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I Introduction

In this paper we develop a novel spatial model of electoral competition and
use it to study the outcomes of elections in which the winner is the candi-
date who obtains the most votes (plurality rule) and in which the winner is
determined by majority rule under a two-ballot “runoff” system.1

The distinguishing feature of our model is the notion of a “citizen-
candidate”. There is a population of citizens, each of whom has preferences
over a one-dimensional set of policies or positions. Each citizen chooses
whether to become a candidate in the election; running as a candidate is
costly. The winner of the election can implement her favorite policy (sub-
ject to the constraints she faces as office-holder); in addition she reaps a
direct benefit from being in office—the “spoils of office” (“ego-rents” in Ro-
goff’s [1990] terminology). (Two respects in which our model departs from
Hotelling’s [1929] seminal model are that the number of candidates is deter-
mined endogenously and the candidates care about the policy carried out.)

Our model provides an explanation for the great variation observed across
political competitions in the number of candidates and the dispersion in these
candidates’ policy positions. The main explanatory variables are the nature
of the electoral system, the cost of running as a candidate in the election,
and the benefit of winning. Our main results are the following.

• The number of candidates who enter a political competition depends
negatively on the cost of running for office and positively on the benefits
of winning the election.

• For a range of parameter values all equilibria under plurality rule have
exactly two candidates, whose positions are distinct.

• Two-candidate elections are, in a strong sense, more likely under plu-
rality rule than under a runoff system.

• Multicandidate elections are, in a weaker sense, less likely under plu-
rality rule than under a runoff system.

• For a wide range of parameter values, the maximal dispersion in the
candidates’ positions in two-candidate equilibria is less under a runoff
system than under plurality rule.

1Besley and Coate [1995] independently develop a similar model (which we discuss in
the concluding section).

1



• For some parameter values, there exist equilibria under both systems
in which candidates with no chance of winning enter an election simply
to affect the identity of the winner, even though such entry is both
optional and costly.

The most prominent hypothesis concerning the number of candidates in
an election is Duverger’s Law, which states that plurality rule fosters a two-
party system, while both proportional representation and a runoff system
favor the existence of many parties [Duverger 1954, pp. 217, 239]. In this
paper we compare the outcomes of plurality rule and runoff systems. Many
plurality rule elections involve more than two candidates, but evidence sug-
gests that such elections involve fewer candidates than do elections held under
a runoff system [Wright and Riker 1989]. Our results are consistent with this
finding. Previous work (discussed in detail in Section V) offers two primary
explanations for the predominance of two-candidate elections under plural-
ity rule, both of which rest on the strategic behavior of voters; the logic
underlying our result concerns the strategic behavior of candidates.

We find that under either system only one candidate runs when the benefit
of winning is small relative to the cost of running (as in an election for the
chair of an academic department, or in a Republican gubernatorial primary
in an overwhelmingly Democratic U.S. state). As benefits increase relative
to costs, the number of candidates who can coexist in an equilibrium rises.
Equilibria in which many candidates take the same position are possible
under a runoff system, but not under plurality rule. In an equilibrium in
which some candidate is certain to lose, the winning candidate’s position
is much more desirable to a sure-loser than the position of the candidate
who would win were that sure-loser to withdraw. This strategic calculation
appears to correspond to that of some actual candidates, such as H. Ross
Perot in the 1992 U.S. Presidential election, the intensity of whose campaign
seemed to be positively related to George Bush’s perceived chance of winning.

The next section presents the model more formally; Sections III and IV
respectively present our results for plurality rule and runoff systems, and
Section V discusses previous work. All proofs are in an appendix.

II The Model

Each of a continuum of citizens has single-peaked preferences over the set of
policy positions, which we take to be the real line R. The distribution function
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of the citizens’ favorite (ideal) positions on R is F , which we assume to be
continuous and to have a unique median m. Each citizen can choose to enter
the competition (E) or not (N). If she enters then she proposes her ideal
position (she cannot commit to a different position). A citizen who chooses
E is referred to as a candidate. After all citizens have simultaneously made
their entry decisions they cast their votes. Voting is “sincere”: a candidate
whose position xj is occupied by k candidates (including herself) attracts
the fraction 1/k of the votes of the citizens whose ideal points are closer
to xj than to any other occupied position. Under plurality rule the winner
of the election is the candidate who obtains the most votes; if two or more
candidates tie for first place then each wins with equal probability. Under a
runoff system the winner is determined as follows. If some candidate obtains
a majority (more than half the votes) then she is the winner. If no candidate
obtains a majority then the winner is the candidate who obtains a majority
in a second election between the two candidates who obtained the most votes
in the first round.2 In both cases ties are dealt with via an equal-probability
rule.

Each citizen’s payoff depends on the distance between her ideal point and
that of the winner of the election, on whether she is a candidate or not, and
on her probability of winning. The preferences over policies of a citizen with
ideal point a are represented by the function −|x− a|; a citizen who chooses
E incurs the (utility) cost c > 0 and, if she wins, derives the benefit b > 0.
Thus if a citizen with ideal position a chooses N and the ideal position of
the winner is w then her payoff is

−|w − a|.

A citizen with ideal position a who chooses E obtains the payoff

{
b − c if she wins outright
−|w − a| − c if she loses outright and the winner’s ideal position is w.

If no citizen enters then all obtain the payoff of −∞. Each citizen’s prefer-
ences over lotteries are represented by her expected payoff. Note that b is the
return to a citizen’s holding office over and above her payoff to implementing

2This mechanism is used in U.S. gubernatorial elections that employ a runoff system.
Other runoff mechanisms are used in other elections, and it would be of interest to deter-
mine whether our results hold for these alternative systems.
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her favorite policy. Note also that a non-candidate whose favorite policy is
implemented by some other citizen obtains the payoff of zero.

In summary, we study the strategic game in which the set of players is the
set of citizens, the set of actions of each player is {E,N}, and the preferences
of each player are those given above. The solution notion that we use is Nash
equilibrium, which we henceforth refer to simply as “equilibrium”. We refer
to a distribution of the candidates’ ideal positions on R as a “configuration”.

Before presenting our results, we make some comments on the interpre-
tation of the model. First, while we follow the literature in referring to the
elements of R as ‘policy positions’, another interpretation is consistent with
the fact that the winner of the election is an office-holder who is given the
right (for some period of time) to make decisions that affect the well-being
of all citizens. For example, the model applies to the election of legislative
representatives from single-member districts as well as elections for execu-
tive offices, such as the U.S. Presidency, state governorships, city mayors,
and many judgeships, state and county prosecutors, and even the chairs of
academic departments. In this alternative interpretation the elements of the
set R index the decision strategies or objective functions that each citizen
could use if she held the office; each citizen’s preferences order these deci-
sion strategies. The winner of an election cannot do ‘whatever she wishes’,
but can only implement her preferred objective function subject to the con-
straints that the office carries with it, constraints that vary with the type of
office being contested.3

Second, we note that while the notion of citizen-candidates is central
to our formulation, all our results continue to hold if one posits instead a
separate population of potential candidates whose distribution of ideal points
has the same support as the distribution of the citizens’ ideal points.

Finally, in most equilibria of our model under either electoral system,
elections in which there is more than one candidate involve tie votes. This
feature, which our model shares with many other models in the literature,
is an artifact of our simplifying assumption of complete information. If can-
didates are uncertain about the distribution of ideal points or the set of
citizens who vote is determined randomly then equilibria exist in which the
candidates receive different numbers of votes.

3This approach is used widely in the political budget/business cycle literature (see, for
example, Rogoff [1990] or Tabellini and Alesina [1990]).
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III Results for Plurality Rule

In this section we derive the conditions under which different numbers and
configurations of candidates can arise in plurality rule elections. Some elec-
tions are won by acclamation; Proposition 2 shows that our model predicts
such an outcome, independently of the distribution of the voters’ preferences,
if the spoils of office are sufficiently small relative to the cost of running.

Much of the study of elections focusses on two-candidate contests. Propo-
sition 2 characterizes the set of parameters for which a two-candidate election
occurs, and gives the form of such equilibria. It shows, in particular, that two
candidates’ positions are never the same: if they were, then a third citizen
who could win outright would enter.

