
STATISTICS AND ECONOMETRICS
USING XLISPSTAT

John E. Floyd
University of Toronto

May 27, 2009

Contents

1 Introduction 1

2 Working with XLispStat 5
2.1 Using XLispStat as a Calculator 6
2.2 Defining Objects and Working with Lists 8
2.3 Writing Lisp Functions . 16
2.4 Working with Matrices . 19
2.5 Reading and Writing Data Files 26
2.6 Transforming Data . 32
2.7 Error Messages . 46

3 Descriptive Statistics 49

4 Hypothesis Tests 63
4.1 Probability Densities and Quantiles 63
4.2 Plotting Probability Distributions 68
4.3 Generating Random Data . 71
4.4 Tests of the Mean and Standard Deviation 73
4.5 Tests of the Difference Between Two Means 75
4.6 Tests of Goodness of Fit . 80

5 Linear Regression Analysis 85
5.1 Using Matrix Calculations . 86
5.2 Using the Regression-Model Function 90
5.3 Heteroskedasticity . 93
5.4 Time Series: Autocorrelated Residuals 95
5.5 Multicollinearity . 102
5.6 Some Improved Linear Regression Functions 107

5.6.1 A Basic OLS-Regression Function 108
5.6.2 Regressions on Cross-Sectional Data 113

i

ii CONTENTS

5.6.3 Time-Series Regressions 114
5.6.4 Adjusting the Lengths of Time-Series and Setting up

Lagged Values . 118

6 Regression Analysis of Panel Data 119
6.1 Differences Estimation . 122
6.2 Entity Demeaned Fixed Effects Regression 125
6.3 Using Fixed-Effects Dummy Variables 126
6.4 Reorganisation of Panel Data Sets 137

7 Instrumental Variables Regression 141
7.1 Two-Stage Least Squares . 142
7.2 Estimation Using Ordinary Least Squares 144
7.3 First Stage TSLS Estimation 146
7.4 Second Stage TSLS Estimation 147
7.5 An Application to Panel Data 152

8 Probit, Logit and Nonlinear Regression 159
8.1 The Linear Probability Model 159
8.2 Probit and Logit Models . 161
8.3 Nonlinear Least Squares Estimation 163
8.4 Maximum Likelihood Estimation 167

9 Spurious Regression and Cointegration 181
9.1 Checking for Stationarity . 181

9.1.1 Dickey-Fuller Tests . 182
9.1.2 Phillips-Perron Tests 187
9.1.3 The Problem of Low Power 192

9.2 Testing for Cointegration . 192
9.2.1 Tests of Regression Residuals for Cointegration 193
9.2.2 Johansen Cointegration Tests 199

10 Further Topics in Regression Analysis 215
10.1 Joint Hypotheses Tests . 215
10.2 Non-Nested Hypotheses Tests 237

10.2.1 F-Tests . 237
10.2.2 J-Tests . 239
10.2.3 Complete Parameter Encompassing Tests 242

10.3 Generalised Least Squares . 245
10.3.1 The Nature of GLS . 245

CONTENTS iii

10.3.2 Quasi-Differencing . 246
10.3.3 Seemingly Unrelated Regression Techniques 263

11 Vector Autoregression Analysis 271
11.1 Standard-Form Estimation 274
11.2 Moving Average Representation 285
11.3 Identification . 289

11.3.1 Choleski Decompositions 290
11.3.2 Structural Decompositions 306
11.3.3 Blanchard-Quah Decompositions 336

11.4 Bootstrapping Confidence Intervals 343

12 Forecasting 361
12.1 Trend Projections . 361
12.2 ARIMA Forecasts . 365
12.3 OLS Forecasts . 386
12.4 Near-VAR Forecasts . 391

iv CONTENTS

Chapter 1

Introduction

The purpose of this manual is to show the reader how to use the free program
XLispStat to do basic statistical and econometric analysis. It has evolved
into somewhat of a tutorial for those interested in learning basic statistics
and econometrics. A small amount of Lisp programming, which a diligent
reader will learn how to do in a few hours, will be required. For students
and other beginners, this will provide a good background for subsequently
learning how to cope with commercial statistical and computer programs
that one often eventually needs to use. For day-to-day work, and even
to learn the basics, the reader can work through the small manual I have
written and the exercises and examples there referred to, consulting this big
manual for details and deeper and more sophisticated issues.

XLispStat is a wonderful rich platform for statistical computing written
by Luke Tierney at the University of Minnesota. Its depth far exceeds
what is utilised here. Those who, having worked through this manual, want
to really get serious about XLispStat are advised to get Luke Tierney’s
book.1 I believe that one could program in XLispStat routines equivalent
in purpose and result to virtually anything commonly found in commercial
econometrics software. Functions are already present for non-linear least
squares, maximisation and maximum likelihood estimation and Bayesian
computations along with object-oriented methods for data handling and
graphics. So most of the work required would involve adapting these existing
resources to the needs at hand. And one of the best ways to develop an
understanding of statistical and econometric techniques is to program the

1Luke Tierney, Lisp-Stat: An Object-Oriented Environment for Statistical Computing
and Dynamic Graphics, Wiley Series in Probability and Mathematical Statistics, John
Wiley & Sons, 1990.

1

2 CHAPTER 1. INTRODUCTION

routines oneself. Indeed, what follows would not have been written but for
my inclination to try to find out what is really happening when my favourite
commercial program, RATS, is performing its calculations. Nearly all of the
actual econometrics functions used here, as well as many data handling
routines, were written by me and are available from my web-site in the file
addfuncs.lsp. That file must be loaded into the workspace after loading
XLispStat before working through any material presented in this manual.
Readers are free to work through and modify any of the materials in that
file and add new ones as desired, thereby making the program their own.

An MS-Windows version of XLispStat can be obtained by following the
appropriate links on my web-site www.economics.utoronto.ca/floyd. You
will need the self-extracting zip files wxls32zp.exe, which contains the pro-
gram itself, and xlispdf.exe, which contains the data referred to in this
manual and exexamp.exe which contains some exercises and example pro-
grams. And the addfuncs.lsp must, of course, also be obtained along with
the XLispStat file maximize.lsp that will be needed for maximum likelihood
estimation. A version of XLispStat for Apple computers can be obtained by
searching the Web as can Linux versions for most distributions. The data
used here are made available for Linux versions in the files xlispdf.tar.gz
and the exercise and example files are in the file exeamp.tar.gz.

The next chapter provides a simple guide to working with and writing
programs in XLispStat. Everything you would need to program all functions
created here is explained. Chapter 3 sets out the procedures that enable us
to describe properly the data we are working with and Chapter 4 focuses on
hypothesis testing, beginning with a discussion of probability distributions.

Chapter 5 introduces regression analysis, starting with a discussion of
how to run regressions using matrix calculations. The XLispStat function
called regression-model is explored next. This function is important be-
cause it is used repeatedly in all functions I wrote that use OLS regression
calculations although, used alone, its output presentation is too crude for
day-to-day work. Heteroskedastic and autocorrelated residuals are then dis-
cussed followed by the problem of multicollinearity. Finally, three new func-
tions to perform OLS regressions on cross-sectional and time-series data are
then presented, along with some additional functions to simplify the process
of adjusting the lengths of time-series and setting up lagged values.

Chapters 6, 7, and 8 deal respectively with panel-data analysis, instru-
mental variables, and logit and probit estimation. Of these issues, only
instrumental variables estimation has been used in my own research, so the
other two chapters contain only very rudimentary analyses. All three chap-
ters are based on the introductory textbook by Stock and Watson and data

3

sets there referred to.2 More sophisticated extensions dealing with panel-
data and logit and probit analysis await my finding a joint author whose
main research uses these techniques.

My own focus on time-series analysis accounts for the intensive exami-
nation in Chapter 9 of how to test for stationarity and cope with problems
of spurious regression. I find my functions dealing with these issues, partic-
ularly the tests for stationarity and cointegration, more useful for my pur-
poses than those in most commercial programs. Students working through
this chapter, and the references to the textbooks by Enders and Hamilton,
should find the effort helpful in understanding the basics of cointegration
analysis.3

Chapter 10 deals with a number of additional topics in regression analysis
that have been important in my own work. These are joint hypothesis
tests, non-nested hypothesis tests and generalised least squares estimation
of seemingly-unrelated regressions.

An extensive treatment of vector autoregression analysis is the subject of
Chapter 11, again reflecting the importance of this area in my own empirical
work. Students should find these materials, and the references on which
they are based, useful in developing an understanding of the basics in this
area. And the functions I present can do all types of VARs, along with
bootstrapped confidence intervals, though admittedly not as elegantly as
RATS.

The final chapter deals in a rudimentary way with forecasting time series.
There is no pretension of competing with business software, but the func-
tions provided are useful in making pseudo (in-sample) forecasts of agents’
expected levels of variables from which unanticipated shocks to these vari-
ables can be calculated and used in econometric analysis. The forecasting
of variables beyond the period for which data are available is also briefly
discussed.

The last chapter is followed by a bibliography, an index of functions
and a set of statistical tables that give the critical values of those statistics
not based on standard distributions for which P-values can be calculated in
XLispStat.

2James H. Stock and Mark W. Watson, Introduction to Econometrics, Addison-Wesley
Series in Economics, 2003.

3Walter Enders, Applied Econometric Time Series, Wiley Series in Probability and
Mathematical Statistics, John Wiley & Sons, 1995, and James D. Hamilton, Time Series
Analysis, Princeton University Press, 1994.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Working with XLispStat

When XLispStat is loaded it presents you with the prompt

>

This prompts you to type an expression which the Lisp Interpreter will then
evaluate. To keep a record of the current session in a text file called, say,
dribfile.lou, enter the command (including the brackets)

> (dribble "dribfile.lou")

Keep in mind that any already existing file having the name you give will
be overwritten.

If, rather than loading XLispStat and working interactively, you write
the commands you intend to give it with a text editor in a batch file, here
called infile.lsp, you can simply execute XLispStat in Linux and all Unix-
based systems using the command

> xlispstat infile.lsp > outfile.lou

and the output of the session will be saved in outfile.lou. In MS-Windows
you would first load the output file by clicking on ‘file’ and then ‘dribble’
on the menu along the top of the screen. Then click on ‘load’ to load the
batch file. When working like this in batch mode instead of interactively,
however, the output you obtain will be limited to that printed automatically
by various functions you use plus material you actually tell XLispStat in
infile.lsp to print.

To get out of the program, use the command

> (exit)

5

6 CHAPTER 2. WORKING WITH XLISPSTAT

2.1 Using XLispStat as a Calculator

XLispStat can be used to perform simple two-number calculations by enter-
ing the following type of expression at the prompt

> (+ 2 2)
4

When you enter an expression the Interpreter answers you immediately on
the next line. Expressions you enter must always be enclosed in brackets
(). In the example above the + tells the Interpreter to perform an addi-
tion and the two numbers that follow are the numbers you want it to add
together. Similarly, we can perform a range of simple calculations:

> (- 2 2)
0
> (+ 2 -2)
0
> (* 2 3)
6
> (^ 2 3)
8
> (/ 2 3)
0.666666666666666

Here +, -, *, /, and ^ are respectively the add, subtract, multiply, divide
and power operators.

If you type a number or expression that the Interpreter understands it will
repeat that number back to you. Some examples:

> 4
4
> pi
3.141592653589793

If you type something that the Interpreter doesn’t understand it will signal
an error.

> junk
Error: The Variable JUNK is unbound

2.1. USING XLISPSTAT AS A CALCULATOR 7

A number of additional operators that the Interpreter understands take,
respectively, the natural logarithm, the exponent (ex) and the square root
of a number:

> (log 10)
2.32585092994046
> (exp 2)
7.38905609893065
> (sqrt 2)
1.4142135623730951

In the above expressions log, exp and sqrt are functions that operate on
the numbers included to the right of them in the brackets. Also, the absolute
value of a number can be obtained using the abs function as follows:

> (abs -3)
3

The operators +, -, * and / can be applied to a sequence of numbers as
follows:

> (+ 1 2 3 4 5)
15
> (- 1 2 3 4 5)
-13
> (* 1 2 3 4 5)
120
> (/ 1 2 3)
.16666666666666

Notice that when we perform the operations +, -, * and / on a sequence of
numbers the Interpreter performs the operation in sequence. For example,
in the case of the subtract operator it subtracts the second number from the
first, then subtracts the third number from what it obtained by subtracting
the second number from the first, then subtracts the fourth number from
the number obtained in the previous subtraction, and so forth. In the case
of (/ 1 2 3), for example, it first divided 1 by 2 to get .5 and then divided
.5 by 3 to get .16666666666.

The first principle of Lisp programing should now be clearly evident.
When you send the XLispStat Interpreter a command asking it to do some-
thing, the command must take the form of a set of brackets containing, in
order, the function you want the program to execute and the parametric
information it needs to execute that function—that is

8 CHAPTER 2. WORKING WITH XLISPSTAT

(+ 2 3 1 4 5)

represents the statement

(<add><first number><second number><third number> ... etc.)

These operations can be nested. If we give the Interpreter the expression

> (+ 4 (/ 4 2))
6

it first evaluates the expression in the nested brackets (/ 4 2), dividing the
number 4 by the number 2, and then executes the + function in the main
brackets to add that number to the number 4. We will henceforth refer to
the words or numbers that must be entered within the brackets after the
function-name as the function’s arguments. The + function thus takes as its
arguments the numbers to be added together.

2.2 Defining Objects and Working with Lists

You can define objects using the def function in the following manner1

> (def num0 21)
NUM0

> (def num1 (/ 4 2))
NUM1

> (def num2 (+ 4 (/ 4 2)))
NUM2

> (def word1 "junk")
WORD1

To find out what objects present in the work space you simply apply the
variables function by executing the command

> (variables)
NUM0 NUM1 NUM2 WORD1

1Actually, def is not really a function but a macro in ‘Lisp-speak’ but this need not
concern us.

2.2. DEFINING OBJECTS AND WORKING WITH LISTS 9

And to remind yourself of what an object is, simply type its name without
surrounding brackets and press return

> WORD1
"junk"

Most of the work you will do with XLispStat will involve data taking the
form of lists—indeed, the Lisp programming language, which is the basis of
XLispStat and of which Xlisp is a dialect, gets its name from its focus on
LIStProcessing. We can define—that is, create—lists using the list function
as follows:

> (def numlist (list 1 2 -3 -4 5))
NUMLIST
> (def wrdlist (list "bob" "tom" "beatrice" "harry"))
WRDLIST

To check the contents of these lists we would enter the commands

> numlist
(1 2 -3 -4 5)
> wrdlist
("bob" "tom" "beatrice" "harry")

When we add, subtract, multiply or divide a number and a list, that
number is added to, subtracted from, multiplied by or divided by every
number in the list—for example

> (+ 2 numlist)
(3 4 -1 -2 7)
> (- 2 numlist)
(-1 0 -5 -6 3)
> (* 2 numlist)
(2 3 -6 -8 10)
> (/ 2 numlist)
(.5 1 -1.5 -2 2.5)

The same is true if we apply the abs, log or exp functions to a list—for
example 2

2The first command that follows is necessary because we cannot take the logarithm of
a negative number.

10 CHAPTER 2. WORKING WITH XLISPSTAT

> (def newlist (abs numlist))
NEWLIST
> (log newlist)
(0.0 0.6931471805599453 1.0986122886681098 1.3862943611198906
1.6094379124341003)
> (exp numlist)
(2.718281828459045 7.38905609893065 0.049787068367863944 0.01831563888873418
148.4131591025766)
> (log (exp numlist))
(1.0 2.0 -3.0 -4.0 5.0)

Other important functions produce from a list a single number. Among
these are the functions sum, prod, max and min. For example,

> (def smallist (list 1 2 3 4))
SMALLIST
> smallist
(1 2 3 4)
> (sum smallist)
10
> (prod smallist)
24
> (max smallist)
4
> (min smallist)
1

If we add, subtract, multiply or divide two lists, both of which must have
the same number of elements, we obtain a new list whose elements are the
sum, difference, product or quotient of the corresponding elements of the
two lists—for example

> newlist
(1 2 3 4 5)
> numlist
(1 2 -3 -4 5)
> (+ newlist numlist)
(2 4 0 0 10)
> (- newlist numlist)
(0 0 6 8 0)

2.2. DEFINING OBJECTS AND WORKING WITH LISTS 11

> (* newlist numlist)
(1 4 -9 -16 25)
> (/ newlist numlist)
(1 1 -1 -1 1)

To access a particular element of a list we use the select function—for
example

> (select newlist 0)
1
> (select newlist 3)
4
> (select newlist 4)
5

It is important to note here that XLispStat begins numbering at 0—that is,
the first element of a list is element 0. The length of a list can be obtained
using the length function.

> (length newlist)
5

so the last element of the list can be accessed with the command

> (select newlist (- (length newlist) 1))
5

where 5 is the fourth element of the list because the first element is the
number 0. We can ‘select’ a group or ‘list’ of members of a list by entering
a select command such as the one below

> numlist
(1 2 -3 -4 5)
> (select numlist (list 0 2 4))
(1 -3 5)

Lists can be connected together using the function append as follows:

> newlist
(1 2 3 4 5)
> (def biglist (append numlist newlist))
BIGLIST
> biglist
(1 2 -3 -4 5 1 2 3 4 5)

12 CHAPTER 2. WORKING WITH XLISPSTAT

In cases where one or more numbers are to be appended to a list the append
function will not work since the function requires that all arguments be lists.
In this case we can use the combine function. For example,

> (append 1 2 (list 3 4))
Error: bad argument type - 1
Happened in: #<Subr-APPEND: #8118318>
> (combine 1 2 (list 3 4))
(1 2 3 4)
> (combine 1 2 (list 3 4) "junk")
(1 2 3 4 "junk")

Any chosen element of a list can be changed using the setf function. For
example

> biglist
(1 2 -3 -4 5 1 2 3 4 5)
> (setf (select biglist 3) 10)
10
> biglist
(1 2 -3 10 5 1 2 3 4 5)
> (setf (select biglist 5) "poop")
"poop"
> biglist
(1 2 -3 10 5 "poop" 2 3 4 5)

And a list can be reversed using the reverse function—for example

> (def ourlist (list 1 2 3 4 5))
OURLIST
> (def revlist (reverse ourlist))
REVLIST
> ourlist
(1 2 3 4 5)
> revlist
(5 4 3 2 1)

A list of any length consisting of arbitrarily chosen constant elements
can be created using the repeat function. The function takes as its two
arguments, in order, the number or element that is to be repeated and the
number of times it is to be repeated—for example

2.2. DEFINING OBJECTS AND WORKING WITH LISTS 13

> (def longlist (repeat 1 20))
LONGLIST
> longlist
(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

and a list consisting of a sequence of integers is created using the iseq
function as follows, with the first and last integers being the two arguments.

(def intseq (iseq 3 10))
INTSEQ
> intseq
(3 4 5 6 7 8 9 10)

An interesting alternative way to do this is to convert a list of zeros, created
using the repeat function into a sequence of integers using the dotimes
function as follows.3

> (def zerolist (repeat 0 8))
ZEROLIST
> zerolist
(0 0 0 0 0 0 0 0)
> (dotimes (i 8) (setf (select zerolist i) (+ i 3)))
NIL
> zerolist
(3 4 5 6 7 8 9 10)

The dotimes function is the only looping procedure needed to program the
statistics and econometric functions that will be presented in what follows.
Notice how it works.

(dotimes (<run-indicator><number of times>)
<commands to execute on each run>)

The function executes a command or set of commands the indicated number
of times (8 in the above case) where the letter i designates the run number
which takes a value of 0 on the first run and is incremented by 1 before
each of the 7 succeeding runs. The command executed in this case sets the
elements of the list zerolist equal to the run number plus 3. The reply
of NIL given by the Interpreter signifies that no new objects are created in
the work space as a result of the set of commands executed—an existing
object, the list of zeros, is merely modified. The name of the above object
zerolist is now a misleading indication of its content so we should change
it using the copy-list function.

3dotimes also is really a macro, not a function.

14 CHAPTER 2. WORKING WITH XLISPSTAT

> (def intlist1 (copy-list zerolist))
INTLIST1

And we can now delete zerolist from the workspace using the undef func-
tion

> (undef ’zerolist)
ZEROLIST

The quotation mark ’ in front of the name zerolist tells the Interpreter
not to perform any operation on the actual elements of the list—otherwise it
would expect the first element of the list to be a function and the remaining
elements parameters required by that function.

Along with dotimes, the other major operator we will need to use reg-
ularly in subsequent Lisp programming is the if function.4 To illustrate the
use of if we create a sequence of integers running from 1 to 10,

> (def intseq (iseq 1 10))
INTSEQ
> intseq
(1 2 3 4 5 6 7 8 9 10)

and then perform an if operation, along with dotimes, to set all elements
in that sequence that are greater than 5 equal to zero and the remaining
elements equal to unity.

> (dotimes (i 10) (if (< 5 (select intseq i))
(setf (select intseq i) 0)(setf (select intseq i) 1)))

NIL
> intseq
(1 1 1 1 1 0 0 0 0 0)

You can see that the expression to be executed 10 times, given by

(if (< 5 (select intseq i))(setf (select intseq i) 0)
(setf (select intseq i) 1))

consists of four parts. First on the left is the name of the operator if.
Then there is the conditional statement (< 5 (select intseq i)), which
says “5 is less than the ith element of the list intseq”. The third part of
the dotimes sequence is the command to perform if the condition holds,

4Actually, in Lisp-speak if is a ‘special form’, not a function, but for our purposes we
can think of it as a function.

2.2. DEFINING OBJECTS AND WORKING WITH LISTS 15

(setf (select intseq i) 0), which tells the Interpreter to set the ith
element equal to zero. And the fourth part of the statement is the command
to perform if the condition does not hold—set the ith element equal to unity.
If we leave off the fourth part of the expression we get the following.

> (dotimes (i 10) (if (< 5 (select intseq i))
(setf (select intseq i) 0)))

NIL
> intseq
(1 2 3 4 5 0 0 0 0 0)

Those elements that do not satisfy the condition are left unchanged. If we
had wanted to select the elements that are greater than or equal to 5 we
would have written the conditional statement as (<= 5 (select intseq i)).
If we had wanted to set the condition to select the numbers 2 and 4, we would
have written the conditional statement as
(if (or (= 2 (select intseq i))(= 4 (select intseq i)))).
We could use and instead of or in the above but in that case no objects
would be selected.

