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Abstract

In this paper we consider learning from search as a mechanism to understand
the relationship between unemployment duration and search outcomes as a labor
market equilibrium. We rely on the assumption that workers do not have precise
knowledge of their job finding probabilities and therefore, learn about them from
their search histories. Embedding this assumption in a model of the labor market
with directed search, we provide an equilibrium theory of declining reservation wages
over unemployment spells. After each period of search, unemployed workers update
their beliefs about the market matching efficiency. We characterize situations where
reservation wages decline with unemployment duration. Consequently, the wage dis-
tribution is non-degenerate, despite the facts that matches are homogeneous and
search is directed. Moreover, aggregate matching probability decreases with unem-
ployment duration, in contrast to individual workers’ matching probability, which
increases over individual unemployment spells. The difficulty in establishing these
results is that learning generates non-differentiable value functions and multiple so-
lutions to a worker’s optimization problem. We overcome this difficulty by exploiting
a connection between convexity of a worker’s value function and the property of
supermodularity.
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1. Introduction

Workers with longer unemployment duration also have lower permanent incomes.1 Moti-

vated by this observation, we explore learning from search as the mechanism underlying the

relationship between unemployment duration and search outcomes. The main assumption

is that unemployed workers do not have precise knowledge of their job finding probabilities

and, therefore, learn about them from their search histories. Embedding this assumption

in a labor market with directed search, we construct an equilibrium theory of declining

reservation wages over unemployment spells. This model allows us to consider jointly the

search behavior of workers, the creation of jobs, and the wage distribution as functions of

unemployment duration. The theory formalizes a notion akin to that of discouragement,

as unemployed workers become more pessimistic about the probability of finding a job as

they update their beliefs downward over their spell of unemployment.

To present the theory in the simplest format, we focus on the search behavior of ex ante

identical workers and firms. The aggregate labor market consists of many markets, and we

think of each single market in terms of the mix of physical characteristics of that particu-

lar labor market, such as geography and occupation. Accordingly, these characteristics are

idiosyncratic to the workers and firms in that market, rather than economy-wide character-

istics. In this context, unemployed workers’ search conveys information about the matching

efficiency and, therefore, about the worker’s job finding probability. After an unemployed

worker searches and fails to find employment, the worker views this search outcome as bad

news and revises his beliefs about the matching probability downwards. In equilibrium,

each market becomes segmented, containing workers with different unemployment dura-

tions and, thus, different beliefs about the matching efficiency in their market. Firms in

these markets cater to the preferences of workers with different beliefs and supply the jobs

that workers seek in all those markets, but with different terms of trade. In particular, as

an unemployed worker searches for a job and fails to find a match, he becomes pessimistic

about his chances to find a job and, hence, chooses to search for jobs which are easier to

get. In a directed search equilibrium, those jobs necessarily come with lower wages, as the

firms that provide the jobs also make the tradeoff between the matching probability and

wages.2 Thus, our theory provides an explanation for wage inequality among workers with

1See e.g. Devine and Kiefer (1991) and Machin and Manning (1999).
2In principle, the matching efficiency could also be affected by worker-specific characteristics, in which

case workers may also be learning about themselves, that is, about their own ability to find and elicit a
job offer. Here we disregard this latter case in the interest of simplicity – this would complicate the firms’
learning problem, introducing further heterogeneity.
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identical skills.3

Our theory is related in spirit to the work of Burdett and Vishwanath (1988), who pro-

pose a model of workers’ learning about the distribution of wages as an explanation for the

fact that reservation wages decline with the duration of unemployment spells. Their idea

is intuitive and can be viewed as an attempt to understand a form of “discouragement”

in the labor market. Wage offers convey information about the unknown distribution of

wages. Accordingly, wage offers lower than expected lead to a reduction in the worker’s

reservation wage, as the worker revises his beliefs about the wage distribution downwards.

This learning process generates endogenous selection, because workers with longer unem-

ployment duration are precisely those who have drawn and rejected relatively lower wages

and, therefore, they perceive the jobs available to them as jobs offering low wages.

However, Burdett and Vishwanath examine only one side of the market by assuming

that the wage distribution is exogenous. If one considers an equilibrium, instead, learning

by the market participants will affect firms’ wage offers. Thus, the wage distribution itself

needs to be explained rather than assumed, in order to address the connection between

reservation wages, job creation and equilibrium wages. Unfortunately, endogenizing the

wage distribution in the Burdett-Vishwanath model is not tractable, partly because the

distribution acts as a state variable in an individual’s decision problem. Moreover, it

is more intuitive to formulate the learning process directly as one about fundamental

characteristics of the market, such as the matching efficiency and productivity, rather than

the wage distribution which is generated by these characteristics.

In this paper we provide such a formulation of search and learning in an equilibrium.

The characteristic which workers try to learn about is associated with labor market fric-

tions. As a concrete way to formalize this type of uncertainty, we assume that individuals

do not know precisely the matching efficiency given by the exogenous matching technology.

Faced with this uncertainty, workers learn about the probability of finding a job through

their private search histories. Moreover, we formulate search as a directed process. That

is, each firm offers a wage knowing that his offer will affect his matching probability, and

each worker observes all wage offers in the economy before choosing to apply to one.4 How-

ever, an individual’s matching probability is still uncertain and, hence, learning is useful,

3A related possibility is that search intensity also varies with the duration of unemployment. For
instance, one could add a participation decision in the present context. Intuitively, workers would quit
search after a sufficiently long unemployment spell. In practice discouraged workers may rather switch to
occupations where they are less productive. Our analysis may help understand this process as well.

4For an earlier formulation of directed search, see Peters (1984, 1991). Other examples include Moen
(1997), Acemoglu and Shimer (1999), Shi (2001) and Burdett et al. (2001).
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because the individual does not know which wage offers belong to his own local market.

As opposed to undirected search (e.g., Burdett and Vishwanath, 1988), the directed search

framework eliminates the direct dependence of an individual’s decision on the wage distri-

bution, which reduces the dimensionality of the state variables for an individual’s decision

problem, and hence makes the model tractable.

In addition to a tractable formulation of an equilibrium with learning, we provide an

analytical procedure for resolving a main theoretical problem in the analysis of learning.

This problem is caused by convexity of the value function. Because search outcomes

generate variations in a worker’s posterior beliefs about the matching efficiency, search is

informative only if these variations in beliefs are valuable to the worker, i.e., if the worker’s

value function is strictly convex in beliefs. Although the literature (e.g., Easley and Kiefer,

1988) recognizes that such convexity is likely to lead to multiple solutions and to render the

first-order conditions inapplicable, it has either ignored the difficulty or focused on corner

solutions (e.g. Balvers and Cosimano, 1993). To establish the result of declining reservation

wages, all solutions need to be characterized. We resolve this difficulty by exploring a

connection between convexity of the value function and the property of supermodularity.

The connection is not obvious at the first glance. In our model, neither a worker’s

current payoff nor his objective function is supermodular as is often required in applica-

tions of supermodularity (see Topkis, 1998). Moreover, a worker’s value function is convex,

rather than concave as is required in applications of supermodularity to dynamic program-

ming (e.g., Amir et al., 1991). However, we can transform a worker’s objective function

into a supermodular function, and this transformation relies heavily on convexity of the

value function. Then, (weak) monotonicity of workers’ reservation wages follows from stan-

dard results in Topkis (1998). In turn, monotone optimal choices imply that the workers’

reservation wage declines with unemployment duration.

We then provide conditions under which optimal choices are interior and show that

reservation wages are strictly declining with unemployment duration in this case. Under

the same conditions, we show that the value function is differentiable in a limited sense,

i.e., differentiable in future periods at those beliefs along the equilibrium path. In turn,

this implies that the paths of equilibrium choices and induced beliefs are unique almost

everywhere and that non-uniqueness can occur at most in the first period of search.

Our theory generates “true” positive relationship between an unemployed individual’s

transition to employment and his unemployment duration; at the same time, the theory is

consistent with a negative cross-sectional (aggregate) relationship between unemployment

duration and unemployment outflows to employment. True positive duration dependence
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arises because workers optimally search for jobs that are easier to get as their reservation

wages decline. Consequently, each worker’s job finding rate increases over his unemploy-

ment spell. However, negative duration dependence can arise simultaneously as a feature

of the cross-sectional distribution of unemployed workers because workers with longer un-

employment durations are precisely those who have failed to find a match previously and,

at every duration, they are more likely to be in markets with lower matching efficiency.

In practice, assessing the relationship between unemployment duration and unemployment

outflows is problematic, as it is difficult to identify the extent to which it is true duration

dependence or rather worker heterogeneity that underlies the data. Nonetheless, as dis-

cussed by Machin and Manning (1999), there is little evidence of true negative duration

dependence after controlling for heterogeneity.

Other explanations for the observed relationship between unemployment duration and

search outcomes have been suggested in the literature. One is that declines in wealth

over unemployment spells induce both declining reservation wages and falling job find-

ing probabilities (Burdett, 1977, Mortensen, 1977). Another is that the human capital of

unemployed workers deteriorates with the duration of unemployment (Lazear, 1976). Al-

ternatively, if workers differ in their (unobservable) productivities, unemployment duration

may become a signal of low productivity (Lockwood, 1991).5 These explanations cannot

address the evidence adequately. For example, although the flow from unemployment to

employment typically has a spike as the expiration of unemployment benefits approaches,

the flow continues to decline after the expiration.6 On skill depreciation, it is difficult to

find direct evidence that workers with longer unemployment duration are less productive,

whereas indirect evidence does not indicate an important role of skill depreciation. Despite

the lack of evidence, the common perception that there is substantial unemployment “scar-

ring” largely associated with skill depreciation has lent support to government sponsored

training programs.7 This is so even though such programs often seem to fail to increase

the trainees’ job finding rates.8 Related to this subject, a voluminous literature on social

5Blanchard and Diamond (1994) explore the possibility that employers may base employment decisions
on unemployment duration as an arbitrary ranking device. They note that the ranking scheme is not
robust to directed search and homogeneous workers.

6Even after controling for wealth, Alexopoulos and Gladden (2006) have found that reservation wages
still fall significantly over the unemployment duration.

7See e.g., Arulampalam, Gregg and Gregory (2001).
8For instance, Ham and LaLonde (1996) find that, controlling for sample selection, the National Sup-

ported Work Demonstration training program raised trainees’ employment rates solely by lengthening their
employment durations.
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psychology emphasizes the effect of unemployment duration on psychological well-being.9

However, the effect of unemployment on distress is often found to be short-lived, disap-

pearing with re-employment (e.g., Kessler, Turner and House, 1989). Work in this area

also suggests that young unemployed workers value employment more, rather than less, as

the duration of their unemployment spell increases (see McFadyen and Thomas, 1997).

Our model also provides an alternative explanation for wage dispersion. In previous

models of directed search with homogeneous workers and firms (see earlier citations), wage

dispersion is very limited and, often, degenerate. Our model generates rich dispersion of

equilibrium wages by turning ex ante identical agents into heterogeneous ones who differ

in posterior beliefs about the market. This mechanism of wage dispersion can be useful for

explaining the fact that about 70 percent of the variation in wages remains unexplained by

observed worker characteristics (see Mortensen, 2003). In particular, the mechanism has

the testable implication that differences in unemployment duration among homogeneous

workers may be an important factor of wage dispersion among workers earning relatively

low wages. Contrasting with other explanations that also build on search frictions (e.g.

