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Abstract

We introduce the framework of parameterized collections of games and pro-
vide three nonemptiness of approximate core theorems for arbitrary games with
and without sidepayments. The parameters bound (a) the number of approx-
imate types of players and the size of the approximation and (b) the size of
nearly e®ective groups of players and their distance from exact e®ectiveness.
The theorems are based on a new notion of partition-balanced pro¯les and
approximately partition-balanced pro¯les. The results are then applied to a
new model of an economy with clubs. In contrast to the extant literature, our
approach allows both widespread externalities and uniform results.

¤This paper combines two Autonomous University of Barcelona Working Papers, numbers WP
390.97 and 391.97. The authors are grateful to an anonymous referee for helpful comments.

yThis research was undertaken with support from the European Union's Tacis ACE Programme
1995. At that time, this author was in the IDEA Ph.D Program of the Autonomous University of
Barcelona. Support by DGICYT grant PB92-590 is gratefully acknowledged.

zThe support of the Direccio General d'Universitats of Catalonia, the Social Sciences and Human-
ities Research Council of Canada, and the Department of Economics of the Autonomous University
of Barcelona is gratefully acknowledged.

1



1 Introduction.

It is well understood that, except in highly idealized situations, cores of games may be
empty and competitive equilibrium may not exist. For example, within the context
of an exchange economy, the conditions required for existence of equilibrium typically
include convexity, implying in¯nite divisibility of commodities, and also nonsatiation.
Even these two conditions may well not be satis¯ed; goods are usually sold in pre-
speci¯ed units and there are some commodities that many individuals prefer not to
consume. In the context of economies with coalition structures, such as economies
with clubs and/or local public goods, the added di±culties of endogenous group for-
mation compound the problems; even if all conditions for existence of equilibrium and
nonemptiness of the core are satis¯ed by the sub-economies consisting of the member-
ship of each possible club, the core of the total economy may be empty. One possible
approach to this problem is to restrict attention to models where equilibria exist, for
example, economies with continuums of agents. But a model with a continuum of
agents can only be an approximation to a ¯nite economy. Another approach is to
consider solution concepts for which existence is more robust, for example, approx-
imate equilibria and cores. It seems reasonable to suppose that there are typically
frictions that prevent attainment of an exact competitive equilibrium. At any time,
most markets may have some unsatis¯ed demand or supply and most purchases might
be made at prices that are only close to equilibrium prices. It also seems reasonable
to suppose that there are typically costs of forming coalitions. These sorts of observa-
tions motivate the study of existence of approximate equilibria and nonemptiness of
approximate cores, initiated for exchange economies by Shapley and Shubik (1966).
In this paper, we introduce the notion of parameterized collections of games and

show that, under apparently mild conditions, approximate cores of all su±ciently large
games without side payments are nonempty. A collection of games is parameterized by
(a) the number of approximate types of players and the goodness of the approximation
and (b) the size of nearly e®ective groups of players and their distance from exact
e®ectiveness. All games described by the same parameters are members of the same
collection. The conditions required on a parameterized collection of games to ensure
nonemptiness of approximate cores are merely that most players have many close
substitutes, per capita payo®s are bounded (per capita boundedness), and all or
almost all gains to collective activities can be realized by groups bounded in size
(small group e®ectiveness). Per capita boundedness simply rules out arbitrarily large
average payo®. The ¯nal condition, small group e®ectiveness, may appear to be
restrictive, but, in fact, in the context of a \pregame," per capita boundedness and
small group e®ectiveness are equivalent (Wooders 1994b).1

As an application of our work, we develop a new model of an economy with
clubs and obtain analogues of our non-emptiness results for games. Our model allows

1See also Wooders (1991,1992) for related results for games with and without side payments.
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utilities from forming a club to be a®ected by the size and composition of the economy
containing the club. For example, there may be widespread externalities.
To position our model and results in the literature, recall that Shapley and Shubik

showed that large exchange economies with quasi-linear preferences have nonempty
approximate cores. Under the assumption of per capita boundedness { ¯niteness of
the supremum of average payo® { Wooders (1980,1983) demonstrated nonemptiness
of approximate cores of large games derived from pregames. These result extend those
of Shapley and Shubik to general games with and without side payments. Since then,
there have been a number of advances in this literature, including Shubik andWooders
(1983), Kaneko and Wooders (1982), and Wooders and Zame (1984). The prior
literature on approximate cores of large games all uses the framework of a pregame.
A pregame consists of a compact metric space of player types, possibly ¯nite, and a
worth function ascribing a payo® possibilities set to every possible group of players.
The worth function depends continuously on the types of players in a coalition. The
pregame framework treats collections of games that can all be described by a single
worth function. This has hidden consequences; for example, as we will illustrate,
the equivalence between small group e®ectiveness and per capita boundedness noted
above depends on the structure of a pregame. Moreover, in general the payo® to a
coalition cannot depend on the total player set of the game in which it is embedded;
widespread externalities are ruled out.2

To illustrate how parameterized collections can treat a broader class of situations
than pregames, consider, for example, a sequence of economies where the nth economy
has n identical players. Due to widespread negative externalities, in the nth economy
each agent can realize a payo® of 1 + 1=n. Also suppose, for simplicity, that in the
nth economy, a coalition containing m · n can realize the total payo® of m(1 +1=n)
{ within each economy there are no gains to coalition formation. (It is easy to modify
the example to allow such gains.) The pregame framework rules out such sequences
of games. In contrast, parameterized collections of games incorporate games with
widespread externalities and our results apply. The framework of parameterized
collections incorporates the prior models and uses less restrictive conditions than in
the prior literature.3 This example also illustrates that our club-theoretic results
cannot be obtained in the pregame context.
In the remainder of this introduction, we ¯rst discuss our game-theoretic frame-

work and results in more detail and then discuss economies with clubs. Related
literature is discussed in the body of the paper.

2An exception is Wooders (1983), which allows positive externalities.
3In spirit, the pregame framework is similar to the economic frameworks of Kannai (1970) and

Hildenbrand (1974), for example, while our approach is more in the spirit of the economic models
of Anderson (1978) and Manelli (1991a,b).
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1.1 The game-theoretic model and results.

We provide three theorems showing non-emptiness of approximate cores of arbitrary
games. Given the speci¯cation of an approximate core { the particular approximate
core notion and the parameters describing the closeness of the approximation { we
obtain a lower bound ´ on the number of players so that any game in the class
of games described by the speci¯ed parameters with at least ´ players has a non-
empty approximate core. While our three theorems each use di®erent notions of
approximate cores, both the notions of approximate cores and the theorems build
on each other. Our framework encompasses games derived from pregames with or
without side payments and our results encompass, as special cases, a number of non-
emptiness of approximate core results in the literature. In the concluding section
of the current paper we remark on other applications of the notion of parametrized
collections of games.
Our ¯rst result, for the "-remainder core, requires a ¯nite number T of types of

players and a boundB on e®ective group sizes. Roughly, a payo® is in the "-remainder
core if it is in the core of a subgame containing all but a fraction " of the players. The
result provides a lower bound, depending on T;B; and ", on the number of players
required to ensure nonemptiness of the "-remainder core for all games with T types
and bound B on e®ective group sizes: An important aspect of this result, like the
result of Kaneko and Wooders (1982), is that the conclusion is independent of the
payo® sets for the games. The result is eminently applicable to models with bounded
coalition sizes, such as marriage and matching games (cf., Kelso and Crawford (1982)
or Roth and Sotomayor (1992)).
The "-core of a game is the set of feasible payo®s that cannot be improved upon

by any coalition of players by at least " for each member of the coalition. A payo®
is in the weak "-remainder core if it induces a payo® in the "-core of a subgame
containing all but a fraction " of the players. Our non-emptiness theorem for the
weak "-remainder core requires only that groups bounded in size are e®ective for the
realization of almost all gains to cooperation. Instead of the assumption of a ¯nite
number of types, to show non-emptiness of the weak "-remainder core we require only
that there be a partition of the set of players into a ¯nite number of approximate
types. Such an assumption would be satis¯ed by games derived from a pregame with
a compact metric space of player types, for example.
Under two additional restrictions on the class of games, we obtain a similar

nonemptiness result for "-cores. The restrictions are that: (a) per capita payo®s
are bounded; and (b) the games are strongly comprehensive (that is, the boundaries
of the total payo® set are bounded away from being \°at"). A corollary relaxes
assumption (b).
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1.2 Economies with clubs.