Proposition 2 reveals another motivation for the entry of a third candi-
date: altering which of the two other candidates wins, even when the third
entrant cannot possibly win herself. This motivation re-emerges in Propo-
sition 3, which shows that one possible three-candidate equilibrium entails
entry by a candidate with no chance of winning; her entry causes the win-
ner to be her favorite of the other two candidates. The motivations of third
candidates who contest elections they are sure to lose are no doubt complex,
but our model captures at least one rationale for such behavior: a desire to
favorably influence which of the other two candidates wins.

Elections with three or more candidates are not uncommon, and Propo-
sitions 4 and 5 contain our results on their occurrence. These results support
the simple intuition that the number of candidates is related positively to
the spoils of office and negatively to the cost of running.

To present our results precisely, we begin by eliminating as equilibria
some, though not all, configurations in which some candidate loses with
certainty.

Lemma 1. In equilibrium a candidate does not lose with certainty if either
(i) there are other candidates with the same ideal position as hers or
(ii) the ideal positions of all other candidates are on the same side of her
ideal position.

In each case a candidate who loses with certainty prefers to withdraw,
since her doing so either has no effect on the outcome or causes the winning
position to be that of a candidate whose position is closest to hers. Note that
the result does not rule out the possibility of a candidate’s losing an election
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with certainty when she is the sole proponent of a position between those of
two other candidates.

A call for individuals to run for some elected office sometimes results in a
single citizen offering herself as a candidate and thus winning the election by
acclamation. This was so, for example, in over 25 percent of the plurality-
rule gubernatorial Democratic primaries in the U.S. between 1950 and 1982
[Wright and Riker 1989, p. 161]. The next result shows that such an outcome
is consistent with our model: if b is small enough relative to c then regardless
of the nature of the distribution F of the citizens’ ideal points there is an
equilibrium in which a single candidate runs unopposed. Further, if b is
sufficiently small relative to c then this candidate’s ideal position need not
be the median m of F . This result expresses the idea that if the payoff to
being in office is sufficiently small then even a single candidate who could be
beaten by the entry of an appropriate citizen will run unopposed, unless she
has relatively extreme preferences.

Proposition 1. (One-candidate equilibria under plurality rule) There is a
one-candidate equilibrium if and only if b ≤ 2c. If c ≤ b ≤ 2c then the
candidate’s ideal position is m while if b < c then it may be any position
within the distance (c − b)/2 of m.

The intuition for this result is as follows. If there is a single candidate
whose position is different from the median then a citizen whose ideal point
is the median can enter and win outright, obtaining a payoff of b− c. Hence
for such a situation to be an equilibrium we need b < c. If there is a single
candidate whose position is the median then another citizen with the same
ideal position can enter and win with probability 1

2
, obtaining an expected

payoff of 1
2
b− c. Thus for this situation to be an equilibrium we need b ≤ 2c.

Of course, many elections are contested. The next result completely char-
acterizes the set of parameters for which a two-candidate election is an equi-
librium outcome. To state the result we need the following definitions. Sup-
pose that there are two candidates, with ideal positions m− ε and m + ε for
some ε > 0, so that each receives half of the votes. Let s(ε, F ) be the position
between m − ε and m + ε with the property that if a citizen with this ideal
position enters the competition then the numbers of votes received by each
of the two original candidates remain equal:

F
(

1
2
(m − ε + s(ε, F ))

)
= 1 − F

(
1
2
(m + ε + s(ε, F ))

)
.
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If ε is small then no citizen with ideal position in (m − ε,m + ε) can enter
the competition and obtain sufficiently many votes to win, while if ε is large
then there is such a citizen who can win. Let ep(F ) be the critical value of ε
below which all such entrants lose and above which some such entrant wins. 4

(Note that ep(F ) > 0 for any distribution F .)

Proposition 2. (Two-candidate equilibria under plurality rule)

a. Two-candidate equilibria exist if and only if b ≥ 2(c − ep(F )).

b. In any two-candidate equilibrium the candidates’ ideal positions are
m − ε and m + ε for some ε ∈ (0, ep(F )].

c. An equilibrium in which the candidates’ positions are m − ε and
m + ε exists if and only if ε > 0, ε ≥ c− b/2, c ≥ |m− s(ε, F )|, and
either ε < ep(F ) or ε = ep(F ) ≤ 3c − b.

This result shows, in particular, that in any two-candidate equilibrium
the candidates’ positions are neither identical nor too dispersed. Further, if
c > b/2 they are not too similar. If they are identical then entry by a third
candidate is inevitable. If they are too dispersed, then the entry of a citizen
whose ideal position is between those of the two candidates causes her to win
outright, an outcome that she prefers to that in which she does not enter the
competition. If c > b/2 and the positions are too similar (but not identical)
then either candidate prefers to exit and let the other candidate win outright
rather than pay the entry cost and obtain her ideal position with probability
one-half. Note that since by Proposition 1 a one-candidate equilibrium exists
whenever b ≤ 2c, it follows from the result that for any distribution F the
model has an equilibrium for all values of b and c.

It is instructive to consider in more detail the logic underlying the result.
By Lemma 1 each candidate must win with probability one half in any two-
candidate equilibrium, from which it follows that the candidates’ positions
must be symmetric about the median. Suppose that the candidates’ positions
are the same. Then a third citizen with a different ideal position can enter
and win for sure. For the original two candidates to be willing to enter we
need b ≥ 2c, so that the third candidate’s payoff of b−c is positive, exceeding
the negative payoff that she obtains if she stays out of the race. Thus the

4If the density of F is single-peaked and symmetric about its median then s(ε, F ) = m
and ep(F ) = 2(m − F−1( 1

3 )).
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inevitable entry of a successful third candidate eliminates the existence of
two-candidate equilibria in which both candidates’ positions are the median.

If entry by two candidates with positions symmetric about the median is
to be an equilibrium, it is necessary that neither prefer to exit and guarantee
victory for the other. Letting ε be each candidate’s distance from the median,
this requirement implies that 1

2
b + 1

2
(−2ε) − c ≥ −2ε, or ε ≥ c − b/2.

For an equilibrium we require also that no other citizen wishes to enter
the race. Now, if ε > ep(F ) then a citizen whose ideal point is between those
of the two candidates wins outright if she enters, obtaining a payoff of b− c.
She obtains −ε if she stays out, so for an equilibrium we need b − c ≤ −ε,
or ε ≤ c − b. But the requirement ε ≥ c − b/2 implies that ε > c − b if
b > 0. Thus if ε > ep(F ) a citizen whose ideal point is between those of the
two candidates is better off if she enters; we conclude that ε ≤ ep(F ) in an
equilibrium.5

Finally, we require that no citizen wishes to enter in order to change the
identity of the winner, even though she herself has no chance of winning. The
entry of a citizen whose ideal position is not between those of the candidates
clearly cannot alter the outcome favorably. The entry of a citizen whose
ideal position is between those of the candidates may lead to certain victory
for one of the candidates, and the entering citizen may prefer this outcome
to that in which the two tie. The condition c ≥ |m − s(ε, F )| ensures that
the cost of entry is high enough that no third citizen wishes to enter for this
reason. (Note that if the density of F is single-peaked and symmetric about
m then, since m = s(ε, F ), this condition is not binding.) The possibility of
entry by a third candidate who is certain to lose re-emerges in the sequel.

Equilibria involving more than two candidates are possible. Since there
have been many significant three-party competitions, it is of particular in-
terest to determine when a three-candidate equilibrium can occur. The next
result shows that in any such equilibrium there is at least some dispersion
in the candidates’ positions. The idea behind the result is that if b is large
enough that more than two citizens with the same ideal position want to en-
ter then a citizen whose ideal point is close by can win outright by entering
and hence will do so, causing the existing entrants to lose.

Lemma 2. In any equilibrium at most two candidates share any given posi-

5If b = 0 (as Besley and Coate [1995] assume), then there is an equilibrium for ε = c,
even if c > ep(F ). (If c > ep(F ) then in this equilibrium each candidate and any citizen
whose ideal point is the median are indifferent between entering and not.)
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tion.

A complete characterization of the conditions under which three-
candidate equilibria exist is complex. The next result gives some features
of these equilibria. Lemma 2 implies that not all three candidates can have
the same ideal position, so there remain two possibilities. If two candidates
share one position and a third has a different position then by Lemma 1 each
candidate must obtain one third of the vote. The other possibility is that
all three candidates have different positions, in which case the two extreme
candidates must each have a positive probability of winning and so must
obtain the same fraction of the vote, which must be not less than that of the
central candidate.

