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Abstract

This paper generalizes existing econometric models for censored competing risks by introducing a new

flexible specification based on a piecewise linear baseline hazard, time-varying regressors, and unob-

served individual heterogeneity distributed as an infinite mixture of Generalized Inverse Gaussian (GIG)

densities, nesting the gamma kernel as a special case. A common correlated latent time effect induces

dependence among risks. Our model is based on underlying latent exit decisions in continuous time while

only a time interval containing the exit time is observed, as is common in economic data. We do not

make the simplifying assumption of discretizing exit decisions – our competing risk model setup allows

for latent exit times of different risk types to be realized within the same time period. In this setting, we

derive a tractable likelihood based on scaled GIG Laplace transforms and their higher-order derivatives.

We apply our approach to analyzing the determinants of unemployment duration with exits to jobs in

the same industry or a different industry among unemployment insurance recipients on nationally rep-

resentative individual-level survey data from the U.S. Department of Labor. Our approach allows us to

conduct a counterfactual policy experiment by changing the replacement rate: we find that the impact

of its change on the probability of exit from unemployment is inelastic.
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1. Introduction

In an economic competing risk (CR) model with censoring, an individual is associated

with a current state (e.g. of being unemployed) with the possibility to exit to one of several

different states (e.g. finding a job in the same industry or a different industry). However,

only one such exit is observed for some individuals, while other (censored) individuals

are never observed to exit their current state. The state duration before exit to each

potential new state or censoring time is modeled with a separate latent variable but only

the shortest such duration is actually observed for each individual. A key ingredient of

CR models is the survival function which captures the probability that the individual

will remain the current state beyond any given time. CR analysis then typically seeks to

determine the impact of observable characteristics of the individual and the various states

on the survival function that can lead to policy recommendations. 5

In this paper we introduce a new flexible model specification for the competing risk

model, extending several strands of econometric and statistical literature on duration

analysis. Our model encompasses three key features: (i) we estimate non-parametrically

the density of unobserved individual heterogeneity; (ii) we model correlations between

the different risk types; (iii) we allow for multiple latent exits within a time period with

interval outcome data. Our model nests the single exit type (so-called duration model)

as a special case. We apply our method to analyzing the determinants of unemployment

duration among unemployment insurance recipients using data from the U.S. Department

of Labor. We conduct a counterfactual experiment by changing the replacement rate.

The counterfactual results show the impact of changing key policy variables such as the

replacement rate on the survival function.

We will introduce each model feature in turn and discuss the advantages of using our model

over the existing alternatives. First, our model provides a flexible approach to controlling

for unobserved heterogeneity in competing risk data. A typical source of unobserved

5Applications of CR models in economics include analyzing unemployment duration (Flinn and Heck-

man, 1982; Katz and Meyer, 1990; Tysse and Vaage, 1999; Alba-Ramı́rez, Arranz, and Muñoz-Bullón,

2007), Ph.D. completion (Booth and Satchell, 1995), teacher turnover (Dolton and van der Klaauw,

1999), studies of age at marriage or cohabitation (Berrington and Diamond; 2000), mortgage termination

(Deng, Quigley, and Van Order, 2000), school dropout decisions (Jakobsen and Rosholm, 2003), and

manufacturing firms’ exits from the market (Esteve-Perez, Sanchis-Llopis, and Sanchis-Llopis, 2010). A

comprehensive overview is given in Van den Berg (2001).
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heterogeneity is the omission of important but perhaps unobservable variables from the

conditioning set. As an example, more motivated individuals may exit unemployment

more quickly because they put more effort into the search for a new job.

It is well established that failure to account for unobserved heterogeneity biases the es-

timated hazard rate and the proportional effects of explanatory variables on the popu-

lation hazard (Vaupel et al 1979; Lancaster 1979, 1990). A number of semi-parametric

estimators for the single risk mixed proportional hazard (MPH) model have been pro-

posed following Elbers and Ridder (1982) proof of MPH semi-parametric identification

(Heckman and Singer, 1984; Honoré 1990). Han and Hausman (1990) and Meyer (1990)

propose an estimator for piecewise-constant baseline hazard and gamma distributed un-

observed heterogeneity. Horowitz (1999) proposed a nonparametric estimator for both the

baseline hazard and the distribution of the unobserved heterogeneity, under the assump-

tion of constant time-invariant regressors. Hausman and Woutersen (2012) show that a

nonparametric estimator of the baseline hazard with gamma heterogeneity yields incon-

sistent estimates for all parameters and functions if the true mixing distribution is not a

gamma, stressing the importance of avoiding parametric assumptions on the unobserved

heterogeneity.

As the second key feature of our model, our approach allows for correlations between

the different risks in the CR model environment, even in the presence of the flexible

individual heterogeneity infinite GIG mixture model component. This is important since

the determinants of exit can differ depending on the risk type while being correlated

across the risk types, and thus our approach provides additional information to the analyst

compared to single-risk duration models.

Third, in our application, we deal with interval outcome data as is common in economics

and other social sciences. Even though the underlying exit decision model is set in contin-

uous time, only the broader period in which exit occurred is observable. Our data contain

the week of exit from unemployment. Based on scaled GIG Laplace transforms and their

higher-order derivatives, we provide a complete likelihood specification allowing for mul-

tiple latent exits within a single time period which is more realistic than simplifying the

analysis by assuming that only one latent exit can occur in a given time period. Thus,

we do not rule out by assumption an individual contemplating different job offers from
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firms in the same industry or in a different industry as their pre-unemployment industry

within any given week.

We show that given the analytical forms newly provided in this paper our model can be

implemented in a user-friendly way via a Bayesian nonparametric approach. One of the

key benefits of Bayesian Markov chain Monte Carlo (MCMC) methods that we utilize is

their ability to factorize a complicated joint likelihood model into a sequence of conditional

tractable models, so-called Gibbs blocks, and by sampling each in turn deliver outcomes

from the joint model. We detail this approach for our proposed model.

The bulk of the literature on CR model development is concentrated in the natural sci-

ences. A recent overview of CR modeling in biostatistics is provided by Beyersmann,

Schumacher, and Allignol (2012), and in medical research by Pintilie (2006). The asso-

ciated estimation methods typically rely on continuous time data for the exact point of

exit. In contrast, we observe only discrete time intervals within which latent exits occur.

Competing risk models suitable for economic interval outcome data have been proposed

in various forms. Han and Hausman (1990), Fallick (1991), Sueyoshi (1992), and Mc-

Call (1996) provide model specifications either without or with parametric individual

heterogeneity. Butler, Anderson, and Burkhauser (1989) propose a semiparametric CR

model controlling for the correlation between unobserved heterogeneity components in

each state, with quadratic time dependence. Lleras-Muney and Honoré (2006) analyze

identification issues in a general class of competing risk models allowing for correlation

among risk types. Their environment is free of many of the functional form and distri-

butional assumptions that we impose here and hence a number of parameters are set-

identified. Bierens and Carvalho (2007) consider Weibull baseline hazards and common

flexible unobserved heterogeneity. Canals-Cerdá and Gurmu (2007) approximate unob-

served heterogeneity distribution with Laguerre polynomials. They find that model se-

lection rules (BIC, HQIC, and AIC) perform worse in determining the polynomial order

than a naive approach of controlling for unobserved heterogeneity using simple models

with a small number of points of support or a polynomial of small degree. Van den

Berg, van Lomwel, and van Ours (2008) consider a model with nonparametric unobserved

heterogeneity terms that is based on discrete time counts. Although the model can be
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derived as a time-aggregated version of an underlying continuous-time model, the latter

is different from the continuous-time mixed proportional hazard model.

The literature on Bayesian nonparametric methods in the CR environment has been scant

and, to our knowledge, has only been used in biostatistics for estimation of other objects

of interest than individual heterogeneity.6 Variants of Bayesian Dirichlet Process analysis

have been used by Gasbarra and Karia (2000) for estimating nonparametically the overall

hazard rate and in Salinas-Torres, Pereira, and Tiwari (2002) and Polpo and Sinha (2011)

for the vector of risk-specific cumulative incidence functions. De Blasi and Hjort (2007)

specify a beta-process prior for the baseline hazard, with asymptotic properties analyzed

in De Blasi and Hjort (2009).

Identification results under various assumptions were established by Heckman and Honoré

(1989), Sueyoshi (1992), Abbring and van den Berg (2003), and Lee and Lewbel (2013). In

general, there have been three different approaches to identification (Honoré and Lleras-

Muney, 2006): (a) to make no additional assumptions beyond the latent competing risk

structure and estimate bounds on the objects of interest; (b), assume that the risks

are independent conditional on a set of observed covariates and deal with a multiple

duration models environment; and (c), to specify a parametric or semi-parametric model

conditional on the covariates. Here we take the last approach. In particular, we do not

assume that the risks are independent conditional on the observed covariates.

The remainder of the paper is organized as follows. Section 2 establishes the assumptions

and building block results for a single risk duration model. Section 3 introduces assump-

tions and results for the competing risk model. Section 4 details our application and the

counterfactual experiment and Section 5 concludes. Proofs or all theorems and additional

empirical results are provided in the Appendix. The Online Appendix (Burda, Harding

and Hausman, 2013) contains further results.

6In the single-risk, duration model case, Bayesian analysis with economics application was undertaken

by Ruggiero (1994), Florens, Mouchart, and Rolin (1999), Campolieti (2001), Paserman (2004), and Li

(2007).
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2. Single Risk Duration Model

Denote by τ a continuous time variable with density f(τ) and distribution F (τ). Denote

a latent failure (or exit) time of individual i by τi. Define the hazard rate λi(τ) as the

failure rate at time τ conditional upon survival to time τ , λi(τ) = limδ→0Pr(τ < τi <

τ + δ|τi ≥ τ)/δ and denote the integrated hazard by:

(2.1) Λi (τ) =

∫ τ

0

λi(u)du

with survivor function

(2.2) Si(τ) = exp (−Λi (τ))

Denote by t a generic time period [τ , τ ) with end points τ and τ , and by ti the time period

[τ i, τ i) 3 τi in which an individual i was observed to exit from a given state into another

state.

ASSUMPTION (A1). The data {ti}N
i=1 consists of single spells censored at time T and

drawn from a single risk process.

ASSUMPTION (A2). The hazard rate is parameterized as

(2.3) λi(τ) = λ0(τ) exp(Xi(τ)β + Vi)

where λ0(τ) is the baseline hazard, Xi(τ) are observed covariates that are allowed to vary

over time, β are model parameters, and Vi is an unobserved heterogeneity component.

Hence, using (2.1) and (2.3) the integrated hazard is given by

(2.4) Λi (τ) =

∫ τ

0

λ0(u) exp (Xi(u)β + Vi) du

ASSUMPTION (A3). The baseline hazard λ0(u) and the values of the covariates are

constant for each time period t.

Assumptions 1 and 2 are common in the literature. Assumption A3 is based on Han and

Hausman (1990). Given Assumption A3, instead of λi(τ) we can consider the integrated

baseline hazard in the form

(2.5) μ0t =

∫ τ

τ

λ0(u)du,

where we denote the vector (μ01, . . . , μ0T ) by μ0.
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For notational convenience, we will use subscripts for the time index and denote by Λ it the

quantity Λi (τ) at the end of the time period t, and similarly for other variables. Denote

the probability of the exit event in time period t by P (ti = t). Conditional on Vi, for

outcomes that are not censored (ti ≤ T ),

(2.6) P (ti = t) = Fit − Fi(t−1) = (1 − Sit) −
(
1 − Si(t−1)

)
= Si(t−1) − Sit

When the duration observations are censored at the end of time period T,

(2.7) P (ti > T ) = 1 − FiT = SiT

The following result is familiar in the literature and we include it here for the sake of

completeness as a benchmark of comparison for the new competing risk model developed

in the next Section.

RESULT 1. Under Assumptions A1–A3, conditional on Vi, for uncensored observations

(2.8) P (ti = t|Vi) = exp

(

−
t−1∑

j=1

μ0j exp (Xijβ + Vi)

)

− exp

(

−
t∑

j=1

μ0j exp (Xijβ + Vi)

)

and for the censored case

(2.9) P (ti > T |Vi) = exp

(

−
T∑

j=1

μ0j exp (Xijβ + Vi)

)

2.1. Parametric Heterogeneity

ASSUMPTION (A4). Let vi ≡ exp(Vi) ∼ G(v) where G(v) is a generic probability

measure with density g(v).

From (2.4), (2.5), and Assumption A3, we have

Λ̃it =
t∑

j=1

μ0j exp (Xijβ)(2.10)

Λit = viΛ̃it(2.11)

If v is a random variable with probability density function g(v) then the Laplace transform

of g(v) evaluated at s ∈ R is defined as

(2.12) L(s) ≡ Ev[exp(−vs)]
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Using (2.2), (2.11), and (2.12), the expectation of the survival function can be linked to

the Laplace transform of the integrated hazard function (Hougaard, 2000) as follows:

(2.13) Ev [Sit] = L(Λ̃it)

Using (2.10), (2.11), and (2.13) yields the unconditional exit probability of Result 1 as

follows:

RESULT 2. The expectation of (2.6) for the uncensored observations is

(2.14) Evi
[P (ti = t)] = L(Λ̃i(t−1)) − L(Λ̃it)

and the expectation of (2.7) for the censored observations takes the form

(2.15) Evi
[P (ti > T )] = L(Λ̃iT )

Since the individual heterogeneity term vi defined in Assumption A4 is non-negative, a

suitable family of distributions G(v) with support over [0,∞) and tractable closed-form

Laplace transforms is Generalized Inverse Gaussian (GIG) class of distributions, whose

special case is the gamma distribution popular in duration analysis.

ASSUMPTION (A5a). The unobserved heterogeneity term vi is distributed according

to the Generalized Inverse Gaussian distribution, G(v) = GGIG(v; κ, ϕ, θ).

The GIG has the density

(2.16) gGIG(v; κ, ϕ, θ) =
2κ−1

Kκ(ϕ)

θ

ϕκ
(θv)κ−1 exp

{

−θv −
ϕ2

4θv

}

for ϕ, θ > 0, κ ∈ R, where Kκ (ϕ) is the modified Bessel function of the second kind of

order κ evaluated at ϕ (Hougaard, 2000). The GIG Laplace transform is given by

(2.17) LGIG(s; κ, ϕ, θ) = (1 + s/θ)−κ/2
Kκ

(
ϕ (1 + s/θ)1/2

)

Kκ (ϕ)

The GIG family includes as special cases the gamma distribution for ϕ = 0, the Inverse

gamma distribution for θ = 0, and the Inverse Gaussian distribution for κ = −1
2
, among

others.

Application of the Laplace transform of the GIG distribution (2.17) in Result 2 yields the

following result that appears to not have been previously stated in the literature:
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RESULT 3. Under the Assumptions A1–A4, and A5a

EGIG
vi

[P (ti = t)] =

(

1 +
1

θ
Λ̃i(t−1)

)−κ/2 Kκ

(

ϕ
(
1 + 1

θ
Λ̃i(t−1)

)1/2
)

Kκ (ϕ)

−

(

1 +
1

θ
Λ̃it

)−κ/2 Kκ

(

ϕ
(
1 + 1

θ
Λ̃it

)1/2
)

Kκ (ϕ)
(2.18)

and for the censored observations

(2.19) EGIG
vi

[P (ti > T )] =

(

1 +
1

θ
Λ̃iT

)−κ/2 Kκ

(

ϕ
(
1 + 1

θ
Λ̃iT

)1/2
)

Kκ (ϕ)

A special case of the GIG distribution is the gamma distribution, obtained from the GIG

density function (2.16) when ϕ = 0. We use the gamma distribution for vi as a benchmark

model under the following alternative to Assumption 5a.

