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We study interactive situations in which players are boundedly ra-

tional. Each player, rather than optimizing given a belief about the

other players’ behavior, as in the theory of Nash equilibrium, uses

the following choice procedure. She first associates one consequence

with each of her actions by sampling (literally or virtually) each of

her actions once. Then she chooses the action that has the best

consequence. We define a notion of equilibrium for such situations

and study its properties. (JEL C72)
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Economists’ interest in game theory was prompted by dissatisfaction with

the assumption underlying the notion of competitive equilibrium that each

economic agent ignores other agents’ actions when making choices. Game

theory analyzes the interaction of agents who “think strategically”, making

their decisions rationally after forming beliefs about their opponents’ moves,

beliefs that are based on an analysis of the opponents’ interests.
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While game theory departs in this way from the theory of competitive

equilibrium, the two theories share some basic assumptions. First, each player

in a game, like each agent in a competitive market, is a fully rational decision-

maker: she has well-defined preferences, and chooses her best strategy accord-

ing to these preferences, given her environment (defined by the prices in a

competitive equilibrium and the other players’ strategies in a game). Second,

a player in a game and an agent in a competitive market comprehends the

situation she faces: she understands how the outcome depends on her action

and her environment. Third, the interpretation of many game theoretic so-

lution concepts (Nash equilibrium included) requires that, as in the theory

of competitive equilibrium, when choosing an action each player knows the

relevant environmental parameters. A player does not deduce the other play-

ers’ actions from a theory of how these players behave, but is assumed, in

equilibrium, simply to know these actions.

Unease with these assumptions shared by game theory and the theory of

competitive equilibrium has arisen both because the assumptions are incon-

sistent with evidence about human decision-making (see, for example, Colin

Camerer’s 1995 survey) and because models that embody them appear to

be incapable of fully explaining phenomena like advertising, incomplete con-

tracts, the consulting industry, and the variety of performances of agents with

the same preferences and information, a variety that appears to be due to

differences in cognitive skills. This unease has led some researchers, notably

Herbert A. Simon (see for example 1955, 1982), to construct models in which

the players are “boundedly rational”.

In this paper we join game theory with a model of boundedly rational de-

cision making. We construct a static model of an interacting set of players,

each of whom uses a decision-making procedure that departs systematically

from the tenets of “rationality”. We assume, as in standard game-theoretic

models, that a player makes choices on the basis of an association between her

actions and outcomes. In the standard models a rational player forms such an

association from a belief about the other players’ actions and her understand-

ing of the consequence of each action profile. We assume, by contrast, that a

player constructs an action–consequence correspondence directly, in a manner
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we describe below. Each player either does not know the relationship between

the other players’ actions, her own action, and the outcome, or does not ap-

preciate its significance. We consider the characteristics of an equilibrium in

which each player’s association of consequences with actions is consistent with

all the players’ behavior. Two examples illustrate the idea.

You are new to town and are planning your route to work. How do you

decide which road to take? You know that other people use the roads, but have

no idea which road is most congested. One procedure is to try each route once

(or several times) and then permanently adopt the one that was (on average)

best. The outcome of this procedure is stochastic: you may sample the route

that is in fact the best on a day when a baseball game congests it. Once you

select your route, you become part of the environment that determines other

drivers’ choices.

You have to bargain and must choose whether to be tough or soft. Your

decision depends on the consequence you perceive for each strategy. You may

base your perception on your experience in similar situations. This experience

may have taught you, for example, to associate victory with toughness and

defeat with softness, or the reverse, or it may have taught you that the outcome

is independent of your bargaining stance. Our approach assumes that your

perceptions reflect the equilibrium behavior of the various potential bargainers,

behavior that may lead other bargainers, who have had different experiences,

to different conclusions.

The simplest version of our model applies to a situation in which there are

two players, each player’s set of actions is A, and each player’s payoff is u(x, y)

when she chooses x ∈ A and her opponent chooses y ∈ A. The solution we

study is a probability distribution α∗ on A with the property that α∗(x) is

the probability that a player finds the action x to be the best (breaking ties

equi-probably) when she samples each action once and her opponent’s action

is determined by α∗. We refer to such a probability distribution α∗ as an S(1)-

equilibrium. (Later in the paper we consider asymmetric two player games

and extensive games, as well as procedures in which each player samples each

action many times, rather than only once.)
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EXAMPLE 1: Suppose that each player has two actions, a and b, and payoffs

as given in the following table. A row corresponds to a player’s action, and a

column to one of her opponent’s actions. For example, if a player chooses the

action a and her opponent chooses the action b then the player’s payoff u(a, b)

is 4.
a b

a 2 4

b 3 1

Denote by α(x) the probability that a player’s action is x, for x = a, b. When

she samples a, a player obtains the payoff 2 with probability α(a) and the

payoff 4 with probability α(b); when she samples b, she obtains the payoff

3 with probability α(a) and the payoff 1 with probability α(b). Thus her

payoff when she samples a exceeds her payoff when she samples b if and only

if either her opponent’s action is b when she samples a (in which case a is

better than b regardless of her opponent’s action when she samples b), or

her opponent’s action is a when she samples a and b when she samples b.