Finally, we can also set up lists of lists. For example,

> (def triplist (list (list 1 3 4)(list 2 5 6)(list 7 0 7)))
TRIPLIST
> triplist
((1 3 4) (2 5 6) (7 0 7))

Operations involving a single number and a list of lists, or taking the loga-
rithm or exponent of a list of lists, perform the operation on every element
in the list of lists—for example

> (* 2 triplist)
((2 6 8) (4 10 12) (14 0 14))

and an object in a particular list, say observation 2 of list 1, can be obtained
using the select function in nested form—

> (select (select triplist 1) 2)
6

In our econometric work we need to be able to examine portions of lists
to make sure that the list we are accessing or using is the one we think we
are using. Doing this with the select function is awkward. We also need to
be able to delete portions of lists. To perform these operations we need to
write our own Lisp functions, a task to which we now turn.

16 CHAPTER 2. WORKING WITH XLISPSTAT

2.3 Writing Lisp Functions

It makes little sense to write functions interactively—they should be written
in a file that can be loaded using the command

> (load "filename.lsp")
; loading filename.lsp
T

Here the Interpreter, after telling us that it is loading the file, prints the
letter T to tell us that everything went well.

So let us use the text editor to create a file containing functions that we
want to add to those already available in XLispStat. The beginnings of the
file, together with our first function can be written as follows (the symbol ;
tells the Interpreter not to read the line that follows)

; ADDITIONAL FUNCTIONS FOR XLISPSTAT
;
; written by John Floyd
;
; Print the first five elements of a list
;
(defun first-five (x)
"Args: (x)
Prints the first five elements of list x on screen."
(select x (list 0 1 2 3 4))
) ;end of function
;

We save this code in a file called addfuncs.lsp that contains all new func-
tions written for use in econometric analysis.

Notice the structure of a function. The top line gives the name of the
function that we are using to create a new function, defun, followed by
the name of the function that is being created, first-five, and then the
place holder for the single argument that must be passed to the function
when calling it. The two lines in quotes give details about the function
that can be printed out when working interactively by entering the com-
mand (help ’first-five). As noted earlier, a single quotation mark in
front of the function name tells the Interpreter to work with the function’s
name rather than use (or call) the function. After the lines in quotation
marks comes the body of the function—that is the commands that are to
be executed when the function is called. The last line is simply the closing

2.3. WRITING LISP FUNCTIONS 17

parenthesis that matches the beginning parenthesis on the first line of the
function definition.5 Now let us ask for help...

> (help ’first-five)
loading in help file information - this will take a minute ...done
FIRST-FIVE
[function-doc]
Args: (x)
Prints the first five elements of list x on screen.
NIL

After creating a list for our function to operate on we can demonstrate
its use.

(def testlist (iseq 1 20))
TESTLIST
> testlist
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)
> (first-five testlist)
(1 2 3 4 5)

This function is useful in making sure that the list we are working with is
the right one—that is, has the elements we expect it to have.

I have created two additional functions to use in examining lists—last-
five and chosen-five. The second of these functions lists the five elements
of the series that begin with a particular element-number specified. It’s
body contains a command using the error function.

; Print five elements starting with a particular element
;
(defun chosen-five (x y)
"Args: (x y)
Prints the five elements of list x on screen starting with element y."
(if (> y (- (length x) 5) (error "Less than five elements remaining")
(select x (list y (+ y 1)(+ y 2) (+ y 3) (+ y 4)))
) ; end of function

If there are less than four elements beyond element y the user is given an
error message, in which case the last-five function should be used.

5When writing complicated functions, an excellent practice is to never write an opening
bracket without writing an appropriately placed closing bracket at the same time.

18 CHAPTER 2. WORKING WITH XLISPSTAT

It is also convenient at times to shorten lists by removing elements at the
beginning or end, or even a particular element in the middle. Accordingly,
I have written a series of five functions to do this. They are remove-
first-element, remove-last-element, remove-first, remove-last and
remove-selected-element. The first two of these functions take as their
single argument the list being modified. The second two functions take two
arguments: first, the number of elements to be removed, and second, the list
from which they are to be removed. The last function takes as arguments
the number of the element to be removed (numbering starts at zero) and
the list from which it is to be removed. To illustrate,

> testlist
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)
> (remove-first-element testlist)
(2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)
> (remove-last-element testlist)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
> (remove-first 4 testlist)
(5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)
> (remove-last 4 testlist)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)
> (remove-selected-element 10 testlist)
(1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20)

With respect to the last case, where a selected element is removed, remember
that in XLispStat numbering starts with the number zero.

To finish our discussion of the very basics of Lisp programing needed for
our work we turn to the creation and manipulation of matrices.

2.4. WORKING WITH MATRICES 19

2.4 Working with Matrices

One way to create a matrix is to use the make-array function,

> (def mat1 (make-array ’(3 3) :initial-element 0))
MAT1
> mat1
#2A((0 0 0) (0 0 0) (0 0 0))

To print the resulting matrix in a more informative way we use the print-matrix
function,

> (print-matrix mat1)
#2a(

(0 0 0)
(0 0 0)
(0 0 0)

)
NIL

The elements of a matrix are accessed using the aref function and modified
using the function setf. For example,

> (dotimes (i 3)
(setf (aref mat1 i i) 1)
)

NIL
> (print-matrix mat1)
#2a(

(1 0 0)
(0 1 0)
(0 0 1)

)
NIL

Another way to create a matrix is to bind lists together using the bind-rows
or bind-columns functions,

> (def list1 (list 1 4 3))
LIST1
> (def list2 (list 3 1 5))
LIST2
> (def list3 (list 2 2 6))

20 CHAPTER 2. WORKING WITH XLISPSTAT

LIST3
> (def list4 (list 1 5 2))
LIST4
> (def mat2 (bind-columns list1 list2 list3 list4))
MAT2
> (def mat3 (bind-rows list1 list2 list3 list4))
MAT3
> (print-matrix mat2)
#2a(

(1 3 2 1)
(4 1 2 5)
(3 5 6 2)
)

NIL

> (print-matrix mat3)
#2a(

(1 4 3)
(3 1 5)
(2 2 6)
(1 5 2)
)

NIL

The use of the diagonal function with a matrix as its argument returns the
diagonal of that matrix

> (diagonal mat1)
(1 1 1)
> (diagonal mat2)
(1 1 6)
> (diagonal mat3)
(1 1 6)

while the use of that function with a list as the argument produces a square
diagonal matrix with the list elements as the diagonal.

2.4. WORKING WITH MATRICES 21

> (def mat4 (diagonal (list 2 3 1)))
MAT4
> (print-matrix mat4)
#2a(

(2 0 0)
(0 3 0)
(0 0 1)

)
NIL

Of the several ways to create an identity matrix, the easiest is to use the
identity-matrix function,

> (def identmat (identity-matrix 4))
IDENTMAT
> (print-matrix identmat)
#2a(

(1 0 0 0)
(0 1 0 0)
(0 0 1 0)
(0 0 0 1)

)
NIL

A vector can be made by creating a list and coercing it into a vector using
the coerce function,

> (def vec1 (coerce list5 ’vector))
VEC1
> vec1
#(1 2 3 4)

or by simply using the vector function,

> (def vec2 (vector 2 3 1 4))
VEC2
> vec2
#(2 3 1 4)

Vectors can be bound together in rows or columns to create matrices in the
same way as is done for lists. And matrices, too, can be bound together in
the same fashion—for example,

22 CHAPTER 2. WORKING WITH XLISPSTAT

> (def bigmat1 (bind-rows mat2 identmat))
BIGMAT1
> (print-matrix bigmat1)
#2a(

(1 3 2 1)
(4 1 2 5)
(3 5 6 2)
(1 0 0 0)
(0 1 0 0)
(0 0 1 0)
(0 0 0 1)
)

It is frequently necessary to determine or refer to the dimensions of a
matrix. This is done using the array-dimensions function,

> (array-dimensions mat2)
(3 4)

whose output is a list with two elements, the number of rows, 3, and the
number of columns, 4.

I have written a number of functions to use for modifying matrices. Read-
ers should by now have noticed that functions written by me are everywhere
printed in bright bold rather than just regular bold print.

remove-first-rows
remove-last-rows
remove-first-columns
remove-last-columns
remove-selected-row
remove-selected-column
copy-matrix-row
copy-matrix-column

These functions perform the operations their names imply, with the latter
two copying the row or column to lists. To illustrate, we remove the last
three rows from bigmat1 and, then copy the third column of the matrix
above to a list called newlist.

> (def nbmat1 (remove-last-rows 3 bigmat1))
NBMAT1

2.4. WORKING WITH MATRICES 23

> (print-matrix nbmat1)
#2a(

(1 3 2 1)
(4 1 2 5)
(3 5 6 2)
(1 0 0 0)

)

> (def newlist (copy-matrix-column 2 nbmat1))
NEWLIST
> newlist
(2 2 6 0)

All these functions take two arguments. The first is the number of rows or
columns or the row or column number, as the case may be, and the second
is the name of the matrix. Keep in mind that numbering always starts with
row zero, so that a request to copy or remove row 10 from a matrix actually
leads to the copying or removal of the 11th row since the first row is row
zero.

Now we turn to the operations that can be performed on matrices. If two
matrices have the same dimensions, they can be added, subtracted, multi-
plied and divided by each other in the same fashion as lists. For example

> (def bigmat2 (make-array ’(7 4) :initial-element 2))
BIGMAT2
> (print-matrix bigmat2)
#2a(

(2 2 2 2)
(2 2 2 2)
(2 2 2 2)
(2 2 2 2)
(2 2 2 2)
(2 2 2 2)
(2 2 2 2)

)
NIL
> (def bigmat3 (+ bigmat1 bigmat2))
BIGMAT3

24 CHAPTER 2. WORKING WITH XLISPSTAT

> (print-matrix bigmat3)
#2a(

(3 5 4 3)
(6 3 4 7)
(5 7 8 4)
(3 2 2 2)
(2 3 2 2)
(2 2 3 2)
(2 2 2 3)
)

NIL
> (def bigmat4 (* bigmat1 bigmat2))
BIGMAT4

> (print-matrix bigmat4)
#2a(

(2 6 4 2)
(8 2 4 10)
(6 10 12 4)
(2 0 0 0)
(0 2 0 0)
(0 0 2 0)
(0 0 0 2)
)

NIL

The latter operations are element-by-element.
Standard multiplication of two conformable matrices is done using the

matmult function,

> (def mat5 (matmult mat2 mat3))
MAT5
> (print-matrix mat2)
#2a(

(1 3 2 1)
(4 1 2 5)
(3 5 6 2)
)

NIL

2.4. WORKING WITH MATRICES 25

> (print-matrix mat3)
#2a(

(1 4 3)
(3 1 5)
(2 2 6)
(1 5 2)

)
NIL
> (print-matrix mat5)
#2a(

(15.0000 16.0000 32.0000)
(16.0000 46.0000 39.0000)
(32.0000 39.0000 74.0000)

)
NIL

We can take the transpose of a matrix using the transpose function

(def mat6 (transpose mat3))
MAT6
> (print-matrix mat6)
#2a(

(1 3 2 1)
(4 1 2 5)
(3 5 6 2)

)
NIL

and, the inverse, if the matrix is square and non-singular, using the inverse
function

> (def mat7 (inverse mat5))
MAT7
> (print-matrix mat7)
#2a(

(0.882794 3.000469E-2 -0.397562)
(3.000469E-2 4.031880E-2 -3.422410E-2)
(-0.397562 -3.422410E-2 0.203469)

)
NIL

Finally, there are the functions for taking the inner product or outer
product of two lists. These can be illustrated as follows:

26 CHAPTER 2. WORKING WITH XLISPSTAT

> (def list1 (list 1 2 3))
LIST1
> (def list2 (list 4 5 6))
LIST2
> (def iprod (inner-product list1 list2))
IPROD
> (def oprod (outer-product list1 list2))
OPROD
> iprod
32.0
> (print-matrix oprod)
#2a(

(4 5 6)
(8 10 12)
(12 15 18)
)

NIL

2.5 Reading and Writing Data Files

We will use two functions in XLispStat to read in data from text files. The
first function, read-data-file, simply reads numbers (collections of digits,
that can include decimal points, separated by white space) from a file and
incorporates them in a list you define using the def function. For example,
the average test scores of 420 school districts in California have been written
to the file calats.dat.6 We can read it into the workspace and define the
list as av-test-score as follows

> (def av-test-score (read-data-file "calats.dat"))
AV-TEST-SCORE

By typing av-test-score on the command line, using either upper or lower
case letters, we can get the Interpreter to print the entire list on the screen.
We can view the first and last five observations of this list by executing the
commands

> (first-five av-test-score)
(690.799987792969 661.200012207031 643.599975585938
647.700012207031 640.849975585938)
> (last-five av-test-score)
(704.300048828125 706.75 645 672.200012207031 655.75)

6These data were obtained from a data set used in James H. Stock and Mark W. Wat-
son, Introduction to Econometrics, Addison-Wesley Series in Economics, 2003.

2.5. READING AND WRITING DATA FILES 27

The second function for reading in data is the read-data-columns func-
tion. To read a file called cpism.mat containing a column of dates and three
columns of numbers representing the consumer price indexes of, respectively,
the United States, Canada and the United Kingdom, we pass to the Inter-
preter the expression

> (def cpism (read-data-columns "cpism.mat" 4))
CPISM

The 4 in the above expression refers to the number of columns of data in
the file. The list CPISM contains 4 lists of numbers. The first is the list of
dates, the second is the series of monthly CPIs for the United States, the
third is the monthly CPI series for Canada and the fourth is the monthly
CPI series for the United Kingdom.

Actually, the two functions above will also read files containing elements
consisting of non-numbers, such as the string NA that is frequently used to
denote missing elements.

To extract the separate lists from CPISM we have to apply the select
function four times.

> (def cpism-dates (select CPISM 0))
DATES-CPIM
> (def cpim-US (select CPISM 1))
CPIM-US
> (def cpim-canada (select CPISM 2))
CPIM-CANADA
> (def cpim-UK (select CPISM 3))
CPIM-UK

Each of the resulting variables is a list—the first of these gives the dates for
all series and the remaining lists give the monthly CPI series for the three
countries.

To determine what variables are in memory we enter the expression

> (variables)
CPIM-CANADA CPIM-UK CPIM-US DATES-CPIM AV-TEST-SCORE

It is also useful to be able to write data to file. The simplest way to
do this is with the savevar function. To save a single variable we send the
Interpreter the expression

> (savevar ’av-test-score "calats")
(AV-TEST-SCORE)

28 CHAPTER 2. WORKING WITH XLISPSTAT

Note that we put a quotation mark in front of the variable av-test-score
that we are writing to file. This quotation mark tells the Interpreter to
simply quote the name of the list representing the object av-test-score
and not evaluate that list. If we omit the quotation mark we will get an error
message. We leave off the suffix .lsp from the file because the Interpreter
will add that extension automatically.

To save a whole group of objects in the same file we send to the Inter-
preter an expression like the following.

> (savevar ’(cpim-dates cpim-us cpim-canada cpim-uk) "cpism")
(DATES-CPIM CPIM-CANADA CPIM-US CPIM-UK)

Again, the quotation mark tells the Interpreter to quote the list of variables,
not evaluate it. And again, the extension .lsp will be added automatically.

When we want to access these data in another session we can read them
back into XLispStat by passing to the Interpreter the expressions

> (load "cpism.lsp")
; loading cpism.lsp
T
> (load "calats.lsp")
; loading calats.lsp
T

In response, the Interpreter tells us the file being loaded and sends us the
letter T (meaning true) to tell us that the operation was successful.

As noted at the very beginning of this presentation, the output file from a
batch run will contain only what the writer of the input file and the functions
used tell the Interpreter to print. Accordingly, we need three functions to
print material in the output file from a batch run. The function princ prints
material without a hard-return or new-line at the end. The terpri function
creates a new line. For example, the following code in the batch input file

(def days-in-year 365)
(terpri)
(princ "There are ")(princ days-in-year)
(princ " days in a year.")(terpri)

will produce the line

There are 365 days in the year.

2.5. READING AND WRITING DATA FILES 29

on a new line with a hard-return at the end of that line. The third function
we will use in presenting data is the format function. It is used in a function
write-matrix that I have written to write a matrix of numbers on the screen
without the brackets that appear in the output from the print-matrix
function.

;
(defun write-matrix (x)
"Args: (x)
Prints a matrix on screen with format 12,3f."
(def rcnum (array-dimensions x))
(dotimes (i (select rcnum 0))
(dotimes (j (select rcnum 1))
(format t "~12,3f" (aref x i j))

) ; end dotimes j
(terpri)
) ; end dotimes i
) ; end of function

In the expression (format t "~12,3f" (aref x i j)) the letter t tells
the format function to print to the screen. The expression in quotations
"~12,3f" is the control string containing a format directive (indicated by
the character ~) to create a field 12 characters long containing numbers in
decimal notation (indicated by the trailing letter f) with 3 places to the right
of the decimal point. The final element (aref x i j) gives the number to
be placed in the 12 character field, namely the element of the ith row and
jth column of the matrix x. A hard-return is not given by the format
command—the elements of the ith row of the matrix are printed in turn
along a line. After the ith row is completed the command (terpri) imposes
a hard-return and dotimes i is then applied to row (i + 1) with j running
from zero to the number of columns of the matrix less 1.

More generally, the format function can be used to create a line of
numbers without the use of dotimes. For example,

> (def num1 125)
NUM1
> (def num2 1)
NUM2
> (def num3 481.4563453)
NUM3

30 CHAPTER 2. WORKING WITH XLISPSTAT

> (format t "~10,3f ~5,d ~15,e" num1 num2 num3)
125.000 1 4.814563453E+2

NIL

The control string specifies that three numbers be printed, one a real number
with 3 decimal places (10,3f) allocated 10 character-spaces, the second an
integer allocated five spaces (5,d) and the third using scientific notation
allocated 15 spaces (15,e). The numbers follow the control string in the
order specified.

A data matrix can be augmented by creating a list of variable names
consisting of a variable "obs" (or, alternatively, "date") plus the names of
the variables in the columns of the matrix. Then the list of dates or a list
of observation numbers created by the iseq function can be bound to the
matrix

> (load "cpism.lsp")
; loading cpism.lsp
T
> (def varnames (list "DATE" "CPIUS" "CPICA" "CPIUK"))
VARNAMES
> (def datmat (bind-columns cpim-US cpim-Canada cpim-UK))
DATMAT
> (def newmat (bind-columns cpism-dates datmat))
NEWMAT
> (def cpidata (bind-rows varnames newmat))
DATA
> (write-matrix cpidata)
DATE CPIUS CPICA CPIUK

1957.000 16.670 7.900 18.140
1957.083 16.700 7.900 18.220
1957.167 16.700 7.850 18.260
1957.250 16.760 7.900 18.310

..

..

..
2002.750 115.630 119.350 118.980
2002.833 115.920 119.550 118.980
2002.917 115.540 119.750 118.710

NIL

The write-matrix function, when given strings (i.e., words), automatically
writes them, left-justified, in place of numbers.

2.5. READING AND WRITING DATA FILES 31

In order to make data generated in XLispStat transferable to other pro-
grams, I have written a write-matrix-to-file function, the code for which
is as follows:

(defun write-matrix-to-file (x y)
"Args: (x y)
Writes the matrix x to the file y."
(setf f (open y :direction :output))
(def rcnum (array-dimensions x))
(dotimes (i (select rcnum 0))

(dotimes (j (select rcnum 1))
(format f "~12,3f" (aref x i j))

) ; end dotimes j
(terpri f)
) ; end dotimes i
(close f)
) ; end of function

This differs from the write-matrix function in four respects. First the line
(setf f (open y :direction :output)) opens a file called f within the
function but given the name specified by y in the working directory to which
it is written, where the code-words :direction :output specify that we are
going to be writing material to the file rather than reading from it. Second,
the letter t immediately after the word format is changed to f to tell the
Interpreter to write to the file rather than to the screen. Third, the command
(terpri f) is used rather than just (terpri) to instruct the Interpreter
to send the new line directive to the file rather than to the screen. And the
command (close f) tells the Interpreter to close the file. The contents of
the file will be exactly the same as what appears on the screen in response
to our using the write-matrix function. One could pretty-up the resulting
file with a text editor by adjusting the position of the labels. Alternatively,
one could specify the labels in the varnames list with sufficient white space
between the initial quotation mark and the first letter of the variable name
to make the last character in each label the 12th character, thereby right-
justifying the variable names. Without these modifications, however, the file
can be easily imported into a spreadsheet program or into another statistical
program.

32 CHAPTER 2. WORKING WITH XLISPSTAT

2.6 Transforming Data

Sometimes data have missing elements and contain numbers that are clearly
erroneous. These problems have to be fixed before we can proceed with our
work. The obvious way to deal with these problems is in the spreadsheet
file from which we write the text matrix file that we subsequently read
into the workspace using the aforementioned read-data-columns function.
Sometimes, however, it may be easier to use XLispStat, sometimes combined
with our text editor, to handle some of these issues.

To illustrate we load in a data file on home mortgages used in Chap-
ter 9 of the introductory econometrics text written by James Stock and
Mark Watson.7 The ultimate purpose is to use these data to determine
whether blacks are discriminated against in the granting of home mortgages
in Boston, U.S.A. The raw data were first organised in the spreadsheet
file hmdata.xls, then the block of numbers was written to the text matrix
file hmdata.mat and the list of variable names was written to the text file
hmdata.lab and data descriptions were written to the text file hmdata.cat.
The spreadsheet file was imported from a file of comma-separated-values,
obtained from the Internet. For modern MS-Windows operating systems,
as well as Linux, the free spreadsheet program Gnumeric, which is a clone of
MS-Excel, is available. This program reads files of comma-separated-values
and can write spreadsheets to text matrix files. These data are described in
hmdata.cat as follows.

OBS –Observation Number
RESULT –Decision (= 1 or 2 if approved, = 3 if denied (no other integers)
AMT –Loan amount in ($ thousands)
PROPVAL –Property Value in ($ thousands)
RTDINC –Total debt payment obligations as percent of income
RHDINC –Housing expense as percent of income
CCSCORE –Consumer credit score (higher is worse)
MCSCORE –Mortgage credit score (higher is worse)
PUBBREC –Public bad record (1 if had past credit problems, 0 otherwise)
DENMINS –Denied mortgage insurance (1 if denied, 0 otherwise)
SELFEMP –Self employment status (= 1 if self-employed, zero otherwise)
SINGLE –Martial status (= 1 if married, 2 if single and 3 if separated)
SCHOOL –Years of schooling
UNRATE –Unemployment rate in applicants industry
CONDO –Condominium (= 1, 2 = single family, 3 = families)
RACE –Applicant’s race (black = 3, white = 5, no other integers)

7James H. Stock and Mark W. Watson, Introduction to Econometrics, Addison-Wesley,
2003.