ASSUMPTION (A5b). The unobserved heterogeneity term vi is distributed according

to the gamma distribution, G(v) = GG(v; γ, θ).

The gamma density is parameterized as

(2.20) gG(v; γ, θ) =
θ

Γ(γ)
(θv)γ−1 exp(−θv)

and its Laplace transform is given by

(2.21) LG(s; γ, θ) = (1 + s/θ)−γ

In the gamma density (2.20) the parameter γ > 0 corresponds to the GIG parameter κ ∈ R

in (2.16) restricted to the positive part of the real line. Using the gamma distribution in

place of the GIG constitutes a special case of Result 3:

RESULT 4. Under the Assumptions A1–A4, and A5b,

(2.22) EG
vi

[P (ti = t)] =

(

1 +
1

θ
Λ̃i(t−1)

)−γ

−

(

1 +
1

θ
Λ̃it

)−γ

and

(2.23) EG
vi

[P (ti > t)] =

(

1 +
1

θ
Λ̃it

)−γ
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Result 4 was obtained in Han and Hausman (1990) and Meyer (1990).

In both gamma and GIG distributions, the scale parameter θ performs the same role.

Specifically, for any c ∈ R+, if v ∼ GG(v; γ, θ) then cv ∼ GG(v; γ, θ/c), and if v ∼

GGIG(v; κ, ϕ, θ) then cv ∼ GGIG(v; κ, ϕ, θ/c). Due to this property, c and hence its inverse

s ≡ c−1 are not separately identified from θ in the Laplace transform expressions (2.17)

and (2.21). Since all likelihood expressions are evaluated at s = Λ̃i(∙) which is proportional

to μ0j for all j, as specified in (2.10), any change in θ only rescales the baseline hazard

parameters μ0j , leaving the likelihood unchanged. Hence, θ needs to be normalized to

identify μ0j . In the gamma case, typically this normalization takes the form θ = γ so

that E[v] = 1. We use the equivalent normalization for the GIG case in order to nest the

normalized gamma as a special case and to maintain the moment restriction E[v] = 1.

2.2. Flexible Heterogeneity

We now depart from the parametric form of the unobserved heterogeneity and consider

a nonparametric infinite mixture for the distribution of vi, as formulated in the following

assumption.

ASSUMPTION (A6). The prior for vi|G ∼ G takes the form of the hierarchical model

G ∼ DP (G0, α), α ∼ gG(a0, b0), E[vi] = 1.

In Assumption A6, G is a random probability measure distributed according to a Dirichlet

Process (DP) prior (Hirano, 2002; Chib and Hamilton, 2002). The DP prior is indexed

by two hyperparameters: a so-called baseline distribution G0 that defines the “location”

of the DP prior, and a positive scalar precision parameter α. The distribution G0 may be

viewed as the prior that would be used in a typical parametric analysis. The flexibility of

the DP mixture model environment stems from allowing G to stochastically deviate from

G0. The precision parameter α determines the concentration of the prior for G around

the DP prior location G0 and thus measures the strength of belief in G0. For large values

of α, a sampled G is very likely to be close to G0, and vice versa. Assumption A6 is then

completed by specifying the baseline measure G0. We consider two cases:

ASSUMPTION (A7a). In Assumption A6, G0 = GGIG(κ, ϕ, θ).
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Implementation of the GIG mixture model under Assumptions A1–A3, A6, and A7a uses

the probabilities (2.8), (2.9), (2.18) and (2.19). Further implementation details are given

in the Online Appendix (Burda, Harding and Hausman, 2013).

ASSUMPTION (A7b). In Assumption A6, G0 = GG(γ, θ).

Under Assumptions A6 and A7b, as a special limit case, putting all the prior probability on

the baseline distribution G0 by setting α → ∞ would result in forcing G = G0 = GG(γ, θ)

which yields the parametric model of Han and Hausman (1990). Here we allow α and

hence G to vary stochastically. Furthermore, the gamma baseline in Assumption A7b

results as a special case of the GIG baseline in Assumption A7a for the hyperparameter

value ϕ = 0. Hence, both the gamma flexible case with G ∼ DP (GG, α) and the para-

metric benchmark Han and Hausman (1990) case with G = GG are nested within our full

GIG mixture model specification.

3. Competing Risk Model

We will now generalize the results from the single-risk case to the competing risk (CR)

environment with several different potential types of exit. Let the risk type be indexed by

k = 1, . . . , K. Define the latent failure (or exit) times as τ1i, . . . , τKi corresponding to each

risk type k, for each individual i. Define their minimum by τi ≡ min (τ1i, . . . , τKi). In our

CR model for interval outcome data, τi is not directly observed. Instead, the observed

quantity is the time interval [τ i, τ i) labeled as ti which contains τi. This is in contrast to

a large class of other types of CR models where the exact failure time τi is observed, as

is typical in biostatistics. Intrinsically, the lifetimes of other risk types, τji for j 6= k, and

their corresponding time intervals, remain unobserved.

Denote by f(u1, u2) the joint density of failure at time u = (u1, u2). The functional form

of f(u1, u2) is provided in the Online Appendix, (OA.2.4). For two risk types with K = 2,

this yields the probability of exit in time period t of the form

(3.1) P (t1i = t, τ2i > τ1i) =

∫ τ i

τ i

∫ τ i

u1

f(u1, u2)du2du1 +

∫ τ i

τ i

∫ ∞

τ i

f(u1, u2)du2du1

The first right-hand side term in (3.1) gives the probability that the second latent exit

time occurred within the same time interval t as the first latent exit time. The second
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right-hand side term in (3.1) is then the probability that the second latent exit time oc-

curred in a later time interval than t. A key difficulty with evaluating (3.1), precluding

direct factorization, is the presence of the outer integrand u1 in the lower bound in the

inner integral of the first term. We deal with this issue and derive a closed-form solution

for (3.1), under various assumptions on the latent model components. The joint density

f(u1, u2) is obtained as a function of covariates and unobserved heterogeneity from the

parameterization of risk-specific hazard functions, in a direct analogy to the single-risk

case. Previous work using CR interval outcome data has either bypassed this link (e.g.

by assuming a multivariate Gaussian density for f(u1, u2)) or employed a discrete time

approximation whereby only one exit type can occur per any one time period. Our model

explicitly accounts for the continuous-time nature of the exit decisions. The statisti-

cal background for the stochastic environment of our CR model is given in the Online

Appendix (Burda, Harding and Hausman, 2013).

For clarity of exposition, the numbering of the Assumptions and Theorems in this Section

provides a direct counterpart to the Assumptions and Results of the single-risk case in

the previous Section. We first treat the parametric case under the GIG and gamma

distributions of unobserved heterogeneity, adding a common latent component for all risk

types, and then proceed to infinite mixture modeling.

ASSUMPTION (B1). The data consists of single spell data, drawn from a process with

two risks k = 1, 2, and is censored at Tk.

Assumption B1 readily generalizes to an arbitrary number of risks. Without loss of

generality, suppose that the failure type is of type 1 so that τ1i = min(τ1i, τ2i).

ASSUMPTION (B2). The risk-specific hazard rate is parameterized as

λki(τ) = λ0k(τ) exp(Xi(τ)βk + Vki + ζk(τ))

where λ0k(τ) > 0 is the baseline hazard whose logarithm is independent across k, Xi(τ)

are covariates that are allowed to vary over time with full support on all of the real line

for any given τ and one covariate common to all k, βk are model parameters, Vki is an

unobserved heterogeneity component, and ζk(τ) is a common time component correlated

across k normalized to have mean zero in each k.
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ASSUMPTION (B3). For each k, the baseline hazard λ0k(τ), the values of the covari-

ates, and ζk(τ) are constant within each time period t.

Thus, the log-baseline hazard could also be stated as δ0kt = log(λ0kt) + ζkt where δ0kt

is correlated across k due to the presence of ζkt. Let ζk = (ζk1, . . . , ζkT ), ζ = (ζ1, ζ2),

Vi = {Vki}K
k=1, and V = {Vi}N

i=1. The probability (3.1), conditional on (Vi, ζ) and a set of

covariates, is

(3.2)

P (t1i = t, τ2i > τ1i|Vi, ζ) =

∫ τ i

τ i

∫ τ i

u1

f(u1, u2|Vi, ζ)du2du1 +

∫ τ i

τ i

∫ ∞

τ i

f(u1, u2|Vi, ζ)du2du1

Let Skit = exp(−Λkit) denote the risk-specific survivor function. We derive a closed-

form solution to (3.2) in the following Theorem which extends Result 1 to our CR model

environment.

THEOREM 1. Under Assumptions B1–B3, conditional on the latent vector (Vi, ζ) and

a set of covariates,

(3.3)

P (t1i = t, τ2i > τ1i|Vi, ζ) = S2i(t−1)S1i(t−1)λ1it (λ2it + λ1it)
−1 [1 − exp (− (λ2it + λ1it))]

for uncensored observations, and

(3.4) P (t1i > T, t2i > T |Vi, ζ) = (1 − F1iT ) (1 − F2iT ) = S1iT S2iT

for censored observations.

The proof is provided in the Online Appendix.

3.1. Parametric Heterogeneity in the CR Model

ASSUMPTION (B4). Let vki ≡ exp(Vki) ∼ Gk(vk) where Gk(vk) is a generic probability

measure with density gk(vk). Let the correlation structure of ζkt be given by

(
ζ1t

ζ2t

)

∼ N

((
0

0

)

,

[
σ2

1 ρσ1σ2

ρσ2σ1 σ2
2

])

with parameters ρ, σ1, σ2.
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As in the single-risk case, we consider two alternative forms of the distribution of unob-

served heterogeneity G(v) in Assumption B4. The first form is parametric given either by

the GIG or gamma density. We provide new results regarding the model likelihood for the

model B1–B4. These will be used in the nonparametric mixture model. This approach

is different from Han and Hausman (1990) who considered the truncated multivariate

Normal likelihood.

For the expected likelihood, we have two new expression for the expected probability

of (3.3): one based on a quadrature, and another one with a series expansion without

the need for a quadrature. The following Theorem extends Result 2 into the CR model

environment.

THEOREM 2. Under Assumptions B1–B4,

(3.5) EvP (t1i = t, τ2i > τ1i) = −λ̃1it

∫ 1

0

L2

(
Λ̃2i(t−1) + λ̃2its1

)
L(1)

1

(
Λ̃1i(t−1) + λ̃1its1

)
ds1

or

EvP (t1i = t, τ2i > τ1i) =
∞∑

r2=0

∞∑

r1=0

(−1)2r1+2r2+1

r2!r1! (r2 + r1 + 1)
λ̃r1+1

1it λ̃r2
2it

×L(r1+1)
1

(
Λ̃1i(t−1)

)
L(r2)

2

(
Λ̃2i(t−1)

)
(3.6)

for uncensored observations, and

(3.7) EvP (t1i > T, t2i > T ) = L1

(
Λ̃1iT

)
L2

(
Λ̃2iT

)

for censored observations, where L(r)
k (s) is the r−th derivative of the Laplace transform.

The proof is given in the Online Appendix. Theorem 2 is derived for a generic distribution

of the unobserved individual heterogeneity term vi and provides a direct extension of (2.14)

and (2.15) to the competing risk model environment. Specific alternative distributional

assumptions with corresponding likelihood expressions are provided next.

ASSUMPTION (B5a). The unobserved heterogeneity term vi is distributed according

to the Generalized Inverse Gaussian distribution, G(v) = GGIG(v; κ, ϕ, θ).

ASSUMPTION (B5b). The unobserved heterogeneity term vi is distributed according

to the gamma distribution, G(v) = GG(v; γ, θ).
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The derivatives of the Laplace transform in (3.5) and (3.6) Theorem 2 depend on the

functional form of the density kernel of vi, given in Assumptions B5a and B5b. The

formulas for the derivatives of arbitrary order of the Laplace transform for the GIG or

gamma densities do not appear to be available in the literature; we derive them in the

Online Appendix. Using those expressions in Theorem 2 yields the following two Corol-

laries, extending Result 3 and 4, respectively, from the single-risk case to the competing

risk model environment.

Corollary 1 (to Theorem 2). Under Assumptions B1–B4 and B5a, the functional forms

of Theorem 2 are given in (OA.2.43), (OA.2.44), and (OA.2.45) in the Online Appendix.

Corollary 2 (to Theorem 2). Under Assumptions B1–B4 and B5b, the functional forms

of Theorem 2 are given in (OA.2.47), (OA.2.48), and (OA.2.49) in the Online Appendix

3.2. Flexible Heterogeneity in the CR Model

We will now proceed to an infinite mixture model for the distribution of vki.

ASSUMPTION (B6). The prior for vki|Gk ∼ Gk is specified as the hierarchical model

Gk ∼ DP (G0k, αk), αk ∼ gG(a0k, b0k), E[vki] = 1.

The roles of the individual model components are described in Assumption A6 and gen-

eralize to the CR framework. Similarly to the single risk model environment, we consider

two cases for the functional form of the baseline measure G0:

ASSUMPTION (B7a). In Assumption B6, G0k = GGIG(κk, ϕk, θk).

ASSUMPTION (B7b). In Assumption B6, G0k = GG(γk, θk).

Implementation of the mixture models under Assumptions B1–B3, B6, and B7a or B7b

uses the probabilities derived in Theorem 1, Corollary 1, and Corollary 2. Further imple-

mentation details are given in the next Section and in the Online Appendix.

Heckman and Honoré (1989) show how the introduction of covariates allows identifica-

tion of a large class of dependent competing risks models without invoking distributional

assumptions. Nonetheless, normalization assumptions are necessary for parameter iden-

tification. The normalization constraints generalize directly from the single-risk case and
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we impose them for each risk type. Assumptions B2 and B4 impose explicit restrictions

on the model behavior in continuous time within each time period. These restrictions

allow us to invoke identification conditions of Heckman and Honoré (1989). A detailed

discussion of identification is provided in the Online Appendix.

4. MCMC Posterior Sampling

4.1. Single Risk Model

All technical implementation details are provided in the Online Appendix. In this Section

we summarize the main points. For the implementation of the Dirichlet Process Mixture

model (Assumptions A6 and A7a,b) we used the Bayesian generalized Pólya urn scheme

(Neal 2000 Algorithm 2; West, Müller, and Escobar, 1994; Bush and MacEachern, 1996).

Implementation of the GIG mixture model (Assumptions A1–A3, A6, and A7a) uses

the functions (2.8), (2.9), (2.18), and (2.19). The gamma mixture model (Assumptions

A1–A3, A6, and A7b) uses (2.8), (2.9), (2.22) and (2.23), respectively. The remaining

model parameters were sampled in standard Gibbs blocks using Hybrid Monte Carlo (Neal

2011) with diffuse priors unless stated otherwise above. The results are discussed in our

application below.