There are now numerous papers in the literature studying cores and equilibria of
economies with local public goods, where a feasible state of the economy includes a
partition of the set of agents into disjoint jurisdictions or clubs for the purposes of
collective consumption of public goods within each club or jurisdiction.4 There have
been far fewer works on economies where an agent can belong to multiple clubs {
two of the few are Buchanan (1965) and Shubik and Wooders (1982). In this paper
we develop a model of an economy with clubs where: (a) an agent may belong to
multiple clubs { indeed, as many clubs as there are groups containing that agent;
(b) all agents may di®er from each other; (c) each club may provide a unique bundle
of goods and/or services, including private goods, public goods subject to exclusion,
and conviviality; and (d) the payo® to a group of players may depend on the economy
in which it is embedded { widespread externalities are permitted.
A club is a group of people who collectively consume and/or produce a bundle of

goods and/or services for the members of the club. Often clubs have been treated
as synonymous with coalitions of agents providing congestable and excludable public
goods for their members. We observe, however, that clubs engage in a variety of
activities. These activities may or may not require input of private goods. The goods
provided by the club may include the enjoyment of the company of the other club
members. In clubs of intellectuals, the exchange of ideas may be the aspect of the
club that brings enjoyment to its members. Clubs may provide only private goods;
for example, many academic departments have co®ee clubs. Other clubs o®er some
goods and/or services to the general public. Some sorts of clubs o®er private goods
and/or services to their members in addition to public goods. There is frequently
no requirement that members of the same club consume the same bundles of goods.
Thus, in this paper for each club we assume that there is an abstract set of feasible
club activities.5

It may be the case that some sorts of clubs are ruled out for legal, technical, or
social reasons. For example, a marriage may be viewed as a club, and polyandrous
marriages may be illegal. Thus, for each coalition of agents in the economy there is an
admissible club structure of that coalition. Admissible club structures are required
to satisfy certain natural properties. In addition our model is required to satisfy the
conditions that: (a) average utilities are bounded independently of the size of the
economy; and (b) as the economy grows large, there is a limit to increasing returns
to club size.
Although the conditions on our model are remarkably non-restrictive, by appli-

4Some early papers include, for example, Wooders (1978) and Greenberg and Weber (1986). See
Conley and Wooders (1998) and Konishi, Le Breton, and Weber (1998) for more recent references.

5The notion of public projects, introduced in Mas-Colell (1980) and extended to local public
projects in Manning (1992), is related. Our formulation here, however, is more abstract and acco-
modates private goods clubs as well as clubs for the provision of public goods.
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cation of our game-theoretic results we are able to show several forms of the result
that approximate cores of large economies { with su±ciently many players { are non-
empty. Our result applies simultaneously to all games in a parameterized collection.

1.3 Organization of the paper.

The paper is organized as follows. The next section introduces the basic de¯nitions,
including the notion of parametrized collections of games. Section 3 presents our
three theorems on non-emptiness of approximate cores in the order presented above.
Section 4 consists of our club model and results. Section 5 presents the mathematical
foundation and provides mathematical examples illustrating the conditions of the
theorems. Section 6 concludes the body of the paper. The ¯nal section is an appendix
containing the proofs.

2 De¯nitions.

2.1 Cooperative games: description and notation.

Let N = f1; :::; ng denote a set of players. A non-empty subset of N is called a
coalition. For any coalition S let RS denote the jSj-dimensional Euclidean space
with coordinates indexed by elements of S. For x 2 RN ; xS will denote its restriction
to RS . To order vectors in RS we use the symbols >>; > and ¸ with their usual
interpretations. The non-negative orthant of RS is denoted by RS

+ and the strictly

positive orthant by RS
++. We denote by ~1S the vector of ones in R

S , that is, ~1S
= (1; :::; 1) 2 RS . Each coalition S has a feasible set of payo®s or utilities denoted by
VS ½ RS. By agreement, V; = f0g and Vfig is non-empty, closed and bounded from
above for any i. In addition, we will assume that

max
n
x : x 2 Vfig

o
= 0 for any i 2 N ;

this is by no means restrictive since it can always be achieved by a normalization.
It is convenient to describe the feasible utilities of a coalition as a subset of RN .

For each coalition S let V (S), called the payo® set for S, be de¯ned by

V (S) :=
n
x 2 RN : xS 2 VS and xa = 0 for a =2 S

o
:

A game without side payments (called also an NTU game or simply a game)
is a pair (N; V ) where the correspondence V : 2N ¡! RN is such that V (S) ½n
x 2 RN : xa = 0 for a =2 S

o
for any S ½ N and satis¯es the following properties :
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(2.1) V (S) is non-empty and closed for all S ½ N .

(2.2) V (S) \RN
+ is bounded for all S ½ N , in the sense that there is a real number

K > 0 such that if x 2 V (S) \RN
+ ; then xi · K for all i 2 S.

(2.3) V (S1
S
S2) ¾ V (S1) + V (S2) for any disjoint S1; S2 ½ N (superadditivity).

We next introduce the uniform version of strong comprehensiveness assumed for
our third approximate core result. Roughly, this notion dictates that payo® sets are
both comprehensive and uniformly bounded away from having level segments in their
boundaries. Consider a set W ½ RS . We say that W is comprehensive if x 2 W and
y · x implies y 2 W . The set W is strongly comprehensive if it is comprehensive,
and whenever x 2 W; y 2 W; and x < y there exists z 2 W such that x << z:6Given
(i) x 2 RS , (ii) i; j 2 S, (iii) 0 · q · 1 and (iv) " ¸ 0; de¯ne a vector xqi;j(") 2 RS ;
where

(xqi;j("))i = xi ¡ ";
(xqi;j("))j = xj + q"; and

(xqi;j("))k = xk for k 2 Sn fi; jg :

The set W is q-comprehensive if W is comprehensive and if, for any x 2 W , it holds
that (xqi;j(")) 2 W for any i; j 2 S and any " ¸ 0.7 This condition for q > 0 uniformly
bounds the slopes of the Pareto frontier of payo® sets away from zero. Note that for
q = 0; 0-comprehensiveness is simply comprehensiveness. Also note that if a game
is q-comprehensive for some q > 0 then the game is q0-comprehensive for all q0 with
0 · q0 · q:
Let VS ½ RS be a payo® set for S ½ N: Given q, 0 · q · 1; let W q

S ½ RS be the
smallest q-comprehensive set that includes the set VS.

8 For V (S) ½ RN let us de¯ne
the set cq(V (S)) in the following way:

cq(V (S)) :=
n
x 2 RN : xS 2 W q

S and xa = 0 for a =2 S
o
:

Notice that for the relevant components { those assigned to the members of S { the
set cq(V (S)) is q-comprehensive, but not for other components. With some abuse
of the terminology, we will call this set the q-comprehensive cover of V (S): When
q > 0 we can think of a game as having some degree of \side-paymentness" or as

6Informally, if one person can be made better o® (while all the others remain at least as well o®),
then all persons can be made better o®. This property has also been called \nonleveledness."

7The notion of q-comprehensiveness can be found in Kaneko and Wooders (1996), For the pur-
poses of the current paper, q-comprehensiveness can be relaxed outside the individually rational
payo® sets.

8Notice that there exist q-comprehensive sets that contain VS , speci¯cally RS : The set W q
S is the

intersection of all q-comprehensive sets containing VS .
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allowing transfers between players, but not necessarily at a one-to-one rate. This is
an eminently reasonable assumption for games derived from economic models.
A game with side payments (also called a TU game) is a game (N; V ) with

1-comprehensive payo® sets, that is V (S) = c1(V (S)) for any S ½ N: This im-
plies that for any S ½ N there exists a real number v(S) ¸ 0 such that VS =n
x 2 RS :

P
i2S xi · v(S)

o
. The numbers v(S) for S ½ N determine a function v

mapping the subsets of N to R+. Then the TU game is represented as the pair
(N; v).

2.2 Parameterized collections of games.

To introduce the notion of parameterized collections of games we will need the concept
of Hausdor® distance. For every two non-empty subsets E and F of a metric space
(M; d); de¯ne the Hausdor® distance between E and F (with respect to the metric d
on M), denoted by dist(E;F ), as

dist(E;F ) := inf f" 2 (0;1) : E ½ B"(F ) and F ½ B"(E)g ;

where B"(E) := fx 2 M : d(x;E) · "g denotes an "-neighborhood of E.
Since payo® sets are unbounded below, we will use a modi¯cation of the concept

of the Hausdor® distance so that the distance between two payo® sets is the distance
between the intersection of the sets and a subset of Euclidean space. Let m¤ be a
¯xed positive real number. Let M¤ be a subset of Euclidean space RN de¯ned by
M¤ :=

n
x 2 RN : xa ¸ ¡m¤ for any a 2 N

o
. For every two non-empty subsets E

and F of Euclidean space RN let H1[E;F ] denote the Hausdor® distance between
E\M¤ and F\M ¤ with respect to the metric kx¡ yk1 := maxi jxi ¡ yij on Euclidean
space RN .

The concepts de¯ned below lead to the de¯nition of parameterized collections
of games. To motivate the concepts, each is related to analogous concepts in the
pregame framework.