2.6. TRANSFORMING DATA 33

To reproduce the Stock and Watson presentation we need a variable, call
it DENY, which will take a value of 1 if the mortgage application is denied and
0 otherwise. The corresponding variable in the above dataset, RESULT, takes
values of 1 and 2 if approved and 3 if denied. The martial status variable can
take three integer values, whereas Stock and Watson refer to it as 1 if married
and 0 otherwise. The variable SCHOOL gives years of schooling whereas Stock
and Watson use an alternative variable that takes a value of 1 if the person
graduated from high school and 0 otherwise. Similarly, the CONDO variable
takes three values where Stock and Watson have it taking only two, 1 if the
residence being mortgaged is a condominium and 0 otherwise. Finally, we
want the race variable to take a value of 1 if the person is black and 0 if
he/she is white, rather than the above values of 3 if black and 5 if white.

Given the difficulty of fishing through a spreadsheet containing over 2300
observations on 16 variables, the easiest way to fix all the above problems
is to read the data into the XLispStat workspace and then save it as a Lisp
file, which is a text file that will appear in a correctly configured text editor
as a list of horizontal lines of data, one line per variable, each extending far
beyond the right-most edge of the screen. The data can then be modified
using the text editor and then read back in to the workspace and further
modified and re-saved. We work here in batch mode, which is the easiest
way to do what has to be done.

34 CHAPTER 2. WORKING WITH XLISPSTAT

(def datlist (read-data-columns "hmdata.mat" 16))
(def OBS (select datlist 0))
(def RESULT (select datlist 1))
(def AMT (select datlist 2))
(def PROPVAL (select datlist 3))
(def RTDINC (select datlist 4))
(def RHDINC (select datlist 5))
(def CCSCORE (select datlist 6))
(def MCSCORE (select datlist 7))
(def PUBREC (select datlist 8))
(def DENMINS (select datlist 9))
(def SELFEMP (select datlist 10))
(def SINGLE (select datlist 11))
(def SCHOOL (select datlist 12))
(def UNRATE (select datlist 13))
(def CONDO (select datlist 14))
(def RACE (select datlist 15))
;
(savevar ’(OBS RESULT AMT PROPVAL RTDINC RHDINC CCSCORE
MCSCORE PUBREC DENMINS SELFEMP SINGLE SCHOOL UNRATE
CONDO RACE) "hmdatraw")

The Lisp file hmdatraw.lsp is a text file which when loaded into a text editor
configured with no wrap-around will appear as follows, where the data off
the screen to the right can be viewed by pressing the right arrow key.

(DEF OBS (QUOTE (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
(DEF RESULT (QUOTE (1 1 1 1 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 3
(DEF AMT (QUOTE (88.0 118.0 185.0 185.0 330.0 97.0 56.0 187.0
(DEF PROPVAL (QUOTE (110.0 128.0 201.0 215.0 550.0 190.0 75.0
(DEF RTDINC (QUOTE (22.1 26.5 37.2 32.0 36.0 24.0 35.0 28.0 3
(DEF RHDINC (QUOTE (22.1 26.5 24.8 25.0 35.0 17.0 29.0 22.0 2
(DEF CCSCORE (QUOTE (5 2 1 1 1 1 1 2 2 2 1 1 1 1 1 2 1 2 2 2
(DEF MCSCORE (QUOTE (2 2 2 2 1 1 2 2 2 1 2 2 2 1 1 1 1 1 2 2
(DEF PUBREC (QUOTE (0 1
(DEF DENMINS (QUOTE (0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
(DEF SELFEMP (QUOTE (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(DEF SINGLE (QUOTE (1 2 1 1 1 1 2 1 1 2 2 2 1 1 1 1 1 1 1 2 1
(DEF SCHOOL (QUOTE (15 18 12 12 20 16 14 16 12 16 14 16 18 18
(DEF UNRATE (QUOTE (3.9 3.2 3.2 4.3 3.2 3.9 3.9 1.8 3.1 3.9 3
(DEF CONDO (QUOTE (2 2 2 2 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2
(DEF RACE (QUOTE (5 5

2.6. TRANSFORMING DATA 35

We can then use our text editor to search for and replace the relevant num-
bers in the file. Each variable that needs to be operated on can be moved
to the bottom line of the file and a search and replace done on it until all
the elements are appropriately 1 or 0. The next variable that needs action
can then be moved to the bottom and the procedure repeated as appropri-
ate. This procedure will not work, however, with the SCHOOL variable, which
takes values ranging from 18 or more downward. But we can easily clean
up this variable as follows (again in batch mode) after reading the above
modified data, now renamed hmdatadj.lsp back into the workspace and
assuming that to complete high-school one must have at least 12 years of
schooling.

(load "hmdatadj")
(dotimes (i (length school))
(if (< (select school i) 12)
(setf (select school i) 0)(setf (select school i) 1)
) ; end if
) ; end dotimes i

Upon further investigation, other problems appear. First, Stock and Watson
express the ratios of payments to income RTDINC and RHDINC as the frac-
tions of income spent monthly on total debt-obligations and housing-debt
obligations, respectively, whereas the data here are in percentages. This can
easily be taken care of using the following code.

(def rhdinc (/ rhdinc 100))
(def rtdinc (/ rtdinc 100))

Then, it turns out, some of the values of the above two series exceed unity,
implying that some people are spending much more than their income on
housing and/or total monthly debt charges! Since we have no way of finding
out what is happening in these cases (the observed figures may be typos!)
the best solution is to eliminate these observations from the data set. The
easiest way to do this is to save the variables to a temporary Lisp file

> (savevar ’(RTDINC RHDINC) "tempvars")
(RTDINC RHDINC)

and then, again using the text editor, replace all elements whose first two
characters are the integer 1 plus a decimal point with the letters NA. Then
we can read the revised data back into the workspace with the code

36 CHAPTER 2. WORKING WITH XLISPSTAT

> (load "tempvars")
; loading tempvars.lsp
T

Now we have to eliminate from our data set all observations for which
one or more of the variables are NA. We do this using my find-NA-in-
matrix function which takes as its sole argument the name of the matrix
being searched. We must first bind all our variables together into a matrix
using bind-columns.

> (def datmat1 (bind-columns OBS AMT CCSCORE CONDO DENMINS
MCSCORE PROPVAL PUBREC RACE RESULT RHDINC RTDINC SCHOOL
SELFEMP SINGLE UNRATE))
DATMAT1
> (find-NA-in-matrix datmat1)

Missing value
row column
193 12
210 12
366 12
411 12
422 12
458 12
580 12
599 12
620 11
692 12
693 12
693 14
834 12
1094 10
1094 11
1106 12
1114 12
1140 12
1143 12
1144 12
1145 12
1148 12
1252 12
1320 11
1494 12
1619 12

2.6. TRANSFORMING DATA 37

1623 12
1631 12
1927 10
1927 11
1928 10
1928 11
2208 14

NIL

We need to delete the relevant rows, so we are only interested in the left-
most column of numbers. And note that sometimes a row number appears
twice in the list! So we cut the above data from our XLispStat output file
using the mouse and paste it in a temporary text file and then delete the
right-most column and everything but the relevant row numbers with our
text editor.8 Then we arrange the row numbers remaining after eliminating
duplications in the following list,

193 210 366 411 422 458 580 599 620 692 693 834 1094 1106 1114
1140 1143 1144 1145 1148 1252 1320 1494 1619 1623 1631 1927
1928 2208

and cut and paste them back into our batchfile and embed them in the
following code.

(def templist (list 193 210 366 411 422 458 580 599 620 692 693
834 1094 1106 1114 1140 1143 1144 1145 1148 1252 1320 1494 1619
1623 1631 1927 1928 2208))
(def nalist (reverse templist))
(def newmat datmat1)
(dotimes (i (length nalist))
(remove-selected-row (select nalist i) newmat)
) ; end dotimes i

It is important to note that we reverse the order of numbers before using
them as an index of rows to be deleted from the renamed matrix newmat.
If we were to proceed without reversing templist, deletion of element 193
would cause the next NA element, 210, to now be the element 211 of the
original list! So we must delete the highest numbers first—changes in the

8The editor Joe, which is freely available for DOS and Linux, is one editor that can
delete columns of numbers in a text file. The freely available Crimson Editor will do this
job in modern MS-Windows operating systems.

38 CHAPTER 2. WORKING WITH XLISPSTAT

element numbers above the number of the element deleted then will not af-
fect subsequent deletions. Finally, we have to extract into lists the variables
from the matrix newmat using the copy-matrix-column function and save
them in a Lisp file.

(def obs-adj (copy-matrix-column 0 newmat))
(def amt (copy-matrix-column 1 newmat))
(def ccscore (copy-matrix-column 2 newmat))
(def condo (copy-matrix-column 3 newmat))
(def denmins (copy-matrix-column 4 newmat))
(def mcscore (copy-matrix-column 5 newmat))
(def propval (copy-matrix-column 6 newmat))
(def pubrec (copy-matrix-column 7 newmat))
(def black (copy-matrix-column 8 newmat))
(def deny (copy-matrix-column 9 newmat))
(def rhdinc (copy-matrix-column 10 newmat))
(def rtdinc (copy-matrix-column 11 newmat))
(def school (copy-matrix-column 12 newmat))
(def selfemp (copy-matrix-column 13 newmat))
(def single (copy-matrix-column 14 newmat))
(def unrate (copy-matrix-column 15 newmat))
(savevar ’(OBS-ADJ DENY AMT PROPVAL RTDINC RHDINC CCSCORE
MCSCORE PUBREC DENMINS SELFEMP SINGLE SCHOOL UNRATE
CONDO RACE) "hmdata")

In the process we rename the variable RESULT as DENY, consistent with
the terminology used by Stock and Watson. The variable OBS is renamed
OBS-ADJ to take into account the fact that the deleted observation numbers
will be missing from that list. This data set is now ready for the analysis
that will be the subject of Chapter 8.

When working with time-series data we need to incorporate dates for the
series. As should be evident from the monthly data above, my convention
is to enumerate quarterly data as, for example,

1990.00 1990.25 1990.50 1990.75
and monthly data as

1990.000 1990.083 1990.167 1990.250 1990.333 1990.417
1990.500 1990.583 1990.667 1990.750 1990.833 1990.917

with the dates for annual data, of course, consisting entirely of integers.
When it is inconvenient to construct in our spreadsheet program a datelist

consisting of real numbers of the sort above we can simply save the ma-
trix of variables, ignoring the dates, as a text file and read it into the

2.6. TRANSFORMING DATA 39

XLispStat workspace using read-data-columns and then construct the
datelist in XLispStat using my setdates function. This function takes three
arguments—in order, the series for which the datelist is to be created (any
variable in the original matrix will do), the date of the first observation, and
the frequency, which will be 1 for annual data, 4 for quarterly data and 12
for monthly data. To illustrate this and some additional useful functions for
working with time series, we read in the file uscpim.lsp, which contains as
its only variable the monthly U.S. consumer price index. The file already
includes a datelist but, for illustrative purposes, we construct a new one.
The first observation is for March 1962—we have to know this fact to make
a datelist.

> (load "uscpim.lsp")
; loading uscpim.lsp"
T
> (load "addfuncs.lsp")
; loading addfuncs.lsp
T
>(variables)
(DATESMO USCPIM)
> (def newdates (setdates uscpim 1962.167 12))
NEWDATES
> (Variables)
(DATELIST DATESMO NEWDATES USCPIM)
> (first-five newdates)
(1962.167 1962.2503333333332 1962.3336666666667 1962.417
1962.5003333333332)
> (first-five datesmo)
(1962.167 1962.25 1962.333 1962.417 1962.5)
> (first-five datelist)
(1962.167 1962.2503333333332 1962.3336666666667 1962.417
1962.5003333333332)
> (last-five newdates)
(2005.5836666666667 2005.667 2005.7503333333332
2005.8336666666667 2005.917)
> (last-five datesmo)
(2005.583 2005.667 2005.75 2005.833 2005.917)
> (last-five datelist)
(2005.5836666666667 2005.667 2005.7503333333332
2005.8336666666667 2005.917)

40 CHAPTER 2. WORKING WITH XLISPSTAT

The variable DATELIST in the workspace is left there by the setdates func-
tion. Assigning this generic name to a datelist in our research runs the risk
that it will subsequently be over-written when that function is called again.
Another frequent requirement is to change the base of a series. Suppose,

for example, that we want to change the base of uscpim to 1963-66 = 100.
We use my base function, which takes four arguments—first, the time-series
list being put on a new base, then the datelist to which the series conforms,
then the beginning date of the new base period, and finally, the number of
periods in the new base period.

> (def cpim (base uscpim newdates 1963.0 48))
CPIM

We also sometimes need to convert a series from a monthly frequency
to quarterly or annually or from quarterly to annually. I have written three
functions to do this using quarterly or annual averages, m2q-avg, m2a-
avg and q2a-avg. All of these functions take four arguments—in order,
the series whose frequency is being reduced, the observation of the original
series at which conversion is to start, and then the first and last dates of the
new series. We now convert cpim to quarterly and annually, constructing at
the same time appropriate new datelists, adding code to check our results.

> (def cpiq (m2q-avg cpim 1 1962.25 2005.75))
CPIQ
> (def datesq (setdates cpiq 1962.25 4))
DATESQ
> (length cpiq)
175
> (length datesq)
175
> (first-five datesq)
(1962.25 1962.5 1962.75 1963.0 1963.25)
> (last-five datesq)
(2004.75 2005.0 2005.25 2005.5 2005.75)
> (def cpia (m2a-avg cpim 10 1963 2005))
CPIA
> (def datesa (setdates cpia 1963.0 1))
DATESA
> (def cpi (q2a-avg cpiq 3 1963 2005))
CPI
> (length cpia)

2.6. TRANSFORMING DATA 41

43
> (length cpi)
43
> (length datesa)
43
> (first-five cpia)
(97.4814422057264 98.75397667020145 100.37115588547188
103.39342523860019 106.17709437963946)
> (first-five cpi)
(97.48144220572638 98.75397667020145 100.37115588547188
103.39342523860019 106.1770943796394)
> (last-five cpia)
(563.2290562036053 572.1898197242841 585.25980911983
600.8748674443265 621.2089077412511)
> (last-five cpi)
(563.2290562036054 572.189819724284 585.2598091198303
600.8748674443265 621.2089077412511)

> (first-five datesa)
(1963.0 1964.0 1965.0 1966.0 1967.0)
> (last-five datesa)
(2001.0 2002.0 2003.0 2004.0 2005.0)

It is very important to check our work as it is easy when the data series
starts in mid-year to pick the wrong observation at which the quarterly or
annual series must start. I did it twice in producing this example!

Sometimes when working with time-series we may want to find the ob-
servation number associated with a particular month, quarter or year, de-
pending on the frequency of the series. I wrote the date2obs function to
perform this task. The function takes as its first argument the datelist and
as its second the specific date. For example, we could find the observation
number associated with January 1963 in our monthly date series as follows.

> (date2obs datesmo 1963.0)
10

Indeed, this is the number we used above as the first observation in convert-
ing the series cpim from monthly to annual. It would have been better to
have used the m2a-avg function as follows.

> (def cpia (m2a-avg cpim (date2obs datesmo 1963.0) 1963 2005))

42 CHAPTER 2. WORKING WITH XLISPSTAT

Another frequent task is detrending a time-series. We can do this with
my detrend function which takes as its single argument the series-list to
be detrended, generates the resulting detrended series detseries and also
leaves in memory the trend of the series as the list trendfit. We detrend
our cpiq series, and check our results, using the following code.

> (def detcpiq (detrend cpiq))
DETCPIQ
> (def trndcpiq trendfit)
TRNDCPIQ

> (def diftrnd (difference trndcpiq))
DIFTRND
> (first-five diftrnd)
(3.383710504582993 3.383710504582993 3.383710504582993
3.383710504582993 3.383710504582993)
> (last-five diftrnd)
(3.383710504583064 3.3837105045829503 3.383710504583064
3.3837105045829503 3.3837105045829503)
> (plot-lines (- datesq 1900) detcpiq)
#<Object: 82cd128, prototype = SCATTERPLOT-PROTO>

We take the first-difference of the resulting trend and plot the detrended
series to make sure we did not make a coding error.

When working with time series it is often necessary to make many leads
and lags of a variable. I have written two functions for this purpose, block-
lead and block-lag. Both functions take two arguments—first, the series
for which leads or lags are to be obtained, and second, the number of leads
or lags. The block-lag leaves two objects in the workspace, laglist and
lagmat. The former is a list of the current and lagged series, in that order,
and the latter is a matrix of the lagged series with the one-period lag in the
left-most column and the maximum lag requested in the right-most column.
The latter object is returned by the function in the sense that one can write
the code

> (def lagged-cpiq (block-lag cpiq 10))
LAGGED-INFCA

to give the matrix a name other than lagmat. To give a name other than
laglist to the list of current and lagged series one has to use the copy-list
function. The objects in the workspace will be overwritten on the next occa-
sion that the function is used or when another unrelated function happens

2.6. TRANSFORMING DATA 43

to leave objects having those names in the workspace. The block-lead
function also leaves two objects in the workspace, leadlist and leadmat.
The former is a list of the leads and current series while the latter, which is
returned by the function, is a matrix of lead series. These objects have the
maximum lead of the series on the extreme-left of the list or matrix and the
current value of the series as the right-most list or matrix column.

To conveniently set up time-series variables for OLS regression analysis,
I wrote the set-time-series function which takes four arguments in the
following order—the series being prepared for future regressions, the datelist
to which that series conforms, the beginning date at which subsequent OLS-
regressions will begin, the date at which those regressions will end, and the
number of lags of the series to be included. Where the number of lags
specified exceeds zero the function calls the block-lag function discussed
above and returns the matrix of lagged values created by that function,
leaving it in the workspace along with the list of current and lagged values
called laglist. The function also leaves in the workspace a datelist called
adjdates which conforms to the rows of the matrix of lagged values and the
lists contained in laglist.

> (def cpilmat (set-time-series cpiq datesq 1974.0 2000.75 8))
CPILMAT
> (array-dimensions cpilmat)
(108 8)
> (length laglist)
9
> (def row1 (copy-matrix-row 0 cpilmat))
ROW1
> row1
(146.1293743372216 142.5238600212089 139.7667020148462
136.90349946977727 134.78260869565216 133.4040296924708
132.34358430540826 131.4952279957582)
> (first-five (select laglist 0))
(150.4772004241781 154.50689289501588 158.85471898197238
163.73276776246018 167.23223753976666)
> (first-five (select laglist 1))
(146.1293743372216 150.4772004241781 154.50689289501588
158.85471898197238 163.73276776246018)
> (first-five (select laglist 2))
(142.5238600212089 146.1293743372216 150.4772004241781
154.50689289501588 158.85471898197238)

44 CHAPTER 2. WORKING WITH XLISPSTAT

> (first-five (select laglist 3))
(139.7667020148462 142.5238600212089 146.1293743372216
150.4772004241781 154.50689289501588)
> (first-five adjdates)
(1974.0 1974.25 1974.5 1974.75 1975.0)
> (last-five adjdates)
(1999.75 2000.0 2000.25 2000.5 2000.75)

The lengths of all these lists equal the number of rows in the matrix of lagged
values and they all conform to the datelist adjdates which represents the
period over which the regression will be run. The series that represents the
first argument in the function is not modified by the function although the
first series in laglist is a modified version of it. A modification of the series
that will make it equivalent to the first list in laglist can be performed by
using the set-time-series function specifying 0 lags.

> (def newcpiq (set-time-series cpiq datesq 1974.0 2000.75 0))
NEWCPIQ
> (first-five newcpiq)
(150.4772004241781 154.50689289501588 158.85471898197238
163.73276776246018 167.23223753976666)

In this case the function returns a list rather than a matrix. If a non-
contiguous set of lags is to be included in an OLS regression, we simply
extract from laglist and bind together the particular lags we want to
include.

An alternative way to lag a series is simply to delete elements from the
end of it and make the original series conform to the lagged one by deleting
an equivalent number of elements from its beginning. For example, suppose
we want to calculate monthly the year-over-year U.S. CPI inflation rate. We
create a 12-month lag of the series by deleting the last 12 observations and
then shorten the original series to conform to the 12-month lagged one by
deleting its first 12 observations. We then make a new datelist by deleting
the first 12 observations from the original date list. Finally, we calculate the
percentage excess of the adjusted original series over the 12-month lagged
version.

> (def cpi-12 (remove-last 12 uscpim))
CPI-12
> (def adjcpi (remove-first 12 uscpim))
ADJCPI

2.6. TRANSFORMING DATA 45

> (def adjdates (remove-first 12 datesmo))
ADJDATES
> (first-five datesmo)
(1962.167 1962.25 1962.333 1962.417 1962.5)
> (first-five adjdates)
(1963.167 1963.25 1963.333 1963.417 1963.5)
> (def infyy (* 100 (/ (- adjcpi cpi-12) cpi-12)))
INFYY
> (first-five infyy)
(0.9933774834437109 0.9933774834437109 0.9933774834437109
1.3245033112582854 1.6556291390728477)

> (last-five infyy)
(3.590285110876443 4.69161834475488 4.350104821802925
3.451882845188296 3.3995815899581596)

An alternative way to calculate the year-over-year inflation rate would be to
take 100 times the difference in the logarithms of the adjusted current and
12-month lagged series.

> (def altinfyy (* 100 (- (log adjcpi)(log cpi-12))))
ALTINFYY
> (first-five altinfyy)
(0.9884759232542173 0.9884759232542173 0.9884759232542173
1.3158084577511442 1.6420730212327594)
> (last-five altinfyy)
(3.5273366379285243 4.584887467010379 4.258145205596442
3.3936418571311577 3.3430729559270844)

The results are slightly different, reflecting the fact that relative differences
are not precisely equal to the difference of the logarithms.

Finally, we occasionally need to create monthly or quarterly seasonal
dummy variables to cope with seasonality in our data. I have written two
functions to do this, seasdums-M and seasdums-Q. Both of these func-
tions take two arguments. The first is the datelist to which the variables
conform and the second is the number of the month (starting from 1 for
January or for the first quarter) which will be given by the first observation
in the datelist. For example, to create monthly seasonal dummies for our
uscpim series we would first check the datelist to determine the month of
the first observation and then apply the seasdums-M function.