4.2. Competing Risk model

Similarly to the single-risk case, for the implementation of the Dirichlet Process Mixture

model in the competing risk environment (Assumptions B6 and B7a,b) we also used

the Bayesian generalized Pólya urn scheme. Implementation of the GIG mixture model

(Assumptions B1–B3, B6, and B7a) uses the functions (3.3) and (3.4) from Theorem 1,

and Corollary 1 to Theorem 2. The gamma mixture model (Assumptions B1–B3, B6,

and B7b) uses (OA.2.47) and (OA.2.49) from Corollary 2 to Theorem 2. The remaining

model parameters were sampled in standard Gibbs blocks using Hybrid Monte Carlo (Neal

2011) with diffuse priors unless stated otherwise above, except the covariance matrix of

Assumption B4 with parameters σ1, σ2, ρ for which we specify a proper Inverse Wishart

prior with maximum possible dispersion, IW (K + 1, IK) where IK is the identity matrix

of dimension K = 2. The results are discussed in our application below.
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5. Application

Since its introduction in 1935 as part of Roosevelt’s Social Security Act, unemployment

insurance (UI) benefits provide partial insurance to workers who become unemployed.

Most states offer unemployment insurance for up to 26 weeks. Neoclassical economic

thought suggests that higher benefits also lead to reduced incentives to search for a job,

thus prolonging the period of time an individual spends out of employment (Mulligan,

2012). As a result policy makers have placed increased emphasis on reforming the UI

system by rewarding personal responsibility rather than bad luck. This has lead to a

shift away from the unqualified provision of UI benefits towards a system that is search

intensive, making benefits conditional on providing evidence that the potential recipient

engaged in a certain minimum amount of job search. Additionally, schemes whereby in-

dividuals are provided one-off grants that attempt to alleviate temporary hardship rather

than longer term UI benefits are advocated. At the same time the recent economic crisis

has forced policy makers to extend the duration of UI benefits for up to 99 weeks. 7

Applied economists require econometric tools to accurately estimate the impact of un-

employment insurance on the duration of unemployment, while accounting for state un-

employment rates, generosity of unemployment insurance benefits and workers’ observed

and unobserved heterogeneity. In this section we apply our approach to analyzing the

determinants of unemployment duration among unemployment insurance recipients. We

will stress the importance of relaxing the parametric assumptions of the econometric mod-

els and accounting for correlations in the competing exit choices faced by workers. One

of the major advantages of our approach is that it is possible to simulate counterfactual

policy changes which can inform policy makers on the relative merits of various changes

that may be contemplated. We will illustrate this feature by evaluating the impact of a

change in the replacement rate on the duration of unemployment.

5.1. Data

We use data from the Needels et. al. (2001) report submitted to the U.S. Department

of Labor that is based on a nationally representative sample built from individual-level

surveys of unemployment insurance (UI) recipients in 25 states between 1998 and 2001.

7The unemployment extension legislation was set to expire on January 1, 2013.
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Candidates for the survey are selected on the basis of administrative records and are

sampled from the pool of unemployed individuals that started collecting UI benefits at

some point during the year 1998.

We are interested in analyzing the effect of unemployment insurance on the duration of

unemployment. The duration of unemployment is measured in weeks. At the time of the

survey and from the states that were included in the survey only two states provided UI

benefits for a maximum of 30 weeks, the rest providing UI benefits for a maximum of 26

weeks. Theoretical models of the impact of UI benefits on unemployment duration, such

as Mortensen (1977) and Moffitt and Nicholson (1982), predict an increasing hazard up

to the point of benefit exhaustion and a flat one afterwards. We limit our study to the

first 24 weeks of unemployment due to the recognized change in behavior in week 26 when

UI benefits cease for a significant part of the sample (see, e.g., Han and Hausman, 1990),

which would affect the econometric model.

The data contain individual-level information about labor market and other activities

from the time the person entered the UI system through the time of the interview. The

data include information about the individual’s pre-UI job, other income or assistance

received, and demographic information. We use two indicator variables, race (defined as

an indicator for black) and age (defined as an indicator for over 50). We further use the

replacement rate, which is the weekly benefit amount divided by the UI recipient’s base

period earnings. Lastly, we utilize the state unemployment rate of the state from which

the individual received UI benefits during the period in which the individual filed for

benefits. This variable changes over time. The Needels et. al. (2001) data shares certain

similarities to the PSID dataset used in Han and Hausman (1990). The UI recipients are

mostly white, young, poorly educated workers who find themselves below or very near

the poverty line.8

Below we will estimate a single risk duration model for the duration to re-employment

and also a competing risk duration model for the duration to re-employment using our

proposed approach, which differentiates between workers who find a job in the same

8 Note that the labor market conditions captured in this dataset are substantially different than the

ones experienced today. According to the Bureau of Labor Statistics (BLS), the latest figures broken

down by state for September 2012 show the mean state unemployment rate is 7.5% and varies between

3% and 11.8%. In contrast, in our dataset the state unemployment rate is approximately 4.5%.
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industry and workers who find a job in a different industry. For both analyses we employ

subsamples from the Needels et. al. (2001) survey data, after removing outliers and

observations with missing values. For the single risk model we use a subsample consisting

of 15,358 individuals. Summary statistics for this sample are given in Table 2. For a

subsample of 1,243 of the Needels et. al. (2001) data we also know the SIC codes of

the employer before and after the unemployment spell. We denote individuals who find a

job in the same industry as individuals with risk type 1, while those who find a job in a

different industry as individuals with risk type 2. Summary statistics for this subsample

are given in Table 2. We note a marked difference in the unemployment durations of these

two groups of individuals. Figure 1 provides plots of the number of individuals who exited

in each time period, shown separately for workers who find a job in the same industry

and those who do not (risk type 2). Individuals who find a job in the same industry exit

unemployment much faster in the first few weeks after they lose their job but conditional

on not having found employment by week 8 their exit pattern resembles that of the other

individuals. This is empirically interesting as it points towards the importance of industry

specific human capital. We would expect variation among the industry specific human

capital to vary by industry but also by individual reflecting their level of experience and

motivation. It is thus to be expected that some individuals have accumulated a significant

degree of human capital which makes them attractive to other employers in the same

industry. Switching industries usually entails learning new skills and the incentive to

do so may be affected by the duration and generosity of the unemployment insurance

benefits. We would thus expect substantial behavioral differences between workers facing

these two competing risks.

5.2. Single Risk Duration Model with Flexible Heterogeneity

Estimation results of the semiparametric duration model with a flexible form of unob-

served heterogeneity under GIG mixing (Assumptions A1–A3, A6, and A7a) are presented

in Table 3. In the Online Appendix we also present estimation results for two benchmark

parametric models. Estimation results of a model with parametric gamma heterogeneity

(Han and Hausman, 1990; Meyer 1990), as specified in Assumptions A1–A4 and A5b, are

given in Table OA.1. In Table OA.2 we present estimation results for another benchmark

model with parametric GIG heterogeneity (Assumptions A1–A4 and A5a).
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In addition to the above mentioned censoring at T = 24 weeks, we also include the bench-

mark cases where we censor at T = 6 and T = 13. In the GIG mixture model, all of

our variables (state unemployment rate, race, age, and replacement rate) are estimated

to have a negative significant impact on the hazard rate of exiting unemployment. Note

however, that when comparing the estimates of the β coefficients, the scaling changes de-

pending on the variance of the estimated heterogeneity distribution. Thus, the ratios of

the coefficients should be compared, as opposed to their absolute values. This makes the

interpretation of the coefficients less transparent. We note however that the coefficient

estimates obtained from the flexible model are substantively different than those obtained

from the parametric model. As discussed above, the parametric restriction on the het-

erogeneity distribution can lead to inconsistent estimates if the true mixing distribution

does not exactly correspond to the parametric specification.

We would expect to obtain similar results irrespective of the truncation point and thus the

coefficients obtained for the models truncated at 6, 13, and 24 weeks to be very similar.

While the coefficient ratios are not constant they tend to be relatively similar. The one

exception comes from the ratios involving the replacement rate, in particular for the model

with censoring at 24 periods. This is similar to the results in Hausman and Woutersen

(2012) and might be explained by behavioral changes as individuals approach the date of

UI exhaustion.

The estimated distribution of the unobserved individual heterogeneity is presented in

Figure 2. The estimated distributions can only be very roughly approximated by the

gamma distribution. While in all three cases the mode is negative, as we increase the

number of periods used in the estimation the distribution acquires a more pronounced

left tail. This indicates that as we observe individuals over a longer period of time the

model captures to a larger extent the part of unobserved heterogeneity which prevents

workers from finding employment and thus becomes indicative of the propensity for long

term unemployment.

The survival function estimates along with 95% confidence bands are presented in Figure

3, featuring the anticipated downward sloping shape. The smoothing parameter α of

the Dirichlet Process (DP) Mixture model introduced in Assumption A6 controls the

extent to which the DP draws mixture distributions that are more or less ”similar” to
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the baseline parametric distribution G0. In the limiting case of α → ∞ the mixture

distribution becomes equivalent to G0, while in the other extreme α → 0 the mixture

distribution limits to a convolution of density kernels centered at each data point without

any influence of the DP prior. The posterior distribution estimates of α are plotted in

Figure OA.1 in the Online Appendix. The distributions are concentrated around a well-

defined mode with a value of less than 1 indicating a strong influence of data relative to

the baseline prior distribution thereby providing a high degree of support in favor of our

nonparametric approach.

5.3. Competing Risk Model with Flexible Heterogeneity

We now present the results of our newly proposed competing risk model with a flexible

form of unobserved heterogeneity using GIG mixing and correlated risks (Assumptions

B1-B3, B6, and B7a). Note that in our example risk 1 corresponds to the event that a

worker find a job in the same industry, while risk 2 corresponds to the event that she finds

a new job in an industry that is different than the industry of her previous employer. We

present the estimated coefficients in Table 4. For all three censoring times (T = 6, 13, 24),

the partial effects of race and age are not statistically significant, with a few isolated

exceptions. This could be due to smaller sample size available for the competing risk

case as opposed to the single-risk case, with the former consisting of less than 10% of

observations of the latter. For all three censoring times, the relative influence of the

replacement rate is declining from T = 13 to T = 24 indicating the impact of benefit

exhaustion.

The estimated density9 of unobserved heterogeneity Vik is shown in Figure 4 for the GIG

mixture model for both risk types k = 1, 2, each centered at the time average of the risk-

specific latent common time effect ζkt to reflect the overall influence of the unobserved

heterogeneity component ζkt + Vik. The differences between the density of unobserved

individual heterogeneity further highlight the importance of distinguishing between the

different risk types in the competing risk model environment as compared to the single-

risk duration case. In particular the two distributions of are distinct and well-separated

9 In Table 4 we report the estimated GIG mixture model coefficients but as these enter all mixing

kernel moments their interpretation is not immediate. Hence it appears more informative to examine the

resulting mixture density estimate.
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indicating that conditional on observed covariates there is a significant degree of sorting

between workers finding jobs in the same or in a different industry. While the mode of

both distributions is negative, workers who find a job in the same industry possess latent

attributes that make them more desirable than workers who are not. This may indicate

the presence of unobserved industry specific human capital for these workers which make

them more attractive to employers in the same industry.

The survival function estimates along with 95% confidence bands are presented in Figure

5 for both types of risks. The differences in the shapes for the first few weeks are striking

and also indicative of the differences in exit rates between workers finding a job in the

same industry compared who workers that find a job in a different industry. The estimated

survival function for workers who find a job in the same industry is convex while that for

workers who do not is concave, indicating a much slower overall re-integration into the

labor market. This appears to confer a long term advantage with the overall probability

of being unemployed being substantially higher for workers with no apparent industry

specific human capital and which have no particular advantage in terms of finding a job

in the same industry as their pre-unemployment firm.

Figure 6 shows the estimated correlation structure of the latent time variables ζkt common

to all individuals, defined in Assumption B4, for the GIG mixture model in terms of the

estimated densities for the variances σ2
1, σ2

2, and the correlation coefficient ρ between

ζ1t and ζ2t for the two different risk types. Interestingly, most probability mass for the

density of ρ is negative for T = 6, around zero for T = 13 and positive for T = 24.

This may correspond to a negative correlation of common shocks for jobs in the same

and in different industries for the first several weeks of unemployment with a subsequent

correlation reversal in later time periods, but may also be influenced by other factors,

as estimates of other model elements also change. Nonetheless, such correlation pattern

would explain the exit counts shown in Figure 1 for the two risks, with high ratios of

jobs in the same industry to different industries for the first few weeks abetting to parity

around week six.

The posterior distribution estimates of the smoothing parameter α of the Dirichlet Process

Mixture model (Assumption B6) are plotted in Figure OA.2 in the Online Appendix.
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The distributions are concentrated around a well-defined mode of value less than five,

indicating a strong influence of data relative to the baseline prior distribution.

It is informative to contrast the estimates from our preferred model with those obtained

under different modeling assumptions on the unobserved heterogeneity which are detailed

in the Online Appendix. Table OA.3 presents the estimated coefficients from a model that

ignores the presence of individual heterogeneity, Table OA.4 corresponds to a model which

assumes parametric gamma distributed heterogeneity, Table OA.5 estimates a competing

risk model with parametric GIG heterogeneity, and Table OA.6 presents the estimation

results from a flexible model which estimates the unobserved semi-parametrically using

an infinite mixture of GIG distributions but also further imposes the assumption of inde-

pendence between the different risks. In Table OA.7 we present estimation results from

our single risk GIG mixture model but applied to the subsample of observations which

records the outcomes for the two competing risks.

Given the large number of parameters to be considered it is helpful to compare these

different models in a graphical setting. In order to facilitate the comparison between

the model which pools the two risks and the models which do not we can combine the

two risks into a common survival function, as discussed in the Online Appendix. Thus,

in Figure 7 we compare the estimated survival function of our CR GIG mixture model

(Assumptions 1–3, B6 and B7a, labeled as ”CR full”) with its estimates in three restricted

model versions: 1) the parametric GIG case (labeled as ”CR param”), 2) the independent

risks case where we estimate a single-risk model separately for each risk type of data and

then merge their survival functions ex-post (labeled as ”CR indep”); 3) the case without

individual unobserved heterogeneity under the restriction Vik = 0 (labeled as ”CR no

ihet”); and 4) the single-risk case where we do not distinguish between risk types in the

competing risk data (labeled as ”SR full”).

Two features are particularly significant. First, we notice that if we enforce the assumption

of independence of the two risk types, the resulting common survival function is severely

downward biased. The magnitude of the bias dominates the other modeling choices which

we make on the specification of unobserved heterogeneity. This could be due to the

distributional effects of the risk correlations (Figure 7) that are absent in the independent

risk model. Second, we plot the confidence bounds for our proposed model which allows for
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a flexible specification of the unobserved heterogeneity but also for correlated competing

risks. We notice that all other more restrictive specifications are downward biased and

the differences become statistically significant as the number of time periods increases.

5.4. Counterfactual Policy Evaluation

One of the advantages of our model consists in the explicit estimation of the unobserved

heterogeneity components which enables us to evaluate the effectiveness of counterfactual

policy experiments taking into account the distributional effects of individual heterogene-

ity. As discussed above, one of the main policy questions currently faced by economists

is the extent to which the generosity of unemployment insurance benefits impacts the

workers’ incentives to find employment once their lose their job. On the one hand, more

generous benefits are expensive to provide given the ongoing debt crisis and may actu-

ally prove detrimental in the long run as they may erode workers’ incentives to find a job

quickly. Thus they would ultimately contribute to increasing long run unemployment. On

the other hand, low levels of unemployment insurance benefits can make unemployment

very difficult for many low income families. Poverty can also have a negative effect on their

ability to find employment since job search is costly and in the absence of unemployment

insurance benefits many workers may find themselves unable to support their families

while also searching for an adequate job. As a result workers may end up underemployed

or leave the labor market altogether. The relative magnitude of the impact of incentives

over poverty is an empirical question and a counterfactual analysis using model estimates

can provide some evidence in this debate.