±¡substitute partitions: In our approach we approximate games with many players,
all of whom may be distinct, by games with ¯nite sets of player types. Observe that
for a compact metric space of player types, given any real number ± > 0 there is a
partition (not necessarily unique) of the space of player types into a ¯nite number
of subsets, each containing players who are \±-similar" to each other. Parameterized
collections of games do not restrict to a compact metric space of player types, but do
employ the idea of a ¯nite number of approximate types.

Let (N; V ) be a game and let ± ¸ 0 be a non-negative real number. A ±-substitute
partition is a partition of the player set N into subsets with the property that any
two players in the same subset are \within ±" of being substitutes for each other.
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Formally, given a set W ½ RN and a permutation ¿ of N , let ¾¿(W ) denote the set
formed fromW by permuting the values of the coordinates according to the associated
permutation ¿ . Given a partition fN [t] : t = 1; ::; Tg of N , a permutation ¿ of N is
type ¡ preserving if, for any i 2 N; ¿ (i) belongs to the same element of the partition
fN [t]g as i. A ±-substitute partition of N is a partition fN [t] : t = 1; ::; Tg of N with
the property that, for any type-preserving permutation ¿ and any coalition S,

H1
h
V (S); ¾¡1¿ (V (¿ (S)))

i
· ±:

Note that in general a ±-substitute partition of N is not uniquely determined.
Moreover, two games may have the same partitions but have no other relationship to
each other (in contrast to games derived from a pregame).

(±,T )- type games. The notion of a (±,T )-type game is an extension of the notion of
a game with a ¯nite number of types to a game with approximate types.

Let ± be a non-negative real number and let T be a positive integer. A game (N; V )
is a (±; T )-type game if there is a T -member ±-substitute partition fN [t] : t = 1; ::; Tg
of N . The set N [t] is interpreted as an approximate type. Players in the same element
of a ±-substitute partition are ±-substitutes. When ± = 0; they are exact substitutes.

pro¯les. Another notion that arises in the study of large games is that of the pro¯le
of a player set, a vector listing the number of players of each type in a game. This
notion is also employed in the de¯nition of a parameterized collection of games, but
pro¯les are de¯ned relative to partitions of player sets into approximate types.

Let ± ¸ 0 be a non-negative real number, let (N; V ) be a game and let
fN [t] : t = 1; ::; Tg be a partition of N into ±-substitutes. A pro¯le relative to fN [t]g
is a vector of non-negative integers f 2 ZT+ and a subpro¯le s of a pro¯le f is a pro¯le
satisfying the condition that s · f . Given S ½ N the pro¯le of S is a pro¯le, say
s 2 ZT+, where st = jS \N [t]j : A pro¯le describes a group of players in terms of
the numbers of players of each approximate type in the group. Let kfk denote the
number of players in a group described by f , that is, kfk = P

ft.

¯¡e®ective B¡bounded groups: In all studies of approximate cores of large games,
some conditions are required to limit gains to collective activities, such as boundedness
of marginal contributions to coalitions, as in Wooders and Zame (1984,1989) or the
less restrictive conditions of per capita boundedness and/or small group e®ectiveness,
as in Wooders (1980,1983,1994a,b), for example. Small groups are e®ective if all or
almost all gains to collective activities can be realized by groups bounded in size of
membership. The following notion formulates the idea of small e®ective groups in
the context of parameterized collections of games.
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Informally, groups of players containing no more than B members are ¯-e®ective
if, by restricting coalitions to having fewer than B members, the loss to each player is
no more than ¯: This is a form of small group e®ectiveness for arbitrary games. Let
(N; V ) be a game. Let ¯ ¸ 0 be a given non-negative real number and let B be a given
positive integer. For each group S ½ N; de¯ne a corresponding set V (S;B) ½ RN in
the following way:

V (S;B) :=
[ "X

k

V (Sk) :
n
Sk

o
is a partition of S,

¯̄
¯Sk

¯̄
¯ · B

#
.

The set V (S;B) is the payo® set of the coalition S when groups are restricted to
have no more than B members. Note that, by superadditivity, V (S;B) ½ V (S) for
any S ½ N and, by construction, V (S;B) = V (S) for jSj · B. We might think of
cq(V (S;B)) as the payo® set to the coalition S when groups are restricted to have
no more than B members and transfers are allowed between groups in the partition.
If the game (N;V ) has q-comprehensive payo® sets then cq(V (S;B)) ½ V (S) for any
S ½ N: The game (N; V ) with q-comprehensive payo® sets has ¯-e®ective B-bounded
groups if for every group S ½ N

H1 [V (S); cq(V (S;B))] · ¯.

When ¯ = 0, 0-e®ective B-bounded groups are called strictly e®ective B-bounded
groups.

parameterized collections of games Gq((±; T ); (¯;B)). With the above de¯nitions in
hand, we can now de¯ne parameterized collections of games.

Let T and B be positive integers and let q be a real number, 0 · q · 1. Let
Gq((±; T ); (¯;B)) be the collection of all (±; T )-type games that are superadditive,
have q-comprehensive payo® sets, and have ¯-e®ective B-bounded groups.

Less formally, given non-negative real numbers q; ¯ and ±; and positive integers
T and B; a game (N; V ) belongs to the class Gq((±; T ); (¯;B)) if:

(a) the payo® sets satisfy q-comprehensiveness;

(b) there is a partition of the total player set into T sets where each element of the
partition contains players who are ±-substitutes for each other; and

(c) almost all gains to collective activities (with a maximum possible loss of ¯ for
each player) can be realized by partitions of the total player sets into groups
containing fewer than B members.

Our results hold for all parameters ± and ¯ that are su±ciently small, that is,
2(± + ¯) < m¤; where m¤ is a positive real number used in the de¯nition of the
Hausdor® distance. (Since m¤ can be chosen to be arbitrarily large, this requirement
is nonrestrictive.)
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3 Non-emptiness of approximate cores of games.

Recall the de¯nition of the core.

the core. Let (N; V ) be a game. A payo® x is undominated if, for all S ½ N and
y 2 V (S); it is not the case that yS >> xS . The payo® x is feasible if x 2 V (N ). The
core of a game (N;V ) consists of all feasible and undominated payo®s.

3.1 The "-remainder core.

The concept of the "-remainder core is based on the idea that all requirements of
the core should at least be satis¯ed for almost all players with the remainder of
players representing a small fraction of \unemployed" or \underemployed" players.
This approximate core notion can be viewed as a stepping stone to other notions
of approximate cores. There are game-theoretic situations, however, in which the
notion of the "-remainder core may naturally arise { for example, the demand games
of Selten (1981).

the "-remainder core. Let (N;V ) be a game. A payo® x belongs to the "-remainder

core if, for some group S ½ N , jN j¡jSjjN j · " and xS belongs to the core of the subgame

(S; V ).

Note that the following theorem requires no restrictions on the degree of compre-
hensiveness { the usual notion of comprehensiveness su±ces.

Theorem 1. Non-emptiness of the "-remainder core. Let T and B be positive
integers. For any " > 0; there exists an integer ´1("; T; B) such that if
(a) (N; V ) 2 Gq((0; T ); (0; B)) and
(b) jN j ¸ ´1("; T; B)

then the "-remainder core of (N; V ) is non-empty.

The assumptions of Theorem 1 provide a strong conclusion, which is a stepping
stone to our more broadly applicable results. The Theorem requires a ¯xed number T
of exact player types and strictly e®ective small groups of size less than or equal to B.
Under these assumptions, the theorem states that for any " > 0 there exists a lower
bound ´1("; T; B) on the number of the players such that all games satisfying the
assumptions with more than ´1("; T; B) players have non-empty "-remainder cores.
Since the bound depends only on "; T; and B, the bound is uniform across all the
games characterized by the parameters; there is no restriction to replica games. Our
result extends the result of Kaneko and Wooders (1982) from replication sequences
to arbitrary large games. As in Kaneko and Wooders (1982) the result is independent
of the characteristic function of the games; the same bound holds for all games in the
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collection parameterized by T and B. In Section 5 we provide an example illustrating
application of the result.

3.2 The weak "-remainder core.

For a less restrictive de¯nition of the approximate core we can treat a signi¯cantly
more general class of games than those of Theorem 1, in particular, we can allow
approximate types (± > 0) and almost e®ective groups (¯ > 0). For example, the
class of models covered by our next Theorem includes replica models of economies
with private goods as in Debreu and Scarf (1963) and models of local public good
economies satisfying per capita boundedness, as in Wooders (1988).

the weak "-remainder core. Let (N; V ) be a game. A payo® x belongs to the ("1; "2)-

weak core9 if there is some S ½ N , jN j¡jSjjN j · "1 such that

(a) xS is feasible in the subgame (S; V ), and
(b) xS is "2-undominated in the subgame (S; V ):

10

Since one possibility is that "1 = "2 = ", we typically refer to this notion as the weak
"-remainder core.

