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Abstract

Hamiltonian Monte Carlo (HMC) is a recent statistical procedure to sample from complex distribu-

tions. Distant proposal draws are taken in a sequence of steps following the Hamiltonian dynamics

of the underlying parameter space, often yielding superior mixing properties of the resulting Markov

chain. However, its performance can deteriorate sharply with the degree of irregularity of the under-

lying likelihood due to its lack of local adaptability in the parameter space. Riemann Manifold HMC

(RMHMC), a locally adaptive version of HMC, alleviates this problem, but at a substantially increased

computational cost that can become prohibitive in high-dimensional scenarios. In this paper we pro-

pose the Adaptively Updated HMC (AUHMC), an alternative inferential method based on HMC that

is both fast and locally adaptive, combining the advantages of both HMC and RMHMC. The benefits

become more pronounced with higher dimensionality of the parameter space and with the degree of

irregularity of the underlying likelihood surface. We show that AUHMC satisfies detailed balance for

a valid MCMC scheme and provide a comparison with RMHMC in terms of effective sample size,

highlighting substantial efficiency gains of AUHMC. Simulation examples and an application of the

BEKK GARCH model show the practical usefulness of the new posterior sampler.
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1. Introduction

Hamiltonian dynamics have been traditionally used to describe the laws of motion in molecular sys-

tems in physics. Following the recent advances in Markov chain Monte Carlo (MCMC) fuelled by

increasing availability of fast computation, inferential methods based on Hamiltonian dynamic sys-

tems are becoming increasingly popular in the statistics literature (Neal, 1993, 2010; Ishwaran, 1999;

Liu, 2004; Girolami and Calderhead, 2011). Hamiltonian Monte Carlo, also called Hybrid Mote Carlo,

(HMC) uses Hamiltonian dynamics in constructing distant proposal draws in a sequence of steps and

hence concurrently yields relatively low correlation among draws and high acceptance probabilities.

Methods based on HMC have been shown to improve sampling of ill-behaved posteriors, and enabled

the solution of otherwise intractable high dimensional inference problems (Neal, 2010; Girolami and

Calderhead, 2011). These methods are particularly useful for the kind of problems where it is difficult

to accurately approximate the surface of the (posterior) log-likelihood around the current parameter

draw or the mode in real time needed for obtaining sufficiently high acceptance probabilities in impor-

tance sampling (IS) or accept-reject methods. Perpetual re-fitting of a local posterior approximating

density around newly accepted draws during the MCMC run may become too costly for methods based

on such mechanism to be practical. These types of problems typically arise when the log-likelihood is

costly to evaluate and is near-ill-conditioned around the mode.

Even if on a small scale, with a few parameters and small sample size, such problems can be handled

by standard procedures, these can become prohibitive in higher parameter dimensions and sample

sizes. Examples include recursive models in finance, such as the BEKK GARCH that we treat in

our application, state-space models or point process models. In such situations one would typically

resort to Random walk (RW) style sampling that is fast to run and does not require the knowledge

of the properties of the underlying log-likelihood. However, RW mechanisms can lead to very slow

exploration of the parameter space with high autocorrelations among draws which would require a

prohibitively large size of the Markov chain to be obtained in implementation to achieve satisfactory

mixing and convergence. HMC combines the advantages of sampling that is relatively cheap with

RW-like intensity but superior parameter space exploration.

Nonetheless, HMC uses a mechanism whose form is fixed over the parameter space, lacking adapt-

ability to local features of the likelihood. The Riemann Manifold HMC, or RMHMC (Girolami and

Calderhead, 2011), alleviates this problem and renders HMC locally adaptable which results in im-

proved convergence and mixing properties. However, relative to HMC, RMHMC implementation

requires a substantially increased computational burden with a large number of fixed point evalua-

tions within every MC step. Crucially, a numerical estimate of the Fisher Information matrix needs

to be newly evaluated in every iteration while searching for each fixed point. This can render its

performance inadequate in high-dimensional problems where the likelihood is expensive to evaluate.

Indeed, it is precisely this type of problems for which HMC-type methods are most useful relative to

other existing methods.



In this paper we propose an alternative inferential method, the Adaptively Updated HMC (AUHMC),

that is both relatively fast and locally adaptive. AUHMC is based on proposal dynamics generalizing

HMC with only minimal additional functional evaluations, approximating the local adaptability prop-

erties of RMHMC. Unlike the RMHMC, AUHMC does not attempt to construct a completely locally

adaptive proposal sequence, but rather a fast local approximation to the fully adaptive case. This

enables AUHMC to bypass multiple fixed point evaluations in every step in the proposal sequence

within every MC parameter draw that RMHMC needs to take. As a result, AUHMC features a sub-

stantial speed gain traded off for only a relatively small loss of the degree of adaptability relative to

RMHMC.

From the end-user perspective AUHMC is easier to code than RMHMC, while the additional elements

over HMC are simple to implement. AUHMC is not a special case of RMHMC as their dynamic sys-

tems are non-nested, while HMC can be obtained as a special case of AUHMC by imposing restrictions

on the dynamics of the latter.

We provide a set of necessary and sufficient conditions under which AUHMC yields a valid MCMC

scheme with a tractable form of its acceptance probability. The performance of AUHMC is assessed

on two simulated examples: first a case with increasing dimensionality of the parameter space and

fixed sample size (multivariate Normal), and second a case with increasing sample size and fixed

dimensionality (GARCH(1,1)). Both examples reveal increasing relative efficiency gains of AUHMC.

We apply AUHMC to the task of model comparison in a high-dimensional BEKKGARCH environment

with its highly complex likelihood. We show that AUHMC facilitates evaluation of the marginal

likelihood even in the joint likelihood full BEKK GARCH model in higher dimensions than previously

considered practical. Due to the inherent sampling difficulties, Bayesian estimation of multivariate

GARCH models is relatively scarce (Dellaportas and Vrontos (2007), Hudson and Gerlach (2008) and

Osiewalski and Pipien (2004)). Coming up with a good proposal density inside a Metropolis-Hasting

procedure has been a challenge for conventional samplers. The importance of full joint likelihood

BEKK inference is highlighted by a marginal likelihood comparison that clearly favors the full model

version over its restricted alternatives.

AUHMC is related to but distinct from the adaptive radial-based direction sampling (ARDS) method

of Bauwens, Bos, van Dijk, and van Oest (2004). While AUHMC utilizes deterministic directional

derivatives (numerical or analytical) of a Hamiltonian system in order to move within hypersurfaces

of approximately equal functional value, ARDS is based on a transformation into radial coordinates,

stochastic sampling of directional vectors, and then applying the inverse transformation. The accep-

tance probability of the Metropolis-Hastings version of ARDS is a function of a numerical quadrature

over the posterior in a given direction. The importance sampling version of ARDS relies on a direc-

tional approximation of the posterior. In either case, each MC draw of ARDS requires a certain type



of relatively detailed posterior approximation which AUHMC seeks to avoid in order to be applica-

ble in problems where quadrature evaluation or importance sampling may become computationally

prohibitive, as described above. Each method thus focuses on different types of applied problems.

Our work also complements other existing tailored proposal methods for posterior sampling in difficult

situations such as Chib and Ramamurthy (2010), Liesenfeld and Richard (2006) and Pitt and Shephard

(1997). The AUHMC is a useful addition to the applied econometrician’s toolkit and can be applied

to the full block of parameters as in our examples or to a sub-block of parameters in conjunction with

other Gibbs and Metropolis-Hasting steps.

The paper is organized as follows: Section 2 provides an overview of useful statistical background

including the detailed balance condition of the Metropolis-Hastings principle. Section 3 introduces

AUHMC. Section 4 explores the properties of AUHMC on simulated examples and Section 5 details

the application of AUHMC to a high-dimensional BEKK GARCH model. Section 6 concludes.

2. Statistical Background

Consider an economic model parametrized by a Euclidean vector θ ∈ Θ for which all information in

the sample is contained in the model posterior π(θ; ∙) that we denote by π(θ), assumed known up to

an integrating constant. Formally, a general class of such models can be characterized by a family Pθ

of probability measures on a measurable space (Θ,B) where B is the Borel σ−algebra.

The purpose of Markov Chain Monte Carlo (MCMC) methods is to formulate a Markov chain on

the parameter space Θ for which, under certain conditions, π(θ) ∈ Pθ is the invariant (also called

’equilibrium’ or ’long-run’) distribution. The Markov chain of draws of θ can be used to construct

simulation-based estimates of the required integrals, and functionals h(θ) of θ that are expressed as

integrals. These functionals include objects of interest for inference on θ such as quantiles of π(θ).