Thus after she samples each of her actions once, the probability that the

outcome she associates with a is superior to the outcome she associates with

b is α(b) + α(a)α(b). In an S(1)-equilibrium this probability is equal to the

probability α(a) that a player chooses a. Thus in an S(1)-equilibrium α(a) =

α(b)+α(a)α(b) = 1−α(a)+α(a)(1−α(a)), so that α(a) = 1
2
(
√

5− 1) ≈ 0.62.

�

EXAMPLE 2: If the payoffs are given in the following table

a b

a 4 1

b 3 2

then the probability that the outcome a player associates with a is better than

that she associates with b is α(a), the probability that when she samples a her

opponent chooses a. Thus every distribution α is an S(1)-equilibrium. �

In what circumstances might a player choose her action using the proce-

dure we assume? Suppose that her information about the structure of the
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interaction in which she is involved is poor: she knows her set of actions (the

set of routes she could take, in the route-planning example), but little else.

The standard approach calls for her to form beliefs about the various uncer-

tainties she faces (her payoffs, the number of other players, the other players’

actions, . . . ). Under conditions of poor information, it seems more natural for

her to act on the basis of a direct link between actions and consequences, a

link she may construct by trying each action once, for example. Indeed, if she

does not even know how her own payoffs depend on all the players’ actions,

then sampling her actions seems her only sensible alternative. If her informa-

tion is better, she may still be attracted to such a procedure—she may, for

example, fail to recognize the connection between her action, her opponents’

actions, and an outcome of the game—in which case she exhibits “bounded

rationality”.

We suggest two interpretations for an S(1)-equilibrium.

Experimentation. There is a large population of individuals, pairs of whom

are occasionally matched and interact. When entering the population, a player

chooses her action after sampling each alternative once, picking the action

that yields the highest payoff. An equilibrium corresponds to a steady state

in which the probability that a new player chooses any given action is equal to

the fraction of the population that currently chooses that action. Although the

model is static, under this interpretation the equilibrium we study is defined

by the property that entry into the population has no effect on the distribution

of actions.

Virtual experimentation. A player tries to connect actions with consequences.

She does not know her opponent’s behavior or the consequence of any pair of

actions, but uses some mental process to construct an association of conse-

quences with actions. Possible inputs into this process include, for example,

the player’s experience in similar games, her observations of other players, and

information learned in school. The process may yield random results, but is

not arbitrary. For example, a player does not conclude that the action a yields

the consequence c if no player in such a situation ever takes an action b for

which f(a, b) = c, where f(a, b) is the consequence of the action pair (a, b). We
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assume, in fact, that the process yields an action–consequence relationship that

is correct, given the other player’s behavior. (This assumption is analogous to

the assumption in the theory of Nash equilibrium that a player’s belief about

the other player’s mixed strategy is correct.) Precisely, a player associates the

consequence c with the action a with probability πa(c|α∗) =
∑

{b:f(a,b)=c} α∗(b)

when the other player’s action is determined by the probability distribution α∗.

Under this interpretation, an equilibrium is a probability distribution α∗ on A

such that for each action a, α∗(a) is the probability that a yields the highest

expected payoff when the probability that a player associates the consequence

c with a is πa(c|α∗).

A variant of the first interpretation is that a player obtains information

about the consequences of her actions by observing other players’ experience,

rather than by trying actions herself. A difficulty with this variant is that

some actions may not be taken by any player. Nevertheless, the variant is

appropriate for cases in which every action is taken by some player.

Our approach contrasts with the conventional game theoretic notion of

Nash equilibrium. According to the notion of Nash equilibrium, each player

constructs a probabilistic belief about the consequences of her actions by first

constructing a probabilistic belief about the other player’s behavior and then

choosing the action that yields the best distribution of consequences according

to her preferences. The Nash equilibrium requirement is that the belief be

consistent with the other player’s behavior.

We retain the assumption that each player constructs a probabilistic belief

about the consequences of her actions and takes an action that is best given

these beliefs. We also retain the equilibrium principle: the beliefs are consis-

tent with the other player’s behavior. But our analysis differs in a key respect

from that of Nash equilibrium: each player associates a consequence with each

action independently. She does not derive her action from a single conjecture

about the other player’s behavior, as in the theory of Nash equilibrium. To

appreciate this point, note that our solution differs from one in which a player,

in order to determine her action, selects a single representative action for her

opponent, on the basis of which she compares the outcome of her own actions.

Such a procedure, unlike the one we study, requires that a player recognize
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the connection between her action, her opponent’s action, and an outcome of

the game.

The boundedly rational decision-making procedure embodied in the notion

of S(1)-equilibrium is one of many possible procedures. Why does our model

have appeal?

Interpretability. Our solution concept has natural interpretations. In the

two interpretations we have presented, it requires each player to know much

less about the interaction than does Nash equilibrium: each player must know

only her own set of actions.

Tractability. The solution concept may be applied to a variety of games.

Although the calculation of the S(1)-equilibria of a two-player symmetric game

involves solving a system of k − 1 polynomial equations of degree k (where k

is the number of actions), for all the examples we present, the equilibria may

be easily analyzed.