46 CHAPTER 2. WORKING WITH XLISPSTAT

> (first-five datesmo)
(1962.167 1962.25 1962.333 1962.417 1962.5)
> (seasdums-M datesmo 3)
MD11

The function leaves eleven seasonal dummies in the workspace.
MD1 MD2 MD3 MD4 MD5 MD6 MD7 MD8 MD9 MD10 MD11

The dummy for December is missing and the seasonal for that month will be
incorporated in the constant term of the regressions in which these dummy
variables are included. To construct quarterly dummies we execute the line
of code

> (seasdums-Q datesq 2)
QD3

which leaves the three quarterly dummies QD1, QD2 and QD3 in the workspace.
The seasonal effect associated with the fourth dummy will be incorporated
into the constant term in regressions in which these dummy variables are
present.

2.7 Error Messages

In ending this chapter it is important to examine the types of error messages
one is likely to receive when writing XLispStat code. Leaving brackets off a
command that requires them will yield the following error.

> variables
Error: The variable VARIABLES is unbound.

The Interpreter does not recognise a function when the brackets are left off.
Alternatively, if we put brackets around a variable that the Interpreter does
recognise, it will think that it is a function.

> (uscpim)
Error: The function USCPIM is not defined.

If we put an extra bracket on the end of an expression we will get the
following error message.

> (def adjcpi (remove-first 12 uscpim)))
ADJCPI
>
Error: misplaced close paren
Happened in: #<Subr: #e04a28>

2.7. ERROR MESSAGES 47

Leaving a bracket off will cause the interpreter to wait for us to do something
when we are working interactively. A missing ending bracket in a batch file
code-line like, for example,

(def ustb3mo (read-data-file "ustb3mav.dat")

will yield the following error message.

Error: EOF reached before expression end
Happened in: #<Subr: #e04a48>

Creating a situation where the calculation requires more elements in a list
than it contains will yield the following error.

> (def cpiq (m2q-avg cpim 5 1962.25 2005.75))
Error: index out of bounds - 526
Happened in: #<Subr-SELECT: #e1f200>

Putting a capital O instead of the number zero in a function will result in
the error

> (def cpiq (m2q-avg cpim O 1962.25 2005.75))
Error: The variable O is unbound.

Frequently we make typos or forget to incorporate a variable properly in a
line of code. These are the results.

> (def cpiq (m2q-avg cpim 1962.25 2005.75))
Error: too few arguments
Happened in: #<Closure-M2Q-AVG: #f8d418>
> (def cpiq (m2q-avg cpim 1 1962 25 2005.75))
Error: too many arguments
Happened in: #<Closure-M2Q-AVG: #f8d418>

If we try to bind together or sum lists or vectors that are not of the same
length, or multiply or divide them by each other, we get this message.

> (bind-columns datesmo cpiq)
Error: dimensions do not match
Happened in: #<Subr-BIND-COLUMNS: #e1f4c0>

I have never had problems finding the source of coding errors. Most
error messages will rather easily inform us as to the type of problem in our
code. A bad situation can arise, however, in a large batch file. One should

48 CHAPTER 2. WORKING WITH XLISPSTAT

never write more than a few lines of code without processing the batch file to
check for errors. Make sure that each little section of code is correct before
proceeding. And any time a line or two of code in the middle of a batch file
is changed, check that the programming is correct by processing the file. A
terrible situation arises when there is an error somewhere in a big file, with
little indication as to its location. Should this happen, the best procedure
is not to go through the file line-by-line to try to find the error. Rather, one
should simply insert one’s favourite profanity at some point in the file and
process it. If the Interpreter hangs up on your profanity, the error in the file
is below it. Move the profanity down a few lines and try again. When the
error appears before the objection to your profanity you will know that it is
above the point where the profanity was inserted.

Always keep backups of function files and batch files that work properly.
Then, if a character is accidentally inserted somewhere in the file when you
are working on it you can always simply replace the file with its backup.

I have been rather sloppy in allowing the functions I have created to leave
objects in the workspace. The danger is that these objects may overwrite
an object of the same name that we want to maintain intact for future
reference. But, as yet, I have never had this problem. The reason, I believe,
is that I never use generic names for variables in my batch code files, like
var1 or lastvar or newvar, and I never allow any functions I write to leave
variables with names containing characters with economic meaning like, for
example, cpi or gdp, in the workspace. The descriptions surrounded by
quotation marks in the function definitions in the file addfuncs.lsp, which
are accessible by looking in the file with a text editor or by applying the help
function in an XLispStat session, note any objects required in the workspace
by each particular function and list any variables each function leaves in the
workspace. If there is any question about whether a variable of importance
is likely to be over-written, one should check there.

Chapter 3

Descriptive Statistics

This chapter focuses on ways of describing data. Readers who have trouble
with the underlying concepts should read the first chapter of my elemen-
tary statistics notes, Statistics for Economists: A Beginning, which can be
obtained at http://www.economics.utoronto.ca/floyd/intstat.html.

Functions to find the mean, median and standard-deviation are available
in XLispStat and are used in the standard way. To demonstrate, we work
with the California Test Score Data Set used by Stock and Watson.1 The
average test scores are in the file calats.dat while the math scores are in
calmts.dat and the reading test scores are in calrts.dat.

> (def av-test-score (read-data-file "calats.dat"))
AV-TEST-SCORE
> (mean av-test-score)
654.1565480550131
> (median av-test-score)
654.4499816894535
> (standard-deviation av-test-score)
19.05334764361879

No function is available to calculate the variance so I wrote one and added it
to my function file addfuncs.lsp—all that is necessary is to take the square
of the standard-deviation.

> (variance av-test-score)
363.03005642859364

1For a description of the contents of this dataset, See James H. Stock and Mark W. Wat-
son, Introduction to Econometrics, page 134.

49

50 CHAPTER 3. DESCRIPTIVE STATISTICS

Both the variance and standard-deviation functions are for use with
samples—to obtain the population variance or standard-deviation one would
have to multiply the answer by (n−1)/n where n is the number of elements
in the population.

The range can be calculated using the max and min functions

> (- (max av-test-score)(min av-test-score))
101.199951171875

and percentiles can be calculated using the quantile function as follows,
starting from the 10th percentile (quantile .1),

> (quantile av-test-score .1)
630.375
> (quantile av-test-score .2)
636.9750061035155
> (quantile av-test-score .25)
640.0
> (quantile av-test-score .5)
654.4499816894535
> (quantile av-test-score .75)
666.6749877929685
> (quantile av-test-score .9)
679.1000061035155

and so forth. The median is quantile .5, the first quartile is the 25th per-
centile or quantile .25 and the third quartile is quantile .75, so we could
calculate the interquartile range as

> (- (quantile av-test-score .75)(quantile av-test-score .25))
26.674987792968523

Alternatively, we could use the interquartile-range function to obtain
the same thing

> (interquartile-range av-test-score)
26.674987792968523

All of the above statistics can be calculated and presented for a whole list
of variables in one shot using my stats function, which takes as its two
arguments a variable and its name.

51

> (stats av-test-score "Average Test Score")

Average Test Score

Maximum 3rd Quart Median 1st Quart Minimum Mean Std. Dev.
706.750 666.675 654.450 640.000 605.550 654.157 19.053
NIL

Should it be required, cross-sectional data can be sorted using the sort-data
function which returns the sorted data arranged from their lowest to their
highest values.

> (def sorted (sort-data av-test-score))
SORTED
> (first-five sorted)
(605.550048828125 606.75 609 612.5 612.650024414062)
> (last-five sorted)
(698.449951171875 699.099975585938 700.300048828125
704.300048828125 706.75)

I have also written functions to calculate the covariance and correlation
coefficient of two variables. The covariation between two variables x and y
equals

E{(x− E{x})(y − E{y})} =
∑

(xi − x̄)(yi − ȳ).

Division of the covariation by n− 1, where n is the number of observations
in the sample, yields the covariance

cov(x, y) =
∑

(xi − x̄)(yi − ȳ)
n− 1

.

The standard deviations of x and y are

sx =

√∑
(xi − x̄)2

n− 1

and

sy =

√∑
(yi − ȳ)2

n− 1

and the coefficient of correlation is

r =
cov(x, y)

sxsy
=

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
√∑

(yi − ȳ)2
.

52 CHAPTER 3. DESCRIPTIVE STATISTICS

The covariance and correlation functions can be demonstrated using the
California district reading and math test scores, the average of which pro-
duced the average test score data used previously.

> (def math-test-score (read-data-file "calmts.dat"))
MATH-TEST-SCORE
> (def read-test-score (read-data-file "calrts.dat"))
READ-TEST-SCORE
> (covariance math-test-score read-test-score)
348.0346025684739
> (correlation math-test-score read-test-score)
0.9229014922799678

The characteristics of cross-section data can be observed very easily using
the boxplot.

> (boxplot av-test-score)
#<Object: 81c6358, prototype = SCATTERPLOT-PROTO>

It turns out that XLispStat creates an object represented by the window in
which the boxplot appears and the line returned by the Interpreter can be
used to identify the window containing the plot at a later stage, although this
is a feature we will not be making use of. The top of the box represents the
upper quartile and the bottom represents the lower quartile. The horizontal
line through the middle of the box denotes the median. The upper whisker
gives the maximum value and the lower whisker gives the minimum value.
The plot is shown in Figure 1.

An alternative way of looking at cross-sectional data is to plot them in
a histogram. XLispStat has a histogram function that also generates an
object in memory. A histogram of the average test score data is generated
below and is shown in Figure 2. For future use we give the object a name.

> (def histplot (histogram av-test-score))
HISTPLOT

Histogram plots can be used as a sneaky way of obtaining a frequency dis-
tribution. We can send HISTPLOT, which is stored as an object in memory,
a message asking it for the counts in the bins as follows.

53

Figure 1: A boxplot of the average test score data.

Figure 2: A histogram of the average test score data.

> (send histplot :bin-counts)
(3 11 27 67 65 82 85 44 19 15 2 0)

Together with the scale along the bottom of the histogram, these can be
used to construct a frequency distribution.

Another way to view cross sectional data is to use kernel density esti-
mation, combining the kernel-dens and plot-lines functions. The kernel
density can be thought of as a probability density function of the data.

> (plot-lines (kernel-dens av-test-score))
#<Object: 81531f8, prototype = SCATTERPLOT-PROTO>

54 CHAPTER 3. DESCRIPTIVE STATISTICS

As in the case of the other plotting functions the plot-lines function cre-
ates an object in memory. The resulting kernel density is shown in Figure 3.

Figure 3: A kernel-density plot of the average test score data.

The relation between two variables can be visualized using the function
plot-points which, like the other plotting functions, creates an object in
memory.

> (def xyplot (plot-points math-test-score read-test-score))
XYPLOT
> (send xyplot :variable-label 0 "math test score")
"math test score"
> (send xyplot :variable-label 1 "reading test score")
"reading test score"

The resulting plot is shown in Figure 4. Notice the messages sent to the
object xyplot to label the axes.

Time-series data present a special problem in that they must be ordered
according to date. Accordingly, to meaningfully work with these data we
must insure that each series has a corresponding dates-list that conforms
to it. Appropriate dates can be added in the spreadsheet program before
saving the data as a matrix to read into XLispStat. The dates must be
represented as a column of real numbers. And, as noted in the previous
chapter, my setdates function can be used to create a date-list for a series

55

Figure 4: A scatter plot of the math and reading test scores.

that does not yet have one and my date2obs function can be used to find
the observation number (starting at 0) associated with any given date in the
datelist conforming to a particular time series of interest.

Time-series can be plotted using the following commands, which we il-
lustrate using the data set contained in the file cpism.lsp created in the
previous chapter.

> (def plotdates (- dates-cpim 1900))
PLOTDATES
> (def tsplot (plot-lines plotdates cpius))
TSPLOT
> (send tsplot :add-lines plotdates cpica)
NIL
> (send tsplot :add-points plotdates cpius)
NIL
> (send tsplot :variable-label 1 "Index: 1995 = 100")
"Index: 1995 = 100"

In order for avoid the dates being in scientific notation along the bottom
of the plot, it is necessary to shorten the individual dates by subtracting
1900 from the date list. We next create the plot using the plot-lines
function to plot the U.S. CPI, then send it an :add-lines message to plot

56 CHAPTER 3. DESCRIPTIVE STATISTICS

the Canadian CPI and then an add-points message to impose points on the
U.S. series to distinguish it from the Canadian one. After a label is added
to the vertical axis, the plot is saved as Figure 5, with the description at
the bottom indicating that the thick line is the U.S. CPI and the thin line
is the Canadian CPI. Because the dates do not print properly, XLispStat
time series plots are not of publishable quality—to obtain publishable plots,
we simply write a matrix consisting of the date-list and the variables to be
plotted to a file and create a encapsulated post-script file using Gnuplot.

Figure 5: Consumer price indexes: U.S. (thick line) and
Canada (thin line).

It is freqently desirable to take the first-difference of a time series. We
can do this using the difference function. The first differences of the
logarithms of the Canadian and U.S. CPI series, multiplied by 100, give the
countries’ month-to-month inflation rates.

> (def infmca (* 100 (difference (log cpim-canada))))
INFMCA
> (def infmus (* 100 (difference (log cpim-us))))
INFMUS
> (def dates-infm (remove-first-element dates-cpim))
DATES-INFM

57

Notice that we must also create a new shorter datelist to conform to the
new month-to-month inflation series.

It is also useful to calculate the year-over-year inflation rate. As noted
earlier, this requires that we create 12 period lagged CPI series by dropping
the last 12 observations and then shorten the unlagged series by dropping
the first 12 observations.

> (def cpimus-12 (remove-last 12 cpim-us))
CPIMUS-12
> (def cpimca-12 (remove-last 12 cpim-canada))
CPIMCA-12
> (def cpimus (remove-first 12 cpim-us))
CPIMUS
> (def cpimca (remove-first 12 cpim-canada))
CPIMCA
> (def infyus (* 100 (- (log cpimus)(log cpimus-12))))
INFYUS
> (def infyca (* 100 (- (log cpimca)(log cpimca-12))))
INFYCA
> (def dates-infy (remove-first 12 cpim-dates))
DATES-INFY

Let us now use Gnuplot to create publication quality time series graphs
of these U.S. and Canadian inflation rates. First we write the month-to-
month and year-to-year inflation rates, along with their date lists to matrix
files.

> (write-matrix-to-file (bind-columns dates-infm infmus infmca)
"infm.mat")

T
> (write-matrix-to-file (bind-columns dates-infy infyus infyca)
"infy.mat")

T

Then we modify the file plottser.plt, contained in xlispdf.exe and
xlispdf.tar.gz, to yield the following.2

2The approach adopted here is more sophisticated but much simpler than that in my
little Gnuplot mini-manual that can be obtained off my web-page.

58 CHAPTER 3. DESCRIPTIVE STATISTICS

set title ’Month-to-Month CPI Inflation: Canada and the U.S.’
#set terminal postscript eps
#set output ’infmcaus.eps’
set size 1.0,0.7
#set yrange[-60:40]
#set xrange[-100:200]
#set xlabel ’Put the label for the X axis here’
set ylabel ’Percent Per Year’
#set key 1981,100
#set nokey
plot[1958:2002] ’infm.mat’ using 1: 2 title ’United States’ with lines, \
’infm.mat’ using 1:3 title ’Canada’ with lines
pause -1

We save this file as infmcaus.plt and process it using the command

gnuplot infmcaus.pkt

to plot the graph in a window on the screen. Usually, the key giving the the
series names and line-styles on the plot will be in the wrong place. If this is
the case, we can edit the line

#set key 1981,100

to replace 1981 with the date on the horizontal axis that will give the key
the best horizontal position on the plot and replace 100 with the number
on the vertical scale that will give the key the best vertical position on the
plot, and then uncomment the line by removing the character #, which told
Gnuplot not to read the line. We then plot the series again on the screen
and make subsequent adjustments to get the key in the most suitable posi-
tion. In this plot the key is placed as set key 1967,20. Then we remove
the # characters from the second and third lines to cause the plot to be
written to the encapsulated postscript file infmcaus.eps. Exactly the same
procedure is then followed to create a plot of the year-to-year inflation rates
in an encapsulated postscript file infycaus.eps using a Gnuplot command
file infycaus.plt. These files are then placed in our document, appearing
as Figures 6 and 7 below.

59

-15

-10

-5

0

5

10

15

20

25

30

35

1960 1965 1970 1975 1980 1985 1990 1995 2000

P
er

ce
nt

 P
er

 Y
ea

r

United States
Canada

Figure 6: Month-to-month CPI inflation rates: United States and Canada.

-2

0

2

4

6

8

10

12

14

1960 1965 1970 1975 1980 1985 1990 1995 2000

P
er

ce
nt

 P
er

 Y
ea

r

United States
Canada

Figure 7: Year-to-year CPI inflation rates: United States and Canada.

I have written two additional functions that are useful in examining time
series data. They are the standard autocorrelation and partial autocorrela-
tion functions, acf and pacf. They are applied to the Canadian CPI and
CPI-inflation rate series as follows, where UCL and LCL refer to the upper
and lower confidence limits.3

3Readers whose understanding of the time-series concepts underlying these functions
should read my “Note on Time-Series Basics”, available at the same site as my Statistics
For Economists: A Beginning.

60 CHAPTER 3. DESCRIPTIVE STATISTICS

> (acf infyca 16 "ACF--INFYCA")

ACF--INFYCA

LAG LCL ACF UCL
1 -0.086 0.992 0.086
2 -0.148 0.982 0.148
3 -0.190 0.971 0.190
4 -0.224 0.959 0.224
5 -0.253 0.946 0.253
6 -0.278 0.933 0.278
7 -0.300 0.919 0.300
8 -0.320 0.904 0.320
9 -0.339 0.888 0.339
10 -0.355 0.871 0.355
11 -0.371 0.853 0.371
12 -0.385 0.836 0.385
13 -0.398 0.824 0.398
14 -0.411 0.813 0.411
15 -0.423 0.802 0.423
16 -0.434 0.790 0.434

NIL

Autocorrelation Function: Canadian year-to year
CPI inflation rate.

61

> (pacf infyca 16 "PACF--INFYCA")

PACF--INFYCA

LAG LCL PACF UCL
1 -0.086 0.992 0.086
2 -0.086 -0.135 0.086
3 -0.086 -0.049 0.086
4 -0.086 -0.060 0.086
5 -0.086 -0.026 0.086
6 -0.086 -0.032 0.086
7 -0.086 -0.033 0.086
8 -0.086 -0.076 0.086
9 -0.086 -0.033 0.086

10 -0.086 -0.064 0.086
11 -0.086 -0.018 0.086
12 -0.086 -0.009 0.086
13 -0.086 0.460 0.086
14 -0.086 -0.053 0.086
15 -0.086 -0.090 0.086
16 -0.086 -0.113 0.086

NIL

Partial Autocorrelation Function: Canadian
year-to-year CPI inflation rate.

62 CHAPTER 3. DESCRIPTIVE STATISTICS

The autocorrelations portrayed in the corresponding table and plot are
the simple correlations between the current level of the variable and each of
the 16 past levels in turn. The partial autocorrelations are the correlations
between the current level of the variable and each of the 16 past levels holding
the remaining 15 lagged levels constant. From an examination of the plot
of the autocorrelations, one cannot rule out the possibility that the second
lag of the variable is correlated with is current level simply because it is
correlated with the first lag which is correlated with the current level. As can
be clearly seen from the plot of the partial autocorrelations, the current level
and one lag are highly correlated, but the current level and most subsequent
lags are completely uncorrelated once the correlation between the current
level and first lag is accounted for.

Chapter 4

Hypothesis Tests

This chapter is devoted to issues surrounding the testing of hypothesis.
Readers needing background should read Chapter 2 of the Stock and Watson
textbook,1 or for a more elementary treatment, Chapters 2 through 7 of my
elementary statistics notes cited at the beginning of the previous chapter.2

4.1 Probability Densities and Quantiles

XLispStat can be used, of course, to calculate probability densities and
quantiles of the commonly used probability distributions. Take first the
standard-normal distribution. We use the normal-cdf function to cal-
culate the fraction of the cumulative probability density lying to the left of
some selected quantile z.

> (normal-cdf -3)
0.00135
> (normal-cdf -2)
0.02275
> (normal-cdf -1)
0.15865
> (normal-cdf 0)
0.5
> (normal-cdf 1)
0.84134

1James H. Stock and Mark W. Watson, Introduction to Econometrics
2Statistics for Economists: A Beginning.

63

64 CHAPTER 4. HYPOTHESIS TESTS

> (normal-cdf 2)
0.97725
> (normal-cdf 3)
0.99865

Using calculations like these we can confirm that

> (* (normal-cdf -1) 2)
0.31731
> (* (normal-cdf -2) 2)
0.04550

or nearly 32 percent of the distribution lies outside one standard deviation
from the mean and somewhat less than 5 percent of the distribution lies
outside two standard deviations. It follows that about 68 percent of the
distribution lies within one standard deviation from the mean and somewhat
more than 95 percent of it lies within two standard deviations from the mean.

We can also find the z-value or quantile associated with any cumulative
probability or quantile using the normal-quant function.

> (normal-quant .95)
1.6446
> (normal-quant .975)
1.95996

confirms that approximately 1.645 is the critical value of z to the left of
which 95 percent of the density lies, and to the right of which 5 percent of
the density lies, and approximately 1.96 is the z-value to the left of which
.975 of the distribution lies and to the right of which only .025 or 2.5 percent
of the density lies. And the z-value beyond which only 1 percent of the
distribution lies is

> (normal-quant .99)
2.32635

Now consider the t-distribution. Both the t-cdf and t-quant func-
tions take two arguments—first the quantile or cumulative density and sec-
ond the degrees of freedom. With 5 degrees of freedom, the percentage of
the probability density falling to the left of +2 and +1 standard deviations,
respectively, are

> (t-cdf 2 5)
0.94903

4.1. PROBABILITY DENSITIES AND QUANTILES 65

> (t-cdf 1 5)
0.81839

Note that the above cumulative densities are smaller than would be obtained
using (normal-cdf 2) and (normal-cdf 1) because the t-distribution has
flatter tails. The t-value or quantile to the left of which 95 percent of the
density lies can be calculated as

> (t-quant .95 3)
2.35336

which is more standard deviations from the mean than the 95th quantile of
the normal distribution. Here we used only 3 degrees of freedom.