The following result extends the nonemptiness results of Wooders (1980,1983,1992),
Shubik and Wooders (1983), and Wooders and Zame (1984,1989) from pregames to
parameterized collections of games. For the same values of the parameters T and B
the bound on the sizes of games in the following theorem can be chosen to equal the
bound in the preceding theorem. Note that there are no restrictions on the value of
q { strong comprehensiveness is not required.

Theorem 2. Non-emptiness of the weak ("; (± + ¯))-remainder core. Let T
and B be positive integers. For any " > 0 there exists an integer ´1("; T; B) such that
if
(a) (N; V ) 2 Gq((±; T ); (¯;B)) and
(b) jN j ¸ ´1("; T; B)

then the weak ("; (± + ¯))-remainder core of (N; V ) is non-empty.

Observe that by de¯nition the ("; 0)-weak core coincides with the "-remainder
core. Therefore, Theorem 2 is a strict generalization of Theorem 1 (Theorem 1 is a
subcase for ± = ¯ = 0). But both Theorem 1 and Theorem 2 are based on the idea
that some small proportion of the players can be ignored. An example in Section 5
illustrates this point.

9The weak "-remainder core might be called the "1-remainder "2-core but this is awkward.
10That is, xS +~1S"2 is undominated in the game (S;V ):
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3.3 The "-core.

the "-core. Let (N; V ) be a game. A payo® x belongs to the "-core if
(a) x is feasible, and (b) x is "-undominated.11

Note that when " = 0, the "-core coincides with the core.

Our third Theorem provides conditions for the non-emptiness of the "-core of
large games. The proof is based on the idea of compensating the \remainder" players
from the previous theorems, as in Wooders (1980,1983,1992) and Wooders and Zame
(1984,1989). This compensation is possible under q-comprehensiveness (with q > 0)
and one more condition, typically called per capita boundedness.

per capita boundedness. Let C be a positive real number. A game (N; V ) has a per
capita payo® bound of C if, for all coalitions S ½ N ,

X

a2S
xa · C jSj for any x 2 V (S).

Theorem 3. Non-emptiness of the (" + ± + ¯)-core. Let T and B be positive
integers. Let C and q be positive real numbers, q > 0. Then for each " > 0 there
exists an integer ´2("; T;B; C; q) such that if:
(a) (N; V ) 2 Gq((±; T ); (¯;B)),
(b) (N; V ) has per capita payo® bound C, and
(c) jN j ¸ ´2("; T; B; C; q)

then the ("+ ± + ¯)-core of (N; V ) is non-empty.

In Section 5, we present an example of a game with a compact metric space of
player attributes and show, through examples, the indispensability of the conditions
in Theorem 3. The following Corollary shows that Theorem 3 can be applied to obtain
non-emptiness of approximate cores of games that are \close" to q-comprehensiveness
games (with q > 0).12 The proof of this result is left to the reader.

Corollary. Non-emptiness with near q-comprehensiveness. Let (N;W ) be a
game. Suppose that for some q > 0 there is a game (N; V ) 2 Gq((±; T ); (¯;B)) and
positive real numbers " > 0 and ° > 0 such that:
(a) (N; V ) has per capita payo® bound C,
(b) jN j ¸ ´2("; T; B; C; q) and
(c) H1[W (S); V (S)] <

°
2
for all S ½ N:

Then the ("+ ± + ¯ + °)-core of (N;W ) is non-empty.

11That is, x +~1N" is undominated.
12Any comprehensive payo® set can be approximated arbitrarily closely by a q-comprehensive

payo® set, for q small (Wooders 1983, Appendix).
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3.4 Remarks.

Remark 1. The intuition behind our results. Our results are all based on one
fact: with a ¯nite number of types of players and bounded e®ective group sizes, large
games have non-empty approximate cores. This is a property of pro¯les rather than a
property of games. To illustrate this point, consider, for example, a collection of games
where all players are identical and two-player coalitions are e®ective. Independent
of further speci¯cation of the characteristic function, all games in the collection with
an even number of players have nonempty cores. Therefore, there is a subgame with
a nonempty core containing at least all but one of the players { there is at most
one player left-over. Thus, any game with at least n players will have a non-empty
1
n
-remainder cores. These sorts of observations hold generally and lead to Theorem 1.
Theorem 2 follows by approximation techniques. Then, using q-comprehensiveness
and per capita boundedness, left-over players can be compensated and Theorem 3
follows.

Remark 2. q-comprehensiveness or convexity? It is possible to obtain a result similar
to Theorem 3 using convexity of payo® sets and \thickness" instead of q-comprehensiveness
(see Kovalenkov and Wooders 1997a). Strong comprehensiveness, however, can be
naturally satis¯ed by games derived from economies. Moreover, \1-strongly compre-
hensive games" are games with side payments, so we can incorporate this important
special case. Furthermore, in models of economies with local public goods or with
clubs, convexity may be di±cult to satisfy. Although examples show that none of the
assumptions can be omitted, our Corollary relaxes q-comprehensiveness.

Remark 3. Explicit bounds. It may be possible to compute the bounds on the
size of the total player sets given in Theorems 1, 2, and 3 in terms of the parame-
ters describing the games. A simple bound is obtained in Kovalenkov and Wooders
(1997b), although under somewhat di®erent assumptions. Also, the proofs of that
paper, relative to those of this paper, are quite complex.

Remark 4. Absolute or relative sizes? It is possible to obtain similar results with
bounds on relative sizes of e®ective coalitions. In a ¯nite game with a given number
of players, assumptions on absolute sizes and on relative sizes of e®ective coalitions
are equivalent. We have chosen to develop our results using bounds on absolute sizes
of near-e®ective coalitions since this seems to re°ect typical economic and social sit-
uations. Examples include: marriage and matching models (see Kelso and Crawford
(1982) and Roth and Sotomayor (1990)); models of economies with shared goods
and crowding (see Conley and Wooders (1998) for a survey); and private goods ex-
change economies (see Mas-Colell (1979) and Kaneko and Wooders (1989)). In fact,
assumptions on proportions of economic agents typically occur only when there is a
continuum of players, cf. Ostroy (1984).
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Remark 5. Limiting gains to coalition formation. In the pregame framework several
di®erent conditions limiting returns to coalition formation have been used. For situa-
tions with a ¯xed distribution of a ¯nite number of player types, Wooders (1980,1983)
and Shubik and Wooders (1983) require per capita boundedness. To treat compact
metric spaces of player types, Wooders and Zame (1984,1989) require boundedness of
marginal contributions to coalitions while Wooders (1992,1994a,b) requires the less
restrictive condition of small group e®ectiveness. As noted in the introduction, in
the context of games derived from pregames, small group e®ectiveness and per capita
boundedness are equivalent. In Section 5, we show that in the broader framework of
parameterized collections of games both ¯-e®ective B-bounded groups and per capita
boundedness are required.

4 Economies with clubs.

We de¯ne admissible club structures in terms of natural properties and take as given
the set of all admissible club structures for each coalition of agents. Generalizing
Mas-Colell's (1980) notion of public projects to club activities, there is no necessary
linear structure on the set of club activities. Indeed, our results could be obtained
even without any linear structure on the space of private commodities. We remark
that it would be possible to separate crowding types of agents (those observable
characteristics that a®ect the utilities of others, or, in other words, their external
characteristics) from taste types, as in Conley and Wooders (1996,1997), and have
agents' roles as club members depend on their crowding types. In these papers,
however, the separation of crowding type and taste type has an important role; the
authors show that prices for public goods { or club membership prices { need only
depend on observable characteristics of agents and not on their preferences. The
current paper treats only the core so the separation of taste and crowding type would
have no essential role and therefore is not made.

agents. There are T \types" of agents. Let m = (m1; :::;mT ) be a given pro¯le, called
the population pro¯le. The set of agents is given by

Nm = f(t; q) : q = 1; :::;mt and t = 1; :::; T g;

and (t; q) is called the qth agent of type t. It will later be required that all agents of
the same type may play the same role in club structures. For example, in a traditional
marriage model, all females could have the role of \wife". De¯ne Nm[t] := f(t; q) :
q = 1; :::;mt g. For our ¯rst Proposition members of Nm[t] will be exact substitutes
for each other and for our next two Propositions, approximate substitutes.

commodities. The economy has L private goods. A vector of private goods is denoted
by y = (y1; :::; y`; :::; yL) 2 RL

+.
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clubs. A club is a subset of agents. For each S ½ Nm, a club structure of S, denoted by
S, is a set of clubs whose union coincides with S: The non-empty set of admissible club
structures for S is denoted by C(S). These sets are required to satisfy the following
two properties:

1. If S and S 0 are disjoint subsets of agents and S and S 0 are club structures of
S and S 0 respectively, then fC : C 2 S S S 0 g is a club structure of S S

S 0

(unions of admissible club structures of disjoint coalitions are club structure of
the unions of the coalitions).