Proposition 3. (Three-candidate equilibria under plurality rule) Every
three-candidate equilibrium takes one of the following forms, where t1 =
F−1(1

3
), t2 = F−1(2

3
), and the candidates’ positions are a1 ≤ a2 ≤ a3.

a. The positions of the candidates are not all the same and a1 = t1−ε1,
a2 = t1 + ε1 = t2 − ε2, and a3 = t2 + ε2 for some εi ≥ 0; each
candidate obtains one third of the votes. Necessary condition: b ≥
3c + 2|ε1 − ε2|.

b. The positions of the three candidates are all different; candidates 1
and 3 obtain the same fraction of the votes while candidate 2 obtains
a smaller fraction (and hence surely loses). Necessary conditions:
b ≥ 4c and c < t2 − t1.

The most striking aspect of this result is the possibility expressed in b of
an equilibrium in which one of the three candidates is certain to lose.6 This
candidate enters solely because she prefers the resulting equal-probability
lottery over her two rivals’ positions to certain victory by the candidate who
would win if she withdrew. This strategic reasoning appears to correspond
to the rationale often provided for actual third-party candidacies.

The necessary conditions for the existence of these three-candidate equi-
libria, when compared with that for the existence of a two-candidate equi-
librium, provide support for the intuition that larger values of b relative to c
lead to equilibria with greater numbers of candidates.

6Palfrey [1984] also has three-candidate sure-loser equilibria, but they arise only because
the third party has no alternative but to enter.
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The necessary condition for the existence of a three-candidate equilibrium
of type a follows from the requirement that neither of the two candidates with
extreme positions prefer to stay out of the election (if either did so, the central
candidate would win outright). It turns out that this condition implies also
that the central candidate prefers to enter than to stay out. (Note that case a
includes equilibria in which two of the candidates share the same position.
For example, if ε2 = 0 then a1 = t1 − ε1 and a2 = t1 = ε1 = t2 = a3.)

The requirement that b ≥ 4c in part b follows from the necessity of
keeping the two extreme candidates (each of whom wins with probability 1

2
)

from preferring not to enter, given that their non-entry would result in certain
victory by the central candidate. As noted before, the sure loser’s motivation
for entry follows from her preference for an equal-probability lottery over the
two extreme candidates to certain victory by the one she least prefers. The
condition c < t2 − t1 ensures that the cost of entry is low enough to make
her entry worthwhile.

The necessary conditions in the result are not sufficient. If, for example,
the distribution of F is symmetric, then there is no equilibrium in which one
candidate surely loses, because that candidate’s withdrawal results in certain
victory by the remaining candidate that she most prefers. If in addition the
distribution of ideal points is single-peaked then there is no equilibrium of
type a in which εi = 0 for some i either, since a citizen whose ideal point is
close to the position at which there are two candidates can enter and win out-
right. Thus any analysis of elections using our model that restricts attention
to symmetric single-peaked distributions ignores the two most interesting
phenomena captured by Proposition 3.

There are distributions of the citizens’ ideal points for which no three-
candidate equilibrium exists for any values of b and c. An example is a
distribution F whose density is symmetric about its median and has its mass
concentrated at t1 and t2. We argued above that for such a distribution there
is no equilibrium of type b; there is no equilibrium of type a since an entrant
at either t1 or t2 can win outright.

We do not have a characterization of the conditions under which an n-
candidate equilibrium exists for an arbitrary value of n. However, we can
show the following.

Proposition 4. A necessary condition for the existence of an equilibrium
in which k ≥ 3 candidates tie for first place is b ≥ kc. A necessary
condition for the existence of an equilibrium in which there are three or
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more candidates is b ≥ 3c.

This result provides further support for the intuition that the number of
candidates is positively related to the size of b relative to c. (The result is
not vacuous: for any single-peaked distribution F and any value of k, if b
sufficiently exceeds kc then there exists a k-candidate equilibrium in which
the candidates’ positions are distinct and each wins with probability 1/k.)

Some features of the possible equilibria are summarized in Figure I. Note
that although for most values of the parameters the candidates’ equilibrium
positions are not uniquely determined, the characteristics of an equilibrium
are strongly restricted. In particular, if 2c < b < b3 then in all equilibria
there are exactly two candidates and if b < 2(c− ep(F )) then in all equilibria
there is exactly one candidate.

Although a general characterization of equilibria with n ≥ 4 candidates
is beyond us, the next result, which significantly restricts four-candidate
equilibria, is of interest when we compare plurality rule with a runoff system
in the next section.

Proposition 5. (Four-candidate equilibria under plurality rule) For a
generic distribution F , every four-candidate equilibrium takes one of the
following four forms.

a. The candidates’ positions are different; the numbers of votes ob-
tained by the two extreme candidates and one of the other candi-
dates are equal and greater than the number received by the re-
maining candidate, who hence loses. Necessary condition: b ≥ 3c.

b. The candidates’ positions are different and each candidate obtains
one quarter of the votes. Necessary condition: b ≥ 4c.

c. Exactly two of the candidates’ positions are the same and each
candidate obtains one quarter of the votes. Necessary condition:
b ≥ 4c + F−1(3

4
) − F−1(1

4
).

d. Two candidates share a single extreme ideal position, each receiving
the same number of votes as does a single candidate at the other
extreme, while a lone central candidate receives fewer votes, and
hence surely loses. Necessary condition: b > 9

2
c.

Several aspects of this result are worth noting. First, in the equilibria in
parts a and d one of the candidates surely loses. The motivation for this
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Figure I

Numbers of candidates possible in equilibria, as functions of b, c, and the
electoral system. For k ≥ 3, the k-candidate equilibria under plurality rule
exist only for some distributions F . The lower limits on b for the existence
of two-candidate equilibria lie between 0 and 2c; the lower limit b3 on b for
the existence of a three-candidate equilibrium under plurality rule is at least
3c.
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candidate’s entry is the same in both cases: she prefers a situation in which
each of the other three candidates wins with probability 1

3
to the certain

victory by one candidate that would result if she exited.
Second, there is no equilibrium in which the candidates are paired, with

two sharing one position and the other two sharing another position.
Third, there are distributions F for which no four-candidate equilibrium

exists for any values of b and c; an example is a distribution whose mass is
equally concentrated around three evenly spaced points.

IV Results for a Runoff System

We now analyze majority rule elections that use a runoff system to decide
the winner if no candidate gets a majority on the first ballot. The conditions
under which election to an office occurs by acclamation are identical to those
for plurality rule, since the entry of a second candidate cannot induce a runoff.
However, the conditions under which multicandidate equilibria can arise and
the corresponding equilibrium configurations differ markedly between the
two systems. Under plurality rule there is no two-candidate equilibrium in
which the candidates’ ideal postions are the same (Proposition 3) and in no
equilibrium are more than two candidates’ positions the same (Lemma 2). By
contrast, Proposition 6 states that under a runoff system there are equilibria
in which all the candidates’ positions are the same; depending on the values
of b and c, any number of candidates can run in such an election.

Proposition 7 characterizes the parameter values for which differentiated
two-candidate elections exist under a runoff system. These conditions, when
compared with those for plurality rule elections (Proposition 2), imply that
the model predicts a strong form of Duverger’s Law. For any distribution
of preferences, the set of values of b and c that give rise to a two-candidate
equilibrium under a runoff system is a subset of those that do so under
plurality rule. The fact that an equilibrium in which there is a cluster of
three candidates at the median exists under a runoff system for some values
of b and c, together with the results of Proposition 9 on equilibria in which
there is a symmetric clustering of candidates around the median, provide a
weaker sense in which elections with three or more candidates are more likely
under a runoff system than under majority rule.

Under a runoff system there is no three-candidate equilibrium in which
one candidate surely does not get into the second round, since such a can-
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didate’s entry has no effect on the winner of the election. It follows from
the configuration implied by this requirement that no candidate surely loses
in the second round: in contrast to the case of plurality rule, there is no
three-candidate ‘sure-loser’ equilibrium under a runoff system; Proposition 8
describes the three-candidate equilibria in this case.

To present the results in detail, we begin with our result on single-cluster
equilibria.

Proposition 6. (Single-cluster multicandidate equilibria under a runoff
system) For any k ≥ 2 there is a k-candidate equilibrium in which the
ideal position of every candidate is m if and only if kc ≤ b ≤ (k + 1)c.