Gradations of reasoning. A natural generalization of the decision-making

procedure used by players in an S(1)-equilibrium is that in which each player

samples each of her actions K times, rather than only once. The larger the

value of K, the more detailed the players’ reasoning processes. Thus for any

given game we can examine how the outcome depends on the players’ sophis-

tication.

Discrimination. In interesting examples, the set of S(1)-equilibria is small;

in some cases it is smaller than the set of Nash equilibria.

Two related lines of research also span game theory and bounded ratio-

nality. The literature on games and automata (especially that concerning

repeated games) models the idea that more complex strategies are more costly

to use. Players behave rationally, but explicitly consider the complexity costs

when choosing a strategy. (This literature is surveyed in Rubinstein (1998,

chs. 8 and 9).) In the literature on evolutionary game theory, players do not

explicitly deliberate; rather, each player’s action is determined by an auto-

matic behavioral rule that may change over time as a result of evolutionary
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forces. The theory explores the implications of such automatic behavior and

relates the outcomes to those that emerge under conventional game theoretic

solution concepts.

In Section I we describe the model in detail and provide a handful of appli-

cations to symmetric two-player games. We extend the model to asymmetric

games in Section II, and discuss the appropriateness of applying the solution

concept to extensive games in Section III. We study the S(K)-equilibrium

concept and compare its limit (as K goes to infinity) with Nash equilibrium in

Section IV. In Section V we define a general solution concept we call procedural

equilibrium that encompasses the notion of S(1)-equilibrium and other solu-

tion concepts that have been proposed in work on game theory and bounded

rationality (in particular those of Robert W. Rosenthal 1989 and Hsiao-Chi

Chen et al. 1997).

I. Symmetric Two-Player Games

Each of two players has a finite set A of actions and obtains the payoff u(a, b)

when she chooses the action a and the other player chooses b. We interpret

the payoff function u as a representation of each player’s ordinal preferences

over the set A × A of outcomes.

Let α be a probability distribution on A. For every a ∈ A, let v(a, α) be the

random variable that yields the number u(a, b) with probability α(b) for each

b ∈ A. Denote by w(a, α) the probability that the action a yields the highest

payoff (a is the “winner”) when each random variable v(x, α) is drawn once,

independently. That is, w(a, α) is the probability that v(a, α) > v(x, α) for

all x plus the weighted sum of the probabilities that a is tied for the highest

realized payoff, with weights equal to the reciprocal of the numbers of tied

alternatives.

DEFINITION 1: An S(1)-equilibrium is a probability distribution α on the

set A of actions with the property that

w(a, α) = α(a) for every action a.
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That is, an S(1)-equilibrium has the following (fixed point) property. Suppose

that for any actions a and b, the probability with which a player associates

the payoff u(a, b) with her action a is the probability that the other player

chooses b, namely α(b). Then α is an S(1)-equilibrium if for each action a the

probability that, given this association, a yields the highest payoff, is precisely

α(a).

Note that an S(1)-equilibrium requires that the model specify each player’s

ranking of all outcomes, whereas the notion of pure Nash equilibrium requires

only each player’s ranking of the outcomes for each fixed action of her oppo-

nent. At the same time, an S(1)-equilibrium does not require any information

about the players’ preferences between lotteries, whereas the notion of a mixed

strategy Nash equilibrium does. In particular, if, for some action y, we add

the same number to u(x, y) for every action x, then the sets of pure and mixed

Nash equilibria remain the same, while the set of S(1)-equilibria may change.

On the other hand, any change in the payoffs that maintains their order has no

effect on the sets of pure Nash equilibria and S(1)-equilibria, but may change

the set of mixed strategy Nash equilibria.

It is immediate that α is an S(1)-equilibrium in which α(a) = 1 for some

a ∈ A if and only if (α, α) is a strict pure strategy Nash equilibrium.

PROPOSITION 1: Every symmetric game has an S(1)-equilibrium.

PROOF:

Define the function H from the simplex in RA to itself to assign to α

the vector defined by H(α)(a) = w(a, α) for each a ∈ A. This function is

continuous and hence by Brouwer’s fixed point theorem has a fixed point,

which is an S(1)-equilibrium. �

Can a dominated action be used with positive probability in an S(1)-

equilibrium? If a dominates b then b may still do better than a for some

realizations of the other player’s action, so one cannot conclude immediately

that a dominated action is not used.
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EXAMPLE 3: Consider games of the form

a b

a 1 x

b 0 x

in which the action a weakly dominates the action b and a player’s actions tie

if the other player chooses the dominated action. (There are five such games,

differing in the ranking of x relative to 0 and 1.) The action b ties with a if the

outcome (a, b) is associated with a and the outcome (b, b) is associated with b.