2. Let S and S 0 be subsets of agents with the same pro¯les, let S be a club
structure of S and let ' be a type-preserving 1-1 mapping from S onto S 0 (that
is, if (t; q) 2 S then '((t; q)) = (t; q0) for some q0 = 1; :::;mt). Then

S0 = fC ½ S 0 : '¡1(C) 2 Sg

is a club structure of S 0 (admissible club structures depend only on pro¯les,
that is, all agents of the same type have the same roles in clubs).

Note that our assumptions ensure that the partition of any set S into singletons
is an admissible club structure. The ¯rst assumption is necessary to ensure that
the game derived from the economy is superadditive. It corresponds to economic
situations where one option open to a group is to form smaller groups. The second
assumption corresponds to the idea that the opportunities open to a group depend
on the pro¯le of the group.

club activities. For each club C there is a set of club activities A(C): An element
® of A(C) requires input x(C;®) 2 RL of private goods. For any two clubs C
and C 0 with the same pro¯le we require that if ® 2 A(C), then ® 2 A(C 0) and
x(C; ®) = x(C 0; ®): For 1-agent clubs f(t; q)g, we assume that there is an activity ®0
with x(f(t; q)g; ®0) = 0, that is, there is an activity requiring no use of inputs.

preferences and endowments. Only private goods are endowed. Let !tq 2 RL
+ be the

endowment of the (t; q)th participant of private goods.
Given S ½ Nm, (t; q) 2 S, and a club structure S of S, the consumption set of

the (t; q)th agent (relative to S) is given by

Ztq (S) := Xtq(S)£
Y

C2S
A(C);

where X tq(S) ½ RL is the private goods consumption set relative to S, assumed to
be closed. Thus, the entire consumption set of the (t; q)th agent is given by

Ztq :=
[

S½Nm:(t;q)2S

[

S2C(S)
Ztq (S) :
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We assume that the (t; q)th agent can subsist in isolation. That is

(!tq; ®0) 2 Ztq (f(t; q)g) :
It is also assumed that for each (t; q); each S ½ Nm; (t; q) 2 S, and each club

structure S of S, the preferences of the (t; q)th agent are represented by a continuous
utility function utq(¢;S) de¯ned on Ztq(S).
states of the economy. Let S be a non-empty subset of Nm and let S be a club
structure of S. A feasible state of the economy S relative to S, or simply a state for
S, is a pair (yS ; ®S) where:
(a) yS = fytqg(t;q)2S with ytq 2 X tq(S) for (t; q) 2 S;
(b) ®S = f®CgC2S with ®C 2 A(C) for C 2 S; and
(c) the allocation of private goods is feasible, that is,

X

C2S
x(C; ®C) +

X

(t;q)2S
ytq =

X

(t;q)2S
!tq:

feasible payo®s. A payo® U = (¹utq)(t;q)2Nm is feasible for a coalition S if u
tq = 0 for all

(t; q) 2 NmnS and there is club structure S of S and a feasible state of the economy
for S relative to S; (yS ; ®S); such that utq = utq(ytq; ®S ;S) for each (t; q) 2 S.
the game induced by the economy. For each coalition S ½ Nm; de¯ne

V (S) = f(butq)(t;q)2Nm : there is a payo® (¹utq)(t;q)2Nm
that is feasible for S and butq · utq for all (t; q) 2 Sg:

It is immediate that the player set Nm and function V determine a game (Nm; V )
with comprehensive payo® sets.

"-domination. LetNm be a club structure of the total agent setNm and let (y
Nm ; ®Nm)

be a feasible state of the economy Nm relative to Nm . A coalition S can "-dominate
the state (yNm ; ®Nm) if there is a club structure S = fS1; :::; SKg of S and a feasible
state of the economy (y0S ; ®0S) such that for all consumers (t; q) 2 S it holds that

utq(y0tq; ®0S ;S) > utq(ytq; ®S;Nm) + ":

the core of the economy and "-cores. The state (yNm ; ®Nm) is in the core of the econ-
omy if it cannot be improved upon by any coalition S. Notions of the "-remainder
core of the economy, the weak "-remainder core of the economy, and the "-core are
de¯ned in the obvious way. It is clear that if (yNm ; ®Nm) is a state of the economy in
a core of the economy { any one of the approximate cores that we've de¯ned or the
core itself { then the utility vector induced by that state is in the corresponding core
of the induced game. Similarly, if (¹utq)(t;q)2Nm is in a core of the game then there is a
state in the core of the economy (yNm ; ®Nm) such that the utility vector induced by
that state is (¹utq)(t;q)2Nm.
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4.1 Non-emptiness of approximate cores.

To obtain our results we require few restrictions on the economy. Our ¯rst Proposition
requires exact player types and strictly e®ective small groups.

(A.0) For each t and all q; q0 2 f1; :::;mtg; utq(¢) = utq
0
(¢) and !tq = !tq

0
: In ad-

dition, in the game induced by the economy the players (t; q) and (t; q0) are
exact substitutes. (All agents of the same type are identical in terms of their
endowments, preferences and crowding types { their e®ects on others.)

(A.1) There is a bound B such that for any population pro¯le m; any coalition
S ½ Nm; and any club structure S of S, if U = (¹utq : (t; q) 2 S) is a feasible
payo® for the club structure S then there is a partition of S into coalitions, say
fS1; :::; SKg and club structures of these coalitions, fS1; :::;SKg such that for
each k

¯̄
¯Sk

¯̄
¯ · B and Uk := (utq : (t; q) 2 Sk) is a feasible payo® for Sk:

Our approach requires that the set of individually rational and feasible outcomes
is compact. It is possible to introduce conditions on the primitives of the economy
as, for example, Debreu's (1962) condition of positive semi-independence, but for the
purposes of this application, we will simply assume compactness.

(A.2) For each subset of agents S ½ Nm the setV (S) \RN
+ is compact.

The following result is an immediate application of Theorem 1.

Proposition 1. Non-emptiness of the "-remainder core. Assume (A.0)-(A.2)
hold. Given " > 0; there exists an integer ´1("; T; B) such that if m, the pro¯le of
the economy, satis¯es the property that kmk ¸ ´1("; T; B) then the "-remainder core
of the economy is non-empty.

Proposition 1 is most natural if there is only one private good or if private goods
are indivisible so that all gains from trade in private goods can be realized by trade
within coalitions of bounded sizes. If we require only non-emptiness of the weak "-
remainder core we can weaken the restrictions on the economy { players of the same
type need only be approximate substitutes and small groups need only be nearly
e®ective. For brevity, these assumptions will not be made on the primitives of the
economy. Thus, instead of (A.0) and (A.1), for the following two Propositions, we
will assume (A.00) and (A.10):

(A.00) For some ± ¸ 0 the players in the set Nm[t] = f(t; q) : q = 1; :::;mtg are
±-substitutes for each other in the game induced by the economy.

(A.10) There is an ¯ ¸ 0 and an integer B so that the game derived from the economy
has ¯-e®ective B-bounded groups.
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Then the following result, for the weak "-reminder core, follows from Theorem 2.

Proposition 2. Non-emptiness of the weak ("; (± + ¯))-remainder core. As-
sume (A.00), (A.10) and (A.2) hold. Given " > 0; there exists an integer ´1("; T; B)
such that ifm, the pro¯le of the economy, satis¯es the property that kmk ¸ ´1("; T; B)
then the weak ("; (± + ¯))-remainder core of the economy is non-empty.

For our next result, we require that each agent always owns some commodity
which other agents value. Speci¯cally, we assume that the Lth commodity is a \quasi-
money" with which everyone is endowed and for which everyone has a separable
preference. In the following, let ytq¡L; and X

tq
¡L(S) denote the restriction of ytq and

Xtq(S) respectively to their ¯rst (L¡ 1) coordinates. We also assume that, for some
real number q¤ 2 (0; 1], the marginal utility of the Lth commodity, for all su±ciently
large amounts of the commodity, is greater than or equal to q¤:

(A.3) ( q¤-comprehensiveness): For good L and all participants (t; q) 2 Nm there is
a positive real number ! such that !tqL ¸ ! > 0 (everybody is endowed with
the Lth good). Moreover, for any state of the economy (yS ; ®S) we have :

(a)Xtq(S) = Xtq
¡L(S)£R+ (the consumption set is separable and the projection

of the Lth coordinate is R+),

(b) utq(ytq; ®S ;S) = utq¡L(ytq¡L; ®S ;S)+utqL (ytqL ; ®S;S) for some functions utq¡L(¢; ¢)
and utqL (¢; ¢) (utility is separable),
(c) for a real number q¤; 0 < q¤ · 1; for all players (t; q) the marginal utility of
the (t; q)thplayer for the Lth good on the range (!

2
;1) is between q¤ and 1.

Assumption (A.3) ensures that the remainder players can be \paid o®," (at the rate
q¤) so that they cannot pro¯tably joint improving coalitions. Alternatively, it could
simply be assumed that utility functions are linear in one commodity. (That is,
utq(xtq; ®S ;S) = utq¡L(x

tq
¡L; ®

S ;S) + xtqL :) This implies q¤-comprehensiveness of the
game derived from the economy. Then the next result follows from Theorem 3.