The Markov chain sampling mechanism specifies a method for generating a sequence of random

variables {θr}Rr=1, starting from an initial point θ0, in the form of conditional distributions for the

draws θr+1|θr ∼ G(θr). Under relatively weak regularity conditions (Robert and Casella, 2004), the

average of the Markov chain converges to the expectation under the stationary distribution:

lim
R→∞

1

R

R∑

r=1

h(θr) = Eπ[h(θ)]

A Markov chain with this property is called ergodic. As a means of approximation we rely on large

but finite R ∈ N which the analyst has the discretion to select in applications.

The Metropolis-Hastings (M-H) principle has been the cornerstone of constructing Markov chains by

sampling θr+1|θr from G(θr); see Chib and Greenberg (1995) for a detailed overview. G(θr) can be

obtained from a given (economic) model and its corresponding posterior π(θ), parametrized by θ,

known up to a constant of proportionality.



However, π(θ) typically has a complicated form which precludes direct sampling. Then the goal

is to find a transition kernel P (θ, dθ) whose nth iterate converges to π(θ) for large n. After this

large number, the distribution of the observations generated from the Markov chain simulation is

approximately the target distribution. The transition kernel P (θ,A) for θ ∈ Θ and A ⊂ Θ is an

unknown conditional distribution function that represents the probability of moving from θ to a point

in the set A. Suppose we have a proposal-generating density q(θ∗r+1|θr) where θ
∗
r+1 is a proposed state

given the current state θr of the Markov chain. The Metropolis-Hastings (M-H) principle stipulates

that θ∗r+1 be accepted as the next state θr+1 with the acceptance probability

(2.1) α(θr, θ
∗
r+1) = min

[
π(θ∗r+1)q(θr|θ

∗
r+1)

π(θr)q(θ∗r+1|θr)
, 1

]

otherwise θr+1 = θr. Then the Markov chain satisfies the so-called detailed balance condition

π(θr)q(θ
∗
r+1|θr)α(θr, θ

∗
r+1) = π(θ

∗
r+1)q(θr|θ

∗
r+1)α(θ

∗
r+1, θr)

which is sufficient for ergodicity. α(θ∗r+1, θr) is the probability of the move θr|θ
∗
r+1 if the dynamics

of the proposal generating mechanism were to be reversed. While π(θ) may be difficult or expensive

to sample from, the proposal-generating density q(θ∗r+1|θr) can be chosen to be sampled easily. The

popular Gibbs sampler arises as a special case when the M-H sampler is factored into conditional

densities.

A variation on (2.1) can be constructed by augmenting the parameter space Θ with a set of independent

auxiliary stochastic parameters γ ∈ Γ that fulfill a supplementary role in the proposal algorithm, such

as facilitating the directional guidance of the proposal mechanism. The detailed balance is then

satisfied using the acceptance probability

(2.2) α(θr, γr; θ
∗
r+1, γ

∗
r+1) = min

[
π(θ∗r+1, γ

∗
r+1)q(θr, γr|θ

∗
r+1, γ

∗
r+1)

π(θr, γr)q(θ∗r+1, γ
∗
r+1|θr, γr)

, 1

]

A further relevant variation on (2.1) is arises when (θ∗r+1, γ
∗
r+1) are obtained from (θr, γr) using a

sequence of within-proposal steps {θkr , γ
k
r }
L
k=1 with (θr, γr) = (θ

0
r , γ

0
r ) and (θr, γr) = (θ

L
r , γ

L
r ). In each

case, the desired posterior can be obtained by marginalizing out γ.

3. Adaptively Updated Hamiltonian Monte Carlo

The original Hamiltonian (or Hybrid) Monte Carlo (HMC) algorithm has its roots in the physics liter-

ature where it was introduced as a fast method for simulating molecular dynamics (Duane, Kennedy,

Pendleton, and Roweth, 1987). It has since become popular in a number of application areas in-

cluding statistical physics (Akhmatskaya, Bou-Rabee, and Reich, 2009; Gupta, Kilcup, and Sharpe,

1988), computational chemistry (Tuckerman, Berne, Martyna, and Klein, 1993), or a generic tool for

Bayesian statistical inference (Neal, 1993, 2010; Ishwaran, 1999; Liu, 2004; Beskos, Pillai, Roberts,

Sanz-Serna, and Stuart, 2010). A separate stream of literature has developed around the Langevin dif-

fusion mechanisms which use related proposal dynamics but utilize one-step proposals only (Roberts



and Rosenthal, 1998; Roberts and Stramer, 2003). We synthesize the HMC principles in a generally

accessible form in Appendix A.

In a recent contribution to the statistics literature, Girolami and Calderhead (2011) generalize HMC

to benefit from Riemannian geometry induced by the expected Fisher Information mass matrix in

the HMC algorithm. The use of the Fisher Information metric tensor results in effective moves

based on shortest paths (geodesics) across the induced Riemannian manifold. The geodesics across

a Riemannian manifold may be described in terms of Hamilton’s equations, thus providing a natural

link to HMC methods. Since the Fisher Information metric is a function of the model parameters,

the resulting method (RMHMC) renders the HMC algorithm adaptive to the local curvature of the

posterior likelihood, in contrast to the original HMC with a constant mass matrix and hence a fixed

metric over the whole parameter space.

However, relative to HMC, RMHMC implementation requires a substantially increased computational

burden, resulting from the additional requirement of finding numerical solutions to two fixed points

at every step k of the proposal sequence {θkr , γ
k
r }
L
k=1 inside each HMC proposal step. Crucially, a

numerical estimate of the Fisher Information matrix needs to be newly evaluated in every iteration

while searching for each fixed point. This can render its performance inadequate in high-dimensional

problems where the likelihood is expensive to evaluate.

In this paper we propose the Adaptively Updated HMC (AUHMC), an alternative HMC-based method

featuring distant proposals that is locally adaptable and yet avoids the computational complexity of

RMHMC. AUHMC uses an approximation to the Riemanian geometry utilized by RMHMC that is

much cheaper to obtain than the exact Riemannian paths. However, AUHMC does not constitute

a special case of RMHMC, since no simplification of the latter will yield the former. What is being

simplified here is the metric tensor geometry of Riemannian manifold over which moves are proposed,

which requires a distinct non-nested implementation algorithm from the previously proposed ones.

We show that AUHMC satisfies the conditions for a valid MCMC scheme in Theorem 1 below. Results

of this type have been obtained for HMC and RMHMC in the literature, but the AUHMC is a non-

nested distinct alternative to either of these methods and hence needs to be validated separately.

Theorem 2 further provides the set of regularity conditions on the (posterior) likelihood that are

sufficient for satisfying the assumptions made in Theorem 1. These conditions can be easily verified

in a given application.

3.1. Non-separable Hamiltonian Systems

Consider a vector of parameters of interest θ ∈ Rd distributed according to the posterior density

π(θ). Let γ ∈ Rd denote a vector of auxiliary parameters with γ ∼ Φ(γ; 0,M(θ)) where Φ denotes

the Gaussian distribution with mean vector 0 and covariance matrix M(θ). Denote the joint density

of (θ, γ) by π(θ, γ). Then the negative of the logarithm of the joint density of (θ, γ) is given by the



Hamiltonian equation

(3.1) H(θ, γ) = − lnπ(θ)− ln q(γ|θ)

where

(3.2) q(γ|θ) = (2π)−d/2 |M(θ)|−1/2 exp

(

−
1

2
γ′M(θ)−1γ

)

renders the auxiliary parameter quadratic term γ′M(θ)−1γ/2 as an explicit function of θ (Leimkuhler

and Reich, 2004). This property leads to local adaptability of the proposal sequence but also com-

plicates subsequent analysis. The associated Hamiltonian dynamics equations are in general given

by

dθi

dt
=
∂H(θ, γ)

∂γi
=
[
M(θ)−1γ

]
i

(3.3)

dγi

dt
= −
∂H(θ, γ)

∂θi
= ∇θ lnπ(θ)−

1

2
Tr

(

M(θ)−1
∂M(θ)

∂θi

)

+
1

2
γ′M(θ)−1

∂M(θ)

∂θi
M(θ)−1γ(3.4)

A number of numerical methods have been devised in the physics and molecular dynamics literature

to solve the differential equations (3.3)–(3.4) in order to accurately determine the position of θ(t+ s)

and γ(t+ s) at the next instant t+ s given their current position at time t in the state space. These

solutions include the generalized Euler and Stormer-Verlet (generalized leapfrog) methods (Hairer,

Lubich, and Wanner, 2003; Leimkuhler and Reich, 2004).