Under plurality rule, equilibria in which many candidates share the me-
dian position are ruled out by the fact that a citizen with an ideal position
near m can enter and win. Under a runoff system entry by such a citizen can
result only in her advancing to the second round, where she surely loses. The
two inequalities in the result guarantee that no candidate prefers to withdraw
and no further citizen with ideal position m wishes to enter. Note that the
result guarantees that for any distribution F and any values of b and c there
exists an equilibrium under a runoff system.

A runoff system can also give rise to two-candidate equilibria much like
those that result under plurality rule. Let er(F ) be the supremum of the
values of ε for which there is a position d ∈ (m − ε,m + ε) such that a
citizen who enters at d obtains a smaller fraction of the votes than do both
of the existing candidates. If ε > er(F ) then the configuration in which one
candidate is at m − ε and one is at m + ε is not an equilibrium since there
is a citizen with ideal point in (m − ε,m + ε) who, if she enters, gets into a
runoff, which she wins (so that she prefers to enter).

Proposition 7. (Two-candidate equilibria under a runoff system)

a. Two-candidate equilibria exist if and only if 2(c − er(F )) ≤ b ≤ 4c.

b. In any two-candidate equilibrium the candidates’ ideal positions are
m − ε and m + ε for some ε ∈ [0, er(F )].

c. An equilibrium in which the candidates’ positions are m−ε and m+ε
exists if and only if either (1) ε = 0 and 2c ≤ b ≤ 3c or (2) ε > 0,
ε ≥ c − b/2, b ≤ 4c, and either ε < er(F ) or ε = er(F ) ≤ 2c − b.
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As in the case of plurality rule, the requirement that a citizen whose ideal
position is between those of the candidates not want to enter implies that
the candidates’ positions cannot be too far apart. Also, the requirement that
one of the candidates not prefer to withdraw limits how close the candidates’
positions can be, although if b ≤ 3c then under a runoff system it does not
exclude the case in which the positions are the same. Under plurality rule
there is no upper bound on the value of b for which a two-candidate equilib-
rium exists. The same is not true under a runoff system since a citizen whose
ideal point is the same as that of one of the candidates has a positive prob-
ability of getting into a runoff, and of ultimately winning, if she enters the
competition. The condition b ≤ 4c is necessary to make entry unattractive
to such a citizen.7

Note that for any F we have er(F ) ≤ ep(F ), since under a runoff system
any citizen with an ideal position in the interval (m− ε,m + ε) who receives
more votes than at least one of the candidates gets into the runoff, which
she surely wins. It follows from Propositions 2, 6 (with k = 2), and 7a that
for any distribution F of ideal points the set of values of (b, c) for which a
two-candidate equilibrium exists under a runoff system is a subset of the set
of values for which a two-candidate equilibrium exists under plurality rule.
This is the precise (and strong) sense in which our model predicts “Duverger’s
Law”.

We have seen that under a runoff system there can exist two-candidate
equilibria in which both candidates choose the same position, while no such
equilibrium exists under plurality rule. For values of the parameters for
which there exist two-candidate equilibria under both electoral systems we
can compare also the maximal amount of dispersion that can exist in the
candidates’ positions. If c ≥ er(F ) then since er(F ) ≤ ep(F ) the comparison
is unambiguous: the maximal amount of dispersion in the candidates’ posi-
tions is at least as large under plurality rule as it is under a runoff system.
If c < er(F ) then because the requirement c ≥ |m− s(ε, F )| in Proposition 2
may rule out equilibria under plurality rule in which ε > c, the maximal de-
gree of dispersion in the candidates’ positions may be larger under a runoff
system than under plurality rule. However, for any distribution F that is
single-peaked and symmetric about its median, or is not too different from

7The value of the upper bound on b depends on our assumption that an election in
which one candidate obtains exactly one-half of the votes precipitates a runoff. If in such
an election the candidate with one-half of the votes wins on the first round (without any
runoff) with some positive probability then the upper bound on b is higher.
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such a distribution, we have |m − s(ε, F )| < c for all values of ε, and the
maximal degree of dispersion is definitely greater under plurality rule.

Turning to three-candidate equilibria, we found that under plurality rule
there are distributions F of ideal points for which no such equilibria exist for
any values of b and c; under a runoff system three-candidate equilibria exist
for any distribution F if 3c ≤ b ≤ 4c (Proposition 6). In this sense three-
candidate equilibria are more likely under a runoff system. The next result
shows, however, that for some parameters there are three-candidate equilibria
under plurality rule but not under a runoff system, so that the comparison
between the two systems with respect to the likelihood of a three-candidate
election is ambiguous.

To determine when a ‘differentiated’ three-candidate equilibrium can exist
under a runoff system, note that there is never an equilibrium in which one
candidate is sure to lose in the first round, since such a candidate does not
affect who gets into a runoff. The next proposition states that if b 6= 4c then
only one differentiated three-candidate equilibrium configuration is possible.

Proposition 8. (Three-candidate equilibria under a runoff system) If b 6=
4c then in all three-candidate equilibria in which not all the candidates’
positions are the same, these positions are different, equal to a1 = m +
t1 − t2, a2 = t1 + t2 − m, and a3 = t2 + m − t1, where tj = F−1(j/3). In
such an equilibrium each candidate obtains one third of the votes in the
first ballot. Necessary condition: b ≥ 6c.

The reason that any equilibrium must take this form is that all three
candidates must have a positive probability of being the ultimate winner,
else they prefer not to enter. Thus each must obtain one third of the first-
round vote and each must have a positive probability of winning in the second
round if they reach it. In any configuration that satisfies these conditions
and in which two candidates share an ideal position it is profitable for a
fourth candidate who shares the lone candidate’s ideal position to enter unless
b = 4c. Thus all three must have distinct ideal positions if b 6= 4c. The two
extreme candidates surely lose a runoff with the central candidate so they
must have a positive probability of winning against one another in a runoff,
implying that they are symmetrically positioned about the median. The only
configuration with these properties is the one defined in the proposition. For
some distributions F this configuration is not an equilibrium because a fourth
citizen has an incentive to enter. Thus, as in the case of plurality rule, for
some distributions F no differentiated three-candidate equilibrium exists.
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Some features of the possible equilibria under a runoff system are sum-
marized in Figure I alongside a similar summary for plurality rule.

To further elaborate the differences that our model predicts between the
outcomes of plurality rule and a runoff system, consider the possibility of
multicandidate equilibria in which there are two clusters of candidates. De-
fine s(ε, F ) as in Section III. Suppose that k ≥ 4 is even and that there are
k/2 candidates at m − ε and k/2 at m + ε; let ek

r(F ) be the smallest value
of ε for which there is a position in (m − ε,m + ε) that attracts at least as
many first-round votes as does the position of any of the k candidates.

Proposition 9. (Two-cluster multicandidate equilibria under a runoff sys-
tem) If k ≥ 4 is even and ε > 0 then there is a k-candidate equilibrium
in which the ideal position of k/2 candidates is m − ε and the ideal po-
sition of the remaining k/2 candidates is m + ε if and only if ε < ek

r(F ),
c ≥ |m − s(ε, F )|, and b ≥ 4c if k = 4 and b ≥ k(c + ε) if k ≥ 6.

The condition ε < ek
r(F ) ensures that no citizen with an ideal position in

(m− ε,m+ ε) can get into a runoff (if she did, she would win); the condition
c ≥ |m−s(ε, F )| ensures that a citizen with an ideal position in (m−ε,m+ε)
who enters does not affect the outcome in a way favorable to her. As before,
if F is single-peaked and symmetric about its median then m = s(ε, F ), so
that the condition c ≥ |m − s(ε, F )| is redundant.

Under plurality rule no position is shared by more than two candidates
(Lemma 2) and there is no four-candidate equilibrium in which two positions
are each shared by two candidates (Proposition 5). Under a runoff system, on
the other hand, there are always equilibria in which there is a single cluster
of candidates at the median (Proposition 6) and two clusters of candidates
symmetrically around the median (Proposition 9). In this sense the equilibria
under a runoff system are more agglomerated than those under plurality rule.

Further, for a ‘randomly chosen’ distribution F , only the configuration
described in Proposition 5a is a possible four-candidate equilibrium under
both systems, and then only if b > 6c.

Proposition 10. (Four-candidate equilibria under both systems) For a
generic distribution F , if b ≤ 6c then no four-candidate configuration is
an equilibrium under both plurality rule and a runoff system. If b > 6c
then the only four-candidate configuration that may be an equilibrium
under both systems is that in which the candidates’ positions are differ-
ent, the two extreme candidates and one of the middle candidates obtain

17



the same number of votes on the first round, and the remaining candidate
obtains fewer votes.