Proposition 3. Non-emptiness of the (" + ± + ¯)-core. Assume that (A.00),
(A.10), (A.2) and (A.3) hold. Given " > 0; there exists an integer ´2("; T; B;C; q¤;!)
such that if m; the pro¯le of the economy, satis¯es kmk ¸ ´2("; T; B; C; q¤;!) then
the ("+ ± + ¯)-core of the economy is non-empty.

4.2 Further applications.

The class of economies de¯ned above is very broad. The results can be applied to
extend results already in the literature on economies with coalition structures, such
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as those with local public goods (called club economies by some authors), cf., Shubik
and Wooders (1982,1997).
For example, there are a number of papers showing core-equilibrium equivalence

in ¯nite economies with local public goods and one private good and satisfying strict
e®ectiveness of small groups, cf., Conley and Wooders (1998) and references therein.
In these economies, from the results of Wooders (1983) and Shubik and Wooders
(1983), existence of approximate equilibrium where an exceptional set of agents is
ignored is immediate. (Just take the largest subgame having a non-empty core and
consider the equilibria for that subeconomy; ignore the remainder of the consumers.)
Our results allow the immediate extension of these results to results for all su±ciently
large economies { no restriction to replication sequences is required.

5 Mathematical foundations.

5.1 Partition-balanced pro¯les.

This section formalizes some key ideas about pro¯les that underlie the non-emptiness
of approximate cores of large games. Throughout this section, let the number of types
of players be ¯xed at T . Thus, every pro¯le f has T components and f 2 RT . Our
key de¯nitions follow.

B{partition-balanced pro¯les. A pro¯le f is B-partition-balanced if any game (N; V ) 2
Gq((0; T ); (0; B)) where the pro¯le of N is f (that is, jN [i]j = fi for any i = 1; ::; T )
has a nonempty core.

replicas of a pro¯le. Given a pro¯le f and a positive integer r; the pro¯le rf is called
the rth replica of f:

The Lemma below is a very important step. It states that, for any pro¯le f; there
is a replica of that pro¯le that is B-partition-balanced. The smallest such replication
number is called the depth of the pro¯le. Note that the depth of a pro¯le depends on
the pro¯le.

Lemma 1. (Kaneko and Wooders, 1982, Theorem 3.2)13 The balancing
e®ect of replication. Let B be a positive integer and let f be any pro¯le. Then
there is an integer m(f;B); the depth of f , such that, for any positive integer k, the
pro¯le km(f;B)f is B-partition-balanced.

13This type of argument also appears in Wooders (1980,1983) and other papers on approximate
cores. Kaneko and Wooders (1982) highlight the fact that the argument does not depend on knowl-
edge of the structure of payo®s. For a recent discussion and an interesting application of this sort
of result to dynamic matching processes, see Myerson (1991).
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Proof: For q = 0 this result is simply Theorem 3.2 in Kaneko and Wooders (1982),
based on Wooders (1983, Lemma 5) and the technique used there to show nonempti-
ness of approximate cores. (The Kaneko-Wooders collection ¼ of all basic coalitions
consists in our case of all groups bounded in size by B.) For q > 0 only a minor change
in Kaneko- Wooders' proof is needed: If transfers between groups are possible and xS
belongs to the interior of some payo® set VS = cq

³P
k VSk :

n
Sk

o
is a partition of S;

¯̄
¯Sk

¯̄
¯ · B

´
,

then it does not mean (as it is in the case when q = 0) that xsk belongs to the interior
of all Sk: But importantly xsk belongs to the interior of at least one S

k; which is
enough for the argument in the Kaneko-Wooders proof. (Informally, if some transfers
are required between groups to support the point xS there must be nonpositive net
transfers to at least one Sk and this coalition Sk can improve.)]
Alternatively, the result stated above can be obtained from Wooders (1983, Lem-

mas 2,5,6,7 and Theorem 3).

The following concept of "-B-partition-balanced pro¯les completes our construction.

"-B-partition-balanced pro¯les. Given a positive integer B and a non-negative real
number "; 0 · " · 1; a pro¯le f is "-B-partition-balanced if there is a subpro¯le f 0 of
f such that kf

0k
kfk ¸ 1¡ " and f 0 is B{partition-balanced.

The next result is key: given " > 0 and B; any su±ciently large pro¯le is "-B-
partition-balanced. Note that this result is uniform across all large pro¯les.

Proposition. The balancing e®ect of large numbers. Given a positive integer
B and a positive real number "; 0 < " · 1; there is a positive integer k("; B) such
that any pro¯le f with kfk ¸ k("; B) is "-B-partition-balanced.

The idea of the proof: Lemma 1 provides a way to replicate a pro¯le that ensures "-
B-partition-balancedness of the resulting replica. The manner of replication depends
on the initially given pro¯le. Using Lemma 1, however, for any given " we can
construct a number of \small" pro¯les that, when appropriately replicated, create
B-partition-balanced replicas that \"-approximate" all su±ciently large pro¯les. The
proof is presented in Appendix.

5.2 Mathematical examples.

In the following example we enlarge the player set of a given game so that the number
of players of each type is arbitrary and illustrate the application of Theorem 1.

Example 1. Let (N; V ) be a game satisfying comprehensiveness. Suppose jN j = T:
We construct a collection of games with T player types and strictly e®ective
group sizes bounded by B = T: The games are indexed by m 2 ZT+: Given a
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vector m de¯ne Nm[t] = f(t; q) : q = 1; :::;mtg and de¯ne Nm =
S
Nm[t]: Next,

de¯ne a characteristic function Vm in the following way. Let S be any coalition
in Nm containing no more than one player from each set Nm[t] and let S 0 be a
subset of N with the same pro¯le. Formally, let ¿ be a type-consistent 1-to-1
correspondence between S and S 0: De¯ne a payo® set VmS for a coalition S as
follows:

VmS := V¿(S)

That is, any coalition S of players in Nm with the same pro¯le as some coalition
S 0 of players in N has the same payo® possibilities as S 0. The function Vm is
extended to the remaining coalitions in Nm by superadditivity. Speci¯cally, for
any S ½ Nm;

Vm(S) :=
[

P(S)

X

S02P(S)
Vm(S

0)

where P(S) is a partition of S with the property that jS 0 \N [t]j · 1 for all
members S 0 of the partition: The game (Nm; Vm) satis¯es the condition on the
class of games of Theorem 1.

Theorem 1 implies that given " > 0 there is a size of game ´1("; T; B) such
that for all possible choices of m, if kmk = jNmj ¸ ´1("; T; B) then the game
(Nm; Vm) has a non-empty "-remainder core. But the theorem implies more;
the bound ´1("; T; B) is independent of the initial characteristic function V . To
clarify this remark, let (N;V 0) be another game with the same player set as
(N; V ) but there is no necessary relationship between V and V 0: Then for all
possible choices of m, if kmk = jNmj ¸ ´1("; T; B) then the game (Nm; V 0m) has
a non-empty "-remainder core where V 0m is de¯ned from V 0 just as Vm was
de¯ned from V .

The following example continues Example 1 and illustrates the application of
Theorem 2.

Example 2. Let ¹ > 0 be real number and let B and T be positive integers.
Consider the collection of games (Nm; Vm) de¯ned in Example 1. Given a pro-
¯le m 2 ZT+ with kmk ¸ ´1("; T;B) consider a superadditive game (Nm;Wm)
satisfying the following properties:

Vm(S) ½ Wm(S) ½ Vm(S) +~1Nm¹ for all S ½ Nm:

For the game (Nm;Wm) it may be that none of the players are exact substitutes
for each other and it may be that there are increasing returns to group size. The
games (Nm;Wm); however, are members of the class G

0((¹; T ); (¹;B)) and our
Theorem applies. Given " > 0 the bound ´1("; T; B); depending only on "; T;
and B; has the property that if the game Nm has more than ´1("; T; B) players
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the ("; 2¹)-weak core of the game is non-empty. The result of the Theorem
applies uniformly to all games (Nm; Vm) derived from a game (N; V ) that has
T types of players and strictly e®ective groups bounded in size by B:

Besides replica games, or indeed, any game with a ¯xed number of player types
and a bound on near e®ective group sizes, our third theorem can accommodate games
derived from pregames with a compact metric space of player types. The following
example for games with side payments illustrates how our result can apply to such
situations. For brevity, our example is somewhat informal.

Example 3. Consider the collection of games Gq((±; T ); (¯;B)) where q = 1; T = 8;
± = 1=4; B = 4; ¯ = 0 and where the games all have a per capita bound of
C = 2: We illustrate how our results cover games derived from pregames with
a compact metric space of player types.