The only other cases in which b is a winner are those in which either x ≥ 1,

v(a, α) = 1, and v(b, α) = x, or x ≤ 0, v(a, α) = x, and v(b, α) = 0. Thus in

an S(1)-equilibrium we have 1 − α(a) ≤ 1
2
(1 − α(a))2 + α(a)(1 − α(a)), and

hence α(a) = 1: the only S(1)-equilibrium assigns probability one to a. �

EXAMPLE 4: Consider games of the form

a b

a x 1

b x 0

in which the action a weakly dominates the action b and a player’s actions

tie if the other player chooses the dominating action. (Again, there are five

such games.) The unique symmetric Nash equilibrium action a is not an S(1)-

equilibrium. Denoting p = α(a), the S(1)-equilibria are:

• if x > 1 or x < 0 then p = 1
2
p2+(1−p)2+(1−p)p, so that p = 2−

√
2 ≈ 0.59

• if x = 0 or x = 1 then p = 1
2
p + 1 − p, so that p = 2

3

• if 0 < x < 1 then p = 1 − p + (1 − p)p + 1
2
p2, so that p =

√
3 − 1 ≈ 0.73.

�

While a weakly dominated action may thus be used with positive proba-

bility in an S(1)-equilibrium, a strictly dominated action is never used in an

S(1)-equilibrium of a two-action game by the following argument. Let the

action a strictly dominate the action b. The number u(b, y) is greater than
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or equal to u(a, x) in at most one of the two cases in which x 6= y. Thus for

equilibrium we need 1 − α(a) ≤ α(a)(1 − α(a)), and hence α(a) = 1.

In games with more than two actions, however, strictly dominated actions

may appear with positive probability in S(1)-equilibria.

EXAMPLE 5 (Voluntary exchange): Each of two people has two books. Each

person attaches the value 1 to each of her books and the value 3 to each of the

other person’s books. Exchange is voluntary: each person decides how many

books (0, 1, or 2) to give to her partner, without any commitment to receive

anything in return. Thus the payoff function is given by u(a, b) = 3b + 2 − a,

yielding the game

0 1 2

0 2 5 8

1 1 4 7

2 0 3 6

An S(1)-equilibrium α satisfies

α(0) = α(0)3 + α(1)(1 − α(2))2 + α(2)

α(1) = α(0)α(1)(1 − α(2)) + α(2)(1 − α(2))

α(2) = α(0)2α(1) + α(2)(1 − α(2))2.

One solution is the no exchange equilibrium (α(0), α(1), α(2)) = (1, 0, 0); an-

other solution is (α(0), α(1), α(2)) ≈ (0.52, 0.28, 0.2), in which both dominated

actions are used with positive probability. Thus in an S(1)-equilibrium players

may give away goods without any commitment to receive goods in return. �

Although a weakly dominated action may occur in an S(1)-equilibrium

with positive probability, the following result shows that the probability as-

signed to any such action is less than the probability assigned to any action

that dominates it.

PROPOSITION 2: If the action a weakly dominates the action b then α(a) ≥

α(b) in any S(1)-equilibrium α.

PROOF:
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We need to show that for every probability distribution α on A we have

w(a, α) ≥ w(b, α). Now, for any action y the probability w(y, α) that y is

the winner is the weighted sum of the probabilities that y is the winner over

all possible associations x between the player’s action y and the action xy of

the other player. Precisely, let W (x) be the set of winning actions given the

association x:

W (x) = {z ∈ A : u(z, xz) ≥ u(y, xy) for all y}.

Then

w(y, α) =
∑

x

Pr(x|α)
δ(y,W (x))

|W (x)|
,

where the sum ranges over all possible associations, Pr(x|α) is the probabil-

ity of the association x given the other player’s choices are given by α, and

δ(y,W (x)) is 1 if y ∈ W (x) and 0 otherwise. Now, let x′ differ from x only in

that x′
a = xb and x′

b = xa. The mapping x → x′ is one to one and onto, and

Pr(x|α) = Pr(x′|α). Since a dominates b, if b ∈ W (x) then a ∈ W (x′) and

|W (x′)| ≤ |W (x)|. Thus, w(a, α) ≥ w(b, α). �

EXAMPLE 6 (Duplicated actions): Duplicating actions affects the S(1)-

equilibrium outcome. Consider the game

1 ∙ ∙ ∙ 1 4
...

. . .
...

...

1 ∙ ∙ ∙ 1 4

3 ∙ ∙ ∙ 3 2

where the first action is repeated K times. Denoting by p the equilibrium

probability assigned to the bottom action, we have p = (1−p)K . This equation

has a unique solution since the left-hand side is increasing and the right-hand

side is decreasing. Thus there is a unique S(1)-equilibrium, with a value of p

converging to 0 as K → ∞. �

The following result gives a useful condition for an S(1)-equilibrium to

assign probability zero to an action.
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PROPOSITION 3: If there are distinct actions a and b such that u(a, x) >

u(b, y) for all x and all y 6= b, and an action c with c 6= b such that u(c, b) ≥

u(b, b), then in any S(1)-equilibrium α we have α(b) = 0.

PROOF:

The action b wins over a only if the outcome (b, b) is associated with b.

Even then, if α(b) > 0 the action b does not always win, since with posi-

tive probability the outcome (c, b) is associated with the action c. Thus, for

equilibrium we need α(b) < α(b) if α(b) > 0. Hence α(b) = 0. �

EXAMPLE 7 (Bertrand competition): Two sellers of a good compete for

buyers, each of whose reservation values is 1. The cost of production is 0.