Butters, 1977, Burdett and Judd, 1983, and Burdett and Mortensen, 1998), our explanation

features directed search and focuses on workers’ learning from search.

The rest of the paper is organized as follows. The next section presents the model.

Section 3 establishes existence of an equilibrium and characterizes the properties of the

value of search. In Section 4 we show that reservation wages decline with unemployment

duration. Section 5 provides conditions under which reservation wages are strictly declining

and explores differentiability of the value function. Section 6 characterizes the steady state

distribution of workers. Section 7 concludes and the Appendix collects all proofs.

2. The Model

2.1. Agents, Markets and Matching

Time is discrete and all agents discount the future at a rate r > 0. There are a large number

of workers and firms. A worker is either employed or unemployed. When employed, a

worker produces y > 0 units of goods. When unemployed, a worker searches for a job and

the utility of leisure is normalized to zero.

The economy consists of a continuum of local markets, with mass 1. We think of each

single local market in terms of the mix of physical characteristics of that particular labor

market, such as geography and occupation. These characteristics are idiosyncratic to the

9See Darity and Goldsmith (1996) and McFadyen and Thomas (1997).
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workers and the firms in that market, rather than economy-wide characteristics. Workers

are assigned to one of these local markets at random, remaining in the same local market

as long as they continue to search. There is free entry of firms in every local market. Local

markets may differ in terms of their matching efficiency. A fraction p ∈ (0, 1) of all local
markets have matching efficiency mH . The remaining markets have matching efficiency

mL ∈ (0,mH). Thus, m denotes the common type of workers and firms in a given local

market with matching efficiency m.10

The key feature of the model is that the true value of the matching efficiency m in

every local market is unknown, which workers can learn about from their individual unem-

ployment histories. We assume that individual search histories are private information. In

addition, we suppose that agents observe all aggregates, but they do not observe the local

labor market conditions specific to any given local market.

Each local market consists of a continuum of submarkets indexed by x. The matching

probability of a worker in a submarket x is assumed to be mx. The domain of x is

X = [0, 1/mH ]. In any given local market, a submarket x is characterized by a wage

level, W (x), and a tightness, λ(x) (i.e., the vacancy-unemployment ratio). The functions

W (.) and λ(.) are public information, but the matching probability in each submarket is

unknown. Note that two submarkets can be indexed by the same x but they may belong to

different local markets that differ in the matching efficiency. In the equilibrium analyzed

below, the functions W (.) and λ(.) are the same in all local markets, and so observing

the wage and tightness in a submarket does not reveal the matching efficiency of the local

market in which the particular submarket is located.

Search is directed as follows. In each period, firms and workers in a given local market

can choose which submarket to enter. We refer to this choice as an agent’s search decision,

because it affects the agent’s matching probability. We also refer toW (x) as the reservation

wage of a worker who chooses to enter the submarket x. Search is directed in the sense that

an agent’s choice of a submarket involves a tradeoff between the wage and the tightness,

because the two characteristics are negatively related to each other across submarkets.

The equilibrium wage in a submarket “clears” the submarket in the sense that the induced

entry of firms and workers is consistent with the tightness in that submarket. We will

provide a formal definition of a competitive search equilibrium later.

To make precise the meaning of the matching efficiency, let us specify the matching

function in a submarket x as mF (u(x), v(x)), where u(x) is the number of unemployed

10Alternatively, one can think of mi as a worker’s characteristic. Then, the logic of the problem would
be similar, but some details of the analysis would change, introducing unnecessary complications.
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workers and v(x) the number of vacancies in submarket x. Then, x = F (u(x), v(x))/u(x)

and λ(x) = v(x)/u(x). It is important to emphasize that individuals do not observe u(x)

or v(x) for each x, although they observe λ(x), F (x) and W (x).

We impose the following standard assumption on the function F :

Assumption 1. The function F (u, v): (i) is strictly increasing, strictly concave and twice

differentiable in each argument, (ii) is linearly homogeneous, and (iii) has F (1, 0) = 0 and

F (1,∞) > 1/mH .

Under this assumption, we can determine λ(x) by F (1,λ(x)) = x. Moreover, λ(x) has

the following properties:

λ0(x) >
λ(x)

x
> 0, λ00(x) > 0, for all x ∈ (0, 1/mH). (2.1)

The recruiting probability of a firm in submarket x is mx/λ(x). The above properties

of λ imply that a firm’s recruiting probability decreases with x. That is, if it is easy for a

worker to find a job at x, it must be difficult for a firm to recruit at x. Posting a vacancy

for a period in any local market requires the firm to incur the vacancy cost c ∈ (0, y). To
ensure that equilibrium wages are positive we assume that

y >
mH

mL
rcλ (1/mH) . (2.2)

The following examples of the matching function satisfy Assumption 1 and will be used

in various parts below:

Example 2.1. (i) One example of F is the CES function: F (u, v) = [(1− α)uρ + αvρ]1/ρ,

where ρ < 1 and α ∈ (0, 1). In this case, λ(x) =
³
xρ−1
α
+ 1

´1/ρ
. Moreover,

λ0(x)− λ(x)

x
=
µ
1

α
− 1

¶
x−ρ

Ã
1− (1− α)x−ρ

α

!(1−ρ)/ρ
.

A special case of this example is the Cobb-Douglas function, where ρ = 0, which leads

to λ(x) = x1/α and λ0(x) − λ(x)/x =
³
1
α
− 1

´
x(1−α)/α. (ii) Another example is the

urn-ball matching function: F (u, v) = v
³
1− e−u/v

´
. In this case, λ(x) is defined by

λ(x)
h
1− e−1/λ(x)

i
= x. Moreover,

λ0(x)− λ(x)

x
=

1
λ
e1/λ

(e1/λ − 1) (e1/λ − 1− 1/λ) .
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To focus on search, we assume that employment is an absorbing state. In this envi-

ronment, the steady state distribution of workers is non-trivial only if there is a flow into

unemployment. For this reason, we assume that the labor force grows at the constant rate

n. Thus, if L is the labor force at the beginning of period t, a mass nL of new workers

enters the labor market in period t, joining the pool of unemployed workers that period.

2.2. Learning from Unemployment

Agents update their beliefs on m after observing whether or not they have a match. The

updating depends on the particular submarket into which the agent just searched. To

describe the updating process, it is convenient to express the beliefs in terms of their

expected types. Let the initial prior expectation of m be μ0 ∈ (mL,mH), for all agents

(workers and firms). This prior mean belief can be calculated from the distribution of

workers across local markets when they first enter the economy, and it is common to both

workers and firms: μ0 = pmH + (1− p)mL, where p ∈ (0, 1).
Consider the updating process for a worker. It should be noted that public information

about aggregate statistics does not reveal any valuable information to individual workers

beyond what is already contained in the equilibrium functions of wages, W (.), and tight-

ness, λ(.). Since these functions are identical across all local markets, and agents do not

observe the behavior of others in their own local market, the only valuable information

to a worker is his private history of search outcomes. Let P (mi) be the prior probability

with which m = mi, where i ∈ {H,L}. Let μ be the expected value of m according to

this prior belief. Note that the prior distribution of m is Bernoulli, with E(m) = μ and

V ar(m) = (mH −μ)(μ−mL). From the definition of μ, we can solve P (mi) in terms of μ:

P (mH) =
μ−mL

mH −mL
, P (mL) =

mH − μ

mH −mL
.

Let k ∈ {0, 1} be the matching outcome in the current period, where k = 0 indicates
that the worker fails to get a match and k = 1 indicates that the worker succeeds in getting

a match. Then,

P (mi|x; k = 1) = mi

μ
P (mi), P (mi|x; k = 0) = 1− xmi

1− xμ P (mi).

Because the conditional distribution of m is Bernoulli, then conditional on k ∈ {0, 1}, the
mean and variance of m are:

E(m|k) = mHP (mH |k) +mL(1− P (mH |k))

V ar(m|k) = (mH −mL)
2P (mH |k)(1− P (mH |k)).
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Note that, if x < 1/mH , we have P (mH |k = 0) > 0 for all μ > mL. Thus, if the initial

mean belief μ0 exceeds mL, then E(m|k) > mL for both k = 0 and k = 1.

This updating process has two preliminary properties. First, the sequence {E(m)} is
a Markov process. Second, a worker’s mean beliefs E(m) are a sufficient statistic for the

worker’s unemployment history.

Search in a market with a high x generates outcomes that are more informative than

outcomes of search in a market with a low x. More precisely, a higher x causes a mean-

preserving spread in the distribution of the posterior expectation E(m|k). To see this, note
that ex ante k is a random variable, and so is the posterior expectation E(m|k). The mean
of this posterior expectation is E(E(m|k)) = E(m) = μ, which is unaffected by x. The

variance of the posterior expectation is:

V ar(E(m|k)) = (μ−mL)
2

"
xm2

H

μ
+
(1− xmH)

2

1− xμ − 1
#
.

This variance increases with x.

The informational content of x is asymmetric with respect to the matching outcome.

For a worker who succeeds in finding a match, the posterior, P (m|k = 1), is not a function
of x. The posterior mean belief in this case is E(m|k = 1) = mH +mL −mHmL/μ, which

is also independent of x. Therefore, a worker’s choice of submarket, x, does not affect the

information contained in a successful search outcome. In contrast, for a worker who fails

to find a match, the posterior, P (mH |k = 0), decreases with x. That is, the higher x of
a submarket in which a worker searches for a job, the more the worker will reduce the

posterior on the matching efficiency after he fails to find a match. This is because finding a

match in a submarket with a higher x is supposed to be easier, and failure to find a match

there should induce the worker to revise the beliefs downward more sharply.11

We will focus on unemployed workers’ decisions. For this purpose, it is useful to write

separately the updating process of a worker who fails to find a job. For such a worker,

we refer to the mean of the beliefs, μ, simply as the beliefs. The posterior belief of an

unemployed worker who searches and fails to find a job is given by

H(x,μ) ≡ E(m|k = 0) = mH − 1− xmL

1− xμ (mH − μ). (2.3)

This posterior expectation has the following properties, whose verification is straightfor-

ward and hence omitted here:

11This asymmetry of the role of x in the posterior holds more generally in the following way. Suppose
that the job finding probability is ϕ(x,m). If ϕ(x,mH)/ϕ(x,mL) is independent of x, then P (m|k = 1) is
independent of x but P (mH |k = 0) decreases in x.
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Lemma 2.2. The function H(x,μ) satisfies: (i) H1 < 0; (ii) H2 > 0, (iii) H11 =
2μ
1−xμH1 <

0 and H22 =
2x
1−xμH2 > 0; (iv) μ(1− xμ)H12 −H1 − μ2H2 = −mHmL.