Suppose a pregame has two sorts of players, ¯rms and workers.14 The set of
possible types of workers is given by the points in the interval [0; 1) and the set
of possible types of ¯rms is given by the points in the interval [1; 2] :

To derive a game from the information given above, letN be any ¯nite player set
and let » be an attribute function, that is, a function from N into [0; 2]. If »(i) 2
[0; 1) then i is a worker and if »(i) 2 [1; 2] then i is a ¯rm. Firms can pro¯tably
hire up to three workers and the payo® to a ¯rm i and a set of workers W (i) ½
N , containing no more than 3 members, is given by v(fig S

W (i)) = »(i) +P
j2W (i) »(j): Workers and ¯rms can earn positive payo® only by cooperating

so v(fig) = 0 for all i 2 N . For any coalition S ½ N de¯ne v(S) as the
maximum payo® the group S could realize by splitting into coalitions containing
either workers only, or 1 ¯rm and no more than 3 workers. This completes the
speci¯cation of the game.

We leave it to the reader to verify that every game derived from the pregame
is a member of the class G1((1

4
; 8); (0; 4)) and has a per capita bound of 2. Our

theorem states that given " > 0; if jN j ¸ ´2("; 8; 4; 2; 1) then the game (N; v)
has a non-empty ("+ 1

4
)-core. In fact, the Theorem states this conclusion for an

arbitrary game (N; V ) described by the same parameter values, T = 8; B = 4;
± + ¯ = 1

4
; C = 2 and q = 1:

The following three examples illustrate that none of the assumptions of Theo-
rem 3 can be omitted. The ¯rst two examples show that within the framework of
parametrized collections of games, the equivalence of small group e®ectiveness and
per capita boundedness that occurs when there are many players of each type, shown

14We refer the reader to Wooders and Zame (1984) or Wooders (1992) for a de¯nition of a pregame
with a compact metric space of player types.
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in Wooders (1994b) for games with side payments, no longer holds; both small group
e®ectiveness and per capita boundedness are required. Example 5 also shows that
the non-emptiness of approximate cores of games derived from a pregame satisfying
small group e®ectiveness and with a compact metric space of player types, shown in
Wooders (1992), does not hold for arbitrary games.

Example 4. Small group e®ectiveness. Consider a sequence of games (Nm; vm)1m=1
with side payments and where the mth game has 3m players. Suppose that any
coalition S consisting of at least 2m players can get up to 2m units of payo®
to divide among its members, that is, vm(S) = 2m. Assume that if jSj < 2m;
then vm(S) = 0. Observe that each game has one exact player type and a per
capita bound of 1. That is, q = 1; T = 1; C = 1; and ± = 0: However, the 1

7
-core

of the game is empty for arbitrarily large values of m:

For any feasible payo® there arem players that get in total no more than 2m
3m
m =

2
3
m: There are another m players that get in total no more than 2m

2m
m = m:

These 2m players can form a coalition and receive 2m in total. This coalition
can improve upon the given payo® for each of its members by 1

6
; since (2m ¡

5
3
m) 1

2m
= 1

6
:

Example 5.15 The per capita bound. Consider a sequence of games with side
payments (Nm; vm)1m=1 where the m

th game has 2m+ 1 players: Assume that
any player alone can get only 0 units or less, that is vm(fig) = 0 for all i 2 N .
Also assume that any two-player coalition can get up to 2m units of payo® to
divide; vm(S) = 2m if jSj = 2. An arbitrary coalition can gain only what it
can obtain in partitions where no member of the partition contains more than
two players. The games (Nm; vm)1m=1 are members of the collection of games
with one exact player type and strictly e®ective small groups of two. That is,
q = 1; T = 1; B = 2; and ± = ¯ = 0: However, the 1

7
-core of the game is empty

for arbitrarily large values of m:

To see this, observe that for any feasible payo® there is a player whose payo® is
no more than 2m2

2m+1
: There is the another player whose payo® must be no more

than 2m2

2m
= m: These two player may form a coalition and realize 2m: Thus they

gain m¡ 2m2

2m+1
= m

2m+1
¸ m

3m
= 1

3
: Obviously, together this two-player coalition

can improve upon the given payo® by 1
6
for each member of the coalition:

The ¯nal example motivates the requirement of some transferability of payo®,
and, in this paper, the condition of Theorem 3 that q is greater than zero.

Example 6. The positivity of q. Consider a sequence of games without side pay-
ments (Nm; V m)1m=1 where the m

th game has 2m + 1 players: Suppose that

15A similar example in Wooders and Zame (1984).
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any player alone can earn only 0 units or less. Suppose that any two-player
coalition can distribute a total payo® of 2 units in any agreed-upon way, while
there is no transferability of payo® between coalitions. Suppose only one- and
two-player coalitions are e®ective. Then the game is described by the following
parameters: q = 0; T = 1; B = 2; ± = ¯ = 0: Moreover, the game has per capita
bound C = 1: Thus the game satis¯es strict small group e®ectiveness and per
capita boundedness. However, the 1

3
-core of the game is empty for arbitrarily

large values of m: (At any feasible payo®, at least one player gets 0 units and
some other player no more than 1 unit. These two players can form a coalition
and gain 1

2
each.)

6 Conclusions.

Except in certain idealized situations, cores of games are typically empty. This has the
consequences that important classes of economies typically have empty cores and a
competitive equilibrium does not exist. Examples include economies with indivisibil-
ities and other nonconvexities, economies with public goods subject to crowding, and
production economies with non-constant returns to scale. The standard justi¯cation
for convexity, assumed in Arrow-Debreu-McKenzie models of exchange economies, is
that the economies are \large," rendering nonconvexities negligible { the convexifying
e®ect of large numbers. Similarly results on non-emptiness of approximate cores rely
on large numbers of players and the balancing e®ect of large numbers. An important
aspect of our results in this paper is that they are for arbitrary games and the bounds
depend on the parameters describing the games; the compact metric space of player
types assumed in previous work is a special case. Moreover, our approach allows both
widespread externalities and uniform results.
It appears that the framework of parametrized collections of games and our ap-

proach will have a number of uses. In ongoing research this framework is used to
demonstrate further market-like properties of arbitrary games16: approximate cores
are nearly symmetric { treat similar players similarly; arbitrary games are approxi-
mately market games; and arbitrary games satisfy a \law of scarcity," dictating that
an increase in the abundance of players of a given type does not increase the core
payo®s to members of that type. In addition, some initial results have been obtained
on convergence of cores and approximate cores. A particularly promising direction
appears to be the application of ideas of lottery equilibrium in games of Garratt and
Qin (1994) to parameterized collections of games. Another possible application is
to games with asymmetric information, as in Allen (1994), for example, and Forges

16See Shapley and Shubik (1966,1969) for seminal results of this nature and Wooders (1994a,b) for
more recent references to related results in the context of pregames and economies with clubs/local
public goods.
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(1998).17

7 Appendix.

A technical lemma is required. Denote by k¢k the sum-metric in RT , that is, for
x; y 2 RT ; kx¡ yk := P

i jxi ¡ yij. For any positive integer ´; de¯ne

4[´] :=
n
x 2 4+ : ´x 2 ZT+

o
:

Lemma 2. For each " > 0 there exists a positive integer ´(") such that for any
f 2 RT

+ there is a vector g 2 RT
+ satisfying g · f; kfk ¡ kgk = kf ¡ gk · " kfk and

g
kgk 2 4[´(")]:

Proof of Lemma 2: Let us ¯rst prove that for ´(") > T
"
we have that (1 + ")4+ ½

4[´(")] + " 4+: Consider any a = (a1; ::; aT ) 2 (1 + ")4+: (That is
PT
i=1 ai = 1 + "

and ai ¸ 0 for each i = 1; ::; T:) Let us de¯ne Ik 2 RT such that Ikl = 1 for k = l
and 0 otherwise. Notice that Ik 2 4[´(")] for any k: If there exist j such that aj ¸ 1;
then (a¡ Ij) 2 " 4+ and thus a = I

j + (a¡ Ij) 2 4[´(")]+ " 4+: If aj < 1 for any j;

then let us consider aj =
lj
´(")
+ rj , where lj is an integer, lj < ´("); and 0 · rj <

1
´(")
:

Then

a = (a1; ::; aT ) 2 ( l1
´(")

; ::;
lT
´(")

) +
T

´(")
4+ ½ 4[´(")] +

T

´(")
4+ ½ 4[´(")] + "4+:

Now given a pro¯le f , observe that f
kfk 2 4+ ½ (4[´(")] + " 4+)

1
1+"
: Therefore

there exists h 2 1
1+"

4[´(")] such that
f
kfk 2 (fhg + "

1+"
4+): Now, de¯ne g := h kfk :

Then g · f and, by construction, g
kgk = (1 + ")h 2 4[´(")]: Moreover

kfk¡kgk
kfk =

1¡ 1
1+"

= "
1+"

< ":