3.2. AUHMC

The starting point for AUHMC is the non-separable Hamiltonian (3.1)-(3.2). However, instead of

M(θ), for each MCMC update r, we use the matrix M(θr, θ∗r+1) that is fixed constant for the entire

leapfrog multi-step proposal sequence {θkr , γ
k
r }
L
k=0, i.e. between θr and θ

∗
r+1 inclusive. Thus, for a

given r, M(θr, θ∗r+1) is not a function of θ. Hence the formation of the proposal sequence {θ
k
r , γ

k
r }
L
k=1

can use the standard leapfrog integrator of HMC, with the mass matrix M(θr, θ∗r+1), given by,

γk+1/2r = γkr −
ε

2
∇θ lnπ(θ

k
r )(3.5)

θk+1r = θkr + ε
[
M(θr, θ∗r+1)

−1γk+1/2r

]
(3.6)

γk+1r = γk+1/2r −
ε

2
∇θ lnπ(θ

k+1
r )(3.7)

The value of M(θr, θ∗r+1) is obtained as one fixed point per proposal draw (θ
∗
r+1, γ

∗
r+1). Given θr, and

an initial guess M(θr, θ∗r+1,j), for j = 1, take L steps of (3.5)-(3.7) with k = 1, . . . , L, then at the

resulting θ∗r+1,j+1 updateM(θr, θ
∗
r+1,j+1), and keep iterating for j = 2, . . . until convergence to a fixed

point M(θr, θ∗r+1) achieved when (θ
∗
r+1,j−1, γ

∗
r+1,j−1) = (θ

∗
r+1,j , γ

∗
r+1,j) within some small tolerance

region. The proposal sequence {θkr , γ
k
r }
L
k=1 with (θ

∗
r+1, γ

∗
r+1) = (θ

L
r , γ

L
r ) is then drawn by applying

(3.5)-(3.7) using the the fixed-point M(θr, θ∗r+1). The exact AUHMC algorithm is given in Appendix

B. The conditions for a contraction mapping given below ensure the existence and uniqueness of



the fixed point. In our experiments we found that only a few iterations were necessary to obtain

M(θr, θ∗r+1), resulting in relatively rapid speed of the MCMC updates.

While M(θr, θ∗r+1) is fixed within a given MCMC proposal step from θr to θ
∗
r+1, M(θr, θ

∗
r+1) changes

between any two distinct proposal steps {θr to θ∗r+1} and {θs to θ
∗
s+1} with r 6= s. This feature renders

AUHMC adaptive to the curvature of the (posterior) likelihood for any current parameter draw θr

over the parameter space Θ.

We expect AUHMC to be more computationally efficient relative to RMHMC. First we use (3.5)-(3.7)

instead of the more complex integrator associated with (3.3)-(3.4). Second, we require one fixed point

in contrast to many fixed points along the proposal path in k = 1, ..., L. We verify this assertion

numerically in the simulated examples below.

The following assumptions state sufficient conditions for AUHMC to satisfy detailed balance of a valid

MCMC scheme, with a tractable acceptance probability.

ASSUMPTION 1. M(θr, θ∗r+1) is symmetric in its arguments, satisfying

M(θr, θ∗r+1) =M(θ
∗
r+1, θr)

ASSUMPTION 2. ∇θ lnπ(θ) is bounded and Lipschitz continuous in θ.

ASSUMPTION 3. The parameter space Θ is compact.

Assumption 1 can be satisfied by construction when setting the functional form of M(∙), as we do

below. Assumption 2 imposes restrictions on the rate of change of the score function that are satisfied

by smooth densities typically used to construct likelihood functions. Assumption 3 is standard in the

literature.

The uniqueness of the AUHMC solution and its detailed balance are summarized by the following two

results.

LEMMA 1. Under the Assumptions 2–3, the fixed point defining M(θr, θ∗r+1) exists and is unique

for any given θr. In particular, for any δ ∈ (0, 1) there exists ε(δ) > 0 dependent on δ only, such that

∀ε∗ < ε(δ), {Tk}Lk=1 is a contraction mapping uniquely determining M(θr, θ
∗
r+1).

THEOREM 1. Under the Assumptions 1–3, AUHMC satisfies detailed balance, with the acceptance

probability given by

α(θr, γr; θ
∗
r+1, γ

∗
r+1) = min

[
π(θ∗r+1, γ

∗
r+1)

π(θ0r , γ
0
r )
, 1

]

= min [exp (α̃r) , 1](3.8)

where

α̃r = lnπ(θ
∗
r+1)− lnπ(θr) + lnφ(γ

∗
r+1; 0,M(θr, θ

∗
r+1))− lnφ(γr; 0,M(θr, θ

∗
r+1))



The proofs are provided in Appendix C. Heuristically, we show that AUHMC implements a solution

to a symmetric mapping Ψ̂ε, defined in Appendix C. The symmetry of Ψ̂ε implies its time reversibility

which in turn yields detailed balance. The proof of Theorem 1 closely follows the proof of symmetry

of a concatenation of an explicit Euler method with an implicit Euler method (Leimkuhler and Reich,

2004, p. 84), but in defining the implicit part of each step Ψ̂ε uses the distances to the endpoints

of the proposal sequence instead of the arguments of directional derivatives used in the Euler case.

The resulting concatenation of explicit and implicit half-steps leading to Ψ̂ε is symmetric and hence

reversible as in the Euler case, but the directional derivatives of proposal moves in Ψ̂ε are fixed at the

endpoints and hence constant within the proposal sequence. This allows for HMC transitions between

the proposal sequence endpoints provided by AUHMC.

There are many potential ways of specifying the functional form of M(θr, θ∗r+1). We take a user-

friendly approach with light computational burden and set

(3.9) M(θr, θ∗r+1) =
1

2

[
F (θr) + F (θ

∗
r+1)

]

where F (θ) is the Fisher information matrix evaluated at θ. Using F (θ) to convey information about

the curvature of ln π(θ) at θ was suggested in Girolami and Calderhead (2011).

Intuitively, AUHMC amounts to running the HMC between θr and θ
∗
r+1, using the information about

the curvature of ln π(θ) at the end points θr and θ
∗
r+1 in a symmetric way which preserves detailed

balance of the resulting Markov chain. In contrast, the local curvature information is not utilized in

HMC where the mass matrix M is exogenously set, often to the identity matrix. Consequently, the

HMC results as a special case of AUHMC for a globally constant matrix M over the entire parameter

space of (θ, γ). As another special case when ln π(θ) has a globally constant curvature with respect to

θ, such as when θ = μ for data y ∼ N (μ, I), the AUHMC produces draws equivalent to the HMC. In

general, however, when the curvature of ln π(θ) changes as a function of θ, such as in θ = (μ,Σ) for

data y ∼ N (μ,Σ), AUHMC exploits the shape of ln π(θ) by locally adapting the proposal dynamics

to the curvature of ln π(θ).

A key feature of AUHMC, in line with other HMC-based schemes, is that it simplifies the acceptance

probability (2.2) to the Metropolis form containing only the ratio of the joint densities of (θ, γ). This

feature provides for a user-friendly implementation of the algorithm.

4. Simulated Examples

In this Section we assess the performance of AUHMC on two stylized illustrative examples. Girolami

and Calderhead (2011) provide an excellent exposition of a series of problems that highlight the supe-

rior performance of RMHMC relative to other related samplers. Hence, to establish the performance

merit of AUHMC we believe that it is sufficient to take RMHMC as the benchmark of comparison.

We first examine sampling of the parameters in multivariate Normal density in Example 1, and then

sampling of the parameters in a univariate GARCH(1,1) model in Example 2. In Example 1 we fix the



sample size and increase the parameter dimensionality; in Example 2 we fix the dimensionality and

increase the sample size. This setup is intended to uncover any potential trends in the performance

comparison.