One can divide ‘Duverger’s Law’ into two statements: (i) a two-candidate
election is more likely under plurality rule than under a runoff system; ( ii) an
election with n candidates, for any n > 2, is more likely under a runoff system
than under plurality rule. Our model predicts (i) in the strongest possible
sense and predicts (ii) for n equal to 3 or 4 in a weaker sense. Precisely, if the
values of b and c are appropriate, three- and four-candidate equilibria exist
under a runoff system for any distribution F , while for some distributions
neither exists under plurality rule for any parameter values.

V Relation with Previous Work

Hotelling [1929] first suggested that a model of spatial competition can yield
insights into political (electoral) competition; his idea was elaborated by
Downs [1957], Black [1958], and many others. (Shepsle [1991] and Os-
borne [1995] survey the field.) Two key respects in which our model departs
from Hotelling’s are that (i) the set of candidates arises endogenously as the
result of citizen entry decisions, and (ii) candidates care about the policy
that wins the election. Models with each of these features have been studied
before.

The simplest variant of Hotelling’s model in which the number of candi-
dates arises endogenously posits a set of potential candidates, each of whom
has the option of not entering the competition. Unfortunately, this game does
not in general possess pure strategy equilibria [Osborne 1993, Propositions 3
and 5].

A further step away from Hotelling’s assumptions is taken by Pal-
frey [1984], who studies a three-candidate model in which the third candidate
chooses her position after observing the simultaneous choices of the other two.
The third candidate loses in equilibrium (her objective is to maximize the
number of votes, not necessarily to win); her presence affects the other can-
didates’ positions. The appeal of the result is limited by the fact that it no
longer holds if each candidate’s objective is to win (in which case there is a
subgame perfect equilibrium in which one of the first two candidates and the
last candidate enter at the median, and the remaining candidate does not
enter).
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Osborne [1993, Section 4] develops a model of sequential entry in which
candidates decide not only whether to enter but also when (in continuous
time) to enter; voting occurs only after no more candidates wish to enter.
The main result is that if there are three potential candidates then only one
enters. Feddersen, Sened, and Wright [1990] modify Hotelling’s model by
allowing candidates to choose whether or not to enter and by having citizens
vote strategically. They find that all entering candidates adopt the median
position and that the ratio of the spoils of office to the cost of entry provides
an upper bound on the number of entrants. While the models of Osborne
and Feddersen et al. illuminate some aspects of political competition, their
equilibria have features that do not accord well with many actual electoral
outcomes, in which there are many candidates with distinct positions.

Several papers study models in which candidates care about the pol-
icy carried out, taking one step toward the citizen-candidate formulation
that we adopt, among them Wittman [1977, 1983, 1990], Calvert [1985],
Alesina [1988], and Roemer [1994]. In these models the candidates, whose
number is exogenously fixed to be two, are free to adopt any position. The
main question addressed is the degree of similarity in the candidates’ posi-
tions, which we discuss below.

A formulation that comes close to ours is used by Greenberg and Shep-
sle [1987], who analyze a situation in which a set of citizens faces the task
of electing k officials. Each citizen votes for her most-preferred candidate
from among those who enter the contest and the k candidates receiving the
most votes are elected, so for k = 1 the system is simple plurality rule. A
k-equilibrium occurs when k candidates choose (different) positions such that
no additional candidate can choose a position that earns her more votes than
any of the original k. Only in the case k = 1 does an equilibrium generally ex-
ist, and in this equilibrium the single candidate chooses the median position.
An equilibrium can be interpreted as a situation in which k citizens enter
the election as candidates, each espousing her own most-preferred position.
The major respect in which the model differs from ours is the restriction that
there be exactly as many candidates as positions; for simple plurality rule,
this means that the number of candidates is restricted to one. Consequently
the model cannot address the issues with which we are concerned.

In a recent paper, Besley and Coate [1995] independently develop the
notion of a citizen-candidate. They formulate a model more general than
ours; it differs from ours mainly in that it introduces elements of strategic
behavior into the decision to vote. The main point of their paper is to study
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the efficiency of the outcome of political competition. They study the one-
dimensional spatial case under plurality rule (as we do in Section III) under
the restrictions that the distribution of ideal points is symmetric and b = 0.
The latter assumption implies that there are never more than two candidates
in any such race, in contrast to the predictions of our model (and to reality).

As we noted earlier, the most prominent hypothesis regarding the re-
lationship between the electoral system and the number of candidates is
‘Duverger’s Law’. Palfrey [1989] (building upon the work of Cox [1987a])
and Feddersen [1992] study models that predict versions of Duverger’s law.
Both models assume that voting is strategic. In Palfrey’s model there are
three candidates with exogenously given positions. The main result captures
the idea that supporters of third parties do not want to “waste” their votes:
as the number of voters gets large, in any equilibrium in which all three
candidates are not tied for first place the share of votes received by one of
the candidates goes to zero. In Feddersen’s model there are no candidates;
citizens may vote for any position in a given finite set. Feddersen gives con-
ditions under which in equilibrium exactly two positions receive votes. Thus
in both papers the prediction is that under plurality rule, two candidates
receive (almost) all the votes. Whether or not this is what Duverger himself
claimed, it is not the case that plurality rule elections always feature two
candidates, as is clear from both casual observation and the work of Wright
and Riker [1989].8

Our results contribute also to an understanding of the dispersion observed
in candidates’ policies. The literature focuses on whether candidates tend to
offer the same policies: whether there is ‘policy convergence’. In Hotelling’s
model there is convergence when there are two candidates; when there are
more candidates then equilibria do not in general exist [Osborne 1993], but

8In more than 25 percent of plurality-rule Democratic gubernatorial primaries in the
U.S. between 1950 and 1982 there were four or more candidates and in more than 25
percent there was only one candidate. By contrast, in more than 25 percent of primaries
under the runoff system there were more than seven candidates and in fewer than 4
percent there was only one candidate. Even in U.S. presidential elections, in which the
two major parties are legally entitled to significant advantages over minor parties (they
receive maximal funding for their election campaigns and grants for holding their national
conventions, for example) there have been at least 11 candidates in each of the last seven
elections, and in three of these elections (1992, 1980, and 1968) a third candidate has
received more than 5 percent of the popular vote. As a final example, in the six general
elections in Canada between 1962 and 1974, four parties each received at least 5 percent
of the popular vote (and, except in 1974, at least 5 percent of the seats in the parliament).

20



when they do, the candidates choose distinct positions [Cox 1987b, 1990]. In
Palfrey’s [1984] model, in which there is an exogenous set of three candidates,
the first two candidates adopt distinct positions in order to minimize the ef-
fect of entry by the third. If the assumption of sincere voting is replaced
by that of strategic voting in Hotelling’s model and entry by candidates
is allowed then in any equilibrium all candidates adopt the same position
[Feddersen, Sened, and Wright 1990]. If Hotelling’s model is modified by en-
dowing the candidates with (distinct) policy preferences then in the case that
there are two candidates who can commit to the policies they propose there
is full convergence when the candidates know the distribution of the citizens’
ideal positions, but may not be if the candidates are imperfectly informed
[Wittman 1977, Calvert 1985, Roemer 1994]. Alesina [1988] argues that if
the candidates are unable to commit to policies, voters will see through any
policy announcement, and the only possible outcome is that each candidate
carries out her favorite policy. In a model of repeated elections, however,
some convergence is possible; the degree depends on discount rates, the dif-
ference in the candidates’ preferences, and the relative level of support in
the population for each of their preferred positions. What is unique about
our analysis is that the possibility of convergence differs fundamentally for
the two electoral systems considered. Under plurality rule, the only ‘conver-
gence’ that is predicted occurs in an equilibrium in which there are at least
three candidates; in this case at most two candidates share the same posi-
tion. Under a runoff system, however, it may be that all candidates share
the same position (the median), however many candidates there are.

Appendix

This appendix contains proofs of all the results stated in the text. Through-
out, ai denotes the position of candidate i and we number the candidates so
that a1 ≤ a2 ≤ ∙ ∙ ∙ ≤ an; we denote q1 = F−1(1

4
) and q3 = F−1(3

4
).