Property (i) states that a higher x reduces the worker’s posterior beliefs after the

worker fails to find a match, as discussed above. In particular, property (i) implies that

H(x,μ) < μ for all x > 0 and μ > mL. Thus, a worker’s beliefs about the local market’s

matching efficiency decrease over time as the number of search failures increases. Of course,

if a worker’s beliefs have reached mL, there is no further updating; that is, H(x,mL) = mL

for all x. Property (ii) states that, for any given x, a worker with higher prior beliefs will

also have higher posterior beliefs. Properties (iii) and (iv) will be useful later.

2.3. The Value of Search

Consider an unemployed worker who enters a period with beliefs, μ. Let V (μ) be his value

function. If he chooses to search in a submarket x, the expected probability of finding a

match is xμ. Suppose that the worker accepts the match, which will yield wage W (x).

Because employment is permanent, the present value of the job is W (x)/r. If the worker

does not find a job in the current period, he will revise the beliefs to H(x,μ) and continue

to search in the next period. In that case, the expected value from the next period onward

will be V (H(x,μ)). Thus, the expected payoff of searching in a submarket x is:

R(x,μ) ≡ xμW (x)
r

+ (1− xμ)V (H(x,μ))
1 + r

. (2.4)

The above calculation presumes that a worker accepts the offer, which may not be true

in principle. Both workers and firms may have incentive to engage in a particular form

of “experimentation”, searching during a period solely to gather information and, thus,

refusing to enter a match once they learn that a match has occurred. A worker that has

searched in a submarket x and found a match will revise his beliefs to E(m|k = 1) =

mH +mL −mHmL/μ, as explained above. Suppose that the worker chooses to reject the

match and continue to search in the next period. Then, his expected payoff of entering a

submarket x to search today is:

Re(x,μ) ≡ xμV (mH +mL −mHmL/μ)

1 + r
+ (1− xμ)V (H(x,μ))

1 + r
. (2.5)

We do not think that this form of experimentation is important in practice, unless

it is associated with heterogeneous matches. Thus, we rule out such experimentation by

imposing two assumptions. First, we assume that firms commit to accepting all success-

ful matches. This assumption can be viewed as a natural implication of the maintained
10



assumption of directed search; that is, a firm is committed to accepting a worker at the

posted wage as long as the worker has the specified productivity. As an additional justifica-

tion, note that the main motivation for a firm to reject a match in reality is to search for a

more productive match. This motivation does not exist in our model, because all matches

are homogeneous. Second, we require that a worker should always accept a match which

he searches for, as specified in the assumption below. A sufficient condition to validate this

assumption will be provided in Lemma 3.1.

Assumption 2. maxx∈X R(x,μ) ≥ maxx∈X Re(x,μ) for all μ ∈M .
It can be verified that the inequality stated in the assumption must hold for values of

μ that are sufficiently close to mL and for values of μ that are sufficiently close to mH .

Below we shall provide an intuitive sufficient condition for it to hold for all μ ∈ M (see

Lemma 3.1). Under Assumption 2, the value of search under beliefs μ is given by:

V (μ) = max
x∈X

R(x,μ). (2.6)

Denote the set of optimal decisions as G(μ) = argmaxx∈X R(x,μ) and a selection from

G(μ) as g(μ). The reservation wage can be written as w(μ) =W (g(μ)).

Before analyzing the solution to the above decision problem, consider the behavior of

firms. Firms also choose which submarket to enter to post vacancies and, after observing

the matching outcome, they update their beliefs. Their initial prior belief is the same as

the workers’, μ0. The updating process of a firm is similar to that of the workers’. Let

xv describe the submarket which a firm enters, for a given local market with matching

efficiency m. If the firm finds a match, its posterior expectation of m does not depend on

xv. If the firm fails to find a match, then the posterior expectation of m decreases in xv.

Because the firm’s matching probability is mxv/λ(xv), then the firm’s expectation of m

after failing to find a match in one period is H(xv/λ(xv),μ0), where H is defined in (2.3).

Note that H(xv/λ(xv),μ0) < μ0 for all x
v ∈ (0, 1/mH).

Let J(μv) be the value of a vacancy given that the firm’s mean belief at the beginning

of a period is μv. With free entry, J(μ0) = 0. Because H(x
v/λ(xv),μ0) < μ0 for all x

v < 1,

as explained above, continuing to post a vacancy under the beliefs H(xv/λ(xv),μ0) yields

a negative value. That is, a firm will always exit the market after one period of search if

the search fails to find a match in that period.12 This result allows us to simplify a firm’s

value function as follows:

J(μ0) = max
xv∈X

"
−c+ μ0

xv

λ(xv)

y −W (xv)
r

#
.

12A positive entry cost would explain why vacancies may last longer than one period.
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The first-order condition of the above problem involves the wage function W and its

derivative. This can be alternatively viewed as a differential equation for the wage function.

Without an initial condition, this differential equation has a continuum of solutions. The

indeterminacy simply says that there are many levels of xv that are optimal for the firm.

Put differently, a firm is willing to enter into any submarket, provided that the wage in

the submarket is consistent with the free-entry condition, which we discuss next.

2.4. Free-Entry of Firms and the Equilibrium Definition

Free-entry of firms implies J(μ0) = 0. Together with the firm’s value function, this condi-

tion yields the following wage function:

W (x) = y − rc
μ0

λ(x)

x
. (2.7)

For future reference, it is useful to note that, for all x ∈ X, the function W (x) is twice
continuously differentiable and it has the following properties:

(i) 0 < W (x) ≤ y; (ii) W 0(x) < 0, (iii) 2W 0(x) + xW 00(x) < 0. (2.8)

Part (i) is ensured by (2.2) and other parts by (2.1). Part (ii) says that a higher employment

probability comes together with a lower wage. This is necessary for directed search to be

meaningful, as it provides a tradeoff between the wage and the tightness of the submarket.

As such, it is a necessary condition for inducing firms to enter the submarket. Part (iii) is

implied by λ00(x) > 0, and it says that the function xW (x) is concave in x.

Focus on stationary equilibria. An equilibrium consists of workers’ decision x, firms’

decision xv, and a wage function W (x), that meet the following requirements. (i) Given

the wage function and a worker’s belief at the beginning of a period, the worker’s choice

of the submarket obeys the rule x = g(μ). (ii) Given the initial belief μ0 and the wage

function, a firm’s choice is optimal; that is, xv = gv(μ). (iii) Conditional on unsuccessful

search, a worker’s beliefs are updated according to H(g(μ),μ) and a firm’s according to

H(gv(μ)/λ(gv(μ)),μ). (iv) Consistency: for every x in every local market, the mass of all

firms who choose gv(μ) = x divided by the mass of all workers who choose g(μ) = x is

equal to λ(x). (v) Free-entry: for each local market, the wage function W satisfies (2.7).

In the above definition we have left out the steady-state conditions on worker flows

and the wage distribution, which will be characterized in section 6. We deliberately do so

in order to emphasize the feature of the model that individuals’ decisions and matching

probabilities can be analyzed without any reference to the wage distribution. Instead, all
12



that is required for such an analysis is the wage function W (.) and the tightness function

λ(.), which are determined by firms’ free-entry condition and the matching function. This

feature makes the analysis tractable by reducing the dimensionality of the state variables

for individuals’ decision problems significantly (i.e., by infinity).13 As an implication of

directed search, this feature is not possessed by models of undirected search such as Burdett

and Vishwanath (1988). In the latter models, an individual’s search decision depends on

the wage distribution which, in turn, evolves as individuals learn about the market. Solving

for these dynamics of the wage distribution, even quantitatively, is a daunting task.

To conclude the description of the model, let us emphasize the information structure.

The economy consists of many local markets, and each local market has many submarkets,

one for each duration of unemployment. The actual labor market outcomes are different

across local markets with different matching efficiency. However, agents do not know the

matching efficiency of their own local market. The distribution of labor market outcomes

across local markets is common knowledge, but it conveys no useful information to the

agents about their own local markets. As a result, each agent’s optimal choice is a function

of their beliefs and, therefore, of their unemployment duration only, but not of the matching

efficiency of the agent’s local market.

3. Equilibrium Learning with Search

Let us now analyze a worker’s optimization problem, (2.6). When choosing a submarket

x, the worker faces two considerations. One is the familiar tradeoff between wages and the

matching probability in models of directed search. That is, a submarket with a higher x

has a lower wage and a higher probability of finding a match. Another consideration is

learning from the search outcome. As discussed earlier, search in a submarket with a high

x (i.e., a low wage) is more informative about the matching efficiency in that market than

search in a submarket with a low x. To see how the model captures the value of learning,

we examine the value function.

It is easy to see that the mapping defined by the right-hand side of (2.6) is a contraction.

Using the features in (2.8), standard arguments show that a unique value function V exists,

which is positive, bounded and continuous on M = [mL,mH ] (see Theorem 4.6 in Stokey

and Lucas, 1989, p.79). Moreover, the set of maximizers, G, is nonempty, closed, and upper-

hemicontinuous. Existence of the optimal decision, together with the characterization of

the steady-state distribution in section 6, establishes existence of an equilibrium.

13Shi (2006) also explores a similar feature in a directed search model of wage-tenure contracts.
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Lemma 3.1. Under Assumption 2, there exists an equilibrium where all successful matches

are accepted. A sufficient condition for Assumption 2 to hold is that labor productivity

satisfies: y ≥ (1 + r) cmH

mL
λ (1/mH).

The sufficient condition for existence, stated in the lemma, implies that a worker prefers

getting the lowest feasible wage every period starting now to getting the full surplus from

a match every period starting next period. Intuitively, because of discounting, increasing

y acts as a higher search cost, making it more profitable to accept a job today rather than

waiting. Note that, as in Burdett and Vishwanath (1988), we can reduce the restrictive

force of this condition by introducing a constant cost of search that an unemployed worker

must pay every period. By increasing a worker’s cost of rejecting an offer, such a cost

enlarges the parameter region in which a worker always accepts a match.14

The following lemma describes additional properties of the value function (see Appendix

B for a proof):

Lemma 3.2. V is strictly increasing and strictly convex. As a result, V is almost every-

where twice differentiable with almost everywhere continuous first derivative.

Strict convexity of the value function captures the feature that a more informative

search outcome is valuable to the worker. In a market with a higher x, whether search

succeeds or fails generates relatively larger contrasts which allow the worker to update his

beliefs more precisely. Convexity of the value function reflects the fact that such variations

in the posterior are valuable to the worker. However, more informative search reduces the

worker’s future payoff in unemployment. This feature arises from the fact that a worker

continues to search only after he fails to find a match. Learning is valuable to the worker

because it enables the worker to deduce that the market is worse than he expected. With

more informative search, the worker’s posterior beliefs will deteriorate more rapidly if he

does not find a match, in which case the value of continuing to search will fall by more.

These interesting and inevitable consequences of learning from search cause analytical

difficulties. Mathematically, the future payoff (1 − xμ)V (H(x,μ)) is convex in x, which
can make the objective function R(x,μ) convex in x. Hence, the optimal decision is not

necessarily unique or interior. The possibility of multiple solutions implies that the value

function may not be differentiable at some levels of beliefs, although it is twice differentiable

almost everywhere. Because the objective function of the worker’s optimization problem

14For simplicity, we have not included such a cost of search for the workers in the following analysis.
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involves the value function in the future, it may not be differentiable either. Thus, the

first-order condition may not be applicable to the workers’ optimization problem.