We compare the relative efficiency of AUHMC and RMHMC by using the same approach as Girolami

and Calderhead (2011) and Holmes and Held (2006) in making their comparisons. For each example

and method, we calculate the effective sample size (ESS), which is is the number of effectively inde-

pendent draws from the posterior distribution that the Markov chain is equivalent to. The ESS thus

serves as an estimate of the number of independent samples needed to obtain a parameter estimate

with the same precision as the MCMC estimate considered based on a given number of dependent

samples. The nominal ESS is calculated as ESS∗ = R
[
1 + 2

∑
j γ(j)

]−1
where R is the number of

posterior samples, and γ(j) is the monotone sample autocorrelation (Geyer, 1992). The nominal ESS

is then normalized for CPU run time required to obtain the given Markov chain of posterior draws,

yielding ESS = 100×ESS∗/S where S is the number of seconds of CPU run time. The MCMC chains

were obtained on a 2.8 GHz unix workstation with the Intel fortran 95 compiler. For obtaining ESS∗

from the MCMC output chains we used the R package coda. All results reported are the averages of

10 different runs.

The results for the examples considered here are given in Tables 1 and 2 and Figures 1 and 2 below.

We report the mean, standard deviation, minimum, and maximum ESS for the sampled parameter

vector for each simulation setup. We also report the nominal (unnormalized) numbers along with the

CPU run time as the ESS inputs. In the tables, Ratio denotes the ratio of AUHMC to RMHMC of

the respective statistics. Values greater than 1 indicate better performance of AUHMC. Figures 1 and

2 plot the relative efficiency gain of AUHMC over RMHMC, calculated as the ESS means ratio for

the two methods. Figure 1 shows the AUHMC relative efficiency gain for increasing dimensionality

and fixed sample size in Example 1, and Figure 1 for fixed dimensionality and increasing sample size

in Example 2. In each Figure, the horizontal dotted line at y-value 1 marks theoretical equivalence of

both methods, while the region above 1 represents efficiency gains of AUHMC.

4.1. Example 1: Joint Sampling of Parameters of a Multivariate Normal Density

Let yt ∼ N (y|μ,Σ) for t = 1, . . . , T with

lnπ(θ) = −
Td

2
ln(2π)−

T

2
ln |Σ| −

1

2

T∑

t=1

(yt − μ)
′
Σ−1(yt − μ)

and θ ≡ (μ′, vech(Σ)′)′. Naturally, a convenient factorization of this problem is readily available, but

this stylized example is meant to serve for joint sampling comparison purposes on a familiar and

analytically tractable case. In general applications, a conditional factorization of the joint density

lnπ(θ) may not be available or practical to implement (this is for instance the case of the BEKK

GARCH model analyzed in the next Section). In the simulation study of Example 1, we vary dim(y)

from 3 to 6, which corresponds to the parameter dimensionality dim(θ) varying from 9 to 27. The



true parameter values were set to μ0 = 0, and Σ to equal the covariance matrix of a first-order

autoregressive process with correlation 0.5. Our prior restricts Σ to be positive definite. Each chain

was initialized at the true parameter values, with L = 10 leapfrog steps, and the stepsize ε tuned

to achieve acceptance rates close to 0.8. The posterior samples were obtained from 2,000 parameter

draws with a 1,000 burnin section. The ESS statistics are reported in Table 1 and Figure 1.

4.2. Example 2: Joint Sampling of GARCH (1,1) Parameters

Let yt ∼ N (y|0, σ2t ) with σ
2
t = γ + αy

2
t−1 + βσ

2
t−1 for t = 1, . . . , T and θ ≡ (γ, α, β) where

lnπ(θ) = −
T

2
ln(2π)−

1

2

T∑

t=1

ln(σ2t (θ))−
1

2

T∑

t=1

ytσ
−2
t (θ)

∂

∂θ
lnπ(θ) = −

1

2

T∑

t=1

1

σ2t

∂σ2t (θ)

∂θ
+
1

2

T∑

t=1

e2tσ
−4
t

∂σ2t (θ)

∂θ

∂σ2t (θ)

∂γ
= 1 + β

∂σ2t−1(θ)

∂γ

∂σ2t (θ)

∂α
= e2t−1 + β

∂σ2t−1(θ)

∂α

∂σ2t (θ)

∂β
= σ2t−1 + β

∂σ2t−1(θ)

∂β

and F (θ) is consistently estimated using the average of the outer products of the scores. In this

simulation study we vary the sample size T from 200 to 600. The dimensionality of the parameter

space of θ is kept constant at 3. The true parameter values were set to γ0 = 0.1, α0 = 0.05 and

β0 = 0.9. Each chain was initialized at the true parameter values, with L = 100 leapfrog steps, and

the stepsize ε tuned to achieve acceptance rates close to 0.8. The posterior samples were obtained

from 10,000 parameter draws with a 5,000 burnin section. Due to a more complex structure of the

likelihood compared to Example 1, a larger number of smaller steps and longer MC run were necessary

to obtain good mixing properties in this case. The ESS statistics are reported in Table 2 and Figure

2.

In summary, the improvement of AUHMC over RMHMC is substantial, with up to 50-fold efficiency

gain in Example 1 and up to 11-fold efficiency gain in Example 2. In both examples, the improvement

keeps increasing with increasing dimensionality and sample size, indicating sustained efficiency gain of

AUHMC for more complex and sizeable problems. Both increasing the dimensionality and sample size

add additional heavy computational load to the RMHMC in its fixed point iterations that AUHMC

avoids. These examples highlight the benefits of AUHMC on interesting cases in order to motivate its

use in applications.



Table 1: Simulation Results for Example 1

Variable dimension 3 4 5 6
Parameter dimension 9 14 20 27

CPU Time (s)
AUHMC 5.282 17.7 117.673 198.396
RMHMC 6.886 22.841 325.452 952.945
Ratio 0.767 0.775 0.362 0.208

Nominal ESS mean
AUHMC 157.627 125.713 94.312 76.721
RMHMC 38.525 19.959 11.992 7.922

AUHMC 2991.247 712.301 80.265 38.731
ESS mean RMHMC 559.449 87.383 3.685 0.831

Ratio 5.559 8.306 22.641 52.135

Nominal ESS s.d.
AUHMC 91.535 57.877 42.776 32.461
RMHMC 8.271 5.629 4.011 2.884

ESS s.d.
AUHMC 1734.502 328.755 36.389 16.37
RMHMC 120.066 24.652 1.232 0.303

Nominal ESS min
AUHMC 61.1 59.524 40.359 32.803
RMHMC 30.342 15.088 8.22 5.222

AUHMC 1160.743 337.019 34.399 16.622
ESS min RMHMC 440.663 66.052 2.526 0.548

Ratio 2.81 5.191 14.636 35.298

Nominal ESS max
AUHMC 294.058 233.335 183.867 148.242
RMHMC 46.166 25.738 15.903 10.696

AUHMC 5574.415 1325.778 156.48 74.841
ESS max RMHMC 670.379 112.69 4.887 1.123

Ratio 8.735 12.073 33.814 76.204

Acceptance rate
AUHMC 0.821 0.824 0.812 0.795
RMHMC 0.798 0.785 0.816 0.836

ε
AUHMC 0.11 0.095 0.085 0.078
RMHMC 0.04 0.03 0.02 0.015

Figure 1: AUHMC Efficiency Gain in Example 1
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Table 2: Simulation Results for Example 2

Sample size T 200 300 400 500 600
Parameter dimension 3 3 3 3 3

CPU Time (s)
AUHMC 43.722 45.981 63.116 77.09 89.092
RMHMC 131.152 195.712 260.692 321.97 381.456
Ratio 0.333 0.235 0.243 0.24 0.234

Nominal ESS mean
AUHMC 14.724 20.939 20.199 21.656 31.02
RMHMC 20.484 20.356 19.251 16.831 17.511

AUHMC 35.796 44.996 32.184 28.565 34.425
ESS mean RMHMC 15.619 10.429 7.407 5.246 4.593

Ratio 4.175 4.396 5.215 8.507 11.29

Nominal ESS s.d.
AUHMC 17.278 28.476 27.348 30.858 46.333
RMHMC 28.009 26.981 26.989 22.046 22.892

ESS s.d.
AUHMC 42.628 61.038 43.607 40.865 51.269
RMHMC 21.353 13.824 10.387 6.892 6.005

Nominal ESS min
AUHMC 3.596 2.993 3.029 2.913 3.429
RMHMC 3.467 3.253 2.972 3.039 2.993

AUHMC 8.446 6.486 4.781 3.769 3.884
ESS min RMHMC 2.645 1.665 1.142 0.937 0.785

Ratio 3.442 3.943 4.345 4.705 5.682

Nominal ESS max
AUHMC 34.579 53.706 51.676 57.248 84.5
RMHMC 52.758 51.403 50.381 41.967 43.565