Turn now to the binomial distribution, the cumulative densities of
which are obtained using the binomial-cdf function which takes three
arguments—in order, the number of occurrences, the number of tries and
the probability of a success. Thus, the probability of getting 6 or less heads
in 10 flips of a fair coin is

> (binomial-cdf 6 10 .5)
0.828125

And the probability of getting 5 or less heads in 10 tosses is

> (binomial-cdf 5 10 .5)
0.623047

So the probability of obtaining 6 heads in 10 tosses is

> (- (binomial-cdf 6 10 .5)(binomial-cdf 5 10 .5))
0.205078

and the probability of getting 5 heads in 10 tosses is

> (- (binomial-cdf 5 10 .5)(binomial-cdf 4 10 .5))
0.246094

When the probability of success is .5 the binomial distribution is symmetri-
cal, so the probability of obtaining 4 heads in 10 tosses

> (- (binomial-cdf 4 10 .5)(binomial-cdf 3 10 .5))
0.205078

is the same as the probability of obtaining 6 heads in 10 tosses. In this case
the probability of obtaining either 0 heads or 10 heads in 10 tosses is thus
equal to

66 CHAPTER 4. HYPOTHESIS TESTS

> (- (binomial-cdf 10 10 .5)(binomial-cdf 9 10 .5))
9.765625E-4

or .0009765625.

Next consider the poisson distribution. Suppose that the f-word is heard
3 times per minute on average on the front steps of a particular high-school.
Using the poisson-cdf function we can calculate the probability that it will
be heard twice or less in a given minute as

> (poisson-cdf 2 3)
0.423190

and the probability it would be said three times or less would be

> (poisson-cdf 3 3)
0.647232

so the probability it would be said three times is

> (- (poisson-cdf 3 3)(poisson-cdf 2 3))
0.224042

Here, the left-most argument in the poisson-cdf function is the specified
number of occurrences and the other argument is the mean number of oc-
currences.

Turning now to the F-distribution, suppose we have a value of the
F-statistic of 3.07 with 3 degrees of freedom in the numerator and 7 in the
denominator. The probability of obtaining a value of the statistic less than
3.07 is obtained using the f-cdf function as

> (f-cdf 3.07 3 7)
0.899755

or approximately .9 and the probability of obtaining a larger value is thus
approximately equal to .1. The 10% critical value of F can be obtained from
the f-quant function as follows.

> (f-quant .9 3 7)
3.074072

Notice that unity minus the chosen critical probability is entered in the
f-quant function in the left-most position, followed by the degrees of free-
dom in the numerator and denominator respectively. Appropriately modi-
fied versions of the last expression above can thus be passed to the Inter-
preter to obtain any chosen critical value of F.

4.1. PROBABILITY DENSITIES AND QUANTILES 67

The critical values of the chi-square distribution can be found using the
chisq-quant function.

> (chisq-quant .95 10)
18.307038

where, as in the case of the F-distribution, the left-most number (.95) is
unity minus the chosen critical probability, and the right-most number is
the degrees of freedom. The probability that a Chi-square statistic will
be below some particular level—say, 10.52—when there are 25 degrees of
freedom is obtained using the chisq-cdf function.

> (chisq-cdf 10.52 25)
0.005001

This gives the mass in (or area of) the lower tail of the distribution below
10.52. This area is small because the mean of the distribution, which equals
the degrees of freedom, is 25. Consider, alternatively, the probability that
the statistic will be below some value above the mean, say 50.

> (chisq-cdf 50 25)
0.997869

The probability mass in the corresponding upper tail is

> (- 1 (chisq-cdf 50 25))
0.003131

A distribution of interest for which XLispStat does not have cumula-
tive density and quantile functions is the exponential distribution. This
distribution applies to the amount of time between occurrences. The prob-
ability that the waiting time X will be above some number x is

P (X ≥ x) = e−λx

where λ is the reciprocal of the mean waiting time. We can calculate this
probability using XLispStat as follows when the mean waiting time is 4
hours (λ = .25) and x is 6 hours:

> (exp (* -.25 6))
0.223130

The probability of having to wait longer than the mean will be

> (exp (* -.25 4))
0.367879

68 CHAPTER 4. HYPOTHESIS TESTS

4.2 Plotting Probability Distributions

To plot probability distributions we need the probability densities rather
than the cumulative probability densities. And we need a range of values
for which the densities are to be plotted.

It is often useful to compare kernel densities with the normal distribution
to make a guess as to whether a particular variable is in fact normally
distributed. Consider, for example, the kernel-density of the average test
score plotted in Figure 3. To compare it to a normal distribution we need
to standardise the variable. Taking the deviation of the average test scores
from their mean and dividing by the standard deviation of the average test
score, we create the new variable z-ats.

> (def z-ats (/ (- av-test-score (mean av-test-score))
(standard-deviation av-test-score)))
Z-ATS

Next, we calculate the kernel-density of this new standardised average-test-
score variable.

> (def kd-ats (kernel-dens z-ats))
KD-ATS

The kernel-dens function produces a list-object containing two lists—a
list of 30 evenly-spaced levels of the standardised average test score running
from minimum to maximum with zero in the middle (representing the x-axis
in a kernel-density plot), and a list giving the density of the kernel at each of
these average test scores. The former list can be obtained from the kd-ats
object using the select function.

> (def zval (select kd-ats 0))
ZVAL

A plot object kdplot is created

> (def kdplot (plot-lines kd-ats))
KDPLOT

and then sent an add-lines message to add a standard normal density
function.

> (send kdplot :add-lines zval (normal-dens zval))
NIL

4.2. PLOTTING PROBABILITY DISTRIBUTIONS 69

The result is shown in Figure 8—the approximation is obviously poor toward
the center of the kernel.3

Figure 8: Standardized kernel-density of average test scores
compared with normal-density.

To enable one to visualize the shapes of the various distributions for
different values of their parameters, I have constructed a number of demo-
plot functions. These will load automatically with addfuncs.lsp and the
code for them can be examined by loading that file into an editor. These
functions are as follows: plot-binomial

> (plot-binomial n p)

takes the two parameters n and p, where n is the number of tries and p is the
probability of success. These can be chosen at will for illustrating various
shapes of the distribution.

3Actually, four types of kernels are supported. In Figure 8 the default, B

(bisquare), is used. The others are G (Gaussian), T (triangular) and U (uniform).
To use, say, the Gaussian kernel we would rewrite the expression defining z-ats as
(def kd-ats (kernel-dens z-ats :type ’g)).

70 CHAPTER 4. HYPOTHESIS TESTS

plot-poisson

> (plot-poisson r m)

plots the Poisson distribution using the two parameters r and m, where r
is the right-most point in the range along which the distribution is to be
plotted (the left-most point is, of course, zero) and m is the mean.

plot-chisq

> (plot-chisq v)

plots the Chi-square distribution for a chosen degrees of freedom parameter
v.

plot-F

> (plot-F r dfn dfd)

plots the F-distribution, where r is the right-most point of the range of
positive values over which the function is to be plotted and dfn and dfd
represent the degrees of freedom in the numerator and denominator.

plot-t

> (plot-t v)

plots the t-distribution using the one parameter v representing the degrees
of freedom.

plot-standard-normal

> (plot-standard-normal)

plots the standard normal distribution—the function takes no parameters.

plot-t-on-normal

> (plot-t-on-normal v)

plots a t-distribution with chosen degrees of freedom v on top of a standard
normal distribution that has already been plotted using the plot-standard-
normal function. Successive application of this function will enable you to
visualise how the t-distribution approaches the standard normal distribution
as the degrees of freedom increase.

plot-normal-on-t

> (plot-normal-on-t)

plots a standard normal distribution on top of a t-distribution that has been
previously plotted using the plot-t function. No parameters are required.

4.3. GENERATING RANDOM DATA 71

4.3 Generating Random Data

We can generate a set (list) of independent random numbers distributed
uniformly between zero and 1 using the function

> (def nums (uniform-rand 2000))
NUMS

This generates 2000 numbers. By multiplying every number in the list by
an appropriate constant n we can transform the list into a list of random
numbers uniformly distributed between 0 and n. Letting n = 5 we have

> (def newnums (* nums 5))
NEWNUMS

To convince ourselves that the distribution of these numbers could have
reasonably come from a uniform distribution between 0 and 5 we plot its
kernel-density in Figure 9.

> (plot-lines (kernel-dens newnums))
#<Object: 81a23e8, prototype = SCATTERPLOT-PROTO>

The list can be transformed to shift the range to, say, between 1 and 6 by
adding 1 to each element in it.

To select a sample of, say 10, random integers between 2 and 50 we send
the Interpreter the expression

> (def sampnums (sample (iseq 2 50) 10))
SAMPNUMS
> sampnums
(24 15 10 37 13 21 42 31 35 36)

The sampling is without replacement—no number can be selected twice.
To select a sample with replacement, we send the following message to the
Interpreter, placing a t in position after the number specifying the size of
sample.

> (sample (iseq 2 4) 10 t)
(2 4 3 2 4 3 2 3 3 3)

To draw a sample of 100 from a standard normal distribution we send the
message

> (def normvars (normal-rand 100)))
NORMVARS

72 CHAPTER 4. HYPOTHESIS TESTS

Figure 9: Kernel-density of uniformily distributed random
numbers between 0 and 5.

We could make this sample come from a normal distribution with mean
µ = 10 and standard deviation σ = 3 by simply transforming NORMVARS,
multiplying each of the numbers in that list by the standard deviation and
adding the mean—this simply transforms a z-value into an x-value where z
is the standardised value of x.

> (def newnormvars (+ (* normvars 3) 10))
NEWNORMVARS

To select a list of three samples of 100 from the standard normal distribution
we execute the command

> (def normlist (normal-rand (list 100 100 100)))
NORMLIST

Similarly, to select samples of 10 from a t- Chi-square or F-distribution, use
the commands

> (def tnums (t-rand 10 4))
TNUMS
> (def csnums (chisq-rand 10 4))
CSNUMS

4.4. TESTS OF THE MEAN AND STANDARD DEVIATION 73

> (def fnums (f-rand 10 2 5))
FNUMS

choosing degrees of freedom equal to 4 in the case of the t- and Chi-square
distributions and 2 degrees of freedom in the numerator and 5 degrees of
freedom in the denominator in the case of the F-distribution.

4.4 Tests of the Mean and Standard Deviation

Suppose that we are interested in whether the mean California district av-
erage test score exceeds 650. Our null-hypothesis then becomes µ = 650,
the alternative hypothesis is µ > 650, and our point estimate of µ is X̄, the
sample mean. We need to calculate the mean of the average test scores, the
sample size and the sample standard deviation.

> (def av-test-score (read-data-file "calats.dat"))
AV-TEST-SCORE
> (def meanats (mean av-test-score))
MEANATS
> meanats
654.1565480550131
> (def n (length av-test-score))
N
> n
420
> (def stdats (standard-deviation av-test-score))
STDATS
> stdats
19.05334764361879

Since the variance of the mean is

σ2
m =

σ2

n

we calculate a point estimate of the standard deviation of the mean using
the sample standard deviation and the sample size as follows,

> (def std-meanats (/ stdats (sqrt n)))
STD-MEANATS
> std-meanats
0.929708167766067

74 CHAPTER 4. HYPOTHESIS TESTS

The t-value is then

> (def trat (/ (- meanats 650) std-meanats))
TRAT
> trat
4.470809442279713

and the P-Value of the test, which here gives the probability that sample
mean could be greater than its observed value if the null-hypothesis is true,
is

> (def pv (- 1 (normal-cdf trat)))
PV
> pv
.000003896205348130621

so we can reject the null-hypothesis at the 1% level. A 1% confidence interval
for the population mean of the average test score data, µ, can be calculated
as follows, starting with the half-width for the confidence interval.

> (def hw (* std-meanats (normal-quant .99)))
HW
> hw
2.162824619560995
> (def lci (- meanats hw))
LCI
> (def uci (+ meanats hw))
UCI
> lci
651.9937234354521
> uci
656.3193726745741

so that 651.99 < µ < 656.32.
Now let us test the hypothesis that the standard deviation of the pop-

ulation is equal to σ0 = 20. The sum of squares of n − 1 standardised
independent normal variates is distributed as Chi-Square with n−1 degrees
of freedom. That is

n∑

i=1

Z 2
i =

n∑

i=1

(Xi − X̄) 2

σ2
= χ 2 (n− 1)

4.5. TESTS OF THE DIFFERENCE BETWEEN TWO MEANS 75

where σ2 is the population variance and the use of X̄ instead of µ in the
calculation reduces the number of independent summed squares, the degrees
of freedom, by 1. Combining this with the formula for the sample variance,

s 2 =
n∑

i=1

(Xi − X̄) 2

n− 1

we obtain
(n− 1) s 2

σ2
= χ 2 (n− 1).

Substituting σ2
0 = 20 2 = 400 and s 2 = stdats2 = 19.05334764361879 2 into

this expression yields

> (def chsqvar (* (- n 1)(/ (variance av-test-score) 400)))
CHSQVAR
> chsqvar
380.2739841089518
> (def pv (- 1 (chisq-cdf chsqvar (- n 1))))
PV
> pv
0.9127908699966177

There is almost a 92% chance that the observed sample value of s of around
19.05 could occur by random chance if the true value of σ were 20. The
null-hypothesis cannot be rejected. It should be kept in mind that the
formulae on which this conclusion is based incorporate an assumption that
the average test scores are normally distributed. We will rigorously examine
this assumption below.

4.5 Tests of the Difference Between Two Means

Now let us turn to hypotheses about the difference in means. Consider, for
example, the mean rates of year-over-year CPI inflation in Canada and the
United States. The data are in the file infcaus.lsp.

> (load "infcaus.lsp")
; loading infcaus.lsp
T
> (variables)
(DATES-INF INFMMCA INFMMUS INFYYCA INFYYUS)

76 CHAPTER 4. HYPOTHESIS TESTS

The means are

> (mean infyyca)
4.248020425852652
> (mean infyyus)
4.124029449387656

and the Canadian mean inflation rate is larger than the U.S. one by

> (def difmeans (- (mean infyyca)(mean infyyus)))
DIFMEANS
> difmeans
0.12399097646499602

As a factual matter it is unquestionable that the year-over-year inflation
rate was higher in Canada than in the U.S. over the period 1958 through
2002.

Can we infer from this that the economic and political realities in Canada
as compared to the U.S. are such that there is a greater tendency for inflation
to occur in the former country? This is a question about the differences
between the underlying process of inflation generation in the two countries,
of which the data for the years 1958-2002 represent a sample. It focuses
on the underlying population mean rather than the sample mean. What
can we infer about the difference between the population means from the
difference in the sample means? Let the null-hypothesis be that the political
and governmental process in Canada generates the same rate of year-over-
year inflation as the corresponding process in the U.S. Can we reject this
null-hypothesis?

The difference between the sample means is a point estimate of the
difference between the population means—that is,

E{µca − µus} = X̄ca − X̄us

where Xca and Xus represent the year-over-year inflation rates of the two
countries. The variance of the difference in the sample means, where the
sample means are independently distributed, is

s2
dm =

s2
ca

n
+

s2
us

n

where s2
ca and s2

us are the variances of the two countries’ year-over-year
inflation rates and n is the number of months in the sample. We can thus
calculate the standard deviation of the difference in the sample means as
follows.

4.5. TESTS OF THE DIFFERENCE BETWEEN TWO MEANS 77

> (def vardm (+ (/ (variance infyyca)(length infyyca))
(/ (variance infyyus)(length infyyus))))
VARDM
> vardm
0.032170447488496956

> (def stddm (sqrt vardm))
STDDM
> stddm
0.17936122069303875

The z-value for the hypothesis test is thus

z =
(X̄ca − X̄us)− (µca − µus)

sdm
=

X̄ca − X̄us

sdm

which equals

> (def z (/ difmeans stddm))
Z
> z
0.6912919971547019

and the P-Value of a two-tailed test is

> (def pv (* 2 (- 1 (normal-cdf z))))
PV
> pv
0.48938206001278184

There is almost a 50% chance of observing a difference between the sample
means of 0.124 when the difference between the population means is actually
zero. We cannot reject the null-hypothesis that the underlying institution-
ally determined inflation rates of the two countries are the same.

One might be tempted to assume that the countries’ year-over-year in-
flation rates are normally distributed with the same variance, σ. A sample
estimate of the common variance could be obtained using the pooled or
combined estimator

s 2
c =

(nca − 1) s 2
ca + (nus − 1) s 2

us

(nca − 1) + (nus − 1)
=

s 2
ca + s 2

us

2

78 CHAPTER 4. HYPOTHESIS TESTS

where the sample sizes are the same for both countries.4 The variance of
the difference in the means would then become

s 2{X̄ca − X̄us} = s 2
c

[
1

nca
+

1
nus

]
=

2 s 2
c

n
=

s 2
ca + s 2

us

n

where ncs = nus = n. Before going this route, however, we should plot
the year-over-year inflation rate series to see if they could reasonably be
regarded as normally distributed.

> (def infplot (plot-lines (kernel-dens infyyus)))
INFPLOT
> (send infplot :add-lines (kernel-dens infyyca))
NIL
> (send infplot :add-points (kernel-dens infyyus))
NIL

It is obvious from the presentation of this plot in Figure 10 that normality
can be rejected.

Figure 10: Kernel-densities of the U.S. and Canadian year-over-year
inflation rates.

4Essentially, we are taking weighted average of the two variances with the weights being
the countries’ (in this case equal) contributions to the total degrees of freedom.

4.5. TESTS OF THE DIFFERENCE BETWEEN TWO MEANS 79

As can be seen from the following calculation

> (correlation infyyus infyyca)
0.873850201404519

the correlation between the Canadian and the U.S. year-over-year inflation
rates is quite high. This suggests that a more efficient way of testing the
hypothesis that the population means are equal would be to work with the
paired differences—that is, to take the difference between the two year-over-
year inflation rate series and use the variance of the difference as a basis for
estimating the variance of the mean difference.

> (def infdifyy (- infyyca infyyus))
INFDIFYY
> (def midffy (mean infdifyy))
MIDFFY
> midffy
0.12399097646499668

The mean of the difference between the two series is identical to the differ-
ence of the means. The variances of the difference and of the mean of the
difference are

> (def varidyy (variance infdifyy))
VARIDYY
> (def varmdif (/ varidyy (length infdifyy)))
VARMDIF
> varmdif
0.004154455113730882

The z-value for a two-sided test and the resulting P-Value are

> (def z (/ midffy (sqrt varmdif)))
Z
> z
1.9236809519761264
> (def pvtst (* 2 (- 1 (normal-cdf z))))
PVTST
> pvtst
0.05439458705831535

The null-hypothesis that the institutional and political processes in the two
countries generate the same inflation rates can almost be rejected at the
5% level. The P-Value for the probability that the observed excess of the

80 CHAPTER 4. HYPOTHESIS TESTS

Canadian inflation over the U.S. inflation rate could result from random
chance when the institutional and political processes in the two countries
generate the same year-over-year inflation rate is less than 3% as can be
seen from the following calculation.

> (def pvost (- 1 (normal-cdf z)))
PVOST
> pvost
0.027197293529157673

Although the excess Canadian inflation may be statistically significant, the
difference of 0.12 percentage points can hardly be viewed as economically
significant.

4.6 Tests of Goodness of Fit

We assumed above that the California average test scores by district were
normally distributed. The validity of that assumption can be verified or
refuted by a Chi-Square test of the goodness of fit of the standardised av-
erage test score data with a standard normal distribution.5 This involves a
comparison of the sample data with the expected outcome if null-hypothesis
that the data are normally distributed is true. The standard procedure is
to divide the sample data into classes so that the expected frequencies in all
classes will be equal under the null-hypothesis. It is considered desirable to
have as many classes as possible consistent with the expected frequencies in
all classes being no less than 5. Given that there are 420 districts having
average test scores, this requires 84 classes.

> (def av-test-score (read-data-file "calats.dat"))
AV-TEST-SCORE
> (def numclasses (/ (length av-test-score) 5))
NUMCLASSES
> numclasses
84

We then find the z-values of the standard-normal distribution which divide
the unit probability weight into 84 equal proportions.

> (def classprob (/ 1 84))
CLASSPROB

5The intuition behind and details of this test is discussed in my Statistics for
Economists: A Beginning, pages 177-180.

4.6. TESTS OF GOODNESS OF FIT 81

> classprob
0.011904761904761904
> (def ncbound (repeat 0 83))
NCBOUND
> (setf (select ncbound 0)(normal-quant classprob))
-2.260188991329375
> (dotimes (i 82)
(setf (select ncbound (+ i 1))(normal-quant (* classprob (+ i 2))))
)
> (first-five ncbound)
(-2.260188991329375 -1.9807523966472789 -1.8027430907391901
-1.668391193947079 -1.5587835495029951)

> (last-five ncbound)
(1.558783549502995 1.6683911939470786 1.8027430907391888
1.9807523966472784 2.2601889913293727)
> (chosen-five ncbound 40)
(-0.059717099785322886 -0.02984524291923956 0.0 0.02984524291923942
0.0597170997853226)

These quantiles can then be used to obtain the corresponding boundaries
for the standardised average test score data. The data are standardised as
follows.

> (def meanats (mean av-test-score))
MEANATS
> meanats
654.1565480550131
> (def stdats (standard-deviation av-test-score))
STDATS
> stdats
19.05334764361879
> (def datbound (+ (* stdats ncbound) meanats))
DATBOUND
> (length ncbound)
83
> (length datbound)
83
> (first-five datbound)
(611.0923814629344 616.4165840457614 619.8082572350276
622.3681106311872 624.4565031851785)

82 CHAPTER 4. HYPOTHESIS TESTS

> (last-five datbound)
(683.8565929248477 685.944985478839 688.5048388749987
691.8965120642648 697.2207146470918)

The data can then be sorted into these bins using my bin-sort function
which takes two arguments—first, the data-list to be sorted and second,
the boundaries of the bins into which the elements are to be sorted. The
function returns a list of bin-counts. The upper-bound on the right-most
bin is ∞ and the lower-bound on the left-most bin is −∞, resulting in one
less finite boundary than there are bins.