The possibility of multiple solutions and non-differentiability is well known in the lit-

erature on optimal learning (e.g., Easley and Kiefer, 1988). However, this literature has

either ignored these difficulties or focused on corner solutions (e.g., Balvers and Cosimano,

1993). We need to examine all solutions in order to establish the central result of declining

reservation wages. In different modeling environments, there are techniques to generate

smooth optimal choices and differentiable value functions, e.g., Santos (1991). However,

those techniques require the value function to be concave, which is violated here.

4. Declining Reservation Wages

In this section, we establish the central result that a worker’s reservation wage increases in

the worker’s beliefs; i.e., w(μ) is an increasing function. Because a worker’s beliefs deteri-

orate with the duration of unemployment, monotonicity of w(μ) implies that reservations

wages decline over the spell of unemployment. By definition, w(μ) =W (g(μ)), where g(μ)

is a worker’s optimal choice of the submarket in which he searches under beliefs μ. Thus,

monotonicity of w(μ) is equivalent to the feature that g(μ) is a decreasing function, which

reflects the fact that a higher wage always comes together with a low matching probability.

We will first use a heuristic approach to illustrate the desired result and then establish

the result formally. Before carrying out these analyses, it is convenient to transform the

worker’s choice from x to z ≡ −x. The transformation will be useful in what follows,
and it enables us to attach the label monotone decisions naturally to the feature that z

increases in the beliefs. After the transformation, the objective function in (2.6) becomes

R(−z,μ) and the feasible set of choices is −X 3 z. Denote Z(μ) = argmaxz∈−X R(−z,μ)
and z(μ) ∈ Z(μ). Then, the set of optimal choices for x is G(μ) = −Z(μ) and a typical
selection is g(μ) = −z(μ).

4.1. A Heuristic Illustration of Monotone Optimal Choices

We use the first-order condition as a heuristic illustration of monotonicity, although such

a condition is not applicable in general. To do so, suppose furthermore that the value

function is twice differentiable and the objective function R(−z,μ) is strictly concave in
the first argument. In addition, suppose that the optimal choice is interior. Then, the

optimal choice, z(μ), is unique and obeys the following first-order condition:

R1(−z(μ),μ) = 0. (4.1)
15



In what follows, we will use the notation R1 and R11 to refer to the partial derivative of

R(−z,μ) with respect to the first argument, rather than to z; and similarly for H(−z,μ).
Differentiating the previous equation, we obtain z0(μ) = R12/R11. Because R11 < 0 as

we suppose here, then the desired result, z0(μ) > 0, holds if and only if R12 < 0. Writing

(4.1) explicitly and using it to substitute for (W + λW 0), we can compute:

R12 =
V 0(H)
1 + r

h
μ(1 + μz)H12 −H1 − μ2H2

i
+ (1 + μz)

V 00(H)
1 + r

H1H2,

where H = H(−z(μ),μ). Because V 0 > 0, V 00 > 0, H1 < 0 and H2 > 0, we can use part
(iv) of Lemma 2.2 to verify R12 < 0. Thus, z

0(μ) > 0 indeed holds.

This illustration suggests that strict convexity of the value function should be important

for the optimal choice x = −z(μ) to be decreasing with μ. The intuition is as follows.

Searching in a market has the consequence of reducing the worker’s posterior beliefs when

search fails to generate a match. This is an implicit cost of search. Strict convexity of

the (future) value function implies that, for the same choice of x, this cost is higher when

beliefs are at high levels than when beliefs are at low levels. Because the reduction in the

posterior beliefs increases with x, it is more costly to choose a high x when beliefs are high

than when beliefs are low. Roughly speaking, getting bad news about the market is more

damaging when the worker is optimistic than when the worker is pessimistic. Therefore, it

is optimal to increase x to generate more information as beliefs deteriorate. This explains

why g(μ) is decreasing and, hence, why z(μ) is increasing.

The illustration also suggests that monotonicity of z(μ) may depend only on the features

of the value function and the updating function, H. In contrast, the wage function does

not play any explicit role for the signs of R12 and z
0(μ), provided that it induces the value

function to be increasing and convex. In particular, monotone choices do not require the

current payoff, −μzW (−z), to have a positive cross partial derivative in (μ, z).
Both suggestions above hold true generally, even when the value function fails to be

differentiable. To establish the general result, we need a different apparatus for the analysis.

4.2. Supermodularity and Monotone Optimal Choices

Supermodularity is a powerful method for conducting comparative statics. Topkis (1998)

formulated the theory of supermodularity, which has been applied to dynamic programming

(e.g., Amir et al., 1991). Milgrom and Shannon (1994) extended the theory from a cardinal

one to an ordinal one. In our model, supermodularity is equivalent to the feature of increas-

ing differences, because the variables under investigation, (z,μ), lie in closed intervals of
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the real line. Let z ∈ Z and μ ∈M , where Z andM are partially ordered sets. A function

f(z,μ) has increasing differences in (z,μ) if f(z1,μ1)− f(z1,μ2) ≥ f(z2,μ1)− f(z2,μ2) for
all z1 > z2 and μ1 > μ2. If the inequality is strict, then f has strictly increasing differences.

In our model, Z, M and Z ×M (under the product order) are all lattices. In this case,

the feature of increasing differences implies supermodularity (see Topkis, 1998, p.45).

It is far from obvious whether the concept of supermodularity can be usefully applied

here. On the economic side, our model does not have the usual reasons for supermod-

ularity, such as complementarity in consumption or production (see Topkis, 1998). On

the technical side, there are two features of our model that can complicate the use of su-

permodularity. First, as an inseparable feature of dynamic programming, the objective

function in (2.6) involves the future value function. A similar feature is present in models

of optimal growth. In order to apply the method of supermodularity, those models assume

that the current payoff function is supermodular (e.g., Amir et al., 1991). In our model,

the current payoff is −μzW (−z)/r. Neither is this function supermodular, nor is such su-
permodularity necessary for monotone optimal choices. Second, the future value function

is discounted with an endogenous factor, (1 + μz). Stern (2006) uses supermodularity in

optimal growth with endogenous discounting, but he assumes that the discount factor is

a concave function (also see Becker and Boyd, 1997, pp. 277-284). It is easy to see that

the discount factor in our model is not concave in (μ, z). Therefore, we cannot follow the

well-trodden path to establish supermodularity in our model.

Complicating the matter further, the objective function R(−z,μ) is unlikely to be su-
permodular. To see this, note that we obtained the result R12 < 0 in the above illustration

by substituting the first-order condition. This means that the cross partial derivative of R

with respect to z and μ is positive locally at z = z(μ). The local property does not imply

the global property of supermodularity.

Fortunately, monotonicity of optimal choice is invariant to transformations of the ob-

jective function that are monotone in the choice variables. Thus, it becomes possible to

transform the objective function into a supermodular function. To that end, we transform

the worker’s maximization problem into

V (μ) = μ max
z∈−X

R̂(z,μ)

where R̂ is defined as follows:

R̂(z,μ) ≡ 1

μ
R(−z,μ) = −zW (−z)

r
+

Ã
z +

1

μ

!
V (H(−z,μ))

1 + r
.
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Denote Z(μ) = argmaxz∈−X R̂(z,μ) and z(μ) ∈ Z(μ). Clearly, the set of optimal choices
for x is G(μ) = −Z(μ) and a typical selection is g(μ) = −z(μ). Denote the greatest
selection of Z(μ) as z̄(μ) and the least selection as z(μ).

The following theorem states the result on monotonicity (see Appendix C for a proof):

Theorem 4.1. Let z ∈ −X and μ ∈M. The function R̂(z,μ) is strictly supermodular in
(z,μ). Thus, every selection z(μ) is an increasing function. Similarly, every selection g(μ)

is a decreasing function, and the wage w(μ) is an increasing function.

The main task in the proof of this theorem is to establish supermodularity of R̂, after

which monotonicity of z(μ) follows from Topkis (1998, p.79). Two aspects of the proof are

worth noting, both of which extend the features in the above heuristic illustration from

local properties to global ones. First, as expected, strict convexity of the value function

plays an important role for supermodularity of R̂ and, hence, for monotone optimal choices.

Second, supermodularity of R̂ relies only on the properties of the value function, V , and the

updating function,H, not on those of the wage function,W . In particular, supermodularity

of R̂ does not require the current payoff function, −μzW (−z), to be supermodular.

Remark 1. There is another way to see why monotonicity of optimal choices does not rely

on the properties of W or on supermodularity of the original objective function, R(−z,μ).
As shown by Milgrom and Shannon (1994), monotone comparative static analysis requires

not supermodularity, but rather a weaker property – the single-crossing property. In

our model, R(−z,μ) has the strict single crossing property in (z,μ) if and only if R̂ is

supermodular. Because W depends only on z, it drops out of the condition for the single

crossing property. In light of this remark, the result of monotone optimal choices also

follows from Theorem 40 in Milgrom and Shannon (1994).

The result of monotone optimal choices is a general one. It holds even when optimal

choices are corner solutions and when there are multiple solutions to the worker’s opti-

mization problem. When multiple solutions exist, every solution for z is an increasing

function of the beliefs. This strong result comes from the feature that R̂(z,μ) is strictly

supermodular. However, as a general result, the above theorem allows the possibility that

a solution z(μ) is only a weakly increasing function. In the next section, we address strict

monotonicity and other issues.
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5. Strict Monotonicity and Uniqueness of the Optimal Path

In order to understand the conditions under which reservation wages decline over a worker’s

unemployment spell, there are two further questions that need to be answered. First,

when are reservation wages strictly declining with unemployment duration? This stronger

property holds if and only if optimal choices, z(μ), are strictly increasing functions of the

beliefs. Second, if optimal choices are not unique, is there any discipline on the set of paths

of optimal choices? To answer these questions, we impose the following assumption, which

ensures optimal choices to be interior solutions:

Assumption 3. Initial beliefs μ0 ∈ (mL,mH) satisfy

μ0 <
c

y

∙µ
r +

mL

mH

¶
λ0
µ
1

mH

¶
−mLλ

µ
1

mH

¶¸
. (5.1)

As shown in Appendix D, this assumption amounts to ensuring that R1(−1/mH ,mL) >

0, so even a worker with beliefs μ = mL will find it optimal to choose z > −1/mH . Since

z(μ) is increasing, this assumption is sufficient for a workers’ choices to be interior along

the optimal path, starting at μ0 ∈ (mL,mH).

It should be noted that Assumption 2 and Assumption 3 can hold simultaneously for

some μ0 > mL. For instance, a sufficient condition for this to be the case is that labor

productivity satisfies:

c

mL

∙µ
r +

mL

mH

¶
λ0
µ
1

mH

¶
−mLλ

µ
1

mH

¶¸
> y ≥ (1 + r)

µ
mH

mL
cλ
µ
1

mH

¶¶
,

where the second inequality is the sufficient existence condition stated in Lemma 3.1. For

this interval of y to be non-empty, it is sufficient that

λ0
µ
1

mH

¶
− λ

³
1
mH

´
1
mH

>

⎛⎝ 1

r + mL

mH

⎞⎠ λ
³

1
mH

´
1
mH

.