Proof of Lemma 1. Under the stated conditions, the withdrawal of a
candidate who loses with certainty either has no effect on the outcome or
causes the set of winners to be the set of candidates whose ideal position
is closest to hers (rather than a set of candidates with more distant ideal
positions). Since the deviation saves her the cost c it is profitable. �

Proof of Proposition 1. In order that no other citizen with the same ideal

21



position wishes to enter we need 1
2
b ≤ c. Further, if 1

2
b ≤ c then there is an

equilibrium in which a single citizen with ideal position m enters, since any
entrant with a different ideal position loses and the withdrawal of the single
candidate yields her −∞.

If there is a single candidate with ideal position a 6= m then a citizen
with ideal position d ∈ (a, 2m − a) can win outright by entering, getting a
payoff of b − c rather than −|a − d|. Thus a necessary condition for such an
equilibrium is −|a − d| ≥ b − c for any such d, which implies that b ≤ c and
|m−a| ≤ (c−b)/2. This condition is also sufficient, since a citizen with ideal
position outside (a, 2m − a) wins with probability at most 1

2
if she enters,

and the candidate obtains −∞ if she withdraws. �

Proof of Proposition 2. Part b is proved in the text. We now prove
part c. As noted in the text, each candidate’s entry is optimal if and only
if ε ≥ c − b/2. A noncandidate whose ideal point is outside (m − ε,m + ε)
loses if she enters and does not favorably affect the set of winners, so that
it is optimal for her to stay out. Finally, consider a citizen with ideal point
d ∈ (m − ε,m + ε). As argued in the text, we need ε ≤ ep(F ) to make it
optimal for her to stay out. Now, if d ∈ (m− ε, s(ε, F )) then her entry causes
the candidate at m + ε to win, resulting in a payoff for her of d − m − ε − c
rather than −ε; thus we require d−m ≤ c for all such d, or s(ε, F )−m ≤ c.
Symmetrically, considering d ∈ (s(ε, F ),m + ε) leads to the requirement
m − s(ε, F ) ≤ c. If d = s(ε, F ) and ε < ep(F ) then the citizen’s entry
does not affect the outcome. Finally, if d = s(ε, F ) and ε = ep(F ) then if
the citizen enters she ties for first place with the two existing candidates,
obtaining a payoff of 1

3
b − c − 2

3
ε as opposed to −ε if she stays out, so that

for equilibrium we require ε ≤ 3c − b in this case.
To prove a, first note that |m − s(ε, F )| < ε for all ε > 0, so that if

ε ≤ c then certainly |m − s(ε, F )| ≤ c. Thus from c, if c − b/2 ≤ 0 then
any ε ∈ (0, min{c, ep(F )}) (a nonempty interval) produces an equilibrium; if
c − b/2 > 0 then certainly 3c − b > 0, so that there is an equilibrium if and
only if c − b/2 ≤ ep(F ). �

Proof of Lemma 2. In an equilibrium in which more than two candidates’
positions are the same, Lemma 1 implies that each candidate’s probability of
winning is positive, and hence is the same for all of them. Thus each of their
payoffs is at most 1

3
b− c; if one of them withdraws then she obtains 0 (since

then the set of winners is the set of candidates remaining at that position),
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so we require b ≥ 3c. But then a citizen with ideal point just to either side is
better off entering, since she wins outright, obtaining the payoff b − c ≥ 0.�

Proof of Proposition 3. From Lemma 2 there is no equilibrium in which
all three candidates have the same ideal point. By Lemma 1, the following
two cases remain.

Each candidate obtains one third of the votes and either the three positions
are different or exactly two are the same : Let a2 − a1 = ε1 and a3 − a2 = ε2.
Candidate 1’s payoff to E is 1

3
b − c − 2

3
ε1 − 2

3
(ε1 + ε2) while her payoff to N

is −2ε1. Thus for equilibrium we require b ≥ 3c + 2(ε2 − ε1). Similarly the
optimality of candidate 3’s decision implies that b ≥ 3c+2(ε1− ε2). Thus for
equilibrium we need b ≥ 3c + 2|ε1 − ε2|. Now, if εi > 0 for i = 1, 2 then the
condition that each candidate receive a third of the votes implies that the
positions are those stated in part a of the result. If εi = 0 for some i—say
ε2 = 0—then the positions are those given in part a since if a2 < t2 then
any citizen whose ideal point is in (a2, t2) wins outright if she enters, while
if a2 > t2 then any citizen whose ideal point is in (t2, a2) wins outright if she
enters, and given b ≥ 3c a citizen prefers an outright win to nonentry.

The three candidates’ positions are different and the middle candidate
obtains a smaller fraction of the votes than the other two, who tie : Let
a1 = m1 − ε1, a2 = m1 + ε1 = m2 − ε2, and a3 = m2 + ε2 for some ε1 > 0 and
ε2 > 0 and some m1 ∈ (t1,m) and m2 ∈ (m, t2) with F (m1) = 1 − F (m2).

By an argument like that for the previous case, we need b ≥ 2c+2|ε1−ε2|
for the entry of candidates 1 and 3 (who now each win with probability 1

2
)

to be optimal.
Now suppose that candidate 2 withdraws. If (a1 + a3)/2 = m then the

outcome remains the same, so she is better off. Hence (a1 + a3)/2 6= m. If
(a1 + a3)/2 > m, candidate 1 wins, so that the optimality of candidate 2’s
entry implies −c − ε1 − ε2 ≥ −2ε1, or c ≤ ε1 − ε2. Since c > 0 this implies
that ε1 > ε2. Similarly if (a1 +a3)/2 < m then we need c ≤ ε2 − ε1 and hence
ε2 > ε1.

Finally, suppose that a citizen with ideal point d ∈ (a1, a2) enters. Then
candidate 3 wins and the citizen obtains the payoff −c − a3 − d rather than
1
2
(a1 − a3). Thus we need a1 − a3 ≥ 2(d − a3 − c) for all d ∈ (a1, a2), or

a1 − a3 ≥ 2(a2 − a3 − c), which is equivalent to c ≥ ε1 − ε2. The analogous
condition for a citizen with ideal point in (a2, a3) is c ≥ ε2 − ε1. Thus we
need c ≥ |ε1 − ε2|.

Since c ≤ ε1 − ε2 if (a1 + a3)/2 > m and c ≤ ε2 − ε1 if (a1 + a3)/2 < m, it
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follows that in either case we have c = |ε1− ε2|, so that a necessary condition
for the existence of this type of equilibrium is b ≥ 4c. Since εi > 0 for i = 1,
2, we have εi < t2 − t1 for i = 1, 2. Thus c < t2 − t1. �

Proof of Proposition 4. We begin by proving the first sentence of the
result. Let the number of candidates be n. By Lemma 1 candidates 1 and
n are winners. First suppose that a1 = a2. Then a3 > a1 by Lemma 2. By
Lemma 1 candidates 1 and 2 are winners, so that if 1 withdraws then 2 is
the sole winner. Thus 1’s payoff to N is 0 while her payoff to E is less than
(1/k)b − c. Hence for an equilibrium of this type we require that b > kc. A
similar argument can be made for an equilibrium in which an−1 = an.

Now suppose that a1 < a2 and an−1 < an. Since a2 ≤ an−1 we must have
either (a1+an)/2 ≥ a2 or (a1+an)/2 ≤ an−1, so that either an−a1 ≥ 2(a2−a1)
or an − a1 ≥ 2(an − an−1). In the former case we claim that candidate 1 can
profitably withdraw unless b ≥ kc. If she does so then only the fraction
of the votes received by the candidates at a2 changes. If these candidates
were originally winners then 1’s withdrawal makes them the only winners.
If there is only one candidate at a2 and she originally lost then, since she
obtains all of 1’s votes, she becomes the outright winner. Thus in each
case 1’s withdrawal yields her a payoff of −(a2 − a1) as opposed to at most
(1/k)b − (1/k)(an − a1) − [(k − 2)/k](a2 − a1) − c when she enters (since
she wins with probability 1/k, a candidate at an wins with probability 1/k,
and the position of every other candidate is no better for 1 than a2). Since
an −a1 ≥ 2(a2 −a1) this latter payoff is at most (1/k)b− (a2 −a1)− c, which
is at least −(a2 − a1) only when b ≥ kc.

We now prove the second sentence of the result. By Proposition 3 the
condition b ≥ 3c is necessary for a three-candidate equilibrium to exist. We
now show that if there are four or more candidates then at least three are
winners, so that the second part of the result follows from the first part.