In the context of our model we can consider changing the replacement rate in order to

investigate its impact on the probability of exit from unemployment as captured by the

survival function. Note that we assume that this policy change does not impact the

distribution of heterogeneity. We can perform this policy counterfactual using both the

single risk and the competing risk model. For clarity, we combine the two risk types in

the CR model into a common survival function as described in the Online Appendix. The

counterfactual experiment consists in increasing and decreasing the replacement rate by

10%. We present counterfactual results from our preferred specification which flexibly

models the unobserved heterogeneity as an infinite GIG mixture. The estimated and
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counterfactual survival curves under the two scenarios are presented in Figure 8 (SR) and

Figure 9 (CR).

Both Figures show that the survival function moves in the anticipated direction: for a

replacement rate decrease the probability of staying unemployed is lower, and for replace-

ment rate increase the probability of continued unemployment is higher. However, the

changes are relatively small. For example, for T = 24 in the final period the survival

function changes by −1.7% and 1.6% for the CR data, respectively. This suggests that

while the estimated impact of a change in unemployment benefit generosity has the sign

predicted by economic theory, the magnitude of the impact on the probability of unem-

ployment exit is inelastic. Policy makers may thus wish to consider the extent to which

cutting unemployment benefits may ultimately influence an unemployed worker’s welfare.

In the Online Appendix we further report on the results of two extensions of the coun-

terfactual experiment that we briefly summarize here. First, we split individuals into

two different subsamples based on their unobserved heterogeneity component – below

and above the median. The results indicate that individuals with higher unobserved

heterogeneity react more to replacement rate changes and have better chances exiting un-

employment faster than their counterparts with lower unobserved heterogeneity. Second,

we specify a time-varying replacement rate counterfactual change under two scenarios:

one with sharp initial change and one with sharp late change. On average the survival

function changes more under the former scenario, albeit inelastically in absolute terms.

6. Conclusion

We introduced a new flexible model specification for the competing risk model with piece-

wise linear baseline hazard, time-varying regressors, risk-specific unobserved individual

heterogeneity distributed as an infinite mixture of density kernels, and a common cor-

related latent effect. Unobserved individual heterogeneity is assumed to be distributed

according a Bayesian Dirichlet Process mixture model with a data-driven stochastic num-

ber of mixture components estimated along with other model parameters. We derive

a tractable likelihood for Generalized Inverse Gaussian (GIG) mixing based on scaled

GIG Laplace transforms and their higher-order derivatives. We find that mixing under
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a special case of the GIG, the gamma kernel, leads to degenerate outcomes in nonpara-

metric mixtures motivating the use of the more flexible GIG. We apply our approach

to analyzing unemployment duration with exits to jobs in the same industry and to a

different industry among unemployment insurance recipients on nationally representative

individual-level survey data from the U.S. Department of Labor. We also conduct a coun-

terfactual policy experiment that changes the replacement rate and find that the extent

to which cuts in unemployment benefits incentivize unemployed workers is relatively very

small.
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7. Appendix: Tables and Figures

Table 1. Overview of Assumptions

Heterogeneity type Single Risk Competing Risks
No heterogeneity A1–A3 B1–B3
Parametric GIG A1–A4, A5a B1–B4, B5a
Parametric gamma A1–A4, A5b B1–B4, B5b
Flexible GIG mixture A1–A3, A6, A7a B1–B3, B6, B7a
Flexible gamma mixture A1–A3, A6, A7b B1–B3, B6, B7b

Table 2. Summary Statistics

Duration Data Competing Risk Data
Variable Mean S.D. Min Max Mean S.D. Min Max
Duration 23.245 16.334 1 63 27.958 28.410 1 140
Race 0.117 0.321 0 1 0.107 0.310 0 1
Age 0.177 0.382 0 1 0.181 0.385 0 1
Replacement Rate 0.6558 0.3082 0.016 1.8434 0.660 0.324 0.015 2.173
State unemp rate:

period 1 4.686 1.087 2 6.9 4.579 1.125 2 7.5
period 2 4.672 1.083 2 6.9 4.568 1.120 2 7.5
period 3 4.660 1.079 2 6.9 4.562 1.107 2 7.5
period 4 4.645 1.074 2 6.9 4.553 1.103 2 7.8
period 5 4.630 1.069 2 6.9 4.536 1.092 2 8.1
period 6 4.621 1.064 2 6.9 4.533 1.083 2 8.1
period 7 4.616 1.066 2 6.9 4.538 1.080 2 8.1
period 8 4.598 1.064 2 6.9 4.527 1.071 2 7.4
period 9 4.570 1.061 2 6.9 4.518 1.070 2 7.2
period 10 4.538 1.061 2 6.9 4.486 1.070 2 7.2
period 11 4.531 1.063 2 6.9 4.481 1.072 2 7.2
period 12 4.509 1.067 2 6.9 4.458 1.082 2 6.9
period 13 4.483 1.075 2 6.9 4.438 1.091 2 6.9
period 14 4.462 1.080 2 6.9 4.412 1.098 2 6.9
period 15 4.460 1.075 2 6.9 4.404 1.102 2 6.9
period 16 4.449 1.073 2 6.9 4.390 1.097 2 6.9
period 17 4.439 1.067 2 6.9 4.376 1.088 2 7.8
period 18 4.440 1.055 2 6.9 4.368 1.078 2 7.8
period 19 4.431 1.054 2 6.9 4.357 1.073 2 7.8
period 20 4.420 1.045 2 6.9 4.342 1.066 2 7.8
period 21 4.423 1.033 2 6.9 4.338 1.052 2 7.5
period 22 4.431 1.029 2 6.8 4.335 1.038 2 7.4
period 23 4.436 1.024 2 6.7 4.345 1.037 2 7.4
period 24 4.441 1.015 2 6.7 4.353 1.037 2 7.4

Observations 15, 358 1, 243
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Table 3. New Semiparametric Duration Model, GIG Mixture

6 periods 13 periods 24 periods
Mean s.e. Mean s.e. Mean s.e.

κ -0.963 0.039 -1.226 0.034 -1.659 0.101
ϕ 2.284 0.110 3.022 0.097 4.240 0.285
Urate -0.184 0.021 -0.214 0.014 -0.327 0.034
Race -0.055 0.069 -0.126 0.042 -0.145 0.050
Age -0.194 0.057 -0.178 0.035 -0.187 0.039
Rrate -0.924 0.076 -0.473 0.051 -0.147 0.066
t 1 -2.142 0.116 -2.264 0.090 -1.971 0.181

2 -1.716 0.109 -1.843 0.088 -1.573 0.175
3 -2.026 0.112 -2.157 0.096 -1.878 0.182
4 -1.733 0.112 -1.865 0.085 -1.578 0.182
5 -2.070 0.112 -2.198 0.099 -1.928 0.185
6 -1.833 0.102 -1.829 0.084 -1.547 0.184
7 -2.336 0.100 -2.061 0.205
8 -2.026 0.087 -1.743 0.189
9 -2.347 0.097 -2.099 0.181
10 -2.130 0.087 -1.871 0.189
11 -2.347 0.087 -2.086 0.194
12 -2.120 0.095 -1.856 0.196
13 -2.277 0.074 -1.904 0.195
14 -1.840 0.191
15 -1.775 0.191
16 -1.740 0.195
17 -1.981 0.206
18 -1.641 0.191
19 -1.848 0.194
20 -1.674 0.191
21 -1.832 0.198
22 -1.738 0.199
23 -1.913 0.211
24 -1.006 0.179

N = 15, 491, Urate denotes the state unemployment rate,
Rrate denotes the replacement rate.
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Table 4. New Semiparametric Competing Risk Model, GIG Mixture

6 periods 13 periods 24 periods
Risk 1 Risk 2 Risk 1 Risk 2 Risk 1 Risk 2

Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e.
κ -1.535 0.046 -1.516 0.046 -1.482 0.057 -1.554 0.062 -1.407 0.044 -1.492 0.047
ϕ 3.890 0.129 3.838 0.304 3.741 0.162 3.944 0.176 3.532 0.126 3.771 0.134
Urate -0.111 0.055 -0.103 0.083 -0.107 0.048 -0.117 0.063 -0.216 0.040 -0.095 0.056
Race 0.054 0.225 0.033 0.424 -0.044 0.183 -0.377 0.343 -0.046 0.157 0.312 0.256
Age -0.008 0.176 -0.562 0.357 -0.016 0.154 -0.700 0.290 -0.036 0.130 -0.461 0.212
Rrate -1.062 0.227 -0.465 0.390 -0.903 0.181 -0.411 0.288 -0.385 0.156 -0.331 0.226
t 1 -2.553 0.314 -4.864 0.516 -2.680 0.276 -4.741 0.503 -2.496 0.256 -4.947 0.511

2 -1.993 0.296 -4.625 0.491 -2.113 0.255 -4.514 0.504 -1.933 0.234 -4.715 0.475
3 -2.324 0.311 -4.937 0.565 -2.445 0.272 -4.830 0.558 -2.263 0.253 -5.027 0.554
4 -2.022 0.302 -3.633 0.400 -2.138 0.263 -3.506 0.388 -1.962 0.243 -3.728 0.372
5 -2.470 0.325 -3.638 0.413 -2.580 0..28 -3.516 0.391 -2.406 0.273 -3.729 0.376
6 -3.854 0.290 -3.711 0.212 -3.044 0.322 -3.327 0.386 -2.872 0.308 -3.543 0.367
7 -2.947 0.321 -4.361 0.518 -2.764 0.304 -4.599 0.508
8 -2.493 0.295 -3.068 0.372 -2.318 0.277 -3.285 0.355
9 -3.750 0.422 -3.984 0.479 -3.571 0.417 -4.203 0.460
10 -2.620 0.305 -3.950 0.471 -2.449 0.293 -4.149 0.451
11 -3.232 0.362 -3.925 0.480 -3.078 0.355 -4.129 0.449
12 -2.791 0.326 -3.866 0.445 -2.625 0.305 -4.093 0.454
13 -3.799 0.341 -3.829 0.409 -2.703 0.317 -4.057 0.453
14 -2.738 0.329 -3.897 0.437
15 -2.511 0.309 -3.634 0.406
16 -3.074 0.376 -3.927 0.452
17 -2.127 0.284 -3.872 0.453
18 -2.564 0.335 -4.589 0.569
19 -2.513 0.322 -3.285 0.388
20 -2.702 0.347 -3.884 0.457
21 -1.850 0.278 -3.569 0.424
22 -3.795 0.540 -4.719 0.652
23 -2.133 0.307 -3.780 0.464
24 -3.640 0.322 -3.770 0.106

N = 1, 243, Urate denotes the state unemployment rate, Rrate denotes the replacement rate.
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Figure 1. Empirical Exit Count for Competing Risk Data
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Figure 2. Density of individual heterogeneity component vi, GIG mixture
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Figure 3. Survival function, GIG mixture
T = 6 T = 13 T = 24
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Figure 4. Heterogeneity density, GIG mixture
T = 6 T = 13 T = 24
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Figure 5. Survival function, GIG mixture
T = 6 T = 13 T = 24
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Figure 6. Correlation structure of ζt: density of σ2
1, σ2

1, and ρ, GIG mixture
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Figure 7. Model Comparison in Terms of Survival Functions
T = 6 T = 13 T = 24
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Figure 8. Counterfactual Experiment for the Single Risk GIG Mixture
T = 6 T = 13 T = 24
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Figure 9. Counterfactual Experiment for the Competing Risks Model us-
ing a GIG Mixture and Combining the Risks.
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1. Details on MCMC Posterior Sampling

For our model implementation we utilize the Gibbs sampling scheme which belongs to the class
of Markov Chain Monte Carlo (MCMC) simulation methods. An attractive feature of MCMC
techniques is that samples of random draws can be generated from the joint posterior densities
of parameters of interest indirectly, without the need to specify the exact analytical form of
the joint densities. The Gibbs sampler uses an iterative procedure to create Markov chains by
simulating from conditional densities instead which are analytically tractable. The sets of draws
obtained in this way can be effectively considered as samples from the joint posterior densities.

1.1. Gibbs Blocks

For the single risk case, let δ0t = log(μ0t), δ0 = (δ01, . . . , δ0T ), and V = {Vi}N
i=1. The model

parameters consist of β, δ0, V, hyperparameters either of the GIG mixture κ and ϕ or the
gamma mixture γ (denote the hyperparameters generically by ψ), and the DP concentration
parameter α. Under Assumptions A1–A7, the joint posterior density can be decomposed into
the following Gibbs blocks:

(1) β, δ0|V, ψ, α
(2) V |ψ, α, β, δ0

(3) ψ|α, β, δ0, V
(4) α|β, δ0, V, ψ

In the competing risk case, all the above parameters are risk-specific. Moreover, due to Assump-
tion B4, there are additional parameters ζkt, ρ, σ1, and σ2. Hence, let δ0kt = log(λ0kt)+ζkt where
λ0kt = μ0kt since time intervals have unit length. Let further β = {βk}K

k=1, δ0k = (δ0k1, . . . , δ0kT ),
δ0 = (δ01, δ02), σ = {σk}K

k=1, Vi = {Vki}K
k=1, V = {Vi}N

i=1, ψ = {ψk}K
k=1, and α = {αk}K

k=1. In
our application, K = 2. The Gibbs blocks are now as follows:

(1) β, δ0|σ, ρ, V, ψ, α
(2) σ, ρ|V, ψ, α, β, δ0

(3) V |ψ, α, β, δ0, σ, ρ
(4) ψ|α, β, μ0, σ, ρ, V
(5) α|β, μ0, σ, ρ, V, ψ

This first Gibbs block is sampled using standard Hamiltonian Monte Carlo (HMC) with SR
posterior (2.8) and (2.9), and CR posterior (3.3) and (3.4). For a detailed description of the HMC
procedure, see e.g. Neal (2011), pp. 122–125. In the CR case, the covariance matrix of the second
block is endowed with a proper Inverse Wishart prior with maximum dispersion, IW (K +1, IK)
where IK is the identity matrix of dimension K. Given the draws δ0 and the Normal correlation
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structure in Assumption B4, the posterior can be found e.g. in Train (2003) on p. 301 and the
sampling procedure on p. 302. Sampling individual heterogeneity V, hyperparameters ψ, and α
is detailed in the next section.

1.2. Individual Heterogeneity

The distribution of the unobserved heterogeneity component vi is modeled as a mixture with
countably infinite number of mixture components. In the Bayesian framework employing a prior
distribution for mixing proportions, such as the Dirichlet Process that we adopt here, leads to a
relatively few of the mixture components dominating in the posterior. Using a countably infinite
mixture bypasses the need to determine the ”correct” number of components in a finite mixture
model.

DP mixture modeling is described in detail e.g. in Hjort et al (2010). In our implementation,
we use Algorithm 2 of Neal (2000). Here we provide the essence of the procedure. The prior
structure of the model for vi is specified by our Assumptions A6 (SR) and B6 (CR). It is based on
two levels of hierarchy, where the first one is formed by a random measure G that stochastically
deviates from the baseline measure G0 and the second level is given by the Dirichlet Process
DP (G0, α). The baseline measure G0 is specified in our Assumptions A7a,b (SR) and B7a,b
(CR).