To see that this condition can be satisfied, consider the examples in Example 2.1. When

the matching function is CES, the above condition holds provided ρ < 0. With ρ = 0

(i.e., the Cobb-Douglas function), the condition also holds with α = 1/2 and r + mL

mH
> 1.

Similarly, for the urn-ball matching function, the above condition is satisfied when r+1 >
ea−1
a
(1−mLe

−a) where a = λ (1/mH).

In Appendix D, we establish the following lemma.
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Lemma 5.1. Under Assumption 3, an unemployed worker’s optimal choices are interior.

Moreover, the derivative V 0(H(−z(μ),μ)) exists for all z(μ) ∈ Z(μ). Thus, optimal choices
obey the first-order condition, R̂1(z(μ),μ) = 0, where

R̂1(z(μ),μ) =
z(μ)W 0(−z(μ))−W (−z(μ))

r
+ V (H(−z(μ),μ))

1+r

−
³
1
μ
+ z(μ)

´
V 0(H(−z(μ),μ))

1+r
H1(−z(μ),μ).

In addition to ensuring interior solutions, this lemma describes a limited sense of dif-

ferentiability of the value function: the value function is differentiable in future periods

at particular posterior beliefs induced by optimal choices, i.e., along the path of optimal

choices. Despite the fact that the value function may still fail to be differentiable in the

first period and at beliefs off the optimal paths, the limited sense of differentiability is

enough for the first-order condition to be applicable in every period. In turn, the first-

order condition enables us to establish strict monotonicity of optimal choices, as stated in

the following theorem (see Appendix E for a proof):

Theorem 5.2. Under Assumption 3, every selection of optimal choices, z(μ), is a strictly

increasing function. Therefore, along every path of optimal choices, reservation wages are

strictly declining with unemployment duration.

As it is the case with supermodularity, strict monotonicity relies on the properties of

the functions V and H, but not those of the wage function W directly. Not surprisingly,

strict convexity of the value function plays a critical role for strict monotonicity of opti-

mal choices. It is worth noting that Amir (1996) also establishes strict monotonicity of

optimal choices, with the additional assumption that the value function is continuously

differentiable. We do not rely on this assumption because it does not hold in our model.

Let us now turn to the question about the set of optimal paths. When there are

multiple solutions, optimal choices can evolve over time in many ways. One case is that

multiple choices occur in every period, in which case the path of optimal choices branches

out. Another case is that multiplicity occurs only in the first period. Clearly, the path

of optimal choices is more predictable in the second case than in the first case. To know

more about the set of paths of optimal choices, we establish a link between multiplicity

of optimal choices and differentiability of the value function at all possible beliefs. The

following lemma states the link (see Appendix F for a proof):

Lemma 5.3. Maintain Assumption 3. For each μa in the interior of (mL,mH), let μ
+
a

denote the limit to μa from the right (above) and μ−a the limit from the left (below). Then,
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V 0(μ+a ) = R1(−z̄(μa),μa) and V 0(μ−a ) = R1(−z(μa),μa). Moreover, V 0(μ+a ) ≥ V 0(μ−a ),

where the inequality is strict if and only if z̄(μa) > z(μa).

This lemma says that, at arbitrary beliefs μ ∈ (mL,mH), the value function is differ-

entiable if and only if the beliefs induce a unique choice to be optimal. If multiple choices

are optimal at particular beliefs, then the right derivative of the value function is strictly

greater than the left derivative. Denote the set of such beliefs as

N = {μ ∈ (mL,mH) : z̄(μ) > z(μ)}.

Because V is almost everywhere twice differentiable, the set N has measure zero in M .

For any μ0 in the interior of M , let {μn}∞n=0 be a path of beliefs generated by optimal
choices; i.e., μn = H(−z(μn−1),μn−1) with z(μn−1) ∈ Z(μn−1), for n = 1, 2, .... For

arbitrary initial beliefs, μ0, the following theorem characterizes the entire set of paths of

beliefs and optimal choices (see Appendix F for a proof):

Theorem 5.4. For any μ0 ∈ (mL,mH), let z(μ0) be an arbitrary selection from Z(μ0)

and let μ1 = H(−z(μ0),μ0) be the posterior beliefs induced by z(μ0). Given μ1, μn is

unique, Z(μn) is a singleton, and V
0(μn) exists for all n = 1, 2, .... If μ0 /∈ N , then Z(μ0)

is also a singleton, in which case the entire path {μn}∞n=0 is unique and V 0(μn) exists for
all n = 0, 1, 2, .... If μ0 ∈ N , then z̄(μ0) > z(μ0), H(−z̄(μ0),μ0) > H(−z(μ0),μ0) and
V 0(μ+0 ) > V 0(μ

−
0 ).

This theorem states that the paths of optimal choices and induced beliefs are unique

almost everywhere. The only case of non-uniqueness is when the worker’s initial prior lies

in the set N , which has measure zero. Even in this case, non-uniqueness occurs only in

the first period of search. Given any optimal choice in the first period and the induced

posterior, the future paths of optimal choices and induced beliefs are unique from that

point onward. Thus, no matter where initial beliefs lie, the worker will choose search

decisions optimally to keep the beliefs out of the set N from the second period onward.

More precisely, whenever the search decision will induce the posterior beliefs to be close

to a particular level in the set N , it is optimal to modify the decision so as to keep the

posterior beliefs above that level. This result is a consequence of the value of learning, as

captured by strict convexity of the value function.

To understand why a worker chooses optimally to avoid the set N in future periods,

suppose counterfactually that the worker’s choice in some period n induces the posterior

beliefs to lie in N ; that is, μn+1 = H(−zn,μn) ∈ N for some n ≥ 0, where zn = z(μn). In
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this case, multiple choices will be optimal in period (n+1), which induce the left derivative

of V (μn+1) to be lower than its right derivative. Recall that the derivative of the future

value function captures an implicit (opportunity) cost of learning bad news. Thus, the

discrete fall in V 0(μn+1) from the right side of μn+1 to the left side implies that learning

slightly more about the market in the current period increases the cost of learning by a

discrete amount. The worker can avoid this discretely larger cost by choosing zn slightly

above z(μn), which will keep the posterior slightly above μn+1. In contrast to this discrete

increase in the benefit, the increase in the cost of zn is a marginal reduction in the matching

probability. Thus, the net gain from increasing zn slightly above z(μn) is positive. This

contradicts the optimality of zn.

6. Steady State Distributions and Duration Dependence

We now analyze the aggregate characteristics of the market. One purpose of this analysis

is to illustrate that the learning process in previous sections is consistent with aggregation.

The other purpose is to distinguish the duration dependence at an individual’s level from

the aggregate dependence.

Let Û , E and L denote the economy-wide unemployment, employment and labor force

at the beginning of period t. The aggregate number of searchers in period t, denoted as U ,

includes both Û and the number of newborns, nL. Let f denote the average job finding

rate in the economy. Denoting next period’s variables with a prime, we have:

U = Û + nL, L = Û +E, E0 = E + fU, Û 0 = (1− f)U.

Use lowercase letters to denote the ratios of these variables to the labor force. Then,

u = û+ n, 1 = û+ e, (1 + n)e = e+ fu, (1 + n)û = (1− f)u.

In turn, this implies that

u =

"
1 + n

n+ f

#
n, e =

(1 + n)f

n+ f
û =

"
1− f
n+ f

#
n.

Now consider the distribution of unemployment durations in every local market with

matching efficiency mi. Define

Qi(τ) =
τ−1Y
s=0

[1−mix (μ (s))] .
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At the beginning of period t, the mass of unemployed workers who have already searched

for τ periods in a local market with matching efficiency mi, denoted by Ûi,t(τ), is:

Ûi,t(τ) = nLi,t−τQi(τ)

where Li,t−τ is the proportion of workers, among all those who were born τ periods before

t, who were allocated to a local market with matching efficiency mi. Because newborns are

allocated randomly to the local market, Li,t−τ = Lt−τ for all i, t, τ . Since all local markets

with the same matching efficiency have the same distribution of unemployment durations,

aggregating over the local markets yields the following mass of economy-wide unemployed

workers at the beginning of period t whose unemployment duration is equal to τ :

Ût(τ) = pÛH,t(τ) + (1− p)ÛL,t(τ).

Total unemployment in period t is

Ut =
∞X
τ=1

Ût(τ) + nLt,

and the aggregate unemployment rate is

ut =
Ut
Lt
=

∞X
τ=1

Ût(τ)

Lt
+ n.

Hence, the economy-wide job finding rate solves

∞X
τ=1

Ût(τ)

Lt
+ n =

"
1 + n

n+ f

#
n.

Note that individuals know (U,L,E0, Û 0, f) and hence they know (u, n, e, û). They

also know Ût(τ) and [pQH(τ) + (1− p)QL(τ)], for each τ . However, they do not know

Qi(τ) or Ûi,t(τ) for any τ . Since the functions W and λ are identical across local markets,

individuals cannot infer the distributions of unemployment durations and wages in their

own local markets and thus, they cannot infer the matching efficiency in their local markets.

The implications of the model for duration dependence are, in principle, ambiguous.

On the one hand, the matching probability of each unemployed worker rises with the

duration of his unemployment spell, for a given matching efficiency. Note, however, that

the workers’ permanent incomes, as described by the value of search V fall with the duration

of unemployment, even though each unemployed worker’s history exhibits positive duration
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dependence. On the other hand, the ratio of unemployed workers in mL-type local markets

to total unemployment increases with τ . To see this, compute the ratio as follows:

ÛL,t(τ)

Ût(τ)
=

nLt−τQL(τ)
pnLt−τQH(τ) + (1− p)nLt−τQL(τ) =

1

1− p+ pQH(τ)
QL(τ)

.

This ratio is increasing in τ , since the ratio QH(τ)/QL(τ) falls with τ :

QH(τ)

QL(τ)
=

"
QH(τ − 1)
QL(τ − 1)

# "
1−mHx (μ (τ − 1))
1−mLx (μ (τ − 1))

#
<
QH(τ − 1)
QL(τ − 1) .

Accordingly, a cross-section of all workers at any point in time may well be such that,

on average, workers who have been unemployed longer have lower probabilities of finding

a job in the current period. Again, this is so even though each unemployed worker’s

history exhibits positive duration dependence. A sufficient condition for the cross sectional

distribution of unemployed workers to exhibit negative duration dependence ismLg(mL) ≤
mHg(mH). In turn, using the first order conditions for g(mL) and g(mH), it can be verified

that R̂1(g(mL),mL) = R̂1(g(mH),mH) = 0 implies that

mHg(mH) =

⎡⎣λ0 (g(mL))− λ0 (g(mH))

λ0 (g(mH))− λ(g(mH))
g(mH)

⎤⎦ r +
⎡⎣ λ0 (g(mL))− λ(g(mL))

g(mL)

λ0 (g(mH))− λ(g(mH))
g(mH)

⎤⎦mLg(mL).

Since the first term is positive, a sufficient condition for mHg(mH) ≥ mLg(mL) is:

λ0 (g(mL))− λ (g(mL))

g(mL)
≥ λ0 (g(mH))− λ (g(mH))

g(mH)
,

which is satisfied if [λ0(x)− λ(x)/x] is an increasing function of x.