We need to show that there is no equilibrium in which there are two
winners and at least four candidates. By Lemma 1 in any such equilibrium
all the candidates take different positions, and the two whose positions are
extreme are the winners. The cases of four and of five or more candidates
require different arguments, as follows.

First consider the case of four candidates, with a2 = a1 + ε1, a3 = a2 + ε2,
and a4 = a3 + ε3. If candidate 2’s withdrawal leads to a tie for first place
between candidates 1 and 3 then certainly 2’s withdrawal is beneficial. Thus
2’s withdrawal must lead to an outright victory for either 1 or 3. Similarly
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candidate 3’s withdrawal must lead to an outright victory for either 2 or
4. Suppose that 2’s withdrawal leads to a win for 1 and 3’s withdrawal
leads to a win for 2. The optimality of candidate 2’s entry then requires
ε1 ≥ 1

2
ε1 + 1

2
(ε2 + ε3) or ε1 ≥ ε2 + ε3 and the optimality of the entry decision

of candidate 3 requires ε2 ≥ 1
2
(ε1 + ε2) + 1

2
ε3 or ε2 ≥ ε1 + ε3. Since these

two inequalities are incompatible, this pattern of winners in the event of
the withdrawals of candidates 2 and 3 is not possible. Similar arguments
eliminate two of the three other possible patterns, leaving the possibility that
candidate 3 wins when candidate 2 withdraws and vice versa, which implies
that ε2 ≥ ε1+ε3. Now, we claim that in this case there is a point in (a2, a3) at
which an entrant can win for sure. To see this, first note that there is a point
in (a2, a3) at which an entrant can receive the votes of all citizens whose ideal
points lie in the interval ( 1

2
(a1+a3),

1
2
(a2+a4)), since 1

2
(a2+a4)− 1

2
(a1+a3) =

1
2
(ε1 + ε3) ≤ 1

2
ε2. To complete the argument we show that the votes of these

citizens are enough to win. Let α = F
(

1
2
(a1 + a2)

)
= 1 − F

(
1
2
(a3 + a4)

)
,

β1 = F
(

1
2
(a1 + a3)

)
− F

(
1
2
(a1 + a2)

)
, β2 = F

(
1
2
(a3 + a4)

)
− F

(
1
2
(a2 + a4)

)
,

and γ = F
(

1
2
(a2 + a4)

)
− F

(
1
2
(a1 + a3)

)
. The fact that candidate 2 wins

when candidate 3 withdraws, and vice versa, means that γ + β1 > α + β2

and γ + β2 > α + β1, so that γ > α, completing the argument.
Now suppose that there are n ≥ 5 candidates. Let ai = ai−1 + εi−1 for

i = 1, . . . , n − 1 and
∑n−3

j=3 εj = δ. (If n = 5 then δ = 0.) As in the previous
case, if candidate 2 withdraws then either candidate 1 or candidate 3 must
win outright. If candidate 1 wins then in order for 2’s entry to be optimal
we require ε1 ≥ 1

2
ε1 + 1

2
(ε2 + δ + εn−2 + εn−1), or ε1 ≥ ε2 + δ + εn−2 + εn−1; if

candidate 3 wins then the analogous condition is ε2 ≥ ε1 + δ + εn−2 + εn−1.
Similarly, if candidate n wins when n−1 withdraws then in order for the entry
of n− 1 to be optimal we require εn−1 ≥ ε1 + ε2 + δ + εn−2; if candidate n− 2
wins then the analogous condition is εn−2 ≥ ε1 + ε2 + δ + εn−1. It is easy to
see that no combination of these conditions is possible. �

Proof of Proposition 5. We need to show that no other types of equilibria
are possible and to verify the lower bounds on b for the existence of an
equilibrium of types c and d. (The lower bounds in a and b follow from
Proposition 4.) Given Lemma 1, there are two types of configuration that
remain to be ruled out as equilibria. Throughout we let a2−a1 = ε1, a3−a2 =
ε2, and a4 − a3 = ε3.

The candidates’ positions are distinct, and the two middle candidates both
lose: If candidate 2 withdraws then either candidate 1 wins, candidate 3 wins,
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or candidates 1 and 3 tie (candidate 4 cannot win, since she definitely receives
fewer votes than candidate 1). Similarly, if 3 withdraws then either 2 wins,
4 wins, or 2 and 4 tie. If either of the ties occurs then the candidate who
withdraws is better off doing so. Thus in an equilibrium the withdrawal of 2
or 3 leads to certain victory for one of the other candidates.

Suppose that 1 wins if 2 withdraws and 2 wins if 3 withdraws. Then in
order for 2’s entry to be optimal we need 1

2
(−ε1)+

1
2
(−ε2−ε3)−c ≥ −ε1, and in

order for 3’s entry to be optimal we need 1
2
(−ε1−ε2)+

1
2
(−ε3)−c ≥ −ε2. These

two inequalities are incompatible with ε3 > 0, so this case is impossible. By
similar arguments we can rule out equilibria in which 1 wins if 2 withdraws
and 4 wins if 3 withdraws, and those in which 3 wins if 2 withdraws and 4
wins if 3 withdraws.

We are left with the case in which 3 wins if 2 withdraws and 2 wins if 3
withdraws, which requires ε2 > ε1 + ε3. In this case there is a citizen with
ideal point in (a2, a3) who obtains the votes of all citizens with ideal points
in ((a1 + a3)/2, (a2 + a4)/2) if she enters, since (a2 + a4)/2 − (a1 + a3)/2 =
(ε1 + ε3)/2 < ε2/2. Now, the condition that 3 wins if 2 withdraws and 2
wins if 3 withdraws implies that there are enough citizens with ideal points
in ((a1 + a3)/2, (a2 + a4)/2) for the entrant to win. Since she is better off
winning outright than staying out, the configuration is not an equilibrium.

Two candidates share one position and two candidates share another po-
sition; each candidate wins with probability 1

4
: We need 1

2
(a1 + a3) = m in

order that each candidate win with probability 1
4
. If a1 6= q1 then a citizen

with ideal point q1 can enter and win; similarly if a3 6= q3 then a citizen with
ideal point q3 can enter and win. Thus for an equilibrium we need a1 = q1

and a3 = q3. For a generic distribution F these conditions are incompatible
with 1

2
(a1 + a3) = m, so there is no equilibrium of this type.

We now verify the lower bounds on b for the existence of the equilibria
described in c and d.

c. First suppose that a1 < a2 = a3 < a4. Candidate 2’s payoff is
1
4
b − c − 1

4
ε1 − 1

4
ε3; if she withdraws her payoff is 0 (since her partner at

the position then wins). Thus a necessary condition for the existence of the
equilibrium is b ≥ 4c+ ε1 + ε3. In order that each candidate receive the same
number of votes we need a1 < q1 and a4 > q3, so that ε1 + ε3 > q3 − q1.

Now suppose that a1 = a2 < a3 < a4. By an argument like that in the
previous case for candidate 2, the optimality of candidate 1’s entry requires
b ≥ 4c + 2ε2 + ε3. Now, if a1 > q1 a citizen with ideal point q1 can enter and
win outright, so we need a1 < q1. Further, as in the previous case we need
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a4 > q3 in order that candidate 4 receives one quarter of the votes. Hence
ε2 + ε3 > q3 − q1.

d. Suppose that a1 < a2 < a3 = a4. Consider the optimality of candi-
date 2’s entry. Her payoff is −1

3
ε1 − 2

3
ε2 − c. If, when she withdraws, the

remaining candidates still tie for first place, then her entry is clearly not opti-
mal. If, when she withdraws, 3 and 4 tie for first place then her payoff is −ε2,
so her entry is optimal only if c ≤ 1

3
(ε2 − ε1). But in order for a citizen with

ideal point slightly greater than a2 to stay out we need −1
3
ε1− 2

3
ε2 ≥ −ε1− c,

since her entry causes 3 or 4 to win, or c ≥ 2
3
(ε2 − ε1), a contradiction. The

final possibility is that if 2 withdraws then 1 wins, in which case her entry is
optimal if and only if c ≤ 2