The strategic variable is price. Each consumer buys one unit of the good from

the cheaper seller, splitting her demand if the prices are equal. Denote by

p1, . . . , pK , with 0 < p1 < p2 < . . . < pK < 1, the K possible prices, and

by u(p, p′) the profit of a seller who charges the price p when her opponent

charges the price p′. We have u(p, p′) = 0 if p > p′ and u(p, p′) > 0 if p ≤ p′.

Assume that the price gradations are fine enough that u(pk, pk) < u(pk−1, pk)

for each k.

Letting a = p1, b = pK , and c = pK−1, we conclude from Proposition 3 that

α(pK) = 0 in any S(1)-equilibrium. Continuing by induction we conclude that

the only S(1)-equilibrium assigns probability one to the action p1, the unique

Nash equilibrium price. �

EXAMPLE 8 (Hotelling’s location game): Two rivals compete for the hearts

of a population of 2K +1 people; one person is located at each of the positions

1, . . . , 2K + 1 on a straight line segment. Each competitor chooses a location,

one of the 2K + 1 positions. Each member of the population patronizes the

competitor closest to her; if the competitors are equally distant, she divides

her patronage equally between the two. Thus, for example, K = 2 generates
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the game

1 2 3 4 5

1 5 2 3 4 5

2 8 5 4 5 6

3 7 6 5 6 7

4 6 5 4 5 8

5 5 4 3 2 5

We claim that in any S(1)-equilibrium, α(1) = α(2K+1) = 0. Assume without

loss of generality that α(1) ≥ α(2K + 1). Action 1 is a winner only if in the

outcome associated with it the other player chooses an extreme position, and in

the outcome associated with the middle action both players choose the middle

position. Hence α(1) ≤ [α(1) + α(2K + 1)]α(K + 1)/2 ≤ α(1)α(K + 1), so

that α(1) = 0. An inductive argument implies that the only S(1)-equilibrium

is the pure strategy that attaches probability one to the middle action, which

is also the unique Nash equilibrium action. �

II. Asymmetric Games

The definition of an S(1)-equilibrium may straightforwardly be extended to

situations in which the players’ roles are asymmetric. Let 〈N, (Ai), (ui)〉, be

a strategic game, where N is a finite set of players, Ai is the finite set of

actions of player i, and ui is a payoff function that represents player i’s ordinal

preferences over the set of outcomes. Let α be a profile of mixed strategies.

For each ai ∈ Ai let vi(ai, α−i) be the random variable that, for each a−i, yields

the number ui(a) with probability Πj∈N\{i}αj(aj).

Denote by w(ai, α−i) the probability that the action ai yields the high-

est payoff when each of the random variables vi(x, α−i) for x ∈ Ai is drawn

independently.

DEFINITION 2: An S(1)-equilibrium is a profile α of mixed strategies with

the property that

w(ai, α−i) = αi(ai) for every player i and action ai ∈ Ai.
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That is, an S(1)-equilibrium is a profile α, where αi is a probability distri-

bution over player i’s set of actions, with the following (fixed point) property.

Suppose that for any action profile a, the probability with which player i as-

sociates the payoff ui(a) with her action ai is the probability that the actions

chosen by the other players are given by a−i, namely Πj∈N\{i}αj(aj). Then α

is an S(1)-equilibrium if for every player i and each action ai the probability

is precisely αi(ai) that, given this association, ai yields player i the highest

payoff.

It is easy to verify that Propositions 1 and 2 hold for asymmetric games.

The next example illustrates the notion of S(1)-equilibrium in an asymmetric

game.

EXAMPLE 9 (Choosing reservation values): A seller owns an indivisible

good that she can trade to a buyer; the good is worth 4 to the buyer and

0 to the seller. The seller announces a price and the buyer announces the

maximum price she is willing to pay, where each price is 1, 2, or 3; each player

is committed to her price during a bargaining session. In the bargaining session

the buyer has superior bargaining power; if the buyer’s reservation price is at

least the seller’s price then the good is traded at the seller’s price.

The game is

Seller

Buyer

1 2 3

1 1, 3 1, 3 1, 3

2 0, 0 2, 2 2, 2

3 0, 0 0, 0 3, 1

Every pair (a, a) is a Nash equilibrium. However, the unique S(1)-equilibrium

is (3, 3). To see this, let (α1, α2) be an S(1)-equilibrium. We first argue that

α1(1) = 0 (i.e. the seller announces the price 1 with probability zero). Suppose

to the contrary that α1(1) > 0. A necessary condition for the buyer’s action 1

to be a winner is that in the outcome the buyer associates with it, the seller

chooses 1, an event with probability α1(1). This condition is not sufficient,

since if the buyer associates the outcome in which the seller chooses 1 with

either or both of her actions 2 and 3 then the buyer’s action 1 ties with these

actions. Thus α2(1) < α1(1). We need also α1(1) ≤ α2(1), since a necessary
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condition for the seller’s action 1 to be a winner is that in the outcome the seller

associates with her action 2, the buyer chooses 1, an event with probability

α2(1). These two inequalities are inconsistent, so we conclude that α1(1) = 0.