The level formed by G can be integrated out to obtain a representation of the prior in terms of
successive conditional distributions of a mixture form (Blackwell and MacQueen 1973):

(OA.1.1) vi|v−i ∼
1

i − 1 + α

i−1∑

j=1

δ(vj) +
α

i − 1 + α
G0

where v−i denotes the collection of vj , j 6= i, and δ(vj) is the Dirac measure concentrated on
the single point vj . When combined with the likelihood, this yields the following conditional
distribution for use in Gibbs sampling (Neal 2000):

vi|v−i, ti ∼
N∑

j=1,j 6=i

qijδ(vj) + q0Hi(OA.1.2)

qij = bF (ti, vj)

q0 = bα

∫
F (ti, v)dG0(v)

where Hi is the posterior for vi based on the prior G0(v) and the single observation ti with
likelihood denoted by F (ti, vi), b is a normalizing constant such that

∑
j 6=i qij + q0 = 1, and N

is the sample size. In the SR case, implementation of the GIG mixture model (Assumptions
A1–A3, A6, and A7a) uses (2.8) and (2.9) for F (ti, v), while

∫
F (ti, v)dG0(v) is given by (2.18)

and (2.19). The gamma mixture model (Assumptions A1–A3, A6, and A7b) uses (2.8), (2.9),
(2.22) and (2.23), respectively. In the CR case, the GIG mixture model (Assumptions B1–B3,
B6, and B7a) uses (3.3) and (3.4) for F (ti, v) from Theorem 1, and

∫
F (ti, v)dG0(v), as derived

in Corollary 1 to Theorem 2. The gamma mixture model (Assumptions B1–B3, B6, and B7b)
uses (OA.2.47) and (OA.2.49) for the latter integral, from Corollary 2 to Theorem 2. The
hyperparameters ψ are then updated in a separate Gibbs block as given by Algorithm 2 (Neal
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2000, p. 254). Gibbs updates of the concentration parameter α are detailed in Escobar and
West (1995).

1.3. Compilation and Runtime

All reported posterior means were obtained from Markov Chain Monte Carlo (MCMC) chains
of total length of 30,000 steps with a 10,000 burn-in section. All models were implemented
using the Intel Fortran 95 compiler on a 2.8GHz Unix machine under serial compilation. For a
sample of 15,358 individuals, the single risk model implementation took approximately 3 hours
for T = 6, 4 hours for T = 13, and 6 hours for T = 24 to run. In contrast, with a sample of 1,317
individuals, the competing risk model implementation took approximately 2 hours for T = 6, 6
hours for T = 13, and 13 hours for T = 24.

1.4. Gamma versus GIG

In the gamma mixture model we found that the probability mass of the individual heterogeneity
component was accumulating at zero, with a thin right tail diverging to infinity, leading to
a degenerate outcome. We believe this to be an artefact of the gamma density kernel shape
with mode at zero for mean less than or equal to one. In contrast, for the GIG density under
the Assumptions A6 and A7a (SR) or Assumptions B6 and B7a (CR), we obtained a well-
defined stable nonparametric heterogeneity clustering without the degenerative tendencies of
the gamma. We attribute this outcome to the more flexible functional form of the GIG with a
well-defined mode at a strictly positive value for v for mean values smaller than one.

2. Details on Proofs and Derivations

2.1. CR Stochastic Environment

Consider the CR model setup with interval outcome data and latent exit times, as described in
the main text. In this section we will initially omit the subscripts i and t and also covariates
and heterogeneity variables to focus on the general model, without loss of generality. We will
then include these elements into the model as needed. Denote the latent exit time variables by
τ = (τ1, . . . , τK) while the time integration variables by u = (u1, . . . , uK) , assumed conditionally
independent.

The cause-specific hazard function for the k-th cause, which is the hazard from failing from a
given cause in the presence of the competing risks, is defined as

λk(uk) = lim
h→0

Pr (uk < τk ≤ uk + h; k|τk > uk)
h

The joint hazard from all causes is

λ(u) = lim
h→0

Pr (u < τ ≤ u + h|τ > u)
h

=
K∑

k=1

λk(uk)
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where all inequalities are defined element-wise. The cause-specific integrated hazard is

(OA.2.1) Λk (τk) =
∫ τk

0
λk(uk)duk

and the joint integrated hazard is

(OA.2.2) Λ (τ) =
∫ τ

0
λ(u)du =

∫ τ

0

K∑

k=1

λk(uk)du =
K∑

k=1

∫ τ

0
λk(uk)duk =

K∑

k=1

Λk (τk)

The joint survival function is

S(u) = Pr(τ > u)

= exp (−Λ (u))(OA.2.3)

which is the complement of the probability of failure from any cause up to time τ given by the
overall cumulative distribution function

F (u) = Pr(τ ≤ u)

= 1 − S(u)

For ease of exposition, we will focus on the case of two risk types with K = 2. The joint density
of failure at time u is thus given by

f(u1, u2) =
∂2F (u1, u2)

∂u1∂u2

= −
∂2S(u1, u2)

∂u1∂u2

= −
∂2 exp (−Λ1 (u1) − Λ2 (u2))

∂u1∂u2

= exp (−Λ1 (u1) − Λ2 (u2)) λ1(u1)λ2(u2)(OA.2.4)

Equation (OA.2.4) links f(u1, u2) with the risk-specific hazard functions. Parametrization of
the latter in terms of covariates and unobserved heterogeneity (Vi, ζ) is given by Assumption
B2. We will now invoke this Assumption and reintroduce (Vi, ζ), while suppressing notational
conditioning on the covariates X without loss of generality.

Note that conditional on X the failure times u1 and u2 are dependent since ζ1t and ζ2t are
correlated. However, conditional on X,V, ζ the failure times u1 and u2 are independent. Hence
f(u1, u2|V, ζ) can be factorized into the product

f(u1, u2|V, ζ) = f(u1|V, ζ)f(u2|V, ζ)

From (OA.2.4) it follows that

(OA.2.5) f(uk|V, ζ) = exp (−Λk (uk)) λk(uk)

Define the function

(OA.2.6) Sk(uk) ≡ exp (−Λk (uk))

for k ∈ {1, 2}. From (OA.2.5) and (OA.2.6) we have,

(OA.2.7) f(uk|V, ζ) = Sk(uk)λk(uk)
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From (OA.2.1), (OA.2.6), and (OA.2.7) it follows that

(OA.2.8)
∫ τ i

τ i

f(uk|V, ζ)duk = Sk(t−1) − Skt

The density (OA.2.7) should not be confused with the so-called subdensity function fj(uj) =
S(u = uj)λj(uj) that is sometimes used in CR analysis. Moreover, the function Sk(uk) defined in
(OA.2.6) does not, in general, have the survival function interpretation for K > 1. Nonetheless,
examining (OA.2.2), (OA.2.3), and (OA.2.6) reveals that the product of Sk(uk) over k equals
the joint survival function:

(OA.2.9) S(u) =
K∏

k=1

Sk(uk)

(for further details of interpretation of functions with survival-like properties see e.g. Porta,
Gómez, and Calle 2008). In general, the unconditional product form of (OA.2.9) characterizes
independent risks. However, dependence among risks can be introduced by conditioning each
Sk(uk) on variables correlated across the risk types.

2.2. Competing Risk Model: Conditional Likelihood

From (3.2),

(OA.2.10) P (t1i = t, τ2i > τ1i|Vi, ζ) = A + B

where

A =
∫ τ i

τ i

∫ τ i

u1

f(u1, u2|Vi, ζ)du2du1

B =
∫ τ i

τ i

∫ ∞

τ i

f(u1, u2|Vi, ζ)du2du1

The expression A is more difficult to evaluate than B since in A the lower bound u1 of the inner
integral is an argument of the outer integral. In contrast, the two integrals in B are independent
of each other and hence can be factorized.

Thus,

A =
∫ τ i

τ i

∫ τ i

u1

fit(u1|V1i, ζ1)fit(u2|V2i, ζ2)du2du1

=
∫ τ i

τ i

[∫ τ i

u1

fit(u2|V2i, ζ2)du2

]

fit(u1|V1i, ζ1)du1(OA.2.11)

where uk ∈ [τ i, τ i) for k ∈ {1, 2}. For the inner integral in (OA.2.11), using (OA.2.8)

(OA.2.12)
∫ τ i

u1

fit(u2|V2i, ζ2)du2 = S2i (u1) − S2it

Let sk = uk − τ i so that sk ∈ [0, 1). Then, from (OA.2.5), using piecewise constancy of the
hazard function λki (∙) and hence piecewise linearity of the integrated hazard function Λki (∙)
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over time,

fit(uk|Vki, ζk) = exp (−Λki (uk)) λki(uk)

= exp
(
−Λki(t−1) − skλkit

)
λkit

= exp
(
−Λki(t−1)

)
exp (−skλkit) λkit(OA.2.13)

Similarly,

(OA.2.14) Ski (uj) = Ski(t−1) exp (− (sjλkit))

for k, j ∈ {1, 2}. Using (OA.2.12), and integration by substitution with (OA.2.13) for k = 1 and
with (OA.2.14) for k = 2, j = 1, in (OA.2.11) yields

A =
∫ τ i

τ i

[S2i (u1) − S2it] fit(u1|V1i, ζ1)du1

= S2i(t−1)

∫ 1

0
exp (− (s1λ2it)) exp

(
−Λ1i(t−1)

)
exp (−s1λ1it) λ1itds1

−S2it

∫ 1

0
exp

(
−Λ1i(t−1)

)
exp (−s1λ1it) λ1itds1

= A11 + A12(OA.2.15)

where

A11 = S2i(t−1)

∫ 1

0
exp (− (s1λ2it)) exp

(
−Λ1i(t−1)

)
exp (−s1λ1it) λ1itds1

= S2i(t−1)S1i(t−1)λ1it (λ2it + λ1it)
−1
∫ 1

0
exp (−(s1 (λ2it + λ1it)) (λ2it + λ1it) ds1

= −S2i(t−1)S1i(t−1)λ1it (λ2it + λ1it)
−1 [exp (− (λ2it + λ1it)) − 1](OA.2.16)

and

A12 = −S2it

∫ 1

0
exp

(
−Λ1i(t−1)

)
exp (−s1λ1it) λ1itds1

= −S2itS1i(t−1)

∫ 1

0
exp (−s1λ1it) λ1itds1

= S2itS1i(t−1) [exp (−λ1it) − 1](OA.2.17)

Using (OA.2.16) and (OA.2.17) in (OA.2.15) yields

(OA.2.18) A = S2itS1it

{
1 − exp(λ1it) − λ1it (λ2it + λ1it)

−1 [1 − exp (λ2it1 + λ1it)]
}

The expression for B of (3.2) is given by

B =
[
F1it − F1i(t−1)

]
[1 − F2it]

=
[
S1i(t−1) − S1it

]
S2it

= S1i(t−1)S2it − S1itS2it

= S1itS2it [exp(λ1it) − 1](OA.2.19)
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Combining (OA.2.18) and (OA.2.19) in (OA.2.10) yields

P (t1i = t, τ2i > τ1i|Vi, ζ) = S2i(t−1)S1i(t−1)λ1it (λ2it + λ1it)
−1

× [1 − exp (− (λ2it + λ1it))]

with the resulting log-likelihood

ln P (t1i = t, τ2i > τ1i|Vi, ζ) = −Λ2i(t−1) − Λ1i(t−1) + log(λ1it) − log (λ2it + λ1it)

+ log (1 − exp (− (λ2it + λ1it)))

2.3. Competing Risk Model: Integrated Likelihood

2.3.1. Quadrature Version

Here we derive an expression for the expectation of the exit probability (3.2) with respect
to unobserved heterogeneity for each risk type, based on a simple quadrature. Taking the
expectation of (3.2) yields

EvP (t1i = t, τ2i > τ1i) = Ev

∫ τ i

τ i

∫ τ i

u1

f(u1, u2|Vi, ζ)du2du1

+Ev

∫ τ i

τ i

∫ ∞

τ i

f(u1, u2|Vi, ζ)du2du1

= Ev

∫ τ i

τ i

∫ ∞

u1

f(u1, u2|Vi, ζ)du2du1

= Ev

∫ τ i

τ i

∫ ∞

u1

fit(u1|V1i, ζ1)fit(u2|V2i, ζ2)du2du1

= Ev

∫ τ i

τ i

∫ ∞

u1

fit(u2|V2i, ζ2)du2fit(u1|V1i, ζ1)du1

=
∫ τ i

τ i

Ev2i [S2i (u1)] Ev1i [fit(u1|V1i, ζ1)] du1(OA.2.20)

From (OA.2.6),

(OA.2.21) Ev2i [S2i (u1)] = L2

(
Λ̃2i(u1)

)

Using (OA.2.5),

Ev1i [fit(u1|V1i, ζ1)] = Ev1i [exp (−Λ1i (u1)) λ1i(u1)]

= λ̃1i(u1)Ev1i

[
exp

(
−v1iΛ̃1i(u1)

)
v1i

]

= −λ̃1i(u1)L
(1)
1

(
Λ̃1i(u1)

)
(OA.2.22)

where L(1) (s) is the first derivative of the Laplace transform L (s) evaluated at s. Using (OA.2.21)
and (OA.2.22) in (OA.2.20) yields

(OA.2.23) EvP (t1i = t, τ2i > τ1i) = −
∫ τ i

τ i

λ̃1i(u1)L2

(
Λ̃2i(u1)

)
L(1)

1

(
Λ̃1i(u1)

)
du1



Online Appendix page 8

Letting again sk = uk − (t − 1), sk ∈ [0, 1), k ∈ {1, 2}, and using piecewise constancy of λki (∙)
and piecewise linearity of Λki (∙), following a change of variables (OA.2.23) becomes
(OA.2.24)

EvP (t1i = t, τ2i > τ1i) = −λ̃1it

∫ 1

0
L2

(
Λ̃2i(t−1) + λ̃2its1

)
L(1)

1

(
Λ̃1i(t−1) + λ̃1its1

)
ds1

2.3.2. Series Expansion

The series expansion expression for the expectation of (3.2) can be derived as follows. Using
(OA.2.10) and taking expectations,

EvP (t1i = t, τ2i > τ1i) = Ev

∫ τ i

τ i

∫ τ i

u1

f(u1, u2|Vi, ζ)du2du1

+Ev

∫ τ i

τ i

∫ ∞

τ i

f(u1, u2|Vi, ζ)du2du1

= EvA + EvB(OA.2.25)

From (OA.2.11),

(OA.2.26) EvA =
∫ τ i

τ i

Ev2i

[∫ τ i

u1

fit(u2|V2i, ζ2)du2

]

Ev1i [fit(u1|V1i, ζ1)] du1

For the expectation of the inner integral,

Ev2i

[∫ τ i

u1

fit(u2|V2i, ζ2)du2

]

= Ev2i [S2i (u1) − S2it]

= Ev2i [S2i (u1)] − L2

(
Λ̃2it

)
(OA.2.27)

with the first right-hand side term intentionally not converted to the Laplace form in order to
facilitate subsequent series expansion. Using (OA.2.27) in (OA.2.26),

EvA =
∫ τ i

τ i

[
Ev2i [S2i (u1)] − L2

(
Λ̃2it

)]
Ev1i [fit(u1|V1i, ζ1)] du1

=
∫ τ i

τ i

Ev2i [S2i (u1)] Ev1i [fit(u1|V1i, ζ1)] du1

−L2

(
Λ̃2it

)
Ev1i

∫ τ i

τ i

fit(u1|V1i, ζ1)du1

= EvA1 + EvA2(OA.2.28)
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Substituting with (OA.2.6) and (OA.2.7),

EvA1 =
∫ τ i

τ i

Ev2i [S2i (u1)] Ev1i [fit(u1|V1i, ζ1)] du1

= Ev2iEv1i

∫ τ i

τ i

S2i(u1) [fit(u1|V1i, ζ1)] du1

= Ev2iEv1i

∫ τ i

τ i

exp (−Λ2i (u1)) exp (−Λ1i (u1)) λ1i(u1)du1

= Ev2iEv1i

∫ τ i

τ i

exp
(
−v2iΛ̃2i (u1)

)
exp

(
−v1iΛ̃1i (u1)

)
v1iλ̃1i(u1)du1(OA.2.29)

Using integration by substitution with sk = uk − τ i in (OA.2.29) and piecewise constancy of
λ̃ki (sk) for sk ∈ [0, 1), k ∈ {1, 2},

EvA1 = Ev2iEv1i exp
(
−v2iΛ̃2i(t−1)

)
exp

(
−v1iΛ̃1i(t−1)

)

×
∫ 1

0
exp

(
−v2is1λ̃2it

)
exp

(
−v1is1λ̃1it

)
v1iλ̃1itds1

= Ev2iEv1i exp
(
−v2iΛ̃2i(t−1)

)
exp

(
−v1iΛ̃1i(t−1)

)

×
∫ 1

0

∞∑

r2=0

(−1)r2

r2!