AUHMC 84.799 115.218 82.369 75.703 93.602
ESS max RMHMC 40.223 26.337 19.387 13.105 11.428

Ratio 5.13 4.416 5.486 9.862 15.842

Acceptance rate
AUHMC 0.726 0.874 0.824 0.819 0.851
RMHMC 0.815 0.873 0.806 0.787 0.751

ε
AUHMC 3e-05 1e-05 1e-05 8e-06 6e-06
RMHMC 2e-05 1e-05 1.1e-05 1e-05 1e-05

Figure 2: AUHMC Efficiency Gain in Example 2
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5. BEKK GARCH Application

Interest in modeling the volatility dynamics of time-series data continues to grow and be important in

many areas of empirical economics and finance. Generally, the literature on multivariate asset return

modeling has moved to using more parsimonious models such as Engle (2002), Engle, Shephard, and

Sheppard (2009) and Ding and Engle (2001). These approaches put restrictions on the volatility dy-

namics and feature two-step estimation and approximations to the likelihood. This makes estimation

and inference feasible for a larger class of assets. However, it is desirable to consider more flexible

models such as the BEKK model of Engle and Kroner (1995) and to perform full likelihood based

inference. The BEKK model is one of the most flexible GARCH models that maintain positive definite

conditional covariances at the expense of a large number of parameters. Although inference of the

model with 2 or 3 assets have appeared in the literature we are not aware of anything beyond this

asset dimension. An important question is how much do we lose in terms of statistical fit in moving

from a BEKK model to a restricted model with fewer parameters to estimate. The extension to HMC

discussed above provides an approach that can deal with the larger dimensions in the parameter space

and jointly estimate the BEKK model in one run and compare the model to restricted versions.

Let rt be a N × 1 vector of asset returns with t = 1, . . . , T and denote the information set as

Ft−1 = {r1, . . . , rt−1}. We assume returns follow

rt|Ft−1 ∼ NID(0,Ht)(5.1)

Ht = CC ′ + F ′rt−1r
′
t−1F +G

′Ht−1G.(5.2)

Ht is a positive definite N ×N conditional covariance matrix of rt given information at time t− 1, C

is a lower triangular matrix and F and G are N ×N matrices. Since our main focus is on sampling

a complex posterior with many parameters we maintain a Gaussian assumption and a zero intercept

for simplicity.1 The total number of parameters in this model is N(N + 1)/2 + 2N2.

In the following we focus on the full BEKK model in (5.1) but also consider some restricted versions.

The first imposes F and G to be diagonal matrices which results in N(N + 1)/2 + 2N parameters.

The second imposes diagonal matrices on all parameter matrices C,F and G and has 3N parameters.

The data is percent log-differences of foreign exchange spot rates for AUD/USD, GBP/USD, CAD/USD,

EUR/USD, and JPY/USD from 2000/01/05 - 2006/10/11, (1700 observations). A time series plot of

the five (N = 5) series is in Figure 3 and summary statistics are in Table 3. The sample mean for all

series is close to 0 and excess kurtosis is fairly small. The sample correlations indicate all series tend

to move together.

With N = 5 there are 65 model parameters in the full BEKK model while there are 25 and 15

parameters, respectively, in the two restricted models. To start the GARCH recursion H1 is set to

1Although not estimated, we expect our method could be extended to other innovation distributions such as
multivariate Student-t with little modification.



the sample covariance of the first 20 observations. The priors are set to independent N(0,100). For

identification, the diagonal elements of C and the first element of both F and G are restricted to be

positive (Engle and Kroner, 1995). These restrictions are enforced by dropping any parameter draw

that violates this. We utilize the analytical expressions for the gradient from Hafner and Herwartz

(2008), and Fisher Information matrix given in Appendix D. Starting from a point of high posterior

mass we collect a total of 30,000 posterior draws for inference, with 10,000 burnin section. These

computations took on the order of 2 days.

Collecting the parameters in θ = (vech(C)′, vech(F )′, vech(G)′)′, Figure 4 displays the conditional

log-posterior log p(θi|θ−i,FT ) where θ−i is set to a high probability mass point. Some of the condi-

tional densities are approximately quadratic while others display a more complicated structure. The

relatively flat regions in the log-posterior will present challenges to maximizing this function or to

obtaining a hessian estimate to compute standard errors in a classical approach.

Figure 5 displays the posterior mean of the conditional correlations for the full BEKK model and the

two restricted versions. The BEKK model being the most flexible displays differences with the other

models most notably the version that enforces diagonal matrices on C,G, F . That restriction implies

unconditional correlations of 0 between assets and is at odds with the sample correlations in Table 3.

These differences in the models are confirmed by the marginal likelihoods reported in Table 4. The

marginal likelihoods are estimated following Gelfend and Dey (1994) using a thin tailed truncated

normal following Geweke (2005). The evidence is strongly against both of the restricted diagonal

models. For example, the log-Bayes factor in favor of the full BEKK model is about 35 compared to

the model with diagonal F,G.

In conclusion, our results support the use of the most flexible BEKK model and the AUHMC sampler

provides a feasible method to sample from a highly complex posterior density effectively.

6. Conclusion

Hamiltonian Monte Carlo (HMC) uses Hamiltonian dynamics in constructing distant proposal draws in

a sequence of steps, yielding relatively low correlation among draws and high acceptance probabilities

at the same time. In this paper we propose a local adaptation of HMC, the Adaptively Updated

Hamiltonian Monte Carlo (AUHMC), whereby the proposal sequence follows the local evolution of

the parameter space. We provide a set of sufficient conditions on the (posterior) likelihood under which

AUHMC yields a valid MCMC procedure satisfying detailed balance. Simulated examples show that

the performance gain of AUHMC increases with increasing dimensionality or sample size. We apply

AUHMC to a high-dimensional BEKKGARCHmodel in 56 parameter dimensions, which substantially

exceeds the dimensionality utilized in previous work. Model comparison via marginal likelihood further

reveals that the full BEKK model is preferable to its restricted versions with constraints placed on

various covariance components, motivating the full high-dimensional implementation of the model.



7. Appendix A: Hamiltonian Monte Carlo

In this Section we provide the stochastic background for HMC. This synthesis is based on previously

published material, but unlike the bulk of literature presenting HMC in terms of the physical laws of

motion based on preservation of total energy in the phase-space, we take a fully stochastic perspective

familiar to the applied Bayesian econometrician.2 The HMC principle is thus presented in terms of

the joint density over the augmented parameter space leading to a Metropolis acceptance probability

update. We hope that our synthesis of the probabilistic perspective on HMC will provide useful

insights for practitioners who wish to further explore the HMC principles.

7.1. HMC Principle

Consider a vector of parameters of interest θ ∈ Rd distributed according to the posterior density π(θ).

Let γ ∈ Rd denote a vector of auxiliary parameters with γ ∼ Φ(γ; 0,M) where Φ denotes the Gaussian

distribution with mean vector 0 and covariance matrix M , independent of θ. Denote the joint density

of (θ, γ) by π(θ, γ). Then the negative of the logarithm of the joint density of (θ, γ) is given by the

Hamiltonian equation3

(7.1) H(θ, γ) = − lnπ(θ) +
1

2
ln
(
(2π)

d |M |
)
+
1

2
γ′M−1γ

Hamiltonian Monte Carlo (HMC) is formulated in the following three steps that we will describe in

detail further below:

(1) Draw an initial auxiliary parameter vector γ0r ∼ Φ(γ; 0,M);

(2) Transition from (θr, γr) to (θ
L
r , γ

L
r ) = (θ

∗
r+1, γ

∗
r+1) according to the Hamiltonian dynamics;

(3) Accept (θ∗r+1, γ
∗
r+1) with probability α(θr, γr; θ

∗
r+1, γ

∗
r+1), otherwise keep (θr, γr) as the next

MC draw.

Step 1 provides a stochastic initialization of the system akin to a RW draw. This step is necessary in

order to make the resulting Markov chain {(θr, γr)}
R
r=1 irreducible and aperiodic (Ishwaran, 1999). In

contrast to RW, this so-called refreshment move is performed on the auxiliary variable γ as opposed

to the original parameter of interest θ, setting θ0r = θr. In terms of the HMC sampling algorithm,

the initial refreshment draw of γ0r forms a Gibbs step on the parameter space of (θ, γ) accepted with

probability 1. Since it only applies to γ, it will leave the target joint distribution of (θ, γ) invariant

and subsequent steps can be performed conditional on γ0r (Neal, 2010).