> (def datcounts (bin-sort av-test-score datbound))
DATCOUNTS
> datcounts
(3 6 5 5 6 5 5 5 3 4 7 5 10 7 5 6 5 5 6 5 4 4 3 4 7 7 5
5 6 4 5 4 2 3 2 4 4 5 9 2 5 5 4 7 9 1 8 4 5 2 3 5 4 2 5
6 10 3 7 5 5 8 8 5 3 6 8 1 6 11 4 4 1 4 3 4 7 4 6 4 3 4
7 7)

The corresponding bin counts of the standard-normal distribution are

> (def ndcounts (repeat 5 84))
NDCOUNTS
> ndcounts
(5 5
5 5
5 5)

Now we take the difference between the data counts and standard normal
counts, square it and divide it by the number of counts in all the standard-
normal bins

> (def difcounts (- datcounts ndcounts))
DIFCOUNTS
> difcounts
(-2 1 0 0 1 0 0 0 -2 -1 2 0 5 2 0 1 0 0 1 0 -1 -1 -2 -1
2 2 0 0 1 -1 0 -1 -3 -2 -3 -1 -1 0 4 -3 0 0 -1 2 4 -4 3
-1 0 -3 -2 0 -1 -3 0 1 5 -2 2 0 0 3 3 0 -2 1 3 -4 1 6 -1
-1 -4 -1 -2 -1 2 -1 1 -1 -2 -1 2 2)
> (def sqdifcounts (^ difcounts 2))
SQDIFCOUNTS

4.6. TESTS OF GOODNESS OF FIT 83

> sqdifcounts
(4 1 0 0 1 0 0 0 4 1 4 0 25 4 0 1 0 0 1 0 1 1 4 1 4 4 0
0 1 1 0 1 9 4 9 1 1 0 16 9 0 0 1 4 16 16 9 1 0 9 4 0 1 9
0 1 25 4 4 0 0 9 9 0 4 1 9 16 1 36 1 1 16 1 4 1 4 1 1 1
4 1 4 4)
> (def sqdc/5 (/ sqdifcounts 5))
SQDC/5
> sqdc/5
(0.8 0.2 0 0 0.2 0 0 0 0.8 0.2 0.8 0 5 0.8 0 0.2 0 0 0.2
0 0.2 0.2 0.8 0.2 0.8 0.8 0 0 0.2 0.2 0 0.2 1.8 0.8 1.8
0.2 0.2 0 3.2 1.8 0 0 0.2 0.8 3.2 3.2 1.8 0.2 0 1.8 0.8
0 0.2 1.8 0 0.2 5 0.8 0.8 0 0 1.8 1.8 0 0.8 0.2 1.8 3.2
0.2 7.2 0.2 0.2 3.2 0.2 0.8 0.2 0.8 0.2 0.2 0.2 0.8 0.2
0.8 0.8)

The sum of these squared count-differences, each divided by the the com-
mon standard-normal bin count is distributed as Chi-Square with degrees
of freedom equal to the number of bins minus the number of parameters
estimated from the data—two in this case, the sample mean and the sample
standard deviation. The underlying formula is

k∑

k=1

(fi − Fi)2

Fi
= χ2(k −m− 1)

where fi is the frequency of the data in the ith bin and Fi is the frequency
in the ith bin implied by normality.

> (def chsqstat (sum sqdc/5))
CHSQSTAT
> chsqstat
69.2
> (def df (- 84 2))
DF
> df
82

so the P-Value for the test is

> (def chsqpv (chisq-dens chsqstat df))
CHSQPV
> chsqpv
0.02107559352933642

84 CHAPTER 4. HYPOTHESIS TESTS

We have to reject the null-hypothesis that the average test score data are
normally distributed at slightly above the 2% level. This calls into question
our hypothesis test concerning the magnitude of the standard deviation of
these data. In real-world analysis we would have tested for normality before
doing that particular hypothesis test.

Chapter 5

Linear Regression Analysis

This chapter focuses on the mechanics of OLS regression analysis. Readers
having difficulty with the material can obtain appropriate background by
reading Chapters 4, 5, and 16 of the Stock and Watson textbook. Those
who have difficulty with that material can first read Chapters 8, 9 and 10 of
my Statistics for Economists: A Beginning. For background on matrix alge-
bra, read Chapter 4 of Alpha Chiang’s mathematical economics textbook,1

or alternatively, Appendix A of the econometrics textbook by Johnston and
DiNardo.2 We begin by working through the analysis using matrix calcu-
lations. Then we show how to use the regression-model object provided by
XLispStat. Issues regarding heteroskedasticity and serial correlation in the
residuals and the problem of multicollinearity are then discussed. And fi-
nally, three new OLS regression functions useful for day-to-day econometric
analysis, together with some supporting functions, are presented.

1Alpha C. Chiang, Fundamental Methods of Mathematical Economics, Third Edition,
McGraw-Hill, 1984, pages 54-88.

2Jack Johnston and John DiNardo, Econometric Methods, McGraw-Hill, 1997, pages
455-67.

85

86 CHAPTER 5. LINEAR REGRESSION ANALYSIS

5.1 Using Matrix Calculations

We begin by loading the California Standardised Testing and Reporting data
set, some elements of which were used above.3 All of the variables that are
important for our purposes have been copied to the lisp file casdata.lsp
which can be loaded into the workspace.

> (load "casdata.lsp")
; loading casdata.lsp
T
> (variables)
(AV-INCOME AV-MATH-SCORE AV-READ-SCORE AV-TEST-SCORE
COMPS-PER-STUDENT EXPEND-PER-STUDENT NUMTEACH OBSNUM PCT-ESL
PCT-LUNCH PCT-PUBASS STUD-TEACH-RATIO TOTENROL)

The variables, which are listed alphabetically above, cover 420 districts in
California and can be described as follows:

OBSNUM —observation (district) number
AV-MATH-SCORE —average math Score
AV-READ-SCORE —average reading Score
AV-TEST-SCORE —average test Score
TOTENROL —total enrolment
NUMTEACH —number of teachers
STUD-TEACH RATIO —student/teacher ratio
AV-INCOME —average income
EXPEND-PER-STUDENT —expenditures per student
COMPS-PER-STUDENT —computers per student
PCT-ESL —percentage of students having English as

their second language
PCT-LUNCH —percentage of students eligible for

a subsidised lunch
PCT-PUBASS —percentage of students on public assistance

We reproduce here the regression presented by Stock and Watson in
column 5 of Table 5.2 in their Introduction to Econometrics on page 182.

3These data are used by Stock and Watson in their Introduction to Econometrics,
referred to previously. They discuss them in their Appendix 4.1, on pages 134 and 135.

5.1. USING MATRIX CALCULATIONS 87

To begin, we need an X matrix of independent variables, with the con-
stant attached as the left-most column and a Y vector containing the de-
pendent variable. We create Y using the coerce function, a vector of ones
using the repeat function and X using the bind-columns function.

> (def Y (coerce av-test-score ’vector))
Y
> (def const (repeat 1 (length Y)))
CONST
> (def X (bind-columns const stud-teach-ratio pct-esl pct-lunch
pct-pubass))
X

The formula for the vector of coefficients is

b = (X′X)−1X′Y

We program it using the transpose, matmult and inverse functions.

> (def xtr (transpose x))
XTR
> (def xtrx (matmult xtr x))
XTRX
> (def xtrxinv (inverse xtrx))
XTRXINV
> (def xtry (matmult xtr y))
XTRY
(def coeffs (matmult xtrxinv xtry))
COEFFS
> coeffs
#(700.3942701828369 -1.0144897057204252 -0.1298071233417179
-0.5286162083894679 -0.04786851798742055)

The residuals are
e = Y −Xb

> (def resids (- y (matmult x coeffs)))
RESIDS

and the sum of squared residuals is equal to e′e which is calculated using
the inner-product function. The outer-product function would be used
to obtain ee′.

88 CHAPTER 5. LINEAR REGRESSION ANALYSIS

> (def sse (inner-product resids resids))
SSE
> sse
34247.09076897185

The total sum of squares is (Y − Ȳ)(Y − Ȳ)′

> (def ssto (inner-product (- y (mean y)) (- y (mean y))))
SSTO
> ssto
152109.5944940476

and the sum of squares due to regression is then

> (def ssr (- ssto sse))
SSR
> ssr
117862.50372507575

After obtaining the degrees of freedom

> (def df (- (length y)(select (array-dimensions x) 1)))
DF
> df
415

we can calculate the mean-squared error, the square-root of which is the
standard error of estimate.

> (def mse (/ sse df))
MSE
> mse
82.52311028667916
> (sqrt mse)
9.084223152624508

Given that we have four independent variables, the mean square due to
regression is

> (def msr (/ ssr 4))
MSR
> msr
29465.625931268936

5.1. USING MATRIX CALCULATIONS 89

and the F-statistic for significance of the regression is

> (def fstat (/ msr mse))
FSTAT
> fstat
357.0590811338489

The R2 is the ratio of the ‘explained variance’ to the total variance.

> (def rsq (/ ssr ssto))
RSQ
> rsq
0.7748525273314563

To obtain the standard errors of the coefficient estimates we need the vari-
ance covariance matrix of the coefficients which is

σ2(X′X)−1

> (def vcv (* mse xtrxinv))
VCV

and which we can print out using the print-matrix function.

> (print-matrix vcv)
#2a(

(22.0701 -1.10682 2.051239E-2 -4.689474E-3 -1.879010E-2)
(-1.10682 5.747246E-2 -8.080991E-4 -5.756423E-4 1.246380E-3)
(2.051239E-2 -8.080991E-4 1.155845E-3 -7.013666E-4 6.407913E-4)
(-4.689474E-3 -5.756423E-4 -7.013666E-4 1.036224E-3 -1.454744E-3)
(-1.879010E-2 1.246380E-3 6.407913E-4 -1.454744E-3 3.717387E-3)

)
NIL

The slickest way to obtain the standard-errors of the coefficients is to create
a list of zeros and then use the dotimes function to extract the diagonal
elements of VCV and insert them in that vector using the select and setf
functions. This will produce a list giving the variances of the coefficients.

> (def varcoefs (repeat 0 (length coeffs)))
VARCOEFS
> varcoefs
(0 0 0 0 0)

90 CHAPTER 5. LINEAR REGRESSION ANALYSIS

> (dotimes (i (length varcoefs))(setf (select varcoefs i)
(aref vcv i i)))
NIL
> varcoefs
(22.07009306717356 0.057472455848983015 0.0011558448873612956
0.0010362236138833243 0.00371738710011723)

The standard-errors of the coefficients can then be calculated by taking the
square root of the list of variances.

> (def stdcoefs (sqrt varcoefs))
STDCOEFS
> stdcoefs
(4.697881763856298 0.23973413576081112 0.033997718855259915
0.032190427364098856 0.06097037887464068)

Finally, the t-ratios can be obtained by dividing coeffs by stdcoefs.

> (def trat (/ coeffs stdcoefs))
TRAT
> trat
#(149.08724940065585 -4.231728212175038 -3.8181127355735796
-16.42153434033062 -0.7851110468878918)

5.2 Using the Regression-Model Function

Of course there is an easier way to perform the above calculations—we can
simply use the regression-model function that comes with XLispStat.

> (regression-model (list stud-teach-ratio pct-esl pct-lunch
pct-pubass) av-test-score)
Least Squares Estimates:

Constant 700.394 (4.69788)
Variable 0 -1.01449 (0.239734)
Variable 1 -0.129807 (3.399772E-2)
Variable 2 -0.528616 (3.219043E-2)
Variable 3 -4.786852E-2 (6.097038E-2)

R Squared: 0.774853
Sigma hat: 9.08422
Number of cases: 420
Degrees of freedom: 415

#<Object: 82c9520, prototype = REGRESSION-MODEL-PROTO>

5.2. USING THE REGRESSION-MODEL FUNCTION 91

The rightmost column above gives the standard errors of the coefficients.
Notice that in applying the regression-model function the dependent vari-
able is listed last. It turns out that the higher the student teacher ratio, the
lower are the test scores. Cutting the ratio of students per teacher in Cali-
fornia from its average of 19.6 to 15 would be expected to raise average test
scores by about .24 × 4.6, from its current average of about 654 to slightly
more than 655, a rather tiny amount. The higher the percentage of stu-
dents with English as their second language and the higher the percentage
qualifying for free lunches, the lower is the average test score. The average
test score is also lower, the greater the percentage of students on public
assistance, but this variable is not statistically significant, its t-ratio being
only .0478685/.0609704 = 0.7851111.

We can give the regression a name using the def function and suppress
the print-out by adding :print nil following the name of the dependent
variable.

> (def reg1 (regression-model
(bind-columns stud-teach-ratio pct-esl pct-lunch pct-pubass)
av-test-score :print nil))
REG1

Notice that the function will still work if, instead of embedding the inde-
pendent variables in a list of lists, we can bind them together in a matrix.

We could suppress the constant term, running the regression through
the origin, by adding :intercept nil. The object reg1 contains consid-
erable information about the regression that can be retrieved by sending it
messages. The list of possible messages that an object will answer can be
obtained by sending it a help message. 4

> (send monreg1 :help)
REGRESSION-MODEL-PROTO
Normal Linear Regression Model
Help is available on the following:

4To fully understand the group of messages that regression-model objects will answer
beyond those discussed here, you will need to obtain and study Luke Tierney’s book.

92 CHAPTER 5. LINEAR REGRESSION ANALYSIS

ADD-METHOD ADD-SLOT BASIS CASE-LABELS COEF-ESTIMATES
COEF-STANDARD-ERRORS COMPUTE COOKS-DISTANCES
DELETE-DOCUMENTATION DELETE-METHOD DELETE-SLOT DF
DISPLAY DOC-TOPICS DOCUMENTATION
EXTERNALLY-STUDENTIZED-RESIDUALS FIT-VALUES GET-METHOD
HAS-METHOD HAS-SLOT HELP INCLUDED INTERCEPT INTERNAL-DOC
ISNEW LEVERAGES METHOD-SELECTORS NEW NUM-CASES NUM-COEFS
NUM-INCLUDED OWN-METHODS OWN-SLOTS PARENTS PLOT-BAYES-RESIDUALS
PLOT-RESIDUALS PRECEDENCE-LIST PREDICTOR-NAMES PRINT PROTO
R-SQUARED RAW-RESIDUALS REPARENT RESIDUAL-SUM-OF-SQUARES
RESIDUALS RESPONSE-NAME RETYPE SAVE SHOW SIGMA-HAT SLOT-NAMES
SLOT-VALUE STUDENTIZED-RESIDUALS SUM-OF-SQUARES SWEEP-MATRIX
TOTAL-SUM-OF-SQUARES WEIGHTS X X-MATRIX XTXINV Y
NIL

To find out the response of the object to each message we send it a more
precise help message such as, for example,

> (send reg1 :help :coef-estimates)
COEF-ESTIMATES
Message args: ()
Returns the OLS (ordinary least squares) estimates of
the regression coefficients. Entries beyond the
intercept correspond to entries in basis.
NIL
> (send reg1 :help :coef-standard-errors)
COEF-STANDARD-ERRORS
Message args: ()
Returns estimated standard errors of coefficients. Entries
beyond the intercept correspond to entries in basis.
NIL

We can thus obtain the coefficient estimates and standard errors of the
coefficients using the commands

> (send reg1 :coef-estimates)
(700.3942701827966 -1.0144897057178857 -0.12980712334168718
-0.5286162083895948 -0.04786851798725506)
> (send reg1 :coef-standard-errors)
(4.697881763855726 0.2397341357607818 0.03399771885525993
0.03219042736409926 0.060970378874640976)

5.3. HETEROSKEDASTICITY 93

And we can calculate the t-ratios by manipulating the Interpreter’s answers
to expressions sent to the regression-model object.

> (def t-ratios (/ (send reg1 :coef-estimates)
(send reg1 :coef-standard-errors)))
T-RATIOS
> t-ratios
(149.08724940066543 -4.231728212164962 -3.8181127355726745
-16.421534340334357 -0.7851110468851737)

If the degrees of freedom are sufficient, say 30 or more, a t-ratio in excess
of 2 will indicate the presence of a statistically significant relationship. Of
course the exact P-Value can be found using the t-cdf function.

5.3 Heteroskedasticity

Standard regression analysis assumes that the regression residuals have a
constant variance—that is, are homoskedastic. This assumption is often
violated with the regression residuals being, in fact, heteroskedastic. The
residuals from the regression above are plotted as follows.

> (send reg1 :plot-residuals)
#<Object: 82e66a0, prototype = SCATTERPLOT-PROTO>

and shown in Figure 11. The fitted values of the dependent variable are
along the horizontal axis.

A formal test for heteroskedasticity is the Breusch-Pagan test, which
involves OLS estimation of

e2
i = α + β1X1i + β2X2i + ... + ui

where the ei are the regression residuals, the X1i, X2i ... etc. are some or
all of the independent variables in the original regression, and the ui are the
residuals of the Breusch-Pagan regression.5 The test can be implemented
using the following code.

> (def resids (send reg1 :residuals))
RESIDS
> (def residssq (^ resids 2))
RESIDSSQ

5T. S. Breusch and A. R. Pagan, “A Simple Test for Heteroskedasticity and Random
Coefficient Variation,” Econometrica, Vol. 47, 1979, pages 1287-1294.

94 CHAPTER 5. LINEAR REGRESSION ANALYSIS

Figure 11: Regression residuals plotted against fitted values

> (def reg2 (regression-model
(list stud-teach-ratio pct-esl pct-lunch pct-pubass)
residssq))

Least Squares Estimates:

Constant 251.339 (69.3074)
Variable 0 -7.55048 (3.53677)
Variable 1 -0.194234 (0.501565)
Variable 2 -0.139801 (0.474902)
Variable 3 -0.920295 (0.899490)

R Squared: 2.638079E-2
Sigma hat: 134.019
Number of cases: 420
Degrees of freedom: 415

REG2
> (def RSQ (send reg2 :R-squared))
RSQ

5.4. TIME SERIES: AUTOCORRELATED RESIDUALS 95

> (def chisqstat (* (length resids) RSQ))
CHISQSTAT
> chisqstat
11.079932837242543
> (def Pval (- 1 (chisq-cdf chisqstat 4)))
PVAL
> pval
0.025680216026914393

The null-hypothesis of homoskedasticity can be rejected at the 5% level. I
have written a Breusch-Pagan function to calculate the Breusch-Pagan
statistic. The function’s first argument is the name of the regression-model
that generated the residuals being tested. Its second argument is a named
matrix containing some or all of the independent variables, and its third
argument is set to 1 to print the results or to 0 to forego printing. The
function is applied as follows.

> (def indepvars (bind-columns stud-teach-ratio pct-esl pct-lunch
pct-pubass)
INDEPVARS
> (Breusch-Pagan reg1 indepvars 1)

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 11.079932837242543
P-Value = 0.025680216026914393

If one wants to use all the independent variables in the Breusch-Pagan test,
the indepvars variable can constructed and used in the original regression.
Of course, a constant is automatically added to all regressions we run unless
we specify otherwise.

5.4 Time Series: Autocorrelated Residuals

Regressions involving time series often suffer from serial correlation in the
residuals. This violates the standard OLS requirement that the regres-
sion residuals be independently distributed. To deal with these issues we
utilise a data set containing numerous Canadian macroeconomic variables
to estimate that country’s demand function for money. More series than
we actually use are included in the dataset, which is contained in the file
camoinpr.lsp, so that the reader can experiment using alternative regres-
sions and other statistical calculations.

96 CHAPTER 5. LINEAR REGRESSION ANALYSIS

> (load "camoinpr")
; loading camoinpr.lsp
T
> (variables)
(COBCA CPAPRQCA CPICA DATES57 FXRCADCA GBY10CA GBY3CA GDPSACA
GNISACA M1CA M2CA MBCA NEXCAUS QMCA TBRCA)

The variables, which are quarterly and run from 1957:Q1 through 2005:Q4,
can be described as follows:

DATES57 —dates of successive observations
CPICA —consumer price index
GNPSACA —gross national product (seasonally adjusted)
NNPSACA —net national product (seasonally adjusted)
NEXCAUS —Canadian dollar price of U.S. dollar
BMCA —monetary base
COBCA —currency outside banks
FXRCADCA —foreign exchange reserves in Canadian dollars
M1CA —money supply, M1 definition
QMCA —quasi-money
M2CA —money supply, M2 definition (= M1CA + QMCA)
CPAPRQCA —3-month commercial paper rate
GBY3CA —yield on federal gov’t bonds, maturity 3 to 5 years
GBY10CA —yield on federal gov’t bonds, maturity 10 years or more
TBRCA —treasury bill rate

To avoid issues related to shifts in the exchange rate regime, it makes sense to
estimate the Canadian demand function for money for the flexible exchange
rate period after 1973. The real quantity of money demanded is thought to
depend on interest rates and real income. So we need to calculate the real,
constant dollar, magnitudes of the money supply variable (here we will use
M1CA) and GDP. We will also calculate real net national income for use in
the next section. The real income and money variables are converted to a
base of 1990=100 using my base function and then expressed in logarithms.
As noted previously, the base function takes four arguments—in order, the
series name, the conforming date-list, the date at which the base begins,
and the length of the base in periods.

> (load "addfuncs")
; loading addfuncs.lsp
T

5.4. TIME SERIES: AUTOCORRELATED RESIDUALS 97

> (def rm1ca (/ m1ca cpica))
RM1CA
> (def rgdpca (/ gdpsaca cpica))
RGDPCA
> (def rgnica (/ gnisaca cpica))
RGNICA
> (def rm1ca (log (base rm1ca dates57 1990.0 4)))
RM1CA
> (def rgdpca (log (base rgdpca dates57 1990.0 4)))
RGDPCA
> (def rgnica (log (base rgnica dates57 1990.0 4)))
RGNICA

Since we are going to run regressions on the data following 1973, we need
to remove the prior years from the data series and date list.

> (def obs2del (date2obs dates57 1974))
OBS2DEL
> (def newdate (remove-first obs2del dates57))
NEWDATE
> (first-five newdate)
(1974.0 1974.25 1974.5 1974.75 1975.0)
> (last-five newdate)
(2004.75 2005.0 2005.25 2005.5 2005.75)
> (def rm1ca (remove-first obs2del rm1ca))
RM1CA
> (def rgdpca (remove-first obs2del rgdpca))
RGDPCA
> (def rgnica (remove-first obs2del rgnica))
RGNICA
> (def cpaprqca (remove-first obs2del cpaprqca))
CPAPRQCA

As indicated by the last command above, the interest rate being used is the
3-month commercial paper rate.

Since the M1 variable is not seasonally adjusted, we should incorpo-
rate seasonal dummy-variables (each taking a value of 1 for a particular
quarter and zero for all other quarters) in the analysis. My two functions
seasdums-Q and seasdums-M both take two arguments—in order, the
date list to which the seasonal dummy-variables must conform, and the

98 CHAPTER 5. LINEAR REGRESSION ANALYSIS

quarter or month of the year at which the date-list starts (where numbering
starts at 1).