(
v2is1λ̃2it

)r2
∞∑

r1=0

(−1)r1

r1!

(
v1is1λ̃1it

)r1

v1iλ̃1itds1

=
∞∑

r2=0

(−1)r2

r2!

∞∑

r1=0

(−1)r1

r1!
Ev1i

[

exp
(
−v1iΛ̃1i(t−1)

)(
v1iλ̃1it

)r1+1
]

×Ev2i

[
exp

(
−v2iΛ̃2i(t−1)

)(
v2iλ̃2it

)r2
] ∫ 1

0
sr2+r1
1 ds1

=
∞∑

r2=0

(−1)r2

r2!

∞∑

r1=0

(−1)r1

r1!
Ev1 [A11] Ev2 [A12] A13(OA.2.30)

where

Ev1 [A11] = λ̃r1+1
1it Ev1i

[
exp

(
−v1iΛ̃1i(t−1)

)
vr1+1
1i

]
(OA.2.31)

= (−1)r1+1λ̃r1+1
1it L(r1+1)

1

(
Λ̃1i(t−1)

)
(OA.2.32)

Ev2 [A12] = λ̃r2
2itEv2i

[
exp

(
−v2iΛ̃2i(t−1)

)
vr2
2i

]
(OA.2.33)

= (−1)r2 λ̃r2
2itL

(r2)
2

(
Λ̃2i(t−1)

)
(OA.2.34)

A13 =
∫ 1

0
sr2+r1
1 ds1

=
1

r2 + r1 + 1
(OA.2.35)

whereby the time dimension of the previous quadrature has been parsed through following the
series expansion linearization and integrated out in the remaining polynomial term in (OA.2.35).
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Combining (OA.2.32) and (OA.2.34) and (OA.2.35) in (OA.2.30) results in

EvA1 =
∞∑

r2=0

(−1)r2

r2!

∞∑

r1=0

(−1)r1

r1!
(−1)r1+r2+1

r2 + r1 + 1
λ̃r1+1

1it λ̃r2
2it

×L(r1+1)
1

(
Λ̃1i(t−1)

)
L(r2)

2

(
Λ̃2i(t−1)

)
(OA.2.36)

For the second part of (OA.2.28),

EvA2 = −L2

(
Λ̃2it

)
Ev1i

∫ τ i

τ i

fit(u1|V1i, ζ1)du1

= −L2

(
Λ̃2it

)
Ev1i

[
S1i(t−1) − S1it

]

= −L2

(
Λ̃2it

) [
L1

(
Λ̃1i(t−1)

)
− L1

(
Λ̃1it

)]
(OA.2.37)

Collecting (OA.2.36) and (OA.2.37) in (OA.2.28) yields

EvA =
∞∑

r2=0

(−1)r2

r2!

∞∑

r1=0

(−1)r1

r1!
(−1)r1+r2+1

r2 + r1 + 1
λ̃r1+1

1it λ̃r2
2it

×L(r1+1)
1

(
Λ̃1i(t−1)

)
L(r2)

2

(
Λ̃2i(t−1)

)

−L2

(
Λ̃2it

) [
L1

(
Λ̃1i(t−1)

)
− L1

(
Λ̃1it

)]
(OA.2.38)

The expectation expression for B in (OA.2.25) is

EvB =
∫ τ i

τ i

Ev2i

[∫ ∞

τ i

fit(u2|V2i, ζ2)du2

]

Ev1i [fit(u1|V1i, ζ1)] du1

= Ev2i [S2it] Ev1i

[
S1i(t−1) − S1it

]

= L2

(
Λ̃2it

) [
L1

(
Λ̃1i(t−1)

)
− L1

(
Λ̃1it

)]
(OA.2.39)

Substituting (OA.2.38) and (OA.2.39) into (OA.2.25) yields

EvP (t1i = t, τ2i > τ1i) =
∞∑

r2=0

∞∑

r1=0

(−1)2r1+2r2+1

r2!r1! (r2 + r1 + 1)
λ̃r1+1

1it λ̃r2
2it

×L(r1+1)
1

(
Λ̃1i(t−1)

)
L(r2)

2

(
Λ̃2i(t−1)

)
(OA.2.40)

2.3.3. Derivatives of the Laplace transform

In general,

(OA.2.41) L(r) (s) = (−1)r

∫
vr exp (−sv) g(v)dv

(see e.g. Hougaard 2000, p. 498) and L(r) (s) exists for each r > c such that |g(v)| ≤ K exp(cv)
if g(v) is piecewise continuous over its domain.
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In the GIG density function (2.16), replace θ with θ/2, then let χ = ϕ2/θ, and then substitute
the resulting expression into (OA.2.41) to obtain

L(r)GIG (s) = (−1)r

∫
vr exp (−sv) gGIG(v)dv

= (−1)r

∫
vr exp (−sv)

(θ/χ)κ/2

2Kκ

(
(θχ)1/2

)vκ−1 exp

{

−
1
2

(
θv +

χ

v

)}

dv

= (−1)r

∫
(θ/χ)κ/2

2Kκ

(
(θχ)1/2

)vκ+r−1 exp

{

−
1
2

(
(θ + 2s) v +

χ

v

)}

dv

= (−1)r
2Kκ+r

(
((θ + 2s) χ)1/2

)

2Kκ+r

(
((θ + 2s) χ)1/2

)
((θ + 2s) /χ)(κ+r)/2

((θ + 2s) /χ)(κ+r)/2

×
∫

(θ/χ)κ/2

2Kκ

(
(θχ)1/2

)vκ+r−1 exp

{

−
1
2

(
(θ + 2s) v +

χ

v

)}

dv

= (−1)r
Kκ+r

(
((θ + 2s) χ)1/2

)

Kκ

(
(θχ)1/2

)
(θ/χ)κ/2

((θ + 2s) /χ)(κ+r)/2

×
∫

((θ + 2s) /χ)(κ+r)/2

2Kκ+r

(
((θ + 2s) χ)1/2

)vκ+r−1 exp

{

−
1
2

(
(θ + 2s) v +

χ

v

)}

dv

= (−1)r
Kκ+r

(
((θ + 2s) χ)1/2

)

Kκ

(
(θχ)1/2

)
(θ/χ)κ/2

((θ + 2s) /χ)(κ+r)/2

Reversing the substitution with ϕ =
√

θχ and then replacing θ with 2θ yields

(OA.2.42) L(r)GIG (s) = (−1)r
Kκ+r

(
ϕ (1 + s/θ)1/2

)

Kκ (ϕ)

( ϕ

2θ

)r
(1 + s/θ)−(κ+r)/2

The quadrature version for the GIG then follows from (2.17), (OA.2.24), and (OA.2.42).
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EGIG
v P (t1i = t, τ2i > τ1i) =

λ̃1itϕ1

2θ1Kκ1 (ϕ1) Kκ2 (ϕ2)

×
∫ 1

0

(

1 +
1
θ1

Λ̃1i(t−1) +
1
θ1

λ̃1its1

)−(κ1+1)/2

×

(

1 +
1
θ2

Λ̃2i(t−1) +
1
θ2

λ̃2its1

)−κ2/2

×Kκ1+1

(

ϕ1

(

1 +
1
θ1

Λ̃1i(t−1) +
1
θ1

λ̃1its1

)1/2
)

×Kκ2

(

ϕ2

(

1 +
1
θ2

Λ̃2i(t−1) +
1
θ2

λ̃2its1

)1/2
)

ds1(OA.2.43)

The series version follows from (OA.2.40) and (OA.2.42).

EGIG
v P (t1i = t, τ2i > τ1i) =

∞∑

r2=0

∞∑

r1=0

(−1)3r1+3r2

r2!r1! (r2 + r1 + 1)

(
λ̃1itϕ1

2θ1

)r1+1(
λ̃2itϕ2

2θ2

)r2

×

(

1 +
1
θ1

Λ̃1i(t−1)

)−(κ+r1+1)/2(

1 +
1
θ2

Λ̃2i(t−1)

)−(κ2+r2)/2

×Kκ1+r1+1

(

ϕ1

(

1 +
1
θ1

Λ̃1i(t−1)

)1/2
)

[Kκ1 (ϕ1)]
−1

×Kκ2+r2

(

ϕ2

(

1 +
1
θ2

Λ̃2i(t−1)

)1/2
)

[Kκ2 (ϕ2)]
−1(OA.2.44)

The censored case,

EGIG
v P (t1i > T, t2i > T ) =

(

1 +
1
θ1

Λ̃1iT

)−κ1/2(

1 +
1
θ2

Λ̃2iT

)−κ2/2

×Kκ1

(

ϕ1

(

1 +
1
θ1

Λ̃1iT

)1/2
)

[Kκ1 (ϕ1)]
−1

×Kκ2

(

ϕ2

(

1 +
1
θ2

Λ̃2iT

)1/2
)

[Kκ2 (ϕ2)]
−1(OA.2.45)

Expressions (OA.2.43), (OA.2.44), and (OA.2.45) are referenced in Corollary 1 to Theorem 2.
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For the gamma density function (2.20),

L(r)G (s) = (−1)r

∫
vr exp (−sv) gG(v)dv

= (−1)r

∫
vr exp (−sv) θγ 1

Γ(γ)
vγ−1 exp(−θv)dv

= (−1)r

∫
θγ 1

Γ(γ)
vγ+r−1 exp(− (θ + s) v)dv

= (−1)r (θ + s)γ+r

(θ + s)γ+r

Γ(γ + r)
Γ(γ + r)

×
∫

θγ 1
Γ(γ)

vγ+r−1 exp(− (θ + s) v)dv

= (−1)r θγ

(θ + s)γ+r

Γ(γ + r)
Γ(γ)

×
∫

(θ + s)γ+r 1
Γ(γ + r)

vγ+r−1 exp(− (θ + s) v)dv

= (−1)r θγ

(θ + s)γ+r

Γ(γ + r)
Γ(γ)

(OA.2.46)

The quadrature version for the gamma then follows from (2.21), (OA.2.24), and (OA.2.46).

EG
v P (t1i = t, τ2i > τ1i) = γ1

λ̃1it

θ1

∫ 1

0

(

1 +
1
θ2

Λ̃2i(t−1) +
1
θ2

λ̃2its1

)−γ2

×

(

1 +
1
θ1

Λ̃1i(t−1) +
1
θ1

λ̃1its1

)−(γ1+1)

ds1(OA.2.47)

The series version follows from (OA.2.40) and (OA.2.46).

EG
v P (t1i = t, τ2i > τ1i) =

∞∑

r2=0

∞∑

r1=0

(−1)r1+r2

r1!r2! (r1 + r2 + 1)

(
λ̃1it

θ1

)r1+1(
λ̃2it

θ2

)r2

×

(

1 +
1
θ1

Λ̃1i(t−1)

)−(γ1+r1+1)(

1 +
1
θ2

Λ̃2i(t−1)

)−(γ2+r2)

×Γ(γ1 + r1 + 1) [Γ(γ1)]
−1 Γ(γ2 + r2) [Γ(γ2)]

−1(OA.2.48)

For the censored case,

(OA.2.49) EG
v P (t1i > T, t2i > T ) =

(

1 +
1
θ1

Λ̃1iT

)−γ1
(

1 +
1
θ2

Λ̃2iT

)−γ2

Expressions (OA.2.47), (OA.2.48), and (OA.2.45) are referenced in Corollary 2 to Theorem 2.
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3. Model Identification

Cox (1962) and Tsiatis (1975) state that the simple competing risks model with no regressors is
not identified. In particular, any competing risk model with correlated risks is observationally
equivalent to some other competing risks model with independent risks. Heckman and Honoré
(1989), henceforth HH, establish an identification theorem for a general class of competing
risks models with regressors. This class includes models with marginal distributions that follow
proportional hazards, mixed proportional hazards, and accelerated hazards. The results are
presented for two competing risks but generalize to any arbitrary finite number of risks. HH
assume that the exact time of exit is observed.

Our competing risk (CR) model is based on continuous latent times of exit τ1i, . . . , τKi with
a minimum τi = min (τ1i, . . . , τKi) . We observe the time interval [τ i, τ i), labeled as ti, which
contains τi. Nonetheless, our model assumptions impose more structure that would typically be
implied by interval outcome data, which allows us to identify the structural model components.
Assumption B2 explicitly parametrizes the time-varying model components as functions of the
continuous time τ . In Assumptions B3 and B4, the values of these components are assumed
constant within each time period t. Assumptions B2 and B4 thus allow us to adhere to a
counterpart of the HH identification approach in our model setting.

As in the main text, we assume K = 2 risk types. HH identify the single-index structural
parameters βk up to scale from the ratio of the derivatives of the survival function with respect
to a time increment of each risk type, evaluated at the time origin. Our counterpart is the ratio
of the survival functions integrated over the first time period (t = 1). From Theorem 1,

P (t1i = 1, τ2i > τ1i|V, ζ)
P (t2i = 1, τ1i > τ2i|V, ζ)

=
S2i0S1i0λ1i1 (λ2i1 + λ1i1)

−1 [1 − exp (− (λ2i1 + λ1i1))]

S1i0S2i0λ2i1 (λ1i1 + λ2i1)
−1 [1 − exp (− (λ1i1 + λ2i1))]

=
λ1i1

λ2i1

=
vi1 exp(Xi1β1 + δ011)
vi2 exp(Xi1β2 + δ021)

Taking expectations with respect to vik = exp(Vik) and using the normalization restrictions
E[vik] = 1 from Assumption B6, the absence of a constant term in Xit, and the support condition
for Xit in Assumption B2 identifies the ratio of β1 and β2.

Conditional on X = x, HH assume the survival function structure

(OA.3.1) S(τ |x) = K [U1(τ |x), U2(τ |x)]

where Uk(τ |x) = exp [−Zk(τ)φk(x)] and K is a joint distribution function on [0, 1]2. In our
case, the counterpart of (X) for period t outcomes, the joint expected survival function, can be
expressed as

(OA.3.2) EvSt(x) = K [U1t(x), U2t(x)]

where Ukt(x) = exp
(
−
∑t

j=1 zktφkt(x)
)

with φkt(x) = exp (xktβk) and zkt = exp(δ0kt), or

equivalently Ukt(x) = Λ̃kt(x). Our model assumptions uniquely determine the function K which
is given in Theorem 2: for censored observations K is a product of the Laplace transforms of
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Λ̃1t(x) and Λ̃2t(x), and for non-censored observations an expression involving the derivatives of
the respective Laplace transforms.