3
(ε1 − ε2), or ε1 ≥ 3

2
c + ε2. Now, for candidate 3’s

entry to be optimal we need 1
3
b − c − 1

3
(ε1 + ε2) ≥ 0, or b ≥ 3c + ε1 + ε2. It

follows that b > 9
2
c. �

Proof of Proposition 6. Suppose that the candidates’ common ideal po-
sition is m. Then entry by a citizen with a different ideal position results in
certain defeat: if either k = 2, or k ≥ 3 and the position of the entrant is far
from m, then the entrant fails to reach the runoff; otherwise she loses in the
runoff. Thus it is optimal for such a citizen not to enter. It is optimal for
another citizen with ideal position m not to enter since b/(k + 1) ≥ c, and it
is optimal for the k candidates to enter since b/k ≤ c. �

Proof of Proposition 7. It is immediate that in any equilibrium the can-
didates’ positions are m − ε and m + ε for some ε ≥ 0. The case ε = 0 is
covered in Proposition 6. The line of argument for ε > 0 closely follows that
in the proof of Proposition 2. Differences arise only because (i) a citizen
whose ideal point is m− ε or m + ε has a positive probability under a runoff
system of winning if she enters, and b ≤ 4c is necessary for her nonentry to
be optimal; (ii) the upper bound on ε under which no citizen with an ideal
point in (m − ε,m + ε) can win outright is er(F ) rather than ep(F ); (iii) a
citizen with ideal point in (m− ε,m+ ε) who enters does not affect the iden-
tity of the winner (so that no condition like c ≥ |m− s(ε, F )| is needed); and
(iv) if ε = er(F ) then there is a citizen with ideal point in (m− ε,m+ ε) who
is the ultimate winner with probability 1

2
(rather than 1

3
if ε = ep(F ) under

plurality rule), yielding the condition ε ≤ 2c − b rather than ε ≤ 3c − b. �

Proof of Proposition 8. First consider the possibility of an equilibrium
in which a1 < a2 = a3. Candidate 1 must receive at most half of the votes
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otherwise she wins outright on the first ballot and candidates 2 and 3 are
better off withdrawing. Further, her probability of ultimately winning must
be positive (otherwise she prefers to withdraw), so that she must receive
exactly half of the votes in the first round. Thus a1 = m− ε and a2 = m + ε
for some ε > 0. Now, in order for candidates 2 and 3 to prefer E to N we
need 1

4
b − 1

2
∙ 2ε − c ≥ 1

2
∙ (−2ε), or b ≥ 4c. But if another citizen with ideal

position a1 enters then each of the four wins with probability 1
4
, so to deter

such entry we need b ≤ 4c. Hence for such an equilibrium we need b = 4c.
Now consider the possibility of an equilibrium in which a1 < a2 < a3.

Each candidate must obtain one third of the votes in the first round, else one
of them has no chance of winning, and hence prefers to withdraw. Hence the
positions satisfy the condition in Proposition 3a. Now, candidates 1 and 3
each prefers to withdraw unless she has a positive probability of winning in
a runoff; since she can win only if she faces the other extreme candidate we
must have m− a1 = a3 −m, which implies that the positions are those given
in the result.

In this configuration, with probability 1
3

candidate 1 is in a runoff with
candidate 2, which candidate 2 certainly wins; with probability 1

3
she is

in a runoff with candidate 3, which she wins with probability 1
2
; and with

probability 1
3

she does not make it to a runoff, which candidate 2 wins. Thus
her payoff is 1

3
(−2ε1)+

1
3
[1
2
b− 1

2
(2ε1+2ε2)]+

1
3
(−2ε1)−c, where εi = ai+1−ai. If

she withdraws then she obtains −2ε1 (since candidate 2 then certainly wins).
Thus her entry is optimal if and only if b ≥ 6c + 2(ε2 − ε1). A similar
calculation for candidate 3 yields the condition b ≥ 6c + 2(ε1 − ε2), so that
we need b ≥ 6c + 2|ε2 − ε1|. �

Proof of Proposition 9. Each candidate wins with probability 1/k, so her
expected payoff is b/k− c− ε. If she withdraws then the ideal position of the
eventual winner is m − ε with probability 1

2
and m + ε with probability 1

2
if

k = 4 and is the same as hers if k ≥ 6. Thus her entry is optimal if and only
if b ≥ 4c if k = 4 and b ≥ k(c + ε) if k ≥ 6.

The entry of a noncandidate whose ideal point is outside (m − ε,m + ε)
is not optimal, since it causes the ideal point of the eventual winner to be
more remote.

Finally, consider citizens with ideal points in (m− ε,m + ε). If ε > ek
r(F )

then there is such a citizen who can win outright if she enters, and hence
prefers to do so. If ε = ek

r(F ) then there is such a citizen who gets into
a runoff with probability 2/(k + 1), and wins if she does so, obtaining the
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expected payoff 2b/(k + 1) − c − (1 − 2/(k + 1))ε. Since b ≥ kc this payoff
exceeds −ε, so that she is better off entering. Finally, if ε < ek

r(F ) then the
entry of a citizen with ideal point d ∈ (m−ε, s(ε, F )) causes the ideal point of
the winner to become m+ ε; to deter such entry it is necessary and sufficient
that −ε ≥ −c − (m + ε − d) for all such d, or s(ε, F ) − m ≤ c. Similarly,
the optimality of the action of a citizen with ideal point in (s(ε, F ),m + ε)
requires m − s(ε, F ) ≤ c. �

Proof of Proposition 10. We first show that for a generic distribution F
the configurations in parts b and c of Proposition 5 are not possible under a
runoff system.

a1 < a2 ≤ a3 < a4; each candidate obtains the same number of first-
round votes : Since each candidate obtains one quarter of the first-round
votes, we have a2 = 2q1 − a1, a3 = 2m − a2, and a4 = 2q3 − a3; hence
a4 = 2q3 − 2m + 2q1 − a1. Now, if 1 and 4 tie in a runoff against each other
then a4 − m = m − a1. Combined with a4 − m = m − a1 we deduce that we
need m = 1

2
(q1 + q3), which generically is not satisfied. Thus for a generic

distribution either 1 loses against 4 or vice versa.
Suppose that 1 loses against 4, so that she loses any runoff. The ultimate

winner is 2 with probability 5
6
, 3 with probability 5

12
, and 4 with probability 1

6
.

If 1 withdraws then the ultimate winner is 2 with probability 3
4

and 3 with
probability 1

4
if a2 < a3 and 2 and 3 each with probability 1

2
if a2 = a3. Hence

in either case 1 is better off withdrawing.
a1 < a2 < a3 = a4; each candidate obtains the same number of first-round

votes : The ultimate winner is 2 with probability 2
3
, 3 with probability 1

6
, and

4 with probability 1
6
; if 1 withdraws then the ultimate winner is 2 with

probability 1. Hence 1 is better off withdrawing.
We now show that the configuration in part d of Proposition 5 is not

possible under a runoff system.
a1 = a2 < a3 < a4; candidate 3 receives fewer votes than the other

three candidates : The ultimate winner is 1 with probability 1
2

and 2 with
probability 1

2
(1 and 2 both beat 4 in a one-on-one contest). If 4 withdraws,

then the ultimate outcome is the same, so she is better off withdrawing.
It remains to show that the configuration in part a is possible in equilib-

rium only if b > 6c.
a1 < a2 < a3 < a4; candidate 2 receives fewer votes than the other three

candidates. If 1 wins a runoff against 4 then the ultimate winner is 3 with
probability 2

3
and 1 with probability 1

3
. If 4 withdraws then 3 is the certain
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winner (since the runoff is then between 1 and 3), so she is better off doing
so. Similarly, if 4 wins a runoff against 1 then 2 is better off withdrawing.
The remaining possibility is that 1 and 4 tie in a runoff, in which case 1 wins
probability 1

6
, 3 wins with probability 2

3
, and 4 wins with probability 1

6
. If 4

withdraws then 3 is the certain winner, so the optimality of 4’s entry implies
that 1

6
b − c − 2

3
ε3 − 1

6
(ε1 + ε2 + ε3) ≥ −ε3, or b ≥ 6c + ε1 + ε2 − ε3, where

εi = ai+1 −ai for i = 1, 2, 3. If 2 withdraws then 3 is also the certain winner,
so the optimality of 2’s entry implies that −c− 1

6
ε1 − 2

3
ε2 − 1

6
(ε2 + ε3) ≥ −ε2,

or 6c ≤ −ε1 + ε2 − ε3, or, in particular, ε2 > ε1 + ε3. Thus for an equilibrium
we need b ≥ 6c + ε1 + ε1 + ε3 − ε3 > 6c.
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