To see that the above condition can be satisfied, consider first the CES matching

function in Example 2.1. Then, the function [λ0(x)−λ(x)/x] increases in x iff (1−α)x−ρ > ρ.

A sufficient condition is ρ ≤ 0. The condition is also satisfied for some positive values of
ρ that are close to 0. However, the condition is violated when ρ is sufficiently close to

1. Next, consider the urn-ball matching function in Example 2.1. Then, the function

[λ0(x)− λ(x)/x] is always an increasing function.

7. Conclusions

In this paper we have proposed an equilibrium theory of declining reservation wages, in

which unemployed workers are faced with uncertainty that is associated directly with labor

market frictions. As a concrete way to formalize this type of uncertainty, we have assumed
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that individuals do not know precisely the matching efficiency given by the exogenous

matching technology. Faced with this uncertainty, workers learn about the probability of

finding a job through their private search histories. We examine this possibility in a labor

market equilibrium in which search is directed, workers know which wages are being offered,

but they do not know the relevant wage distribution – that in their own local markets.

However, by severing the direct dependence of search behavior on the wage distribution,

the directed search framework simplifies the task of determining the equilibrium wage

distribution and thus, the task of addressing jointly the workers’ search behavior, the

incentives to create jobs and the wage distribution.

In this context, we have shown how declining reservation wages over unemployment

spells arise as workers update their beliefs about the matching efficiency downwards with

the duration of unemployment. This formalizes a notion akin to that of discouragement,

as workers become more pessimistic about the probability of finding a job over their spell

of unemployment. Consequently, the wage distribution is non-degenerate, despite the facts

that matches are homogeneous and search is directed. Moreover, aggregate matching prob-

ability decreases with unemployment duration, in contrast to individual workers’ matching

probability, which increases over individual unemployment spells.

The difficulty in establishing these results is that learning generates non-differentiable

value functions and multiple solutions to a worker’s optimization problem. We have over-

come this difficulty by exploring a connection between convexity of a worker’s value function

and the property of supermodularity. A contribution of this paper is to establish such a

connection, which is likely to be usefully exploited in many other learning problems. Our

analysis differs from previous applications of supermodularity, which often emphasize the

presence of complementarity in consumption or production. It is also different from other

applications of supermodularity to dynamic problems, where the current payoff function

is supermodular and the corresponding value is concave. In the present context neither

the worker’s current payoff nor his objective function is supermodular and furthermore the

value function is convex, rather than concave.

Extensions of our model may consider workers’ labor force participation, job destruc-

tion and on-the-job-search. These theoretical extensions do not change the nature of our

analysis, but they may provide a useful structural framework for empirical studies of the

wage distribution and the distribution of unemployment durations.
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Appendix

A. Proof of Lemma 3.1

Given the analysis leading to Lemma 3.1, it suffices to show that the condition stated in the
lemma is indeed sufficient for Assumption 2. To see this, note that a sufficient condition
for V (μ) = maxx∈X R(x,μ) ≥ maxx∈X Re(x,μ) for all μ ∈ M , where M = [mL,mH ] and
X = [0, 1/mH ], is that

W (1/mH)

r
≥ y/r

1 + r
.

Using the definition of W , this condition can be written as

y ≥ (1 + r)
Ã
mH

μ0
cλ
µ
1

mH

¶!
.

A sufficient condition for this inequality to hold for all μ0 ∈ M is that it holds when
μ0 = mL, which gives the condition stated in the lemma. QED

B. Proof of Lemma 3.2

Let TV (μ) denote the right-hand side of (2.6). The value function, V , is a fixed point of
the mapping T . Let C1(M) be the set containing all bounded, continuous and increasing
functions on M . Let Cs1(M) be the subset of C1(M) which contains strictly increasing
functions. Similarly, let C2(M) be the subset of C1(M) which contains convex functions,
and Cs2(M) be the subset of C2(M) which contains strictly convex functions. We need to
show that V ∈ Cs1(M) ∩ Cs2(M).
To show that V ∈ Cs1(M), it suffices to show that T : C1(M)→ Cs1(M), which will be

accomplished by Lemma B.1 below. By the argument of contraction mapping, the fixed
point of T is strictly increasing. Similarly, to prove V ∈ Cs2(M), it suffices to show that
T : C2(M) → Cs2(M), which will be accomplished by the last two lemmas in this proof.
Because a convex function is almost everywhere twice differentiable with almost everywhere
continuous first derivative (see Lemma 3.2 in Rader, 1973), then V has these properties.
Let G(μ) = argmaxx∈X R(x,μ) and Ge(μ) = argmaxx∈X Re(x,μ), where R is defined

by (2.4) and Re by (2.5). Let g(μ) ∈ G(μ) and ge(μ) ∈ Ge(μ). We next establish the
monotonicity of V .

Lemma B.1. T : C1(M)→ Cs1(M).

Proof. We show first that T : C1(M) → C1(M), which implies V ∈ C1(M) by the
contraction mapping theorem. Then we show that V = TV ∈ Cs1(M). To establish these
results, pick an arbitrary V0 ∈ C1(M) and replace V with V0 in the definitions of R and Re.
Pick any μa,μb ∈M with μa > μb. Denote gi = g(μi) and g

e
i = g

e(μi), where i ∈ {a, b}.
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We begin by showing that T : C1(M)→ C1(M). Note that

Re(geb ,μa) ≥ gebμa
1+r
V0(mH +mL − mHmL

μa
) +

1−gebμa
1+r

V0(H(g
e
b ,μb))

Re(geb ,μb) ≤ gebμb
1+r
V0(mH +mL − mHmL

μa
) +

1−gebμb
1+r

V0(H(g
e
b ,μb)).

These results and monotonicity of V0 imply R
e(geb ,μa) ≥ Re(geb ,μb). Consider the case

where R(gb,μb) = R
e(geb ,μb). Then monotonicity of TV0 is established as follows:

TV0(μa) ≥ Re(gea,μa) ≥ Re(geb ,μa) ≥ Re(geb ,μb) = TV0(μb).
The first inequality comes from Assumption 2, the second inequality from the fact that
gea = argmaxxR

e(x,μa), the third inequality from the result established above, and the
last equality from the hypothesis in the current case.
Consider the case where R(gb,μb) > R

e(geb ,μb), the only remaining case that is consis-
tent with Assumption 2. Then, we have:

0 < R(gb,μb)−Re(geb ,μb)
≤ R(gb,μb)−Re(gb,μb) = μbgb

⎡⎣W (gb)
r
−

V0

³
mH+mL−mHmL

μb

´
1+r

⎤⎦ . (B.1)

The first inequality is the hypothesis in the current case; the second inequality comes from
the fact that geb ∈ argmaxxRe(x,μb); and the ensuing equality comes from the definitions
of R(x,μ) and Re(xe,μ) evaluated at (gb,μb). Note that for any μ such that R(g(μ),μ) >
Re(ge(μ),μ), we have g(μ) > 0: if g(μ) = 0, instead, then R(g(μ),μ) = H(μ)/(1 + r) =
Re(0,μ) ≤ Re(ge(μ),μ), which is a contradiction. Thus, gb > 0 in the current case.
Therefore, (B.1) yields:

W (gb)

r
>
V0
³
mH +mL − mHmL

μb

´
1 + r

. (B.2)

Now, the procedure below establishes the desired result TV0(μa) > TV0(μb):

R(ga,μa)−R(gb,μb) ≥ R(gb,μa)−R(gb,μb)
≥ gb(μa − μb)

h
W (gb)
r
− 1

1+r
V0(H(gb,μb))

i
> gb(μa−μb)

1+r

h
V0
³
mH +mL − mHmL

μb

´
− V0(H(gb,μb))

i
≥ 0.

(B.3)

The first inequality comes from the fact that ga ∈ argmaxxR(x,μa), the second inequality
from the fact V0(H(gb,μa)) ≥ V0(H(gb,μb)), the third inequality from the above result on
W (gb), and the last inequality from V0 ∈ C1(M). This completes the proof of the statement
that T : C1(M)→ C1(M).
Now we prove that V ∈ Cs1(M), where V is the fixed point of T . We need to show

that TV (μa) > TV (μb). If R(gb,μb) > R
e(geb ,μb), replacing V0 with V in the above proof

establishes TV (μa) > TV (μb). The only other case that is consistent with Assumption 2
is R(gb,μb) = R

e(geb ,μb). Because V (mH +mL − mHmL

μb
) ≥ V (μb), we divide the proof in

this case further into the following two cases:
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Case 1. V (mH +mL − mHmL

μb
) = V (μb). In this case, we have:

Re(geb ,μb) =
gebμb
1 + r

V (μb) +
1− gebμb
1 + r

V (H(geb ,μb)) ≤
1

1 + r
V (μb).

The equality follows from the hypothesis in the current case and the inequality from the
fact that V (H(x,μb)) ≤ V (μb). Since V (μb) = R(gb,μb) = Re(geb ,μb), the above inequality
would imply V (μb) ≤ 0. This would not be optimal for the worker because there exists x >
0 such that R(x,μb) > 0. Therefore, it must be true that V (μb) = R(gb,μb) > R

e(geb ,μb),
in which case V (μa) > V (μb), as shown above.
Case 2. V (mH +mL − mHmL

μb
) > V (μb). Because V (μb) ≥ V (H(gb,μb)) and gb > 0

(otherwise, V (μb) ≤ 0, which contradicts the fact that V (μb) is a maximized value), the
current hypothesis implies that the last inequality in B.3 is strict, where V0 is replaced
with V . Hence, TV (μa) > TV (μb).
This completes the proof of Lemma B.1. QED

Lemma B.2. If V ∈ C2(M), then R(x,μ) defined by (2.4) is convex in μ for any given x.
If V ∈ Cs2(M), then R(x,μ) is strictly convex in μ.

Proof. We prove the second part of the lemma first. Let V be a strictly convex
function. Let μa and μb be two arbitrarily values in M , with μa > μb. Let θ ∈ (0, 1) be a
number. Denote μθ = θμa + (1− θ)μb. We show that

R(x,μθ) < θR(x,μa) + (1− θ)R(x,μb).

Denote Hi = H(x,μi), where i ∈ {a, b, θ}. Since ∂H/∂μ > 0, then Ha > Hθ > Hb. Let

σ =
Hθ −Hb
Ha −Hb .

Note that σ ∈ (0, 1) and σHa + (1− σ)Hb = Hθ. If V is strictly convex, then

V (Hθ) < σV (Ha) + (1− σ)V (Hb). (B.4)

By the definition of R in (2.4), we have:

R(x,μθ) < μθx
W (x)
r
+ 1−μθx

1+r
[σV (Ha) + (1− σ)V (Hb)]

= θR(x,μa) + (1− θ)R(x,μb) +
V (Ha)
1+r

∆a +
V (Hb)
1+r

∆b,

where

∆a = (1− μθx)σ − θ(1− μax),
∆b = (1− μθx)(1− σ)− (1− θ)(1− μbx).