Let φ2t(x) → 0 while holding φ1t(x) fixed, which is feasible by the full support condition for the
covariates. Then

EvSt(x) = K



exp



−
t∑

j=1

z1t exp (x1tβ1)



 , 1





Since K and φ1t(x) are known and K is increasing in both arguments, z1t can be identified for
any t, and similarly for z2t. Identification of ρ, σ2

1 , and σ2
2 follow directly from identification of

zkt and Assumptions B2 and B4.

Using (OA.2.9) the joint expected survivor function can be expressed explicitly in terms of v1

and v2 as

(OA.3.3) EvSt(x) =
∫

Ω
exp [−v1U1t(x)] exp [−v2U2t(x)] dG(v1, v2)

HH show nonparametric identification of G for a special case with v1 = v2 = exp(c2ω). Honoré
(1993) provides the proof in full generality, albeit in that paper (OA.3.3) was obtained from a
multi-spell background. The argument is that if the marginal distributions of G along with other
model components are identified, then G is nonparametrically identified by the uniqueness of
the multivariate Laplace transform. The same argument can be used when (OA.3.3) is obtained
from a multiple risk background as we consider here.

The marginal distributions of G are in turn identified under the following Elbers and Ridder
(1982) assumptions:

ER1: vk is non-negative, with E[vk] = 1.

ER2: The function zk(τ) defined on [0,∞) can be written as the integral of a non-negative
function ψ.

ER3’: There are two points in the support of X, x0 and x1, such that φ(x0) 6= φ(x1). Further-
more, φ(x0) = 1.

Assumption ER1 is satisfied by our Assumption B6, and Assumptions ER2 and ER3’ are satisfied
by our Assumptions B2, B6 and the definition of integrated baseline hazard.

Identification of φk in HH relies on a limit result with the time variable approaching zero. An
alternative proof of nonparametric identification of a general class of CR models that does not
rely on a time limit at zero is provided in a recent paper by Lee and Lewbel (2013), henceforth LL.
Their approach also does not depend on exclusion restrictions and allows for discrete regressors
as long as some are continuously distributed.

LL define mappings Bk(s|x) and C(s|x) that are identified directly from data and whose unique
solution is the accelerated failure time nonparametric regression function g(x). Both Bk(s|x)
and C(s|x) are expressed as integrals over the continuous time domain which we can evaluate
as well under our assumptions using the formula for the density of the continuous latent time of
exit.
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Other than regularity conditions that are satisfied in our model, LL rely on a key rank assumption
stating that the columns of the Fréchet derivative of C∗(s, h) = C(s|x) with respect to its
functional argument h are linearly independent and that C∗ is a proper mapping preserving
compactness under inverse image. These conditions generally require that X contain at least K
continuously distributed elements and also that no one element of g(x) can be expressed as a
function of the other elements of g(x). LL show that the conditions can be met under parametric
assumptions preventing non-degeneracy of the correlation structure between the competing risks,
and hence we conclude that these will hold in our model.
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Figure OA.1. Posterior Density of the Dirichlet Process Concentration
Parameter α, GIG mixture
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Table OA.1. Duration model with parametric gamma heterogeneity (Han
and Hausman, 1990)

6 periods 13 periods 24 periods
Mean s.e. Mean s.e. Mean s.e.

γ 0.210 0.034 0.242 0.017 0.316 0.020
Urate -0.480 0.036 -0.457 0.021 -0.402 0.012
Race -0.184 0.070 -0.186 0.060 -0.195 0.055
Age -0.403 0.077 -0.325 0.072 -0.284 0.048
Rrate -1.449 0.104 -0.941 0.074 -0.383 0.052
t 1 -0.346 0.215 -0.774 0.111 -1.374 0.058

2 0.305 0.237 -0.168 0.123 -0.819 0.058
3 0.194 0.263 -0.303 0.137 -1.012 0.059
4 0.688 0.289 0.153 0.139 -0.588 0.062
5 0.525 0.322 -0.046 0.154 -0.826 0.077
6 1.095 0.337 0.499 0.144 -0.324 0.072
7 0.131 0.162 -0.721 0.078
8 0.571 0.161 -0.322 0.080
9 0.351 0.195 -0.566 0.100
10 0.700 0.179 -0.262 0.088
11 0.590 0.169 -0.389 0.100
12 0.945 0.193 -0.063 0.102
13 1.007 0.212 -0.015 0.101
14 0.163 0.120
15 0.305 0.096
16 0.463 0.125
17 0.307 0.132
18 0.712 0.142
19 0.658 0.153
20 0.916 0.152
21 0.853 0.165
22 1.063 0.166
23 0.995 0.202
24 1.283 0.176

N = 15, 491, Urate denotes the state unemployment rate,
Rrate denotes the replacement rate.
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Table OA.2. Duration Model with Parametric GIG Heterogeneity

6 periods 13 periods 24 periods
Mean s.e. Mean s.e. Mean s.e.

κ -0.825 0.054 -1.176 0.048 -1.501 0.072
ϕ 1.900 0.151 2.882 0.136 3.792 0.203
Urate -0.307 0.018 -0.285 0.014 -0.259 0.017
Race -0.108 0.056 -0.152 0.043 -0.111 0.044
Age -0.273 0.058 -0.223 0.041 -0.178 0.038
Rrate -1.190 0.069 -0.708 0.043 -0.039 0.059
t 1 0.115 0.150 0.938 0.102 1.345 0.068

2 0.584 0.139 1.397 0.092 1.734 0.095
3 0.309 0.145 1.124 0.099 1.510 0.069
4 0.640 0.138 1.442 0.098 1.800 0.090
5 0.334 0.139 1.131 0.095 1.510 0.073
6 0.734 0.104 1.538 0.103 1.891 0.117
7 1.059 0.117 1.429 0.071
8 1.400 0.098 1.718 0.090
9 1.066 0.101 1.438 0.068
10 1.311 0.100 1.623 0.082
11 1.096 0.103 1.462 0.054
12 1.356 0.098 1.665 0.084
13 1.334 0.074 1.676 0.072
14 1.669 0.093
15 1.788 0.097
16 1.819 0.100
17 1.677 0.066
18 1.931 0.125
19 1.775 0.097
20 1.939 0.142
21 1.798 0.089
22 1.922 0.113
23 1.752 0.074
24 1.790 0.096

N = 15, 491, Urate denotes the state unemployment rate,
Rrate denotes the replacement rate.
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Figure OA.2. Competing Risk Model, Posterior Density of the Dirichlet
Process Concentration Parameter α, Type 1 Risk (left) and Type 2 Risk
(right), GIG mixture
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Table OA.3. Competing Risk Model without Individual Heterogeneity

6 periods 13 periods 24 periods
Risk 1 Risk 2 Risk 1 Risk 2 Risk 1 Risk 2

Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e.
Urate -0.295 0.061 -0.305 0.081 -0.199 0.045 -0.116 0.067 -0.199 0.037 -0.095 0.055
Race -0.003 0.220 -0.044 0.422 -0.083 0.181 -0.329 0.312 -0.035 0.136 -0.289 0.215
Age -0.155 0.175 -0.807 0.429 -0.097 0.135 -0.596 0.271 -0.011 0.119 -0.437 0.200
Rrate -1.461 0.265 -0.865 0.506 -1.092 0.222 -0.407 0.302 -0.330 0.138 -0.374 0.226
t 1 -1.312 0.343 -3.434 0.644 -1.928 0.302 -4.495 0.578 -2.402 0.255 -4.643 0.494

2 -0.759 0.322 -3.210 0.609 -1.389 0.300 -4.288 0.540 -1.865 0.230 -4.426 0.462
3 -1.118 0.339 -3.538 0.669 -1.739 0.323 -4.583 0.601 -2.210 0.250 -4.736 0.524
4 -0.829 0.335 -2.236 0.549 -1.448 0.303 -3.320 0.459 -1.946 0.243 -3.442 0.354
5 -1.285 0.363 -2.226 0.547 -1.898 0.329 -3.335 0.482 -2.387 0.263 -3.444 0.360
6 -1.763 0.384 -2.058 0.527 -2.407 0.369 -3.146 0.445 -2.891 0.299 -3.294 0.352
7 -2.297 0.358 -4.205 0.571 -2.779 0.303 -4.342 0.498
8 -1.854 0.326 -2.922 0.452 -2.349 0.278 -3.031 0.336
9 -3.146 0.443 -3.813 0.529 -3.587 0.405 -3.947 0.468
10 -2.004 0.362 -3.792 0.538 -2.503 0.289 -3.951 0.445
11 -2.671 0.384 -3.798 0.533 -3.147 0.332 -3.940 0.448
12 -2.187 0.360 -3.741 0.536 -2.715 0.308 -3.875 0.421
13 -2.287 0.357 -3.721 0.521 -2.753 0.318 -3.832 0.426
14 -2.833 0.329 -3.683 0.438
15 -2.592 0.329 -3.439 0.405
16 -3.169 0.381 -3.764 0.434
17 -2.241 0.277 -3.713 0.414
18 -2.695 0.316 -4.388 0.571
19 -2.681 0.318 -3.145 0.393
20 -2.831 0.341 -3.763 0.460
21 -2.020 0.275 -3.467 0.400
22 -4.002 0.576 -4.664 0.660
23 -2.307 0.308 -3.651 0.455
24 -3.277 0.433 -3.600 0.449

N = 1, 243, Urate denotes the state unemployment rate, Rrate denotes the replacement rate.
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Table OA.4. Competing Risk Model with Parametric Gamma Heterogeneity

6 periods 13 periods 24 periods
Risk 1 Risk 2 Risk 1 Risk 2 Risk 1 Risk 2

Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e.
γ 0.480 0.112 0.240 0.091 0.420 0.061 0.128 0.028 0.350 0.051 0.207 0.045
Urate -0.361 0.060 -0.327 0.106 -0.298 0.058 -0.199 0.080 -0.342 0.054 -0.167 0.071
Race 0.024 0.272 -0.160 0.440 -0.130 0.236 -0.541 0.416 -0.067 0.217 -0.330 0.296
Age -0.052 0.212 -0.766 0.386 0.002 0.197 -1.072 0.398 0.089 0.192 -0.723 0.291
Rrate -1.763 0.257 -1.141 0.536 -1.434 0.235 -0.737 0.401 -0.957 0.223 -0.507 0.333
t 1 -0.844 0.321 -3.151 0.647 -1.278 0.306 -3.846 0.539 -1.381 0.296 -4.172 0.466

2 -0.171 0.287 -2.907 0.604 -0.605 0.295 -3.578 0.490 -0.678 0.269 -3.973 0.474
3 -0.401 0.285 -3.171 0.577 -0.825 0.304 -3.782 0.537 -0.876 0.319 -4.190 0.682
4 -0.009 0.265 -1.792 0.487 -0.431 0.282 -2.427 0.426 -0.442 0.297 -2.891 0.373
5 -0.390 0.280 -1.719 0.463 -0.798 0.321 -2.309 0.435 -0.791 0.315 -2.799 0.399
6 -0.759 0.227 -1.500 0.403 -1.205 0.340 -1.967 0.417 -1.192 0.371 -2.562 0.357
7 -1.061 0.338 -2.909 0.531 -1.056 0.368 -3.507 0.420
8 -0.566 0.292 -1.490 0.376 -0.526 0.321 -2.141 0.357
9 -1.762 0.406 -2.309 0.443 -1.756 0.419 -3.000 0.418
10 -0.607 0.318 -2.242 0.435 -0.585 0.362 -2.946 0.397
11 -1.186 0.359 -2.065 0.465 -1.142 0.385 -2.746 0.390
12 -0.693 0.328 -1.962 0.472 -0.677 0.346 -2.759 0.434
13 -0.876 0.345 -2.073 0.325 -0.709 0.393 -2.719 0.415
14 -0.667 0.397 -2.433 0.400
15 -0.333 0.379 -2.105 0.393
16 -0.913 0.445 -2.385 0.440
17 0.109 0.361 -2.345 0.442
18 -0.263 0.402 -2.869 0.508
19 -0.204 0.415 -1.525 0.358
20 -0.230 0.401 -2.216 0.456
21 0.679 0.384 -1.709 0.389
22 -1.313 0.748 -2.859 0.576
23 0.469 0.408 -1.835 0.421
24 -1.060 0.346 -1.594 0.318

N = 1, 243, Urate denotes the state unemployment rate, Rrate denotes the replacement rate.
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Table OA.5. Competing Risk Model with Parametric GIG Heterogeneity

6 periods 13 periods 24 periods
Risk 1 Risk 2 Risk 1 Risk 2 Risk 1 Risk 2

Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e.
κ -1.117 0.043 -1.145 0.081 -1.121 0.036 -1.157 0.056 -1.134 0.029 -1.153 0.047
ϕ 2.715 0.122 2.794 0.227 2.726 0.101 2.827 0.159 2.762 0.083 2.817 0.132
Urate -0.215 0.049 -0.259 0.077 -0.182 0.043 -0.265 0.057 -0.295 0.044 -0.198 0.052
Race 0.059 0.259 -0.104 0.401 -0.110 0.227 -0.472 0.342 -0.073 0.190 -0.346 0.226
Age -0.026 0.192 -0.733 0.418 -0.056 0.162 -0.760 0.269 -0.039 0.142 -0.553 0.224
Rrate -1.323 0.241 -0.797 0.423 -1.150 0.236 -0.631 0.318 -0.568 0.180 -0.473 0.202
t 1 -1.737 0.272 -3.399 0.351 -1.949 0.255 -3.695 0.504 -1.798 0.276 -4.022 0.452

2 -1.101 0.255 -3.096 0.332 -1.316 0.249 -3.485 0.539 -1.158 0.261 -3.834 0.450
3 -1.365 0.272 -3.271 0.356 -1.588 0.264 -3.657 0.491 -1.440 0.276 -4.107 0.622
4 -1.030 0.264 -2.257 0.265 -1.243 0.259 -2.395 0.373 -1.093 0.265 -2.844 0.372
5 -1.453 0.281 -2.228 0.281 -1.639 0.267 -2.397 0.359 -1.495 0.294 -2.849 0.346
6 -2.208 0.286 -2.195 0.215 -2.104 0.302 -2.185 0.353 -1.931 0.303 -2.623 0.356
7 -1.982 0.317 -3.306 0.546 -1.821 0.341 -3.631 0.479
8 -1.527 0.280 -1.868 0.343 -1.354 0.284 -2.325 0.334
9 -2.751 0.445 -2.821 0.418 -2.651 0.448 -3.230 0.414
10 -1.627 0.297 -2.772 0.446 -1.464 0.312 -3.188 0.396
11 -2.232 0.383 -2.711 0.505 -2.105 0.373 -3.102 0.473
12 -1.768 0.320 -2.597 0.443 -1.632 0.335 -3.016 0.435
13 -2.215 0.271 -2.285 0.309 -1.696 0.331 -3.053 0.396
14 -1.694 0.360 -2.848 0.389
15 -1.474 0.325 -2.640 0.410
16 -1.998 0.372 -2.924 0.396
17 -1.103 0.304 -2.870 0.482
18 -1.508 0.369 -3.572 0.513
19 -1.461 0.351 -2.223 0.367
20 -1.638 0.352 -2.919 0.469
21 -0.772 0.316 -2.481 0.394
22 -2.598 0.526 -3.746 0.687
23 -1.068 0.333 -2.695 0.404
24 -2.241 0.358 -2.279 0.391