Proof of Proposition: Given a positive integer ´; we ¯rst de¯ne an integer that
will play an important role in the proof. Arbitrarily select x 2 4[´] and de¯ne
y(x) := ´x 2 ZT+: Since y(x) is a pro¯le, by Lemma 1 there is an integer m(y(x); B)
such that for any integer k the pro¯le km(y(x); B)y(x) is B-partition-balanced: There
exists such an integer m(y(x); B) for each x 2 4[´]: Since 4[´] contains only a ¯nite

number of points, there is a ¯nite integer M(´;B) such that M(´;B)
m(y(x);B)

is an integer
for any x 2 4[´]:

17We are grateful to Francoise Forges for pointing out this possible application.
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By Lemma 2, given "
2
> 0; there exists a positive integer ´0 := ´( "

2
); such that for

any f 2 RT
+ there exists a vector g 2 RT

+ satisfying

g · f;
kfk ¡ kgk = kf ¡ gk · "

2
kfk and

g
kgk 2 4[´0]:

Arbitrarily select f 2 RT
+ and let g 2 RT

+ be a vector satisfying the above condi-
tions. De¯ne y¤ := ´0 gkgk . Since

g
kgk 2 4[´0]; it holds that y¤ 2 ZT+: Therefore y¤ is a

pro¯le. Moreover, by the choice of M(´0; B); the kM(´0; B)th-replica of the pro¯le y¤

is B-partition-balanced for any integer k:
Observe that there is an integer k0; possibly equal to zero, such tha

k0M(´0; B)y¤ · g < (k0 + 1)M(´0; B)y¤:

De¯ne
f 0 := k0M(´0; B)y¤ = k0M(´0; B)´0

g

kgk:

Obviously, f 0 is a pro¯le (f 0 2 ZT+) and f 0 · g · f: Suppose that k0 > 0: Then

f 0

kf 0k =
g

kgk and kgk ¡ kf 0k = kg ¡ f 0k ·M(´0; B)´0:

Moreover, the pro¯le f 0 is B-partition-balanced since it is a replica of the pro¯le y¤:
Now, de¯ne k(¯;B) :=M(´0; B)´0 2

"
: If kfk ¸ k(¯;B); then

k0 > 0; f 0 · g · f ,
kf ¡ gk · "

2
kfk ; and

kg ¡ f 0k ·M(´0; B)´0 · "
2
kfk :

Therefore kfk ¡ kf 0k = kf ¡ f 0k · " kfk : Thus f 0 is a subpro¯le of f , kf 0kkfk ¸ 1¡ ";
and f 0 is B-partition-balanced.

Proof of Theorem 1: Fix the number of types T and consider the bound k("; B)
from Proposition. Let ´1("; B; T ) := k("; B): Let (N; V ) be a game with jN j ¸
k(";B). Denote the pro¯le of N by f: By Proposition, f is "-B-partition-balanced.

That is, there is a B-partition-balanced subpro¯le f 0 of f such that kf 0k
kfk ¸ 1 ¡ ":

Now select some S ½ N such that jS [i]j = f 0i for any i = 1; ::; T: Then jN j¡jSj
jN j · "

by choice of S and the subgame (S; V ) has a non-empty core. Thus the "-remainder
core of (N; V ) is non-empty.

Proof of Theorem 2: For any S ½ N de¯ne V 0(S) :=
T
¾¡1¿ (V (¿ (S))); where

the intersection is taken over all type-preserving permutations ¿ of the player set
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N . Then (N; V 0) 2 Gq((0; T ); (¯;B)). Moreover, from the de¯nition of V 0(S) it fol-
lows that V 0(S) ½ V (S): (Informally, taking the intersection over all type-preserving
permutations makes all players of each approximate type no more productive than
the least productive members of that type.) From the de¯nition of ±-substitutes, it
follows that H1[V 0(S); V (S)] · ± for any S ½ N .
Now for any S ½ N , de¯ne V q(S) := cq(V

0(S;B)). Then (N; V q) 2 Gq((0; T ); (0; B)).
Moreover, V q(S) ½ V 0(S) ½ V (S) and H1[V q(S); V (S)] · H1[V q(S); V 0(S)] +
H1[V 0(S); V (S)] · ¯ + ±.
By Theorem 1, if jN j ¸ ´1("; T; B) then the "-remainder core of the game (N; V q)

is non-empty. That is, there exists S ½ N such that jN j¡jSjjN j · " and such that (S; V )

has a non-empty core. Let x be a payo® in the core of the game (S; V q). Since
V q(S) ½ V (S), the payo® x is feasible and (¯+ ±)-undominated for the game (S;V ).
Thus, the weak ("; (¯ + ±))-remainder core of (N; V ) is non-empty.

Proof of Theorem 3: As in the proof of Theorem 2 ¯rst construct the game
(N; V q) 2 Gq((0; T ); (0;B)). As noted in the proof of Theorem 2, V q(S) ½ V (S) and
H1[V q(S); V (S)] · ¯ + ± for any S ½ N . In addition, the game (N; V q) has a per
capita bound of C. We required that 2(¯ + ±) < m¤. Assume ¯rst that 2" · m¤:
Thus ("+ ¯ + ±) < m¤.
Applying Theorem 1 for "0 := q

BC
" to the game (N;V q) we found that for jN j ¸

´1("0; B; T ) there is some subset of players S ½ N with jN j¡jSj
jN j · "0 such that the

game (S; V q) has a non-empty core. Let x be a payo® in the core of (S; V q). We now
construct a payo® y 2 RN for the game (N; V ): For a 2 S, de¯ne ya := xa ¡ " and
for a =2 S, de¯ne ya := BC ¡ ". Observe that y is in the "-core of the game (S; V q).
We next need to show that y 2 V q(N). Since jN j¡jSj

jN j · "0 = q
BC
", it holds that

q" jN j ¸ BC(jN j ¡ jSj):

Since q · 1, it follows that

q" jSj ¸ (BC ¡ ")(jN j ¡ jSj):

Informally, this means that we can take " away from each player in S, transfer
this amount to the players in NnS at the rate q; and increase the payo® to each
player in NnS to BC ¡ ": Therefore since x 2 V q(S); by superadditivity and by
q-comprehensiveness of payo® sets it holds that y 2 V q(N ).
We now prove that the payo® y is "-undominated in the game (N; V q). The strat-

egy of the proof is to show that if y is "-dominated in the game (N; V q) then it can be
"-dominated by some coalition (to be called) A ½ S:We thus obtain a contradiction.
The proof proceeds through two steps.
The ¯rst step is to construct the coalition A. Suppose that y is "-dominated in the

game (N;V q) by some coalition W: Speci¯cally, suppose there exists a payo® vector
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z such that
z 2 V q(W ) = cq(V q(W ;B)) and

zW >> yW +~1W ":

Since z 2 V q(W ) there exists some partition
n
W k

o
of W;

¯̄
¯W k

¯̄
¯ · B and some payo®

z0 2 P
k V

q(W k) such that z can be obtained from z0 by making \transfers" at the
rate q between agents in W: Let

A :=
[ n

W k :W k ½ S
o
and let AL :=

[ n
W k :W knS 6= ;

o
;

that is, A consists of those members of subsets in fW kg that are contained in S and
AL consists of those members of subsets of fW kg that contain at least one player
from NnS:
The second step is to show that the set A is non-empty and can "-dominate the

payo® y. Since y is in the "-core of the subgame (S;V q) it is clear that the coalitionW
must contain at least one member of NnS; therefore the set AL must be non-empty.
Observe that for any W k ½ AL and x0 2 V q(W k); it holds that

P
a2Sk x

0
a · BC:

There exists, however, a 2 W knS such that za >> ya + " = BC: Thus, z can be
feasible in V q(W ) only by some transfers from the players in the set A to the players
in the set AL: This implies that the set A is non-empty. Moreover the coalition A is
not a net bene¯ciary of transfers needed to support the payo® z: This implies that
there is a payo® z00 2 V q(A) such that for all players a 2 A;

z00a ¸ za > ya + ":

Since A ½ S; this is a contradiction to the construction of y as a payo® in the "-core
of the game (S; V q): We conclude that y is "-undominated in the game (N; V q).
Since the payo® y is "-undominated in the game (N; V q), for jN j ¸ ´1(

q
BC
";B; T )

the payo® y is in the "-core of the game (N; V q). This implies that y is feasible and ("+
¯ + ±)-undominated in the initial game (N; V ), providing that jN j ¸ ´1(

q
BC
"; B; T ).

Let ´2(";B; T; C; q) := ´1(
q
BC
"; B; T ). Thus, we proved that for jN j ¸ ´2("; B; T; C; q)

the ("+ ¯ + ±)-core of the game (N; V ) is non-empty.
For " > m¤

2
let us de¯ne ´2("; B; T; C; q) := ´2(

m¤
2
;B; T;C; q). Then for jN j ¸

´2("; B; T; C; q) again the ("+ ¯ + ±)-core of the game (N; V ) is non-empty.
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