For i, j ∈ {a, b, θ}, we use (2.3) to compute:

σ =
(μθ − μb)(1− μax)

(μa − μb)(1− μθx)
=

θ(1− μax)

(1− μθx)
.

Now it is easy to see that ∆a = 0 = ∆b. Therefore, R is strictly convex.
If V is convex rather than strictly convex, then (B.4) holds as “ ≤ ” instead of “ < ”.

The rest of the proof can be adapted easily to show that R(x,μ) is convex, rather than
strictly convex. QED
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Lemma B.3. T : C2(M)→ Cs2(M).

Proof. Pick any V0 ∈ C2(M). Denote V1(μ) = TV0(μ). Let μa and μb be two arbitrarily
values in M , with μa > μb. Let θ ∈ (0, 1) be a number. Denote μθ = θμa + (1− θ)μb. We
need to show that

V1(μθ) < θV1(μa) + (1− θ)V1(μb).

We divide the proof in two cases: the case where V0 is strictly convex and the case where
V0 has linear segments.
Case 1: V0 ∈ Cs2(M). In this case, the previous lemma implies that R(x,μ) is strictly

convex in μ for any given x. Denote x∗i = maxxR(x,μi), i ∈ {a, b, θ}. That is, V1(μi) =
R(x∗i ,μi), with V in (2.4) being replaced with V0. Strict convexity of V is established
below:

V1(μθ) = R(x∗θ,μθ)
< θR(x∗θ,μa) + (1− θ)R(x∗θ,μb)
≤ θR(x∗a,μa) + (1− θ)R(x∗b ,μb)
= θV1(μa) + (1− θ)V1(μb).

(B.5)

The first inequality comes from the fact that R is strictly convex in μ and the second
inequality from the fact that R(x,μi) ≤ R(x∗i ,μi) for all x.
Case 2: V0 is convex and has some linear segments. If any two of the elements,

V0(H(x
∗
θ,μθ)), V0(H(x

∗
θ,μa)) and V0(H(x

∗
θ,μb)), do not lie on the same linear segment of

V0, then the first inequality in (B.5) is still strict and V1 is strictly convex. Suppose that
all three elements lie on the same linear segment of V0. Temporarily denote this linear
segment as V0(H) = A+ BH, with B > 0 (because V is strictly increasing). Using (2.3),
we can compute:

(1− μx)V0(H) = (1− μx)(A+BmH)−B(1−mLx)(mH − μ).

This is linear and differentiable in (μ, x). Restrict μ to be such that V0(H(x,μ)) lies on the
linear segment described above. Using (2.8), we can verify that R(x,μ) is strictly concave
in x. Thus, the solution x∗ is unique and satisfies the following first-order condition:

0 = R1(x,μ) = μ

"
W + λW 0

r
−A−BmH

#
+BmL(mH − μ).

Differentiating this first-order condition, we find that the solution, x∗ = g(μ), satisfies:

g0(μ) = − mH

mH − μ
< 0.

Thus, x∗a 6= x∗θ and x∗b 6= x∗θ. Because the solutions are unique, then R(x∗θ,μb) < R(x∗b ,μb)
and R(x∗θ,μa) < R(x

∗
a,μa). The second inequality in (B.5) is strict, and so V1 is strictly

convex. This completes the proofs of the current lemma and Lemma 3.2. QED
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C. Proof of Theorem 4.1

Take arbitrary za,zb ∈ −X and arbitrary μa,μb ∈M , with za > zb and μa > μb. Denote:

D =
h
R̂(za,μa)− R̂(za,μb)

i
−
h
R̂(zb,μa)− R̂(zb,μb)

i
.

We need to show D > 0. Temporarily denote Hij = H(−zi,μj) and Vij = V (Hij), where
i, j ∈ {a, b}. Computing D, we have:

(1 + r)D

za − zb =

Ã
1

μa
+ zb

!
Vaa − Vba
za − zb −

Ã
1

μb
+ zb

!
Vab − Vbb
za − zb + (Vaa − Vab) .

There are two cases to consider: μb = mL and μb > mL. First, suppose that μb = mL.
Then Vaa−Vba ≥ 0, with equality if and only if μa = mH ; Vab−Vbb = 0; and Vaa−Vab > 0.
Hence, D > 0 in this case. Next, consider the second case, where μb > mL. Here there are
also two cases to consider: μa = mH and μa < mH . We start with the second case. Suppose
that μa < mH . Because H1(−z,μ) < 0 and H2(−z,μ) > 0, then Haa > max{Hab,Hba} ≥
min{Hab,Hba} > Hbb. Strict convexity of V (H) implies (see Royden, 1988, p.113):

Vaa − Vba
Haa −Hba >

Vab − Vbb
Hab −Hbb and

Vaa − Vab
Haa −Hab >

Vab − Vbb
Hab −Hbb . (C.1)

Thus, the following (strict) inequality holds:

Hab−Hbb
Vab−Vbb

³
(1+r)D
za−zb

´
>

³
1
μa
+ zb

´
Haa−Hba
za−zb −

³
1
μb
+ zb

´
Hab−Hbb
za−zb + (Haa −Hab) .

Substituting Hij, we get:

Hab−Hbb
Vab−Vbb

³
(1+r)D
za−zb

´
>

³
1
μa
+ zb

´
mH−μa
za−zb

³
1+zbmL

1+zbμa
− 1+zamL

1+zaμa

´
−
³
1
μb
+ zb

´
mH−μb
za−zb

³
1+zbmL

1+zbμb
− 1+zamL

1+zaμb

´
+ (1 + zamL)

³
mH−μb
1+zaμb

− mH−μa
1+zaμa

´
= (mH−μa)(μa−mL)

μa(1+zaμa)
− (mH−μb)(μb−mL)

μb(1+zaμb)
+ (1 + zamL)

³
mH−μb
1+zaμb

− mH−μa
1+zaμa

´
= mHmL

μa−μb
μaμb

> 0.

The second equality comes from collecting terms according to (mH −μi). Hence, D > 0 in
this case as well. Finally, if μb > mL and μa = mH , the last string of inequalities becomes

Hab−Hbb
Vab−Vbb

³
(1+r)D
za−zb

´
> −

³
1
μb
+ zb

´
mH−μb
za−zb

³
1+zbmL

1+zbμb
− 1+zamL

1+zaμb

´
+ (1 + zamL)

³
mH−μb
1+zaμb

´
= − (mH−μb)(μb−mL)

μb(1+zaμb)
+ (1 + zamL)

³
mH−μb
1+zaμb

´
= mL(mH−μb)

μb
> 0.

Thus, the function R̂(z,μ) is strictly supermodular. Because −X is a lattice, the
monotone selection theorem in Topkis (1998, Theorem 2.8.4, p.79) implies that every se-
lection from Z(μ) is increasing. As a result, every selection g(μ) from G(μ) is decreasing,
and w(μ) =W (g(μ)) is increasing. QED
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D. Proof of Lemma 5.1

First, we show that optimal choices are interior under Assumption 3. Consider the corner,
z = 0. For any prior beliefs, μ, the choice z = 0 yields zero expected wage in the period
and the posterior beliefs H(0,μ) = μ. The value of this choice is R(0,μ) = 0, which can
be increased by any choice z < 0. Thus, the choice z = 0 is never optimal.
Now consider the other corner, z = −1/mH . Since optimal choices are such that

z = −g(μ), and g(μ) is decreasing with μ, a sufficient condition for z > −1/mH and,
equivalently, for g(μ) < 1/mH , is that g(mL) < 1/mH . Note that g(mL) solves:

V (mL) = max
z∈−X

"
−mLz

W (−z)
r

+ (1 +mLz)
V (mL)

1 + r

#
.

Substituting the optimal choice and rearranging terms, we have:

V (mL)

1 + r
=

Ã
g(mL)mL

r + g(mL)mL

!
W (g(mL))

r
,

where the wage functionW is given by (2.7). To ensure that g(mL) < 1/mH , it is sufficient
that the objective function R(−z,mL) has a strictly positive derivative with respect to z
at z = −1/mH . After computing the derivative and substituting V (mL) from above and
W from (2.7), we can write this condition as

μ0 <
c

y

∙µ
r +

mL

mH

¶
λ0
µ
1

mH

¶
−mLλ

µ
1

mH

¶¸
,

where μ0 are the firms’ initial beliefs, which enter through W . This is the condition (5.1)
stated in Assumption 3.
Next, we show that V 0(H(−z(μ),μ)) exists. For any real number r, define r− =

limε↓0(r− ε) and r+ = limε↓0(r+ ε). Fix μ ∈ (mL,mH). Under Assumption 3, the optimal

choice z(μ) is interior. Such a solution satisfies R̂1(z
−(μ),μ) ≥ R̂1(z+(μ),μ). Note that a

continuous, convex function has left and right derivatives. Because W (−z) is continuous,
V is continuous and convex, and H is continuously differentiable, then

R̂1(z
+(μ),μ) = z(μ)W 0(−z(μ))−W (−z(μ))

r
+ V (H(−z(μ),μ))

1+r

−
³
1
μ
+ z(μ)

´
V 0(H+(−z(μ),μ))

1+r
H1(−z(μ),μ),

R̂1(z
−(μ),μ) = z(μ)W 0(−z(μ))−W (−z(μ))

r
+ V (H(−z(μ),μ))

1+r

−
³
1
μ
+ z(μ)

´
V 0(H−(−z(μ),μ))

1+r
H1(−z(μ),μ).

Here we have used the fact that H1(−z,μ) < 0 – recall that H1 denotes the derivative
of H with respect to the first argument, rather than z. Since H1 < 0, then the feature
R̂1(z

−(μ),μ) ≥ R̂1(z+(μ),μ) implies
V 0(H−(−z(μ),μ)) ≥ V 0(H+(−z(μ),μ)).

Because V is convex, the reversed inequality holds. Thus,

V 0(H−(−z(μ),μ)) = V 0(H+(−z(μ),μ)) = V 0(H(−z(μ),μ)).
In turn, this implies that optimal choices in every period satisfy the first-order conditions.
QED
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E. Proof of Theorem 5.2

It suffices to show that the case z(μa) 6= z(μb) cannot occur for any pair (μa,μb) with
μa > μb. Suppose to the contrary that z(μa) = z(μb). Denote this common value as z

∗.
By Lemma 5.1, z(μa) and z(μb) are interior and satisfy first-order conditions. That is,

R̂1(z
∗,μa) = 0 = R̂1(z∗,μb).

Shorten the notation H(−z∗,μi) to Hi, where i ∈ {a, b}. Substituting R̂1(z∗,μi), we have:
(1 + r)

h
R̂1(z

∗,μa)− R̂1(z∗,μb)
i

= V (Ha)− V (Hb)−
³
1
μa
+ z∗

´
V 0(Ha)H1(−z∗,μa) +

³
1
μb
+ z∗

´
V 0(Hb)H1(−z∗,μb).

Because V (H) is continuous and strictly convex, and because V 0(Hb) exists by Lemma 5.1,
we have: V (Ha)− V (Hb) > V 0(Hb) (Ha −Hb). Then,

(1 + r)
∙
R̂1(z∗,μa)−R̂1(z∗,μb)

V 0(Hb)

¸
≥ (Ha −Hb)−

³
1
μa
+ z∗

´
V 0(Ha)
V 0(Hb)

H1(−z∗,μa) +
³
1
μb
+ z∗

´
H1(−z∗,μb)

> (Ha −Hb)−
³
1
μa
+ z∗

´
H1(−z∗,μa) +

³
1
μb
+ z∗

´
H1(−z∗,μb).