N = 1, 243, Urate denotes the state unemployment rate, Rrate denotes the replacement rate.
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Table OA.6. Competing Risk Model with Independent Risks, GIG Mixture

6 periods 13 periods 24 periods
Risk 1 Risk 2 Risk 1 Risk 2 Risk 1 Risk 2

Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e. Mean s.e.
κ -1.321 0.046 -1.015 0.058 -1.444 0.045 -1.314 0.056 -1.550 0.041 -1.466 0.056
ϕ 3.288 0.129 2.430 0.163 3.634 0.126 3.270 0.159 3.933 0.115 3.698 0.160
Urate -0.153 0.048 -0.210 0.072 -0.120 0.042 -0.014 0.059 -0.170 0.037 -0.160 0.052
Race 0.011 0.220 -0.031 0.406 -0.085 0.177 -0.203 0.329 -0.066 0.145 -0.305 0.243
Age -0.187 0.174 -0.487 0.398 -0.208 0.134 -0.255 0.277 -0.246 0.113 -0.174 0.204
Rrate -1.252 0.233 -0.517 0.371 -1.067 0.189 -0.226 0.261 -0.494 0.145 -0.151 0.197
t 1 -1.526 0.369 -4.443 0.383 -1.759 0.257 -3.392 0.484 -1.873 0.246 -3.656 0.487

2 -0.951 0.355 -4.176 0.356 -1.185 0.236 -3.212 0.458 -1.302 0.223 -3.478 0.461
3 -1.263 0.370 -4.408 0.387 -1.499 0.253 -3.556 0.520 -1.621 0.242 -3.829 0.528
4 -0.947 0.368 -3.453 0.302 -1.187 0.245 -2.309 0.357 -1.313 0.233 -2.572 0.354
5 -1.384 0.392 -3.486 0.307 -1.624 0.273 -2.339 0.365 -1.751 0.259 -2.603 0.357
6 -2.524 0.352 -3.846 0.319 -2.085 0.309 -2.168 0.350 -2.220 0.305 -2.435 0.346
7 -1.988 0.310 -3.229 0.489 -2.121 0.297 -3.509 0.493
8 -1.543 0.276 -1.938 0.335 -1.673 0.266 -2.207 0.338
9 -2.795 0.412 -2.857 0.435 -2.935 0.404 -3.128 0.437
10 -1.665 0.289 -2.861 0.449 -1.806 0.278 -3.114 0.435
11 -2.297 0.355 -2.825 0.440 -2.435 0.349 -3.086 0.439
12 -1.835 0.306 -2.801 0.436 -1.982 0.301 -3.067 0.438
13 -2.661 0.349 -2.522 0.366 -2.060 0.314 -3.055 0.441
14 -2.088 0.322 -2.904 0.420
15 -1.855 0.300 -2.666 0.385
16 -2.424 0.370 -2.976 0.437
17 -1.469 0.275 -2.954 0.434
18 -1.893 0.317 -3.703 0.586
19 -1.842 0.320 -2.400 0.371
20 -2.031 0.346 -3.018 0.455
21 -1.170 0.267 -2.725 0.417
22 -3.087 0.566 -3.929 0.661
23 -1.434 0.299 -2.952 0.456
24 -2.777 0.242 -2.690 0.461

N = 1, 243, Urate denotes the state unemployment rate, Rrate denotes the replacement rate.
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Table OA.7. Single Risk Model with Competing Risk Data, GIG mixture

6 periods 13 periods 24 periods
Mean s.e. Mean s.e. Mean s.e.

κ -1.230 0.035 -1.417 0.035 -1.534 0.037
ϕ 3.032 0.101 3.560 0.099 3.887 0.105
Urate -0.150 0.038 -0.136 0.034 -0.167 0.031
Race 0.035 0.192 -0.139 0.157 -0.117 0.122
Age -0.153 0.157 -0.183 0.125 -0.136 0.099
Rrate -0.998 0.204 -0.765 0.155 -0.303 0.116
t 1 -2.075 0.225 -2.242 0.220 -2.395 0.211

2 -1.567 0.206 -1.740 0.203 -1.894 0.190
3 -1.907 0.224 -2.084 0.221 -2.240 0.213
4 -1.463 0.208 -1.639 0.203 -1.798 0.194
5 -1.789 0.224 -1.966 0.222 -2.127 0.219
6 -2.416 0.239 -2.176 0.236 -2.335 0.226
7 -2.477 0.258 -2.640 0.251
8 -1.775 0.218 -1.937 0.209
9 -2.862 0.299 -3.024 0.293
10 -2.157 0.243 -2.324 0.234
11 -2.571 0.276 -2.734 0.269
12 -2.274 0.255 -2.444 0.249
13 -2.636 0.237 -2.493 0.254
14 -2.464 0.252
15 -2.238 0.239
16 -2.693 0.279
17 -2.068 0.230
18 -2.561 0.274
19 -2.128 0.239
20 -2.487 0.272
21 -1.818 0.224
22 -3.448 0.408
23 -2.086 0.244
24 -2.761 0.238

N = 1, 243, Urate denotes the state unemployment rate,
Rrate denotes the replacement rate.
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4. Extended Counterfactual Policy Experiment

In the main text we have reported the results of a counterfactual policy experiment whereby
we simulated a change in the replacement rate and estimated its impact on the probability of
exit from unemployment as captured by the survival function. Here we further provide the
details on two extensions of the counterfactual experiment: first estimating potential differences
between the policy impact on individuals with different unobserved heterogeneities, and second
estimating the impact of varying the changes of the replacement rate over time. A summary of
the findings is presented in the main text.

4.1. Counterfactuals for Split Samples Based on Unobserved Heterogeneity

The unobserved heterogeneity term vi can be interpreted as a factor which also contributes to
the variation in the hazard rates but is not included among the observed explanatory variables
and instead inferred indirectly from the model. One of the key advantages of estimating vi is
that it enables us to differentiate among various groups of individuals based on their unobserved
qualities. In our model specification, increasing vi increases the cumulative hazard function
and hence decreases the survival function of unemployment. Thus, individuals with higher vi

have better chances exiting unemployment faster, while individuals with lower vi are more likely
to be long term unemployed. It is difficult to interpret the exact meaning of the unobserved
individual component. Nonetheless, given the way it influences the hazard function, vi can
perhaps be thought of as individual ability or quality of labor market characteristics.

As the MCMC output we obtained a Markov chain of draws for each vi. Denote its mean by vi

and the median of the individual means by vmed. For both single risk and competing risk model,
we split the sample into two parts: one for individuals with vi ≤ vmed (label these as ”low type”)
and individuals with vi > vmed (label these as ”high type”). We then ran the counterfactual
experiment changing the replacement rate by 10% for each subsample separately, for the case
T = 24. The resulting % change of the survival function are reported in Table OA.8 (single
risk) and Table OA.9 (competing risks) below. In each model, high type individuals react more
to the replacement rate changes than low type individuals, for either direction of the change.
In the single risk model, the relative ratio of the survival function changes of high type to low
type individuals is just over 20%, while in the competing risk case the corresponding figure is
approximately 15%. This finding is consistent with the literature estimating the policy effect of
training and job placement effects.10

10We would like to thank an anonymous referee for pointing this out.
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Table OA.8. % Change in Survival Function, Single Risk, GIG mixture, T=24

Pooled High Type Low Type
t down up down up down up
1 -0.052 0.045 -0.057 0.050 -0.047 0.041
2 -0.128 0.111 -0.140 0.121 -0.117 0.101
3 -0.182 0.158 -0.200 0.174 -0.167 0.145
4 -0.255 0.221 -0.282 0.245 -0.234 0.203
5 -0.305 0.265 -0.340 0.295 -0.281 0.244
6 -0.377 0.328 -0.421 0.366 -0.348 0.302
7 -0.421 0.366 -0.477 0.415 -0.388 0.338
8 -0.480 0.418 -0.548 0.477 -0.443 0.386
9 -0.521 0.453 -0.601 0.523 -0.481 0.419
10 -0.570 0.497 -0.662 0.576 -0.528 0.460
11 -0.609 0.531 -0.713 0.621 -0.566 0.493
12 -0.657 0.573 -0.771 0.671 -0.613 0.534
13 -0.701 0.612 -0.828 0.722 -0.657 0.574
14 -0.746 0.651 -0.879 0.766 -0.705 0.615
15 -0.794 0.693 -0.940 0.820 -0.754 0.658
16 -0.838 0.732 -0.987 0.861 -0.802 0.701
17 -0.869 0.760 -1.018 0.889 -0.840 0.734
18 -0.919 0.803 -1.076 0.940 -0.892 0.780
19 -0.953 0.834 -1.107 0.967 -0.932 0.816
20 -0.998 0.874 -1.154 1.009 -0.981 0.859
21 -1.033 0.905 -1.203 1.052 -1.019 0.893
22 -1.071 0.938 -1.225 1.072 -1.062 0.930
23 -1.102 0.966 -1.292 1.132 -1.096 0.960
24 -1.187 1.041 -1.387 1.215 -1.183 1.038

”down” denotes counterfactual decrease of the replacement
rate by 10%, and ”up” denotes increase by 10%.
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Table OA.9. % Change in Survival Function, Competing Risks, GIG mix-
ture, T=24

Pooled High Type Low Type
t down up down up down up
1 -0.141 0.120 -0.154 0.131 -0.109 0.093
2 -0.370 0.316 -0.406 0.347 -0.286 0.244
3 -0.522 0.446 -0.567 0.485 -0.411 0.351
4 -0.750 0.642 -0.817 0.701 -0.601 0.514
5 -0.896 0.768 -0.988 0.848 -0.735 0.630
6 -1.015 0.870 -1.126 0.967 -0.842 0.721
7 -1.103 0.946 -1.228 1.055 -0.924 0.792
8 -1.274 1.095 -1.417 1.220 -1.081 0.929
9 -1.327 1.141 -1.481 1.275 -1.135 0.975
10 -1.450 1.248 -1.633 1.408 -1.246 1.071
11 -1.526 1.314 -1.722 1.485 -1.317 1.134
12 -1.630 1.404 -1.835 1.584 -1.414 1.218
13 -1.721 1.484 -1.936 1.672 -1.506 1.298
14 -1.816 1.568 -2.084 1.802 -1.600 1.380
15 -1.936 1.673 -2.245 1.943 -1.717 1.483
16 -1.997 1.726 -2.318 2.007 -1.792 1.548
17 -2.130 1.844 -2.472 2.143 -1.933 1.672
18 -2.195 1.901 -2.506 2.173 -2.020 1.749
19 -2.299 1.994 -2.614 2.269 -2.148 1.862
20 -2.371 2.058 -2.735 2.378 -2.239 1.943
21 -2.538 2.206 -2.990 2.604 -2.417 2.101
22 -2.526 2.196 -2.874 2.499 -2.453 2.132
23 -2.664 2.318 -3.076 2.678 -2.588 2.253
24 -2.686 2.338 -3.101 2.717 -2.641 2.300

”down” denotes counterfactual decrease of the replacement
rate by 10%, and ”up” denotes increase by 10%.
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4.2. Counterfactuals for Time-varying Changes in the Replacement Rate

In this section we further explore two additional scenarios for the counterfactual policy change:
first, a sharply declining replacement rate at the beginning of the spell, and second a scenario
where the rate declines sharply only at the end of the spell. For this purpose we construct a
decreasing function r : [0, 1] → [0, 1] defining the factor r(t/T ) by which we multiply the original
replacement rate in each time period t with T being the final period. Let u ∈ [0, 1]. In the first
scenario,

r1 = exp
(
−uδ

)

and in the second scenario,

r2 = 1 + exp(−1) − exp(−(1 − u)δ)

A mirror image of r1 and r2 increasing from 1 is also used for a counterfactual increase of the
replacement rate. It is important to note that at the end of the observation time window both
factors become equal, r1(1) = r2(1). The constant δ ∈ (0, 1) controls the degree of curvature
within the exponential change of r1 and r2, which smaller δ yielding shaper curvature. We set
δ = 1/2, resulting in r1 and r2 as shown in Figure OA.3.

Figure OA.3. Replacement Rate Counterfactual Decrease Factors
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.4
.6

.8
1

0 .2 .4 .6 .8 1

Factor 1 Factor 2

1
1.

2
1.

4
1.

6

0 .2 .4 .6 .8 1

Factor 1 Factor 2

The results are presented in Table OA.10. In both SR and CR models, factor 1 (sharp initial
change of the replacement rate) leads to an overall larger change in the survival function than
factor 2 (sharp change towards the end of the observation time period). In the SR model the
change for factor 1 relative to factor 2 at T = 24 is more than twofold, and in the CR model
it is close to threefold. This indicates that on average individuals respond more to incentives
provided early in their unemployment spells relative to ones provided later, even if the response
is still overall inelastic.
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Table OA.10. % Change in Survival Function, Time-varying Replace-
ment Rate, GIG mixture, T=24

Single Risk Competing Risk
Factor 1 Factor 2 Factor 1 Factor 2

t down up down up down up down up
1 -0.055 0.100 -0.006 0.029 -0.264 0.219 -0.010 0.009
2 -0.253 0.220 -0.011 0.014 -0.855 0.702 -0.047 0.041
3 -0.428 0.319 -0.052 0.022 -1.330 1.085 -0.085 0.075
4 -0.648 0.505 -0.074 0.018 -2.133 1.732 -0.164 0.143
5 -0.816 0.645 -0.094 0.034 -2.708 2.194 -0.231 0.201
6 -1.117 0.823 -0.173 0.025 -3.210 2.594 -0.297 0.259
7 -1.256 0.987 -0.171 0.070 -3.608 2.913 -0.358 0.311
8 -1.454 1.215 -0.175 0.136 -4.419 3.565 -0.495 0.430
9 -1.603 1.375 -0.187 0.181 -4.685 3.777 -0.546 0.474
10 -1.855 1.527 -0.268 0.189 -5.318 4.288 -0.678 0.586
11 -2.025 1.686 -0.301 0.232 -5.725 4.612 -0.771 0.666
12 -2.239 1.885 -0.348 0.291 -6.297 5.073 -0.916 0.790
13 -2.442 2.082 -0.395 0.356 -6.823 5.500 -1.065 0.916
14 -2.659 2.279 -0.459 0.422 -7.385 5.957 -1.238 1.063
15 -2.853 2.534 -0.491 0.538 -8.104 6.546 -1.479 1.266
16 -3.067 2.759 -0.558 0.638 -8.502 6.869 -1.636 1.398
17 -3.263 2.898 -0.653 0.687 -9.342 7.574 -1.986 1.691
18 -3.476 3.184 -0.717 0.844 -9.795 7.953 -2.209 1.877
19 -3.616 3.411 -0.762 0.985 -10.499 8.551 -2.578 2.184
20 -3.783 3.714 -0.815 1.187 -10.989 8.973 -2.870 2.425
21 -3.959 3.926 -0.916 1.330 -12.090 9.921 -3.557 2.989
22 -4.175 4.136 -1.070 1.481 -12.099 9.930 -3.645 3.059
23 -4.423 4.253 -1.290 1.568 -12.999 10.713 -4.368 3.637
24 -5.311 4.369 -2.260 1.725 -13.205 10.880 -4.720 3.895

”down” denotes counterfactual time-varying decrease of the
replacement rate, and ”up” denotes time-varying increase.