It follows that α2(1) = 0, since the buyer’s action 1 is never a winner when

α1(1) = 0. By induction we conclude that in the only S(1)-equilibrium each

player chooses the price 3. (This argument extends straightforwardly to the

case in which there is any finite number of possible prices, rather than only

three.) �

III. Extensive Games

The concept of an S(1)-equilibrium can be applied to the reduced strategic

form of an extensive game. We present two illustrative examples and discuss

the appropriateness of the solution concept in this case.

EXAMPLE 10:
b r r

r r
a b

c1 2A A

D D

Assume that c �1 a and c �2 b, so that the unique subgame perfect equilibrium

yields the outcome c. Denote by p the probability that player 1 chooses D and

by q the probability that player 2 chooses D. The action D wins for player 1

only if player 1 associates the outcome b with her action A, so that p ≤ q. The

action D is a winner for player 2 only if either she associates the outcome a

with both her actions, in which case the actions tie, or she associates a with

D and c with A (if a %2 c) or b with D and a with A (if b %2 a). Since

c �2 b, we do not have both a %2 c and b %2 a, so the probability q that D is

a winner is at most 1
2
p2 + p(1 − p). Since p ≤ q we conclude that p = q = 0.

Thus every such game has a unique S(1)-equilibrium, which coincides with the

unique subgame perfect equilibrium. (Note that if a %1 b then the game has a

Nash equilibrium yielding the outcome a, different from the unique subgame

perfect equilibrium outcome.) �
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EXAMPLE 11 (The centipede game): In Rosenthal’s (1981) centipede game

two players move alternately, starting with player 1 in period 1. In any period,

the player whose turn it is to move may stop the game or pass the move to the

other player. If neither player has stopped the game after each player has had

T opportunities to do so, then the game ends. For each player, the outcome

when she stops the game in period t is better than that in which the other

player stops the game in period t + 1 (or the game ends), but worse than any

outcome that is reached if in period t + 1 the other player passes the move

to her. In particular, all the outcomes in period 3 and beyond are better for

both players than the outcome in which player 1 stops the game immediately.

Nevertheless, for any value of T the game has a unique Nash equilibrium, in

which player 1 stops the game immediately.

As the number of periods goes to infinity in this game, the probability

assigned by any S(1)-equilibrium to player 1’s stopping the game immediately

goes to 0. To see this, denote by p and q the S(1)-equilibrium probabilities

that players 1 and 2 stop the game at their first opportunities. Player 1’s

reduced strategy of stopping immediately wins if and only if she associates

with all her other reduced strategies the outcome that player 2 stops the game

at her first opportunity, an event with probability qT . For player 2’s reduced

strategy of stopping at her first opportunity to be a winner it is necessary

that either she associates with this reduced strategy the outcome that she

indeed stops at her first opportunity (namely player 1 does not stop the game

immediately) or she associates with all reduced strategies the outcome that

player 1 stops the game immediately, in which case all her reduced strategies

tie. Thus q ≤ 1−p+pT+1/(T +1). Any pair (p, q) satisfying the two relations

p = qT and q ≤ 1− p + pT+1/(T + 1) has the property that p → 0 as T → ∞.

�
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This result has appeal as a potential resolution of the paradoxical aspects

of the centipede game. To examine this resolution, consider the case T = 1:

b r r

r r
1, 0 0, 3

2, 21 2Continue Continue

Stop Stop

Player 2 finds the strategy Continue better than the strategy Stop when the

scenario that she constructs for her strategy Continue is that player 1 chooses

Continue as well, and the scenario that she constructs for her strategy Stop is

that player 1 chooses Stop as well. Although she has to move only if player 1

does not stop the game, she is allowed to include in the scenario she attaches to

each strategy the possibility that player 1 did stop the game. That is, the logic

of an S(1)-equilibrium entails her comparing the strategies Continue and Stop

without noticing that either of these strategies is executed only if player 1

chooses Continue. Thus an S(1)-equilibrium makes sense in the centipede

game only if both players fail to understand the structure of the game, as

captured by its extensive form.

IV. Limits of S(K)-Equilibria

Return, for simplicity, to the world of symmetric strategic games. Consider a

modification of the notion of an S(1)-equilibrium in which each player asso-

ciates with each action a distribution over the set of consequences, rather than

a deterministic consequence. The distribution of consequences each player as-

sociates with each of her actions results from sampling the action K times. A

player chooses an action by comparing these distributions. Thus if K ≥ 2 her

payoffs must have more than ordinal significance. Consequently we equip the

players with vNM payoffs rather than ordinal payoffs as for the case K = 1.