> (seasdums-Q newdate 1)
QD3

Three quarterly dummy variables, QD1, QD2 and QD3 are thereby created in
the workspace.

We start by including all the seasonal dummy variables in the regression.

> (def reg1ca (regression-model (bind-columns cpaprqca
rgdpca qd1 qd2 qd3) rm1ca))

Least Squares Estimates:

Constant -1.74534 (0.248922)
Variable 0 -4.185539E-2 (2.949145E-3)
Variable 1 1.48106 (5.082179E-2)
Variable 2 -6.243809E-2 (2.492515E-2)
Variable 3 -1.677058E-2 (2.490714E-2)
Variable 4 -2.430933E-2 (2.490330E-2)

R Squared: 0.954182
Sigma hat: 0.101149
Number of cases: 132
Degrees of freedom: 126

REG1CA

As expected the interest rate variable has the expected negative sign and the
income variable a positive sign and, judging from a quick mental division
of the coefficients by their respective standard-errors, both are statistically
significant. Only the first-quarter seasonal dummy is statistically significant
so we can drop the other two seasonal dummy variables.

> (def reg2ca (regression-model (bind-columns cpaprqca
rgdpca qd1) rm1ca))

5.4. TIME SERIES: AUTOCORRELATED RESIDUALS 99

Least Squares Estimates:

Constant -1.76207 (0.247243)
Variable 0 -4.185308E-2 (2.937437E-3)
Variable 1 1.48172 (5.061157E-2)
Variable 2 -4.873644E-2 (2.027082E-2)

R Squared: 0.953819
Sigma hat: 0.100753
Number of cases: 132
Degrees of freedom: 128

REG2CA
> (plot-lines (- newdate 1900)(send reg2ca :residuals))
#<Object: 81447f8, prototype = SCATTERPLOT-PROTO>
> ; saving postscript image to file resca1.ps...done

As can be seen from the plot of the residuals in Figure 12, serial correlation
is clearly present—if the residual in a particular period takes a high value,
the residual in the next period also tends to take a high value.

Figure 12: Residuals from regression reg2ca residuals
plotted against time

100 CHAPTER 5. LINEAR REGRESSION ANALYSIS

We need a test for the presence of serial correlation in the residuals
of a regression. Historically, the standard approach has been to calculate
the Durbin-Watson statistic, but this test is imprecise. Instead, we use
a Lagrange-Multiplier-based test which involves regressing the residuals of
the regression on themselves lagged and the X matrix and then testing the
null-hypothesis that the coefficient of the lagged residuals is zero.6

et = Xβ + ρ et−1 + ut

where the matrix X is the matrix of independent variables, including the
constant term, and et is the vector of residuals, from the original regression.
The null-hypothesis is that ρ equals zero. Additional lags of the residuals
can be added to test for higher order serial correlation. In that case, the
null-hypothesis is that the coefficients of all the lagged residuals are zero.
To perform this test, we use my LMSC-test function which takes three argu-
ments, the name of the regression whose residuals are being tested followed
by the number of lagged error terms (i.e., the order of the test), followed by
a 1 if we want the output to be printed and zero otherwise.7 A first-order
test of the residuals of regression reg3ca yields the following.

> (LMSC-test reg2ca 1 1)
LM-Based Test for Serial Correlation in Residuals:
Order = 1 Chisq-stat = 507.5464949337206 P-Value = 0.0
NIL

The Chi-square test statistic here is based upon the calculation of an F-
statistic in a manner that will be discussed at the end of the next section
dealing with multicollinearity.

To test for higher-order serial correlation in the residuals, we simply add
lags to the above test.

> (LMSC-test reg2ca 2 1)
LM-Based Test for Serial Correlation in Residuals:
Order =< 2 Chisq-stat = 480.44135388615615 P-Value = 0.0

6The origins of this test go back to work by Breusch and Godfrey in the 1970s. See
T. S. Breusch, “Testing for Autocorrelation in Dynamic Linear Models,” Australian Eco-
nomic Papers, Vol. 17, 1978, pp. 334-355, and L. G. Godfrey, “Testing for Higher Order Se-
rial Correlation in Regression Equations When the Regressors Include Lagged Dependent
Variables,” Econometrica, Vol. 46, pp. 1303-1310. The nature of the Lagrange-Multiplier
principle is beyond the depth of discussion here.

7The only time we would not want the output printed would be when we are embedding
the function inside another function that uses its output.

5.4. TIME SERIES: AUTOCORRELATED RESIDUALS 101

> (LMSC-test reg2ca 5 1)
LM-Based Test for Serial Correlation in Residuals:
Order =< 5 Chisq-stat = 373.66268475177554 P-Value = 0.0

> (LMSC-test reg2ca 10 1)
LM-Based Test for Serial Correlation in Residuals:
Order =< 10 Chisq-stat = 238.34777770689487 P-Value = 0.0

> (LMSC-test reg2ca 15 1)
LM-Based Test for Serial Correlation in Residuals:
Order =< 15 Chisq-stat = 156.01194523891323 P-Value = 0.0

> (LMSC-test reg2ca 20 1)
LM-Based Test for Serial Correlation in Residuals:
Order =< 20 Chisq-stat = 140.13010399933057 P-Value = 0.0

Actually, one need only apply the function until a lag is reached at which the
absence of serial correlation can be rejected since once the null hypothesis
can be rejected at a given lag, it will necessarily be rejected at higher lags.
The hypothesis of no serial correlation in the above residuals can be easily
rejected—the above P-Values are so small that the XLispStat Interpreter
cannot distinguish them from zero.

The observed serial correlation may result either from the omission of
serially correlated variables affecting the demand for money or from a mis-
specification of the form of the regression function. It is generally believed
that serial correlation of the residuals from demand function for money es-
timation arises because the process of adjustment of the real money supply
to a shift in the quantity of nominal money involves changes in the price
level that occur only slowly—until the price level has adjusted the residuals
of the regression will remain close to each other and only gradually decline
toward their mean of zero.

To perform a test for autocorrelation in time series other than the resid-
uals from a regression, we can use the Ljung-Box Q test. The formula is

Q = T (T + 2)
k=s∑

k=1

r2
k/(T − k)

where r2
k is the kth autocorrelation, T is the sample size, and s is the lag

length, equal to no more than T/4 rounded down to the next integer.8 For
doing this test, I wrote a function LBQ that takes three arguments—in
order, the name of the time series being tested, the number of lags, and a

8For a discussion of this formula, see pages 86-87 of the textbook by Walter Enders
referred to earlier.

102 CHAPTER 5. LINEAR REGRESSION ANALYSIS

degrees-of-freedom adjustment which for present purposes should be fixed
at zero.9

5.5 Multicollinearity

Suppose that a researcher is estimating the demand function for money for
Canada using annual data from 1974 to 1996 and does a dumb thing—uses
both real GDP and real GNI as dependent variables! To demonstrate what
will happen, we need to convert the relevant quarterly series to an annual
average bases using my q2a-avg function and reduce their length so that
they start in 1974 and stop at 1996.

> (def rm1ca (remove-last 8 (q2a-avg (remove-first 4 rm1ca)
0 1974 2004)))
RM1CA
> (def rgdpca (remove-last 8 (q2a-avg (remove-first 4 rgdpca)
0 1974 2004)))
RGDPCA
> (def rgnica (remove-last 8 (q2a-avg (remove-first 4 rgnica)
0 1974 2004)))
RGNICA
> (def cpaprqca (remove-last 8 (q2a-avg (remove-first 4
cpaprqca) 0 1974 2004)))
CPAPRQCA
> (def anndates (setdates rm1ca 1974 1))
ANNDATES

As noted earlier, the q2a-avg and m2q-avg functions take four arguments—
in order, the series list being transformed, the observation of the original
series at which to start the transformation, the first date of the resulting
transformed series and the last date of the transformed series.

The regression the researcher runs is then

9This degrees of freedom adjustment parameter is set above zero when the residuals
from an auto-regressive-moving-average process are being tested.

5.5. MULTICOLLINEARITY 103

> (def reg3ca (regression-model (bind-columns cpaprqca
rgdpca rgnica) rm1ca))

Least Squares Estimates:

Constant -3.41941 (1.23738)
Variable 0 -3.581441E-2 (6.649835E-3)
Variable 1 -4.09166 (3.38447)
Variable 2 5.91358 (3.59982)

R Squared: 0.898726
Sigma hat: 9.511968E-2
Number of cases: 23
Degrees of freedom: 19

REG3CA

Judging from loosely calculated t-ratios, both income variables are clearly
statistically insignificant.

Our dumb researcher then drops each of the income variables in turn,
obtaining the following results.

> (def reg4ca (regression-model (bind-columns cpaprqca
rgdpca) rm1ca))

Least Squares Estimates:

Constant -2.24029 (0.770226)
Variable 0 -3.603321E-2 (6.723639E-3)
Variable 1 1.56613 (0.166739)

R Squared: 0.890935
Sigma hat: 9.621101E-2
Number of cases: 23
Degrees of freedom: 20

REG4CA

104 CHAPTER 5. LINEAR REGRESSION ANALYSIS

> (def reg5ca (regression-model (bind-columns cpaprqca
rgnica) rm1ca))

Least Squares Estimates:

Constant -1.76181 (0.745997)
Variable 0 -3.626525E-2 (6.920565E-3)
Variable 1 1.46232 (0.161433)

R Squared: 0.884342
Sigma hat: 9.907663E-2
Number of cases: 23
Degrees of freedom: 20

REG5CA

Notice that the variables, when included separately, are each highly signifi-
cant.

To test whether the two income variables together in the first regression
are significant, even though they are individually insignificant—the null hy-
pothesis is that the coefficients of both variables are simultaneously zero—
we can use what Stock and Watson call the ‘rule-of-thumb’ F-test.10 This
F-statistic is given by the formula

[∑n
i=1 e 2

r i −
∑n

i=1 e 2
u i

]
/q[∑n

i=1 e 2
u i

]
/dfu

where eu i is the ith residual from the unrestricted regression and er i is the
ith residual from the restricted regression which, by leaving the two income
variables out, imposes zero values on their coefficients, q is the number of
restrictions (two in this case since two variables are assigned zero coefficients)
and dfu is the number of degrees of freedom of the unrestricted regression.
This test requires that the true residuals be normally distributed since the
F-statistic is the ratio of two Chi-square variables, each divided by their
degrees of freedom, and a Chi-square variable is the sum of squared normal
variables having mean zero and unit variance. The restricted regression is

10See their Introduction to Econometrics, pp. 193-194.

5.5. MULTICOLLINEARITY 105

> (def reg6ca (regression-model cpaprqca rm1ca))

Least Squares Estimates:

Constant 4.96847 (0.147468)
Variable 0 -5.546137E-2 (1.452334E-2)

R Squared: 0.409831
Sigma hat: 0.218412
Number of cases: 23
Degrees of freedom: 21

REG6CA

and the unrestricted regression is regression reg3ca. The F-statistic for the
restriction and its P-Value are thus

> (def ss1 (send reg6ca :sum-of-squares))
SS1
> (def df1 (send reg6ca :df))
DF1
> (def ss2 (send reg3ca :sum-of-squares))
SS2
> (def df2 (send reg3ca :df))
DF2
> (def Fstat (/ (/ (- ss1 ss2) (- df1 df2)) (/ ss2 df2)))
FSTAT
> fstat
45.860563017197656
> (- 1 (f-cdf fstat (- df1 df2) df2))
5.345268394574276E-8

Alternatively, we can use my F-restriction function which takes the re-
stricted and unrestricted regressions, in that order, as arguments.

> (f-restriction reg6ca reg3ca))
F-statistic = 45.860563017197656
P-Value = 5.345268394574276E-8

We can easily reject the null-hypothesis that the true coefficients of the two
income variables are simultaneously zero. The problem with this test, of

106 CHAPTER 5. LINEAR REGRESSION ANALYSIS

course, is that it assumes that the true residuals are independently nor-
mally distributed, and we have every reason to believe that they are not.
Nevertheless, we have learned how to run a ‘rule of thumb’ F-test. And we
can more easily determine if multicollinearity exists without running this
test. If each variable is significant when included by itself in the regression,
the two together must be jointly significant when both are included—the
problem is that each variable is, in effect, waiting for the other one to relate
to the dependent variable with the result that neither are significant.

Multicollinearity arises because two variables are so highly correlated
with each other that the difference between them has no effect on the de-
pendent variable, making it impossible, when both are included, for them
to separately explain it—each is insignificant once the other is included.
To visualise this, run my multicollinearity function, which takes no ar-
guments. Two graphs will appear, one on top of the other. Imagine Y as
the dependent variable, and click repeatedly on the yaw buttons of the two
graphs. You will observe a clear regression plane in the X,Z dimension on the
no multicollinearity graph while no such plane can be clearly defined on
the multicollinearity graph.

Our Lagrange Multiplier-based test for serial correlation discussed in the
previous section also uses the above ‘rule of thumb’ F-statistic to test the
significance of the group of coefficients of the lagged values of the error term.
That test is a ‘large sample’ test—that is, it’s accuracy is only precise when
the sample size is very large. To compensate for situations in which the
sample is not large, the test calculates the P-Value under the assumption
that the degrees of freedom in the denominator of the F-statistic are infinite.
This will tend to make the P-Value smaller than it would be if we were to
use the degrees of freedom of the unrestricted regression in the denominator,
making us compensate for the small sample size by rejecting more often the
null-hypothesis of no serial correlation. It turns out that when the degrees
of freedom in the denominator of the F-statistic are infinite, the F-statistic
multiplied by the number of restrictions (which will equal the degrees of
freedom in its numerator) is distributed as Chi-Square with degrees of free-
dom equal to that number of restrictions. We therefore used the Chi-Square
distribution to calculate the P-Value in the LMSC-test function, setting
the test statistic equal to the number of restrictions times the F-statistic.

5.6. SOME IMPROVED LINEAR REGRESSION FUNCTIONS 107

5.6 Some Improved Linear Regression Functions

Our first task here is to be able to adjust the standard-errors of the re-
gression coefficients to compensate, where necessary, for the presence of
heteroskedasticity and autocorrelation in the residuals. When the residuals
are homoskedastic, the variance-covariance matrix of the coefficients is

V = s 2(X′X)−1

where s 2 =
∑T

t=1 u 2
t /(T − k − 1) is our point estimate of the variance of

the error-term ut, T is the number of observations, and k is the number of
parameters estimated, given by the number of columns in the matrix X.

When the residuals are heteroskedastic, but serially uncorrelated, we cal-
culate this variance-covariance matrix using a formula developed by White11

V̂ =

[
T∑

t=1

xtx′t

]−1 [
T∑

t=1

u2
txtx′t

] [
T∑

t=1

xtx′t

]−1

where the xt are the rows of X and, therefore,

[
T∑

t=1

xtx′t

]−1

= (X′X)−1

When the error terms are homoskedastic, the ut and xt are uncorrelated and
this expression for V̂ reduces to the previous one for V when the sample size
is large. When there is serial correlation in the residuals, we follow Newey
and West, calculating the variance-covariance matrix of the coefficients as12

V̂ =

[
T∑

t=1

xtx′t

]−1 [
T∑

t=1

u2
txtx′t

+
q∑

v=1

[
1− v

q + 1

] T∑

t=v+1

(xtutut−vx′t + xt−vut−vutx′t)




[
T∑

t=1

xtx′t

]−1

where q is the number of lags beyond which no serial correlation is present.
Following Stock and Watson, we routinely set q equal to .75 T 1/3, rounded

11Halbert White, ”A Heteroskedasticity-Consistent Covariance Matrix Estimator and a
Direct Test for Heteroskedasticity,” Econometrica, Vol. 48, 1980, pp. 827-838. See pages
124-129 and 613-614 of the Stock and Watson book, Introduction to Econometrics, for a
discussion and the formula.

12Whitney Newey and Kenneth West, “A Simple Positive Semi-Definite, Heteroskedastic
and Autocorrelation Consistent Covariance Matrix,” Econometrica, Vol. 55, 1987, pp. 703-
708. See pages 502-507 of the book by Stock and Watson for a discussion, and equation
10.5.21 on page 283 in Hamilton’s Time Series Analysis for the formula.

108 CHAPTER 5. LINEAR REGRESSION ANALYSIS

down to the nearest integer. If serial correlation is not present in the resid-
uals, and we therefore set q = 0, the term [1 - v/(q + 1)] goes to zero and
the expression reverts to the previous one.

To perform the above calculations I have written a HAC-stderrs func-
tion which takes two arguments—first the name of the regression object and
second the number of lags. Setting the number of lags equal to zero results
in an heteroskedasticity-only test. The function leaves a number of generi-
cally named variables in the workspace, overwriting any previous variables
having these names. Of particular interest are the variables stderrs and
tratios.

5.6.1 A Basic OLS-Regression Function

To facilitate the incorporation of heteroskedasticity-and-autocorrelation-con-
sistent standard errors in our regression analysis and to produce a much
better print-out of regression results, I have written some new functions.
The first is the OLS-basic function which calculates and prints out a re-
gression for which the user can decide whether to adjust the coefficient
standard-errors for heteroskedasticity and autocorrelation. It takes four ar-
guments. The first is the name of the dependent variable and the second is
a matrix of independent variables excluding the constant term. The third
argument must be set to 0 to suppress the inclusion of a constant term and
to 1 otherwise. The fourth argument is to be set equal to -1 if the resid-
uals are to be treated as homoskedastic, to 0 if the errors are assumed to
be heteroskedastic, and to the magnitude of the highest lag for which the
residuals are assumed to be autocorrelated if the coefficient standard-errors
are to be made autocorrelation-consistent. In this case, I normally set the
truncation lag equal to the magnitude suggested above by Stock and Wat-
son. This function also requires that the workspace contain a string object
called regressand consisting of the name of the dependent variable and a
list of strings called regressors containing the names of the independent
variables.

To test this function, we first run the previously presented Stock-Watson
regression to test for heteroskedasticity.

> (load "addfuncs")
; loading addfuncs.lsp
T
> (load "casdata")
; loading casdata.lsp

5.6. SOME IMPROVED LINEAR REGRESSION FUNCTIONS 109

T
> (def regressand "Average Test Score")
REGRESSAND
> (def regressors (list "Constant" "Studs/Teach" "Pct. ESL"
"Pct. Free Lunch" "Pct. PubAss"))
REGRESSORS
> (OLS-basic av-test-score (bind-columns stud-teach-ratio pct-esl pct-lunch
pct-pubass) 1 -1)

LINEAR REGRESSION

Dependent Variable: Average Test Score

Coefficient Std. Error T-stat P-Val

Constant 700.394 4.698 149.087 0.000
Studs/Teach -1.014 0.240 -4.232 0.000
Pct. ESL -0.130 0.034 -3.818 0.000
Pct. Free Lunch -0.529 0.032 -16.422 0.000
Pct. PubAss -0.048 0.061 -0.785 0.433

Number of Observations: 420
Degrees of Freedom: 415
R-Squared: 0.7748525273314566
Adjusted R-Squared: 0.7726824312093502
Sum of Squared Errors: 34247.090768971764
LMSC -- Chi-Square: 42.26483384247289
P-Value: 7.971312498966654E-11

Breusch-Pagan -- Chi-Square: 11.079932837242543
P-Value: 0.025680216026914393

Regression F-Statistic: 357.0590811338497
P-Value: 0.0

NIL

> (OLS-basic av-test-score (bind-columns stud-teach-ratio pct-esl pct-lunch
pct-pubass) 1 0)

110 CHAPTER 5. LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION

Coefficient Standard Errors are Adjusted to Accommodate Heteroskedasticity

Dependent Variable: Average Test Score

Coefficient Std. Error T-stat P-Val

Constant 700.394 5.504 127.242 0.000
Studs/Teach -1.014 0.267 -3.796 0.000
Pct. ESL -0.130 0.036 -3.601 0.000
Pct. Free Lunch -0.529 0.038 -13.952 0.000
Pct. PubAss -0.048 0.058 -0.821 0.412

Number of Observations: 420
Degrees of Freedom: 415
R-Squared: 0.7748525273314566
Adjusted R-Squared: 0.7726824312093502
Sum of Squared Errors: 34247.090768971764
LMSC -- Chi-Square: 42.26483384247289
P-Value: 7.971312498966654E-11
Breusch-Pagan -- Chi-Square: 11.079932837242543
P-Value: 0.025680216026914393
Regression F-Statistic: 357.0590811338497
P-Value: 0.0

NIL

Note that one can reject the null-hypothesis of no serial correlation in the
residuals in this cross-sectional regression, but this is not of consequence
because, unlike time series, the order in which the observations are listed
does not matter.

To further test the function when specifying autocorrelation-consistent as
well as heteroskedasticity-consistent standard errors, we estimate the Cana-
dian demand function for money for the full-period from 1957 through to
2005.

> (load "camoinpr")
; loading camoinpr.lsp

5.6. SOME IMPROVED LINEAR REGRESSION FUNCTIONS 111

T
> (seasdums-Q dates57 1)
QD3
> (def rm1ca (/ m1ca cpica))
RM1CA
> (def rgdpca (/ gdpsaca cpica))
RGDPCA
> (def regressand "Real M1")
REGRESSAND
> (def regressors (list "Constant" "Interest Rate" "Real GDP" "QD1"))
REGRESSORS
> (OLS-basic (log rm1ca)(bind-columns cpaprqca (log rgdpca) qd1) 1 -1)

LINEAR REGRESSION

Dependent Variable: Real M1

Coefficient Std. Error T-stat P-Val

Constant -1.762 0.037 -47.179 0.000
Interest Rate -0.053 0.003 -19.930 0.000
Real GDP 1.149 0.019 60.751 0.000
QD1 -0.050 0.021 -2.332 0.021

Number of Observations: 196
Degrees of Freedom: 192
R-Squared: 0.9519513327510103
Adjusted R-Squared: 0.9512005723252449
Sum of Squared Errors: 3.1922765543898275
LMSC -- Chi-Square: 749.547934062187
P-Value: 0.0

Breusch-Pagan -- Chi-Square: 5.235738897501776
P-Value: 0.1553269691544128

Regression F-Statistic: 1267.9828345779094
P-Value: 0.0

NIL

112 CHAPTER 5. LINEAR REGRESSION ANALYSIS

> (OLS-basic (log rm1ca)(bind-columns cpaprqca (log rgdpca) qd1) 1 4)

LINEAR REGRESSION

Coefficient Standard Errors are Adjusted to Accommodate
Heteroskedasticity and Autocorrelation -- Truncation Lag = 4

Dependent Variable: Real M1

Coefficient Std. Error T-stat P-Val

Constant -1.762 0.058 -30.301 0.000
Interest Rate -0.053 0.004 -13.455 0.000
Real GDP 1.149 0.029 39.240 0.000
QD1 -0.050 0.011 -4.637 0.000

Number of Observations: 196
Degrees of Freedom: 192
R-Squared: 0.9519513327510103
Adjusted R-Squared: 0.9512005723252449
Sum of Squared Errors: 3.1922765543898275
LMSC -- Chi-Square: 749.547934062187
P-Value: 0.0
Breusch-Pagan -- Chi-Square: 5.235738897501776
P-Value: 0.1553269691544128
Regression F-Statistic: 1267.9828345779094
P-Value: 0.0

NIL

In all the above print-outs the LMSC test is for first-order serial corre-
lation in the residuals. Traditionally, the Durbin-Watson statistic has been
used for this purpose. It can be calculated using my Durbin-Watson func-
tion which takes as its single argument the name of the regression.