Step 2 constructs a sequence {θkr , γ
k
r }
L
k=1 according to the Hamiltonian dynamics starting from the

current state (θ0r , γ
0
r ) and setting the last member of the sequence as the HMC new state proposal

(θ∗r+1, γ
∗
r+1) = (θ

L
r , γ

L
r ). The role of the Hamiltonian dynamics is to ensure that the M-H accep-

tance probability (2.2) for (θ∗r+1, γ
∗
r+1) is kept close to 1. As will become clear shortly, this corre-

sponds to maintaining the difference −H(θ∗r+1, γ
∗
r+1)+H(θ

0
r , γ

0
r ) close to zero throughout the sequence

2There are notable exceptions, such as Girolami and Calderhead (2011) who also take the statistical perspec-
tive, but their paper focuses on RMHMC while here we elaborate on the statistical background to HMC.
3In the physics literature, θ denotes the position (or state) variable and − lnπ(θ) describes its potential
energy, while γ is the momentum variable with kinetic energy γ′M−1γ/2, yielding the total energy H(θ, γ) of
the system, up to a constant of proportionality. M is a constant, symmetric, positive-definite ”mass” matrix
which is often set as a scalar multiple of the identity matrix.



{θkr , γ
k
r }
L
k=1. This property of the transition from (θr, γr) to (θ

∗
r+1, γ

∗
r+1) can be achieved by conceptu-

alizing θ and γ as functions of continuous time t and specifying their evolution using the Hamiltonian

dynamics equations4

dθi

dt
=
∂H(θ, γ)

∂γi
=
[
M−1γ

]
i

(7.2)

dγi

dt
= −

∂H(θ, γ)

∂θi
= ∇θi lnπ(θ)(7.3)

for i = 1, . . . , d. For any discrete time interval of duration s, (7.2)–(7.3) define a mapping Ts from

the state of the system at time t to the state at time t + s. For practical applications of interest

these differential equations (7.2)–(7.3) in general cannot be solved analytically and instead numerical

methods are required. The Stormer-Verlet (or leapfrog) numerical integrator (Leimkuhler and Reich,

2004) is one such popular method, discretizing the Hamiltonian dynamics as

γ(t+ ε/2) = γ(t) + (ε/2)∇θ lnπ(θ(t))(7.4)

θ(t+ ε) = θ(t) + εM−1γ(t+ ε/2)(7.5)

γ(t+ ε) = γ(t+ ε/2) + (ε/2)∇θ lnπ(θ(t+ ε))(7.6)

for some small ε ∈ R. From this perspective, γ plays the role of an auxiliary variable that parametrizes

(a functional of) π(θ, ∙) providing it with an additional degree of flexibility to maintain the acceptance

probability close to one for every k. Even though ln π(θkr ) can deviate substantially from ln π(θ
0
r),

resulting in favorable mixing for θ, the additional terms in γ in (7.1) compensate for this deviation

maintaining the overall level of H(θkr , γ
k
r ) close to constant over k = 1, . . . , L when used in accordance

with (7.4)–(7.6), since ∂H(θ,γ)
∂γi

and ∂H(θ,γ)
∂θi

enter with the opposite signs in (7.2)–(7.3). In contrast,

without the additional parametrization with γ, if only ln π(θkr ) were to be used in the proposal mech-

anism as is the case in RW style samplers, the M-H acceptance probability would often drop to zero

relatively quickly.

Step 3 applies a Metropolis correction to the proposal (θ∗r+1, γ
∗
r+1). In continuous time, or for ε→ 0,

(7.2)–(7.3) would keep −H(θ∗r+1, γ
∗
r+1) + H(θr, γr) = 0 exactly resulting in α(θr, θ

∗
r+1) = 1 but for

discrete ε > 0, in general, −H(θ∗, γ∗) +H(θ, γ) 6= 0 necessitating the Metropolis step. A key feature

of HMC is that the generic M-H acceptance probability (2.2) can be expressed in a simple tractable

form using only the posterior density π(θ) and the auxiliary parameter Gaussian density φ(γ; 0,M).

The transition from (θ0r , γ
0
r ) to (θ

L
r , γ

L
r ) via the proposal sequence {θ

k
r , γ

k
r }
L
k=1 taken according to the

discretized Hamiltonian dynamics (7.4)–(7.6) is fully deterministic proposal, placing a Dirac delta

probability mass δ(θkr , γ
k
r ) = 1 on each (θ

k
r , γ

k
r ) conditional on (θ

0
r , γ

0
r ). The system (7.4)–(7.6) is time

reversible and symmetric in (θ, γ), which implies that the forward and reverse transition probabilities

q(θLr , γ
L
r |θ

0
r , γ

0
r ) and q(θ

0
r , γ

0
r |θ
L
r , γ

L
r ) are equal: this simplifies the Metropolis-Hastings acceptance ratio

in (2.2) to the Metropolis form π(θ∗r+1, γ
∗
r+1)/π(θ

0
r , γ

0
r ). From the definition of the Hamiltonian H(θ, γ)

in (7.1) as the negative of the log-joint densities, the joint density of (θ, π) is given by

(7.7) π(θ, γ) = exp [−H(θ, γ)] = π(θ)
(
(2π)

d |M |
)−1/2

exp

(

−
1

2
γ′M−1γ

)

Hence, the Metropolis acceptance probability takes the form

4In the physics literature, the Hamiltonian dynamics describe the evolution of (θ, γ) that keeps the total energy
H(θ, γ) constant.



α(θr, γr; θ
∗
r+1, γ

∗
r+1) = min

[
π(θ∗r+1, γ

∗
r+1)

π(θ0r , γ
0
r )
, 1

]

= min
[
exp

(
−H(θ∗r+1, γ

∗
r+1) +H(θ

0
r , γ

0
r )
)
, 1
]

= min
[
exp

(
lnπ(θ∗r+1)− lnπ(θ

0
r) + lnφ(γ

∗
r+1; 0,M)− lnφ(γ

0
r ; 0,M)

)
, 1
]

The expression for α(θr, γr; θ
∗
r+1, γ

∗
r+1) shows, as noted above, that the HMC acceptance probability

is given in terms of the difference of the Hamiltonian equations H(θ0r , γ
0
r )−H(θ

∗
r+1, γ

∗
r+1). The closer

can we keep this difference to zero, the closer the acceptance probability is to one. A key feature of the

Hamiltonian dynamics (7.2)–(7.3) in Step 2 is that they maintain H(θ, γ) constant over the parameter

space in continuous time conditional on H(θ0r , γ
0
r ) obtained in Step 1, while their discretization (7.4)–

(7.6) closely approximates this property for discrete time steps ε > 0 with a global error of order ε2

corrected by the Metropolis update in Step 3.

8. Appendix B: The AUHMC Algorithm

Initialize current θ

for r = 1 to R {

initialize θ0r = θr, j = 0

(j loop) do while
((∥∥θL,jr − θL,j−1r

∥
∥ > δ1

)
or
(∥∥γL,jr − γL,j−1r

∥
∥ > δ2

))
{

draw γ0,jr ∼ q(γ
0,j
r |θr) = N(0,M(θr, θ0r)) for j = 0 and N(0,M(θr, θ

L,j
r )) for j > 0

j = j + 1

(k loop) for k = 1 to L {

γ
k+1/2,j
r = γk,jr +

ε
2∇θ lnπ(θ

k,j
r )

θk+1,jr = θk,jr + ε
[
M(θr, θ∗r+1)

−1γ
k+1/2,j
r

]

γk+1,jr = γ
k+1/2,j
r + ε

2∇θ lnπ(θ
k+1,j
r )

}

M(θr, θ∗r+1) =
1
2

[
F (θr) + F (θ

L,j
r )

]

}

α∗ =
π(θ∗r+1)q(γ̃

0
r |θ

∗
r+1)

π(θr)q(γ0r |θr)

draw u ∼ U [0, 1]

if (α∗ < u) then {θr+1 = θ
L,j
r } else {θr+1 = θr}

}



9. Appendix C: Proof of Lemma 1 and Theorem 1

9.1. Proof of Lemma 1

The AUHMC mapping is a special case of an implicit Runge-Kutta method (Leimkuhler and Reich,

2004, p. 150-151). Hence, under our Assumptions 2 and 3, the proof of existence of a unique solution

is given by Theorem 7.2 of Hairer, Nørsett, and Wanner (1993, p. 206). Specifically, there exists a

unique solution to the mapping Tk defined by (3.5)-(3.7) which can be obtained by iteration resulting

in the repeated use of the triangle inequality that results from the Lipschitz condition satisfying a

contraction mapping property.