An S(K)-equilibrium is a profile of mixed strategies, each of which is con-

sistent with each player’s choosing the action that yields the highest expected

payoff given the distributions she associates with her actions.
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More precisely, let (A, u) be a symmetric two-player game in which u is

a vNM payoff function. Let α be a probability distribution on A. For every

a ∈ A, let v(a, α,K) be the random variable equal to the sum of K independent

random variables, each of which yields the number u(a, b) with probability

α(b) for each b ∈ A. The random variable v(a, α,K) is a player’s total payoff

from K plays of the action a when the other player’s action is determined

by the probability distribution α. Denote by w(a, α,K) the probability that

the action a obtains the highest score, assuming that ties are broken by an

equi-probability rule. That is, w(a, α,K) is the probability that v(a, α,K) >

v(x, α,K) for all x plus the weighted sum of the probabilities that x is tied for

the highest score, with weights equal to the reciprocals of the numbers of tied

alternatives.

DEFINITION 3: For any positive integer K, an S(K)-equilibrium is a prob-

ability distribution α on the set A of actions with the property that

w(a, α,K) = α(a) for every action a.

That is, an S(K)-equilibrium differs from an S(1)-equilibrium only in that

each player’s choice is based on K samples of each action rather than only

one. Propositions 1 and 2 hold for S(K)-equilibrium.

The distributions over consequences that each player associates with her

actions reflect more accurately the other player’s behavior the larger is K.

This suggests that there is a relationship between the limit of S(K)-equilibria

as K increases and the mixed strategy Nash equilibria.

PROPOSITION 4: Let α be the limit as K → ∞ of a subsequence of a se-

quence of S(K)-equilibria. Then (α, α) is a mixed strategy Nash equilibrium.

PROOF:

Let {αKn} (with Kn → ∞) be a sequence of S(Kn)-equilibria converging

to α. Suppose that (α, α) is not a mixed strategy Nash equilibrium. Then

there is an action a in the support of α and an action b such that the expected

payoff of a against α is less than the expected payoff of b against α. Thus,

for any ε > 0 there exists n∗ large enough that for all n > n∗, the probability
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that v(a, α,Kn) ≥ v(b, α,Kn) is less than ε. Since αKn → α, for any ε >

0 there exists n∗∗ large enough that for all n > n∗∗, the probability that

v(a, αKn , Kn) ≥ v(b, αKn , Kn) is less than ε, contradicting the assumption

that α(a) > 0. �

Since the set of mixed strategies is compact, every sequence of S(K)-

equilibria has a subsequence that converges. Thus if a game has a unique

mixed strategy equilibrium then by Proposition 4 every limit is that equilib-

rium, so we have the following corollary.

COROLLARY: In a game with a unique mixed strategy Nash equilibrium, the

equilibrium mixed strategy is the unique limit of S(K)-equilibria as K → ∞.

In a game with multiple mixed strategy Nash equilibria some equilibria,

even pure equilibria, may not be the limits of S(K)-equilibria. For example,

in the degenerate game

1 1

1 1

the only S(K)-equilibrium, for any value of K, is ( 1
2
, 1

2
). A more interesting

example follows.

EXAMPLE 12:
T M B

T 1 1 1

M 1 0 2

B 1 2 0

Every strategy α with α(M) = α(B) is a symmetric mixed Nash equilibrium

strategy. However, for large K, all S(K)-equilibria are close to ( 1
4
, 3

8
, 3

8
). To

see this, first note that for every K, if α is an S(K)-equilibrium then α(M) =

α(B): if, for example, α(M) > α(B), the probability B wins is higher than

the probability M wins. Now, for every probability distribution (x, y, y) on

{T,M,B} with x < 1, the probability that T obtains a higher score than does

M converges to 1
2

as K → ∞ (since the probability of a tie goes to zero) and

the probability that T obtains a higher score than does B similarly converges

to 1
2
. These two events are independent, so the probability that T obtains the
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highest score converges to 1
4
. Thus as K → ∞ the S(K)-equilibria approach

(1
4
, 3

8
, 3

8
). �

The next result shows that a necessary condition for a pure strategy to be

the limit of S(K)-equilibria is that it be a strict best response to some mixed

strategy.

PROPOSITION 5: Let α∗ be a limit of S(K)-equilibria as K → ∞, with

α∗(a) = 1. Then a is a strict best response to a mixed strategy.

PROOF:

Let {αKn} be a sequence of S(Kn)-equilibria converging to α∗. Suppose

that a is not a strict best response to any mixed strategy. For each n, let

bKn ∈ A \ {a} be an action that yields an expected payoff against αKn at least

as large as does a. Then by the law of large numbers, the limit as Kn → ∞

of the probability that a yields a score higher than does bKn is at most 1
2
, so

that for any ε > 0 there exists n∗ large enough that w(a, αKn , Kn) ≤ 1
2

+ ε for

all n > n∗, contradicting αK → α∗ since α∗(a) = 1. �

The condition that a be a strict best response to a mixed strategy, while

necessary, is not sufficient for a distribution α∗ with α∗(a) = 1 to be a limit of

S(K)-equilibria. For example, in the game

T M B

T 1 1 1

M 1 0 2

B 1 0 2

the action T is a strict best response to the mixed strategy (0, 1, 0), but is not a

limit of S(K)-equilibria, by the following argument. In any S(K)-equilibrium

M and B are used with the same probability, since the probability that each

of them obtains the highest score is the same. Thus, as in Example 12, the

S(K)-equilibria approach ( 1
4
, 3

8
, 3

8
).