The first inequality comes from substituting the inequality between the V ’s and the fact
that V 0 > 0; the second (strict) inequality comes from the facts that V is strictly convex,
Ha > Hb, and H1 < 0. Denote the last expression temporarily as f(μa). Because f is
differentiable, we can compute:

f 0(μa) = H1(−z∗,μa) + 1
(μa)2

H1(−z∗,μa)−
³
1
μa
+ z∗

´
H12(−z∗,μa)

= mHmL

(μa)2
> 0.

The second equality comes from property (iv) in Lemma 2.2. Because μa > μb, then
f(μa) > f(μb) = 0. That is, R̂1(z

∗,μa) > R̂1(z∗,μb). This result contradicts the supposi-
tion that z(μa) = z(μb). QED

F. Proofs of Lemma 5.3 and Theorem 5.4

First, we prove the following lemma (which does require optimal choices to be interior):

Lemma F.1. z̄(μ) is right-continuous and z(μ) is left-continuous at each μ ∈M .
Proof. Pick an arbitrary μ ∈M . Let {μn} be a sequence with μn → μ and μn ≥ μn+1 ≥

μ for all n. Because z̄(μ) is an increasing function, then {z̄(μn)} is a decreasing sequence
and z̄(μn) ≥ z̄(μ) for all n. Thus, z̄(μn) ↓ A for some A ≥ z̄(μ). On the other hand, the
Theorem of the Maximum (see Stokey and Lucas, 1989) implies that the correspondence
Z(μ) is upper hemicontinuous (uhc). Because μn → μ, and z̄(μn) ∈ Z(μn) for each n, uhc
of Z implies that there is a subsequence of {z̄(μn)} that converges to an element in Z(μ).
This element must be A, because all convergent subsequences of a convergent sequence
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must have the same limit. Thus, A ∈ Z(μ), and so A ≤ maxZ(μ) = z̄(μ). Therefore,
z̄(μn) ↓ A = z̄(μ), which shows that z̄(μ) is right-continuous.
Similarly, by examining the sequence {μn} with μn → μ and μ ≥ μn+1 ≥ μn for all n,

we can show that z is left-continuous. This completes the proof of Lemma F.1.
Next, we prove Lemma 5.3. Fix μa ∈ (mL,mH). Because z̄(μ) maximizes R(−z,μ) for

each given μ, then

V (μ) = R(−z̄(μ),μ) ≥ R(−z̄(μa),μ)
V (μa) = R(−z̄(μa),μa) ≥ R(−z̄(μ),μa).

Taking μ > μa, where μa < mH , and dividing the above inequalities by (μ−μa), we obtain:
R(−z̄(μa),μ)−R(−z̄(μa),μa)

μ− μa
≤ V (μ)− V (μa)

μ− μa
≤ R (−z̄(μ),μ)−R(−z̄(μ),μa)

μ− μa
.

Take the limit μ ↓ μa. Under Assumption 3, V
0(H(−z̄(μa),μa)) exists for each μ (see

Lemma 5.1). Because z̄(μ) is right-continuous, then R1(−z̄(μa),μa) exists. The limits of
the first and last ratios are both R1(−z̄(μa),μa). Thus, V 0(μ+a ) = R1(−z̄(μa),μa).
Now conduct the above exercise with z replacing z̄. For μ < μa and μa > mL, we have:

R(−z(μa),μ)−R(−z(μa),μa)
μ− μa

≥ V (μ)− V (μa)
μ− μa

≥ R (−z(μ),μ)−R(−z(μ),μa)
μ− μa

.

Take the limit μ ↑ μa. Because z(μ) is left-continuous and interior, then V 0(μ−a ) =
R1(−z(μa),μa).
To establish the inequality between the left- and right- derivatives of V , use the defin-

ition R(−z,μ) = μÛ(z,μ) to compute:

R1(−z(μ),μ) = R̂(z(μ),μ) + μÛ2(z(μ),μ) = V (μ)/μ+ μÛ2(z(μ),μ).

Because R̂(z,μ) is strictly supermodular, R̂2(z̄(μa),μa) ≥ R̂2(z(μa),μa), where the inequal-
ity is strict if and only if z̄(μa) > z(μa). Therefore, V

0(μ+a ) ≥ V 0(μ−a ), where the inequality
is strict if and only if z̄(μa) > z(μa). This completes the proof of Lemma 5.3.

Finally, we prove Theorem 5.4. Given any selection z(μ0) ∈ Z(μ0) and the induced
beliefs μ1 = H(−z(μ0),μ0), Lemma 5.1 implies that V 0(μ1) exists. Then, Lemma 5.3
implies z̄(μ1) = z(μ1). That is, Z(μ1) = {z(μ1)} is a singleton. So, the posterior beliefs
induced by Z(μ1) are unique and are given by μ2 = H(−z(μ1),μ1). Again, Lemma 5.1
implies that V 0(μ2) exists and Lemma 5.3 implies that z̄(μ2) = z(μ2). Repeating this
argument shows that μn is unique, Z(μn) is a singleton, and V

0(μn) exists for all n = 1, 2, ....
If μ0 /∈ N , then z̄(μ0) = z(μ0) by the definition of N . In this case, the posterior beliefs

μ1 = H(z(μ0),μ0) are unique. Also, Lemma 5.3 implies that V
0(μ0) exists. If μ0 ∈ N ,

again, the results stated in Theorem 5.4 follow from Lemma 5.3. QED

33



References

[1] Acemoglu, D. and R. Shimer, 1999, “Efficient unemployment insurance,” Journal of
Political Economy 107, 893-928.

[2] Alexopoulos, M. and T. Gladden, 2006, “Wealth, reservation wages, and labor market
transitions in the U.S.: evidence from the survey of income and program participa-
tion,” manuscript, University of Toronto.

[3] Amir, R., Mirman, L.J. and W.R. Perkins, 1991, “One-sector nonclassical optimal
growth: optimality conditions and comparative dynamics,” International Economic
Review 32, 625-644.

[4] Amir, R., 1996, “Sensitivity analysis of multisector optimal economic dynamics,” Jour-
nal of Mathematical Economics 25, 123-141.

[5] Arulampalam, W., P. Gregg and M. Gregory, 2001, “Unemployment scarring,” Eco-
nomic Journal 111, F577—F584.

[6] Balvers, R.J. and T.F. Cosimano, 1993, “Periodic learning about a hidden state vari-
able,” Journal of Economic Dynamics and control 17, 805-827.

[7] Becker, R.A. and J.H. Boyd III, 1997, Capital Theory, Equilibrium Analysis and Re-
cursive Utility, Blackwell, Massachusetts.

[8] Blanchard, O.J. and P. Diamond, 1994, “Ranking, unemployment duration, and
wages,” Review of Economic Studies 61, 417—434.

[9] Burdett, K., 1977, “Unemployment insurance payments as a search subsidy: a theo-
retical analysis,” Unpublished Paper, University of Wisconsin.

[10] Burdett, K. and K. Judd, 1983, “Equilibrium Price Dispersion,” Econometrica 51,
955-970.

[11] Burdett, K. and T. Vishwanath, 1988, “Declining reservation wages and learning,”
Review of Economic Studies 55, 655-665.

[12] Burdett, K. and Mortensen, D.T., 1998, “Wage differentials, employer size, and un-
employment,” International Economic Review 39, 257-273.

[13] Burdett, K., Shi, S. and R. Wright, 2001, “Pricing and matching with frictions,”
Journal of Political Economy 109, 1060-1085.

[14] Butters, G.R., 1977, “Equilibrium Distributions of Sales and Advertising Prices,”
Review of Economic Studies 44, 465-491.

[15] Darity, W. and A.H. Goldsmith, 1996, “Social psychology, unemployment and macro-
economics,” Journal of Economic Perspectives, Winter, 121-140.

34



[16] Devine, T.J. and N.M. Kiefer, 1991, Empirical Labor Economics: The Search Ap-
proach, Oxford University Press.

[17] Easley, D. and N.M. Kiefer, 1988, “Controlling a stochastic process with unknown
parameters,” Econometrica 56, 1045-1064.

[18] Ham, J.C. and R.J. LaLonde, 1996, “The effect of sample selection and initial condi-
tions in duration models: evidence from experimental data on training,” Econometrica
64, 175—205.

[19] Kessler, R.C., J.B. Turner and J.S. House, 1989, “Unemployment, reemployment,
and emotional functioning in a community sample,” American Sociological Review 54,
648—657.

[20] Lazear, E., 1976, “Age, experience and wage growth,” American Economic Review 66.

[21] Lockwood, B., 1991, “Information externalities in the labour market and the duration
of unemployment,” Review of Economic Studies 58, 733—753.

[22] Machin, S. and A. Manning, 1999, “The causes and consequences of longterm unem-
ployment in Europe,” Handbook of Labor Economics, Vol. 3, ch. 47.

[23] McFadyen, R.G. and J.P. Thomas, 1997, “Economic and psychological models of job
search behavior of the unemployed,” Human Relations 50, 1461-1484.

[24] Milgrom, P. and C. Shannon, 1994, “Monotone comparative statistics,” Econometrica
62, 157-180.

[25] Moen, E.R., 1997, “Competitive search equilibrium,” Journal of Political Economy
105, 385-411.

[26] Mortensen, D.T., 1977, “Unemployment insurance and job search decisions,” Indus-
trial and Labor Relations Review 30, 505—517.

[27] Mortensen, D.T., 2003, Wage Dispersion: why are similar workers paid differently?,
MIT Press, Cambridge.

[28] Peters, M., 1984, “Bertrand equilibrium with capacity constraints and restricted mo-
bility,” Econometrica 52, 1117-1129.

[29] Peters, M., 1991, “Ex ante price offers in matching games: Non-steady state,” Econo-
metrica 59, 1425-1454.

[30] Rader, T., 1973, “Absolutely continuous constrained maximizers,” Journal of Opti-
mization Theory and Applications 12, 107-128.

[31] Royden, H.L., 1988, Real Analysis, Macmillan Publishing Company, New York.

35



[32] Santos, M., 1991, “Smoothness of the policy function in discrete time economic mod-
els,” Econometrica 59, 1365-1382.

[33] Shi, S., 2001, “Frictional assignment I: efficiency,” Journal of Economic Theory 98,
232-260.

[34] Shi, S., 2006, “Directed search for equilibrium wage-tenure contracts,” manuscript,
University of Toronto.

[35] Stern, M.L., 2006, “Endogenous time preference and optimal growth,” Economic The-
ory 29, 49-70.

[36] Stokey, N. and R.E. Lucas, Jr., with E.C. Prescott, 1989, Recursive Methods in Eco-
nomic Dynamics, Harvard University Press, Cambridge, Massachusetts.

[37] Topkis, D.M., 1998, Supermodularity and Complementarity, Princeton University
Press, Princeton, New Jersey.

36


