μi) for each i, uhc
of Z implies that there is a subsequence of {z̄(μi)} that converges to an element in Z(μ).
This element must be A, because all convergent subsequences of a convergent sequence
must have the same limit. Thus, A ∈ Z(μ), and so A ≤ maxZ(μ) = z̄(μ). Therefore,
z̄(μi) ↓ A = z̄(μ), which shows that z̄(μ) is right-continuous.
Similarly, by examining the sequence {μi} with μi → μ and μ ≥ μi+1 ≥ μi for all i, we

can show that z is left-continuous. This completes the proof of Lemma F.1.
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Next, we prove Lemma 5.3. Fix μa ∈ (aL, aH). Because z̄(μ) maximizes R(−z, μ) for
each given μ, then

V (μ) = R(−z̄(μ), μ) ≥ R(−z̄(μa), μ)
V (μa) = R(−z̄(μa), μa) ≥ R(−z̄(μ), μa).

Taking μ > μa, where μa < aH , and dividing the above inequalities by (μ−μa), we obtain:
R(−z̄(μa), μ)−R(−z̄(μa), μa)

μ− μa
≤ V (μ)− V (μa)

μ− μa
≤ R (−z̄(μ), μ)−R(−z̄(μ), μa)

μ− μa
.

Take the limit μ ↓ μa. Under Assumption 3, V
0(H(−z̄(μa), μa)) exists for each μ (see

Lemma 5.1). Because z̄(μ) is right-continuous, then R2(−z̄(μa), μa) exists. The limits of
the first and last ratios are both R2(−z̄(μa), μa). Thus, V 0(μ+a ) = R2(−z̄(μa), μa).
Now conduct the above exercise with z replacing z̄. For μ < μa and μa > aL, we have:

R(−z(μa), μ)−R(−z(μa), μa)
μ− μa

≥ V (μ)− V (μa)

μ− μa
≥ R (−z(μ), μ)−R(−z(μ), μa)

μ− μa
.

Take the limit μ ↑ μa. Because z(μ) is left-continuous and interior, then V 0(μ−a ) =
R2(−z(μa), μa).
To establish the inequality between the left- and right-derivatives of V , use the definition

R(−z, μ) = μR̂(z, μ) to compute:

R2(−z(μ), μ) = R̂(z(μ), μ) + μR̂2(z(μ), μ) = V (μ)/μ+ μR̂2(z(μ), μ).

Because R̂(z, μ) is strictly supermodular, R̂2(z̄(μa), μa) ≥ R̂2(z(μa), μa), where the inequal-
ity is strict if and only if z̄(μa) > z(μa). Therefore, V

0(μ+a ) ≥ V 0(μ−a ), where the inequality
is strict if and only if z̄(μa) > z(μa). This completes the proof of Lemma 5.3.

Finally, we prove Theorem 5.4. Given any selection z(μ0) ∈ Z(μ0) and the induced
beliefs μ1 = H(−z(μ0), μ0), Lemma 5.1 implies that V 0(μ1) exists. Then, Lemma 5.3
implies z̄(μ1) = z(μ1). That is, Z(μ1) = {z(μ1)} is a singleton. So, the posterior belief
induced by Z(μ1) is unique and is given by μ2 = H(−z(μ1), μ1). Again, Lemma 5.1 implies
that V 0(μ2) exists and Lemma 5.3 implies that z̄(μ2) = z(μ2). Repeating this argument
shows that μτ is unique, Z(μτ ) is a singleton, and V 0(μτ) exists for all τ = 1, 2, ....
If μ0 /∈ N , then z̄(μ0) = z(μ0) by the definition of N . In this case, the posterior belief

μ1 = H(z(μ0), μ0) is unique. Also, Lemma 5.3 implies that V
0(μ0) exists. If μ0 ∈ N , again,

the results stated in Theorem 5.4 follow from Lemma 5.3. QED
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