As K increases, the players’ payoffs in S(K)-equilibria may decrease: when

everyone makes decisions based on more research, the outcome may be worse
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for everyone. Consider the game

0 2

0 1

The only S(1)-equilibrium assigns probability 2−
√

2 to the top action whereas

the S(K)-equilibrium converges, as K increases, to the distribution that as-

signs probability 1 to the top action.

V. A General Framework

The notion of S(K)-equilibrium embodies a specific class of decision-making

procedures. We now suggest a way of modeling the interaction between players

who use arbitrary decision-making procedures. This allows us to relate our

model to others in the literature and provides a framework for future research.

Let (A, u) be a symmetric two-player game. Let α be a probability dis-

tribution on A. We can think of each player’s decision as a choice from the

list (La(α))a∈A of lotteries, where La(α) is the probability distribution over

the player’s payoffs when she takes the action a and her opponent’s action

is determined by α. Her method of choice from any finite list L of lotteries

may be described by a function C that assigns to L a probability distribution

over L (her choice may be stochastic). We denote by C(L)(L) the probability

that C assigns to the lottery L (an element in the list L). The function C

describes a player’s behavior. It may be generated by a procedure that the

player uses to make her choice and may exhibit the player’s rationality or re-

flect her bounded rationality. Note that a choice function is defined on lists,

not sets. For example the choice from the list (L,L, L′) may be differ from

the choices from either of the lists (L′, L, L) and (L,L′, L′). Defining a choice

function in this way allows us to model procedures in which, for example, the

order of the alternatives or the multiple presence of an alternative affects the

choice.

For any choice function C, we can define an equilibrium notion.

DEFINITION 4: Let (A, u) be a symmetric two-player game and let C be a

choice function. A probability distribution α on A is a C-procedural equi-
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librium if

C((La(α))a∈A)(Lx) = α(x) for every x ∈ A,

where for each action a, La(α) is the lottery that takes the value u(a, b) with

probability α(b).

Note that the concept of Nash equilibrium does not fit into this framework :

there is no choice function C such that for every game the set of C-procedural

equilibria is equal to the set of Nash equilibria. The reason is that the notion

of Nash equilibrium requires a player’s mixed strategy not only to be a best

response to the other player’s strategy, but also to serve as a belief that sup-

ports the other player’s equilibrium choice. To illustrate this point, compare

the following two symmetric games.

a b

a 1 1

b 1 0

and

a b

a 0 1

b 1 1

The unique mixed strategy Nash equilibria of the two games are different:

(a, a) in left-hand game and (b, b) in the right-hand game. But a player’s

choice problem, given that her opponent chooses the equilibrium action, is the

same in both games: choose from the two-element list in which each element

is the degenerate lottery that yields 1 with probability 1.

An S(1)-equilibrium is a procedural equilibrium for the choice function C

for which C(L)(L) is the probability that the realization of the lottery L is

higher than every other realization (breaking ties equi-probably) when a player

tests each lottery once.

Two other papers study equilibria that can be described as procedural

equilibria for other choice functions. Rosenthal (1989) investigates procedural

equilibria for choice functions Cθ (θ > 0) such that

Cθ(L)(L1) − Cθ(L)(L2){
= θ[E(L1) − E(L2)] if Cθ(L)(L1) > 0 and Cθ(L)(L2) > 0

≤ θ[E(L1) − E(L2)] if Cθ(L)(L1) > 0 and Cθ(L)(L2) = 0

for all lotteries L1 and L2, where E(Li) is the expected value of Li. Chen et

al. (1997) study a procedural equilibrium for choice functions Cθ (θ > 0) such
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that
Cθ(L)(L1)

Cθ(L)(L2)
=

[
E(L1)

E(L2)

]θ

(where the expected values are required to be nonnegative). (In each case,

smaller values of θ correspond to bigger departures from full rationality, θ = 0

being the case in which each action is assigned the same probability. Chen et

al.’s results are formally closely related to those of Richard D. McKelvey and

Thomas R. Palfrey (1995).)

The primitive of the procedure behind our choice function is a player’s

preference relation. Each player optimizes relative to her preferences, given

the beliefs she forms; she is boundedly rational only in the way in which she

constructs an action–consequence relationship. By contrast, sensible interpre-

tations of Chen et al.’s and Rosenthal’s choice functions appear to require the

payoffs to be given a meaning different from that of representing preferences.

VI. Concluding Comments

In this paper we present a tractable solution concept for the analysis of sit-

uations in which boundedly rational agents interact. The notion of S(K)-

equilibrium is a special case of a C-procedural equilibrium, a notion that can

be used to investigate some classical questions posed by students of bounded

rationality, in particular the effect of a player’s decision-making procedure on

her achievement in a context in which decision-makers interact.

Our approach is static; it does not link the solution concept with any dy-

namics. We believe that a static approach is valuable, though certainly a

dynamic justification for the solution concept we study may be interesting.

An investigation of an evolutionary model in which players occasionally ex-

periment is given by Drew Fudenberg and David M. Kreps (1988).
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