9.2. Proof of Theorem 1

Recall that AUHMC constructs a distant proposal sequence
{
θk, γk

}L
k=1
in a sequence of k = 1, . . . , L

steps. For a given k (omitting the subscripts r denoting the MCMC steps), define the mapping Ψkε of

(θk, γk) into (θk+1, γk+1) as:

θ
1
= θk

θ
i
= θk + εâi1∇γH(θ

1
, γ1) + ε

i−1∑

j=2

âij∇γH(θ
j
, γj),

âij = −2, i = 2, . . . , k + 1,

j = 1, . . . , i− 1

θ
i
= θk + εâi1∇γH(θ

1
, γ1) + ε

i−1∑

j=k+2

âij∇γH(θ
j
, γj),

âij = 2, i = k + 2, . . . , L+ 1,

j = 1, . . . , i− 1

γ1 = γk + εã11∇θH(θ
1
, γ1), ã11 = 1

γi = γk + εãi1∇θH(θ
1
, γ1) + ε

i−1∑

j=2

ãij∇θH(θ
j
, γj),

ãi1 = 1, ãij = 2, i = 2, . . . , k,

j = 2, . . . , i− 1

γk+1 = γk + εãk+1,1∇θH(θ
1
, γ1), ãk+1,1 = −1

γi = γk + εãi1∇θH(θ
1
, γ1) + ε

i−1∑

j=k+2

ãij∇θH(θ
j
, γj),

ãi1 = −1, ãij = −2, i = k + 2, . . . , L,

j = 2, . . . , i− 1

γL+1 = γk + εãL+1,1∇θH(θ
1
, γ1), ãL+1,1 = −1

θk+1 = θk + ε
[
b̂k+1∇γH(θ

k+1
, γk+1) + b̂L+1∇γH(θ

L+1
, γL+1)

]
, b̂k+1 = 1/2, b̂L+1 = 1/2

γk+1 = γk + εb̃1∇θH(θ
1
, γ1), b̃1 = −1

The coefficient notation for âij , ãij , b̂1, b̃1 corresponds to the general setup of an implicit partitioned

Runge-Kutta scheme of Leimkuhler and Reich (2004, p. 150-151). Here, all âij , ãij , b̂1, b̃1 are equal to

zero unless stated otherwise. Moreover, if in the summation sign the upper index is smaller than the

lower index, then the corresponding coefficient âij or ãij is equal to zero. The Hamiltonian H(θ
k
, γk)

for each k is given by

H(θ
k
, γk) = − lnπ(θ

k
) +
d

2
ln (2π) +

1

2
ln |Mk| +

1

2
γk′M−1k γ

k

with

Mk =M(θ
k+1
, θ
L+1
)



where the right-hand side is defined in (3.5), and θ
k+1
and θ

L+1
are implicitly determined in Ψkε .

We will next state the definitions of an adjoint mapping (Leimkuhler and Reich, 2004, p. 84).

Definition 1. The mapping Ψ∗kε defined by
[
Ψk−ε

]−1
is called the adjoint mapping of Ψkε . Equivalently,

given Ψkε , its adjoint is defined by

(θk, γk) = Ψk−ε(θ
k+1, γk+1)

Ψ∗kε (θ
k, γk) = (θk+1, γk+1)

Given Ψkε as defined above, its adjoint Ψ
∗k
ε takes the form

θ
1
= θk+1

θ
i
= θk+1 + εâi1∇γH(θ

1
, γ1) + ε

i−1∑

j=2

âij∇γH(θ
j
, γj),

âij = 2, i = 2, . . . , k + 1,

j = 1, . . . , i− 1

θ
i
= θk+1 + εâi1∇γH(θ

1
, γ1) + ε

i−1∑

j=k+2

âij∇γH(θ
j
, γj),

âij = −2, i = k + 2, . . . , L+ 1,

j = 1, . . . , i− 1

γ1 = γk+1 + εã11∇θH(θ
1
, γ1), ã11 = 1

γi = γk+1 + εãi1∇θH(θ
1
, γ1) + ε

i−1∑

j=2

ãij∇θH(θ
j
, γj),

ãi1 = −1, ãij = −2, i = 2, . . . , k,

j = 2, . . . , i− 1

γk+1 = γk+1 + εãk+1,1∇θH(θ
1
, γ1), ãk+1,1 = 1

γi = γk+1 + εãi1∇θH(θ
1
, γ1) + ε

i−1∑

j=k+2

ãij∇θH(θ
j
, γj),

ãi1 = 1, ãij = 2, i = k + 2, . . . , L,

j = 2, . . . , i− 1

γL+1 = γk+1 + εãL+1,1∇θH(θ
1
, γ1), ãL+1,1 = 1

θk+1 = θk + ε
[
b̂k+1∇γH(θ

k+1
, γk+1) + b̂L+1∇γH(θ

L+1
, γL+1)

]
, b̂k+1 = −1/2, b̂L+1 = −1/2

γk+1 = γk + εb̃1∇θH(θ
1
, γ1), b̃1 = 1

We next proceed to symmetric compositions of mappings with their adjoints.

Definition 2. A mapping Ψ̂ε is called symmetric if Ψ̂ε = Ψ̂
∗
ε, i.e. Ψ̂−ε = Ψ̂

−1
ε .

The symmetry of Ψ̂kε then implies its time-reversibility (Leimkuhler and Reich, 2004, p. 87). Knowing

a mapping Ψkε and its adjoint Ψ
∗k
ε , a symmetric mapping Ψ̂

k
ε is obtained by composition (concatena-

tion) of the two methods

(9.1) Ψ̂kε ≡ Ψ
k,∗
ε/2 ◦Ψ

k
ε/2

even if neither Ψkε/2 nor Ψ
k,∗
ε/2 are symmetric individually (Leimkuhler and Reich, 2004, p. 84). The

following Lemma provides a simple extension of this result.

LEMMA 2. Given a symmetric mapping Ψ̂m−1ε , the mapping

Ψ̂mε ≡ Ψ
k
ε/2 ◦ Ψ̂

m−1
ε ◦Ψk,∗

ε/2

is also symmetric.



Proof.

Ψ̂m−ε = Ψk−ε/2 ◦ Ψ̂
m−1
−ε ◦Ψ

k,∗
−ε/2

=
[
Ψk,∗
ε/2

]−1
◦
[
Ψ̂m−1ε

]−1
◦
[
Ψkε/2

]−1

=
[
Ψkε/2 ◦ Ψ̂

m−1
ε ◦Ψk,∗

ε/2

]−1

=
[
Ψ̂mε

]−1

which satisfies the definition of a symmetric mapping. �

Note that since the adjoint of the adjoint is the original mapping, i.e. Ψk,∗∗
ε/2 = Ψ

k
ε/2, Lemma 2 can be

also equivalently stated as Ψk,∗
ε/2 ◦Ψ̂

m−1
ε ◦Ψkε/2 being symmetric.

For L even, let m = L/2, k = m and define the mapping

Ψ̂L/2+1/2ε = Ψ
L/2
ε/2 ◦Ψ

L/2,∗
ε/2

which, using (9.1), is symmetric. Then, let

Ψ̂L/2+1ε = Ψ
L/2−1,∗
ε/2 ◦ Ψ̂L/2+1/2ε ◦ΨL/2−1

ε/2

and further

Ψ̂L/2+m+1/2ε = Ψ
L/2+m
ε/2 ◦ Ψ̂L/2+mε ◦ΨL/2+m,∗

ε/2

Ψ̂L/2+m+1ε = Ψ
L/2−m−1,∗
ε/2 ◦ Ψ̂L/2+1/2,L/2+1/2ε ◦ΨL/2−m−1

ε/2

for m = 1, . . . , L/2− 1. The final composite mapping Ψ̂Lε then takes the form

Ψ̂ε ≡ Ψ̂
L
ε = Ψ

0,∗
ε/2 ◦Ψ

L−1
ε/2 ◦Ψ

1,∗
ε/2 ◦Ψ

L−2
ε/2 ◦ . . . ◦Ψ

L/2
ε/2 ◦Ψ

L/2,∗
ε/2 ◦ . . . ◦ΨL−2,∗

ε/2 ◦Ψ1ε/2 ◦Ψ
L−1,∗
ε/2 ◦Ψ0ε/2

Symmetry of Ψ̂ε follows by repeated application of Lemma 2.

The mappings Ψkε and Ψ
∗,k
ε are special cases of an implicit partitioned Runge-Kutta method (Leimkuh-

ler and Reich, 2004, p. 150-151) and thus the existence and uniqueness of their solutions follows from

Lemma 1. The uniqueness of the soluton to Ψkε/2 and Ψ
k,∗
ε/2 for each k implies that there is a unique

solution to Ψ̂ε. Such solution is equivalent to the one given by AUHMC since the AUHMC fixed-point

M(θr, θ∗r+1) is identical to the fixed point Mk =M(θ
k
, θ
L
) of Ψ̂ε that solves Ψ̂ε. Since, by Lemma 1,

the solution to AUHMC is unique, AUHMC implements Ψ̂ε which is a symmetric and time reversible

mapping, yielding the detailed balance condition of Theorem 1.

Equivalently, from the definition of Ψ̂ε it follows directly that reversing the momentum at (θ
∗
r+1, γ

∗
r+1)

and applying AUHMC solves Ψ̂−1−ε which, due to symmetry of Ψ̂ε, equals Ψ̂
∗
ε, following the same

proposal path back to (θr, γr) having negated the momentum again after the final step. This satisfies

the definition of reversibility for AUHMC.

We can make an analogy between the pair of Euler B and A methods (Leimkuhler and Reich, 2004,

p. 84) and the pair of Ψkε/2 and Ψ
k,∗
ε/2. In the former pair, the difference is in the point at which

we evaluate directional derivatives (θk or θk+1). In the pair of Ψkε/2 and Ψ
k,∗
ε/2, the difference is in

the number of HMC steps needed to reach θ
k+1
and θ

L+1
, which at the solution equal to θ0 and



θL respectively, but the directional derivatives are always the same, taken with Mk evaluated at the

endpoints of the proposal sequence. However, neither Ψkε/2 nor Ψ
k,∗
ε/2 is symmetric on its own, and

hence we need their concatenation to attain symmetry of the composite mapping.

At the implicit solution of Ψkε/2,

θk+1 = θk +
ε

2
M(θr, θ∗r+1)

−1γk+1

γk+1 = γk +
ε

2
∇θi lnπ(θ

k)

in analogy to the Euler-B method. Also, due to the symmetry of Mk in θ
k+1
and θ

L+1
from Assump-

tion 1, at the solution of Ψ∗L−k+1
ε/2 ,

θk+1 = θk +
ε

2
M(θ∗r+1, θr)

−1γk

γk+1 = γk +
ε

2
∇θi lnπ(θ

k+1)

in analogy to the Euler-A method. These half-steps are performed by AUHMC during its proposal

sequence.

9.3. M-H Acceptance Probability

The derivation of the M-H acceptance probability form is standard in the HMC literature and we

merely adapt it to the AUHMC notation below. Denote by q(θ∗r+1, γ
∗
r+1; θ

0
r , γ

0
r ) the proposal density

and by q(θ0r , γ
0
r ; θ

∗
r+1, γ

∗
r+1) the reverse proposal density. Given (θ

0
r , γ

0
r ), q(θ

∗
r+1, γ

∗
r+1; θ

0
r , γ

0
r ) is con-

structed by the method of change of variables based on the sequence of steps given by the AUHMC

mapping Tk for k = 1, . . . , L. Since Tk is deterministic, placing the Dirac delta δ(∙, ∙) = 1 unit proba-

bility mass at each (θkr , γ
k
r ), applying successive transformations Tk yields

q(θ∗r+1, γ
∗
r+1; θ

0
r , γ

0
r ) =

∣
∣det∇T (θLr , γ

L
r ; θ

L−1
r , γL−1r )

∣
∣−1 ×

∣
∣det∇T (θL−1r , γL−1r ; θL−2r , γL−2r )

∣
∣−1 × . . .

. . .×
∣
∣det∇T (θ2r , γ

2
r ; θ

1
r , γ

1
r )
∣
∣−1
∣
∣det∇T (θ1r , γ

1
r ; θ

0
r , γ

0
r )
∣
∣−1 δ(γ0r , θ

0
r)(9.2)

where ∇T (θkr , γ
k
r ; θ

k−1
r , γk−1r ) denotes the Jacobian matrix of the transformation Tk with respect to

θkr and γ
k
r for each k = 1, . . . , L.

Denote by T̃k the reverse mapping obtained from Tk by reversing the signs in the Hamiltonian proposal

dynamics. Then

q(θ0r , γ
0
r ; θ

∗
r+1, γ

∗
r+1) =

∣
∣
∣det∇T̃ (θ̃Lr , γ̃

L
r ; θ̃

L−1
r , γ̃L−1r )

∣
∣
∣
−1
×
∣
∣
∣det∇T̃ (θ̃L−1r , γ̃L−1r ; θ̃L−2r , γ̃L−2r )

∣
∣
∣
−1
× . . .

. . .×
∣
∣
∣det∇T̃ (θ̃2r , γ̃

2
r ; θ̃

1
r , γ̃

1
r )
∣
∣
∣
−1 ∣∣
∣det∇T̃ (θ̃1r , γ̃

1
r ; θ̃

0
r , γ̃

0
r )
∣
∣
∣
−1
δ(γ̃0r , θ

∗
r+1)(9.3)

with (θ̃0r , γ̃
0
r ) = (θ

∗
r+1, γ

∗
r+1). Conditional on M(θr, θ

∗
r+1) satisfying Assumption 1, the leapfrog trans-

formation defined by (3.5)-(3.7) satisfies

(9.4) (θkr , γ
k
r ) = (θ̃

L−k+1
r , γ̃L−k+1r ) for each k = 1, . . . , L

Then

(9.5)
∣
∣det∇T (θkr , γ

k
r ; θ

k−1
r , γk−1r )

∣
∣−1 =

∣
∣
∣det∇T̃ (θ̃L−k+1r , γ̃L−k+1r ; θ̃L−kr , γ̃L−kr )

∣
∣
∣ for each k = 1, . . . , L



and hence q(θ∗r+1, γ
∗
r+1; θ

0
r , γ

0
r ) = q(θ

∗
r+1, γ

∗
r+1; θ

0
r , γ

0
r ).

The ratio in the acceptance probability (2.2) then satisfies detailed balance in the Metropolis form

(9.6)
π(θ∗r+1, γ

∗
r+1)q(θ

0
r , γ

0
r ; θ

∗
r+1, γ

∗
r+1)

π(θr, γr)q(θ∗r+1, γ
∗
r+1; θ

0
r , γ

0
r )

=
π(θ∗r+1, γ

∗
r+1)

π(θr, γr)

since all the Jacobian terms cancel out due to (9.5). By definition of the Hamiltonian equation in

(3.1), the ratio in (9.6) is then equivalent to

lnπ(θ∗r+1)− lnπ(θ
0
r) + lnφ(γ

∗
r+1; 0,M(θr, θ

∗
r+1))− lnφ(γ

0
r ; 0,M(θr, θ

∗
r+1))

10. Appendix D: Fisher Information for the Multivariate Normal Density

For the univariate case,

F (θ) = N

[
σ−2 0

0 1
2σ
−4

]

and for the multivariate case

F (θ) = N

[
Σ−1 0

0 1
2D
′
m

(
Σ−1 ⊗ Σ−1

)
Dm

]

where Dm is the duplication matrix (Magnus and Neudecker, 2007). In our empirical application we

used the numerical approximation to the diagonal of F (θ) instead of the full matrix for faster speed

of the MC runs.
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Mean Stdev Skewness Ex Kurtosis Sample Correlation
AUD/USD -0.0074 0.7019 0.4444 1.8868 1 0.4814 0.4776 0.5454 0.3614
GBP/USD -0.0074 0.5281 0.0517 0.6827 1 0.3233 0.7123 0.3787
CAD/USD -0.0144 0.4657 0.0039 0.7231 1 0.3874 0.2698
EUR/USD -0.0115 0.6268 0.0640 0.6330 1 0.3995
JPY/USD 0.0087 0.6031 -0.2978 1.5496 1

Table 3: Summary Statistics

χ2 quantile 0.75 0.90 0.99
BEKK -99549.8 -99549.6 -99549.6
Diagonal BEKK (full C) -99584.9 -99584.7 -99584.6
Diagonal BEKK (diagonal C) -100209.9 -100209.7 -100209.6

Table 4: Log-marginal likelihoods
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Figure 3: Time-series of log-differences in foreign exchange rates
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Figure 4: Conditional Log-Posterior Kernels for parameter matrices C,F and G from the
BEKK model. Each parameter is plotted conditional on the other parameters being fixed at
a point of high mass in the posterior density close to the modal values.
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Figure 5: Conditional Correlations: BEKK; Diagonal F, G BEKK; Diagonal C, F, G BEKK