> (Durbin-Watson lastreg)

Durbin-Watson Statistic: 0.21784795614596983
NIL

The object lastreg is left in the workspace by the OLS-basic function.

5.6. SOME IMPROVED LINEAR REGRESSION FUNCTIONS 113

I have also written two slightly more sophisticated versions of this func-
tion, called OLS-cross-section and OLS-time-series. The former auto-
matically determines whether the residuals are heteroskedastic at a signif-
icance level of 10% and, if that is the case, calculates heteroskedasticity-
consistent coefficient-standard-errors and t-ratios. The second checks for
both heteroskedasticity and autocorrelation, and if either are significant at
the 10% level, calculates heteroskedasticity-and-autocorrelation-consistent
(HAC) standard errors and corresponding t-ratios.

5.6.2 Regressions on Cross-Sectional Data

The OLS-cross-section function takes only the first three arguments re-
quired by the OLS-Basic function—the specification with regard to het-
eroskedasticity occurs automatically as the situation requires.

> (def regressand "Average Test Score")
REGRESSAND
> (def regressors (list "Constant" "Studs/Teach" "Pct. ESL"
"Pct. Free Lunch" "Pct. PubAss"))
REGRESSORS

> (OLS-cross-section av-test-score (bind-columns stud-teach-ratio pct-esl
pct-lunch pct-pubass) 1)
LINEAR REGRESSION

Dependent Variable: Average Test Score

Coefficient Std. Error T-stat P-Val

Constant 700.394 4.698 149.087 0.000
Studs/Teach -1.014 0.240 -4.232 0.000
Pct. ESL -0.130 0.034 -3.818 0.000
Pct. Free Lunch -0.529 0.032 -16.422 0.000
Pct. PubAss -0.048 0.061 -0.785 0.433

Number of Observations: 420
Degrees of Freedom: 415
R-Squared: 0.7748525273314566
Adjusted R-Squared: 0.7726824312093502

114 CHAPTER 5. LINEAR REGRESSION ANALYSIS

Sum of Squared Errors: 34247.090768971764

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 11.079932837242543
P-Value = 0.025680216026914393

Coefficient Standard Errors Below Are Adjusted to Accommodate
Heteroskedasticity

Dependent Variable: Average Test Score

Coefficient Std. Error T-stat P-Val

Constant 700.394 5.504 127.242 0.000
Studs/Teach -1.014 0.267 -3.796 0.000
Pct. ESL -0.130 0.036 -3.601 0.000
Pct. Free Lunch -0.529 0.038 -13.952 0.000
Pct. PubAss -0.048 0.058 -0.821 0.412

Number of Observations: 420
Degrees of Freedom: 415
R-Squared: 0.7748525273314566
Adjusted R-Squared: 0.7726824312093502
Sum of Squared Errors: 34247.090768971764

NIL

The last set of coefficients and standard errors were printed because the
P-Value resulting from the Breusch-Pagan test was smaller than .10.

5.6.3 Time-Series Regressions

Often in time series analysis we want to run regressions over different parts
of the time interval over which the series run—for example, to estimate
the Canadian demand for money for the flexible exchange rate period from
1974 through 2005 rather than for the period 1957 through 2005 covered
by the data in the workspace. In these cases, it is a nuisance to have to
shorten all the variables using the remove-first and remove-last functions.
The OLS-time-series function enables us to choose the time interval over
which the regression will be run. And I have written a companion function
called print-time-series-regression which the OLS-time-series function

5.6. SOME IMPROVED LINEAR REGRESSION FUNCTIONS 115

automatically calls when instructed to print the regression results. The
OLS-time-series function takes seven arguments in the following order.
—the name of the dependent variable
—a matrix of the independent variables, excluding the constant
—the datelist to which all the time series being used conform
—the date at which the regression is to begin
—the date at which the regression is to end
— 1 if a constant is to be included, 0 otherwise
— 1 if the results are to be printed, 0 otherwise
The function is used as follows, where the we first need to reset the Canadian
data.

> (load "addfuncs")
; loading addfuncs.lsp
T
> (load "camoinpr")
; loading camoinpr.lsp
T
> (seasdums-Q dates57 1)
QD3
> (def rm1ca (/ m1ca cpica))
RM1CA
> (def rgdpca (/ gdpsaca cpica))
RGDPCA
> (def rm1ca (base rm1ca dates57 1963.0 16))
RM1CA
> (def rgdpca (base rgdpca dates57 1963 16))
RGDPCA
> (def regressand "Log Real M1")
REGRESSAND
> (def regressors (list "Constant" "Interest Rate" "Log Real GDP" "QD1"))
REGRESSORS
> (def canreg (OLS-time-series (log rm1ca)(bind-columns cpaprqca (log rgdpca)
QD1) dates57 1974.0 2005.75 1 1))

116 CHAPTER 5. LINEAR REGRESSION ANALYSIS

LINEAR REGRESSION

Dependent Variable: Log Real M1

Starting Date: 1974.0 Ending Date: 2005.75

Coefficient Std. Error T-stat P-Val

Constant -3.183 0.294 -10.842 0.000
Interest Rate -0.036 0.003 -13.223 0.000
Log Real GDP 1.626 0.050 32.434 0.000
QD1 -0.045 0.018 -2.479 0.015

Number of Observations: 128
Degrees of Freedom: 124
R-Squared: 0.9648902618902225
Adjusted R-Squared: 0.9640408327424053
Sum of Squared Errors: 0.9687319175668452
Regression F-Statistic: 1135.9278927144521
P-Value: 0.0

LM-Based Test for Serial Correlation in Residuals:
Order = 1 Chisq-stat = 447.03640701119997 P-Value = 0.0

LM-Based Test for Serial Correlation in Residuals:
Order =< 4 Chisq-stat = 311.0977578561641 P-Value = 0.0

LM-Based Test for Serial Correlation in Residuals:
Order =< 32 Chisq-stat = 202.9411344027211 P-Value = 0.0

Modified Results Using HAC Standard Errors of Coefficients:
Truncation lag = 4

Coefficient Std. Error T-stat P-Val

Constant -3.183 0.730 -4.360 0.000
Interest Rate -0.036 0.004 -8.393 0.000
Log Real GDP 1.626 0.124 13.063 0.000
QD1 -0.045 0.010 -4.405 0.000

CANREG

5.6. SOME IMPROVED LINEAR REGRESSION FUNCTIONS 117

Note that this function allows us to run a regression over any contigu-
ous set of dates within the datelist dates57 to which the Canadian data
we loaded conforms. Obviously, the beginning and ending dates must be
in the datelist and the beginning date must precede the ending date. The
function requires that the previously noted regressand and regressor ob-
jects, which consist of the names assigned to the dependent and indepen-
dent variables in the print-out, be in the workspace. In the above case we
called the OLS-time-series function so that the regression-object it pro-
duces will have the name CANREG, separate from the name LASTREG, which
will be overwritten by regressions we subsequently choose to run. Both ob-
jects were produced by the regression-model function (called within OLS-
time-series) and are uncontaminated by HAC coefficient standard-error
calculations. They are left in the workspace along with the list newdates,
the datelist to which the regression conforms. Every object used in sub-
sequent calculations regarding this regression must be obtained by sending
a message to canreg. The object LASTREG will be overwritten when the
next regression is run, as will any associated generically named object. The
LM serial correlation test is done for three different orders—1, .75T 1/3 and
T/4, where the latter two expressions are rounded to the nearest integer.13

Rejection of the null-hypothesis of no serial correlation for the highest or-
der combined with a failure to reject for the two lowest orders would be an
indication that the HAC calculations above are insufficient, requiring fur-
ther application of the LMSC-test function to identify the highest order of
autocorrelation and subsequent estimation using the OLS-basic function
with that order imposed.

One can run a regression with the print argument set to 0, and then
subsequently call the print-time-series-regression function, which takes
as its single argument the name of the regression-model object, to perform
all the tests for heteroskedasticity and autocorrelation and calculate the
HAC standard-errors of the coefficients if heteroskedasticity and/or serial
correlation cannot be rejected at the 10% level, and to print out the results.
This latter function uses no variables already in the workspace other than
the regression-model object it is given and regressand and regressors.

13The order T/4, appropriately rounded, is the maximum order conventionally used for
the LBQ statistic when testing for serial correlation in regression residuals. The order
.75 T 1/3 is the guideline truncation parameter for HAC estimators suggested by Stock and
Watson on page 504 of their Introduction to Econometrics.

118 CHAPTER 5. LINEAR REGRESSION ANALYSIS

5.6.4 Adjusting the Lengths of Time-Series and Setting up
Lagged Values

Another cause of complexity in time series analysis is the creation of lagged
values of various series that one might want to include in a time series
regression. Also, all series involved must be made to conform to the datelist
specified in the OLS-time-series function. My function set-time-series,
which was introduced in section 6 of Chapter 2, simplifies these tasks. The
function takes five arguments:
—the name of the list representing the series to be modified
—the datelist to which the series conforms
—the date at which the adjusted series is to begin
—the date at which the adjusted series is to end
—the number of lags of the series that are to be created
If the number of lags created exceeds zero, the function creates an appro-
priate block-lag matrix with smallest lags to the left and no current level
of the series included. Setting the number of lags at zero produces a list
containing the date-adjusted unlagged version of the series specified. The
function leaves a list of lists called laglist in the workspace containing the
current series and all lags requested with the element number, starting at
zero, giving the lag. To construct a matrix of selected lagged levels, one can
extract the particular lags desired from laglist and bind them together,
including the current level if desired, into an appropriately named matrix.
All matrices of independent variables created in this way must be bound
together using the bind-columns function for use as the appropriate argu-
ment in the OLS-time-series function. For example, suppose we want to
want to use the current level of the money supply along with a two quarter
and a four quarter lag as independent variables in a regression. We would
create the relevant matrix as follows.

(def tempm1mat (set-time-series m1ca dates57 1960.0 2005.75 4))
(def m1ca (select laglist 0))
(def m1ca-L2 (select laglist 2))
(def m1ca-L4 (select laglist 4))
(def m1mat (bind-columns m1ca m1ca-L2 m1ca-L4))

The calculations involving laglist must be done before the set-time-
series function is called again because that object will be overwritten. Note
also that the above code overwrites the list m1ca with a shorter version
conforming to a datelist running from the first quarter of 1960 to the last
quarter of 2005. That datelist is called adjdates which is also left in the
workspace, and will be overwritten the next time the function is called.

Chapter 6

Regression Analysis of Panel
Data

A panel (or longitudinal) data set consists of observations of variables for a
group of entities for more than one period in time. Here, we will deal with
panel data sets structured in either of two ways:

Stacked Time-Series Stacked Cross-Sections
Obs Ent Time Var1 Var2 Obs Ent Time Var1 Var2
1 1 1982 25 192 1 1 1982 25 192
2 1 1983 31 161 2 2 1982 5 55
3 1 1984 18 89 3 1 1983 31 161
4 2 1982 5 55 4 2 1983 21 24
5 2 1983 21 24 5 1 1984 18 89
6 2 1984 14 91 6 2 1984 14 91

As an example, we use a portion of the panel data set on traffic fatalities
analysed by Stock and Watson in Chapter 8 of their introductory book.
This chapter is a useful read for someone trying to become familiar with
panel-data methods. These data are stacked time-series running annually
from 1982 through 1988 and have been copied to the file fataldat.lsp.

> (load "addfuncs")
; loading addfuncs.lsp
T
> (load "fataldat")
; loading fataldat.lsp
T

119

120 CHAPTER 6. REGRESSION ANALYSIS OF PANEL DATA

> (variables)
(BEERTAX COMSERD ENTITY-FAT JAILD MLDA MRALL OBSNUM-FAT PERINC
UNRATE VMILES YEAR-FAT)

The variables OBSNUM-FAT, ENTITY-FAT, and YEAR-FAT refer respectively to
the observation numbers, the entities (48 states, numbered 1 through 48)
and the years (1982 through 1988). The suffix -FAT is added to the names
OBSNUM, ENTITY and YEAR to ensure that they will not be overwritten by
functions that commonly use the latter object-names. The other variables,
one observation per year per state, are

BEERTAX —Tax on a Case of Beer
COMSERD —Mandatory Community Service Sentence on Conviction
JAILD —Mandatory Jail Sentence on Conviction
MLDA —Minimum Legal Drinking Age
PERINC —Real Per Capita Income
UNRATE —Unemployment Rate
MRALL —Vehicle Fatality Rate
VMILES —Average Miles Driven per Driver

With the objective of determining whether an increase in the beer tax has
a negative effect on traffic fatalities, we start by regressing MRALL on BEERTAX
using our OLS-cross-section function after multiplying the fatality rate
MRALL by 1000 so the regression coefficients will be big enough to show up
on the print-out. In doing so, we rename that variable FATRATE.

> (first-five mrall)
(2.1284E-4 2.3485E-4 2.3364E-4 2.1935E-4 2.6691E-4)
> (def fatrate (* mrall 1000))
FATRATE
> (first-five fatrate)
(2.1284 2.3485 2.3364 2.1935 2.6691)
> (def regressand "Fatality Rate")
REGRESSAND
> (def regressors (list "Constant" "Beer Tax"))
REGRESSORS
> (def fatreg1 (OLS-cross-section fatrate (bind-columns beertax) 1))

121

LINEAR REGRESSION

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant 1.853 0.047 42.533 0.000
Beer Tax 0.036 0.062 5.861 0.000

Number of Observations: 336
Degrees of Freedom: 334
R-Squared: 0.0932569211089459
Adjusted R-Squared: 0.09054212147154761
Sum of Squared Errors: 0.9875981118322547

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 9.279049918284178
P-Value = 0.002317896237377992

Coefficient Standard Errors Below Are Adjusted to Accommodate
Heteroskedasticity

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant 1.853 0.047 39.427 0.000
Beer Tax 0.036 0.053 6.911 0.000

Number of Observations: 336
Degrees of Freedom: 334
R-Squared: 0.0932569211089459
Adjusted R-Squared: 0.09054212147154761
Sum of Squared Errors: 0.9875981118322547

FATREG1

It appears that a higher beer tax leads to greater fatalities, not less as one
might expect. But there are many factors that vary across states that are
left out of the regression—whether the highways are in good repair, the

122 CHAPTER 6. REGRESSION ANALYSIS OF PANEL DATA

proportion of total driving that occurs in rural areas where traffic is less
dense, the social acceptability of drinking and driving, and so forth.

6.1 Differences Estimation

If we can assume that left out factors like the above remain constant over
time in individual states, a way to get around the missing variable problem
is to compare the change in the fatality rate over time with the change in
the beer tax over time—factors remaining fixed over time in each state will
cancel out. To do this, however, we have to extract and collect together all
the observations associated with individual years. We can do this using my
panel-collect-obsnums function. This function takes three arguments—
in this case, the name of the time list (YEAR-FAT), the name of the entity
list (ENTITY-FAT) and the point in time for which we want to collect the
observation numbers.

> (def obslist-82 (panel-collect-obsnums year-fat entity-fat
1982))
OBSLIST-82
> (def obslist-88 (panel-collect-obsnums year-fat entity-fat
1988))
OBSLIST-88
> obslist-82
(0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119 126 133 140
147 154 161 168 175 182 189 196 203 210 217 224 231 238 245 252 259
266 273 280 287 294 301 308 315 322 329)
> obslist-88
(6 13 20 27 34 41 48 55 62 69 76 83 90 97 104 111 118 125 132 139
146 153 160 167 174 181 188 195 202 209 216 223 230 237 244 251 258
265 272 279 286 293 300 307 314 321 328 335)

These two observation lists give the observation numbers in the panel asso-
ciated with the respective years 1982 and 1988. We can now use them to
select the elements of each of the variables associated with the first and last
years in the panel.

> (def fatrate-82 (select fatrate obslist-82))
FATRATE-82
> (def fatrate-88 (select fatrate obslist-88))
FATRATE-88
> (def beertax-82 (select beertax obslist-82))

6.1. DIFFERENCES ESTIMATION 123

BEERTAX-82
> (def beertax-88 (select beertax obslist-88))
BEERTAX-88

Then we take the differences of the respective variables in 1988 relative to
1982 and rerun the above regression in differences.

> (def fatrate-dif (- fatrate-88 fatrate-82))
FATRATE-DIF
> (def beertax-dif (- beertax-88 beertax-82))
BEERTAX-DIF
> (def regressand "Diff Fatality Rate")
REGRESSAND
> (def regressors (list "Constant" "Diff Beer Tax"))
REGRESSORS
> (def fatreg2 (OLS-cross-section fatrate-dif (bind-columns
beertax-dif) 1))

LINEAR REGRESSION

Dependent Variable: Dif Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant -0.074 0.061 -1.211 0.232
Dif Beer Tax -1.039 0.414 -2.508 0.016

Number of Observations: 48
Degrees of Freedom: 46
R-Squared: 0.12029664311583532
Adjusted R-Squared: 0.10117265709661427
Sum of Squared Errors: 0.07132813489583835

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 1.4146019841011874
P-Value = 0.2342939374621611

FATREG2

The beer tax variable is significantly negatively related to the fatality rate
once state fixed effects are removed.

124 CHAPTER 6. REGRESSION ANALYSIS OF PANEL DATA

We can also examine the separate cross sections of the two series for the
individual years using my stats function.

> (stats fatrate-82 "Fatality Rate 1982")

Fatality Rate 1982

Maximum 3rd Quart Median 1st Quart Minimum Mean Std. Dev.
4.218 2.339 2.046 1.614 1.101 2.089 0.668

NIL
> (stats fatrate-88 "Fatality Rate 1988")

Fatality Rate 1988

Maximum 3rd Quart Median 1st Quart Minimum Mean Std. Dev.
3.236 2.477 1.998 1.627 1.231 2.070 0.521

NIL
> (stats beertax-82 "Beer Tax 1982")

Beer Tax 1982

Maximum 3rd Quart Median 1st Quart Minimum Mean Std. Dev.
2.720 0.680 0.355 0.220 0.050 0.531 0.519

NIL
> (stats beertax-88 "Beer Tax 1988")

Beer Tax 1988

Maximum 3rd Quart Median 1st Quart Minimum Mean Std. Dev.
2.190 0.600 0.350 0.190 0.040 0.479 0.434

NIL

6.2. ENTITY DEMEANED FIXED EFFECTS REGRESSION 125

6.2 Entity Demeaned Fixed Effects Regression

An alternative way of handling the problem of state fixed effects that utilises
all years in the panel is to de-mean the data for each state—that is, to sub-
tract from the level of every variable for each state the respective state
mean. To do this I have written a function called panel-entity-demean
which takes two arguments—first the variable and second the entity-list
(ENTITY-FAT). This function also requires that the panel data be organ-
ised in stacked time-series form so that the observations for each entity are
contiguous.

> (def fatrate-dmn (panel-entity-demean fatrate entity-fat))
FATRATE-DMN
> (def beertax-dmn (panel-entity-demean beertax entity-fat))
BEERTAX-DMN
> (def regressand "Fatality Rate (All Variables are De-meaned)")
REGRESSAND
> (def regressors (list "Constant" "Beer Tax"))
REGRESSORS
> (def fatreg3 (OLS-cross-section fatrate-dmn (bind-columns
beertax-dmn) 1))

LINEAR REGRESSION

Dependent Variable: Fatality Rate (All Variables are De-meaned)

Coefficient Std. Error T-stat P-Val

Constant 0.000 0.001 0.000 1.000
Beer Tax -0.666 0.173 -3.849 0.000

Number of Observations: 336
Degrees of Freedom: 334
R-Squared: 0.04247439357535032
Adjusted R-Squared: 0.03960755044234254
Sum of Squared Errors: 0.10326636882938052

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 0.05941602778135291
P-Value = 0.8074213242407234

FATREG3

126 CHAPTER 6. REGRESSION ANALYSIS OF PANEL DATA

Notice how we extended the definition of the regressand to include a state-
ment that all variables are de-meaned—this was necessary because otherwise
the name of the beer tax variable would be too long and the presentation
would be messed up.

6.3 Using Fixed-Effects Dummy Variables

A third way of allowing for missing state fixed effects variables is to set up
dummy variables, one for each state in this case, that take a value of 1 for
observations pertaining to the entity or state in question and 0 for obser-
vations pertaining to all other entities. To prevent perfect multicollinearity,
we omit the dummy for either the first state or the last—the regression con-
stant term becomes, in effect, the dummy for that particular entity and the
other dummy variables measure the fixed effects for those entities relative
to that for the omitted entity. Further, we can also construct time-fixed-
effects dummy variables, one for each unit of time in the sample, where each
of these dummies takes a value of 1 for the time-unit it pertains to and a
value of 0 for all other time-units. And again, we have to omit the time
dummy of one of the time-units, usually the first or the last, to prevent
perfect multicollinearity—all the remaining dummies measure the effect of
their particular time-units relative to the omitted time-unit, whose effect
is embedded in the constant term along with that of the missing entity-
dummy. Just as the entity-fixed-effect dummies capture the effects of miss-
ing variables that vary across entities but are constant through time, the
time-fixed-effect dummies capture the effects of missing variables that vary
through time but are constant across entities.

We can set up the fixed-effects dummies using the panel-set-fixed-
effects function I wrote for the purpose. This function takes as its single
argument either the entity list (ENTITY-FAT) or the time list (YEAR-FAT).
Both of these lists must take the form of contiguous integer units starting
with 1. The function returns a matrix containing fixed-effects dummies for
all entities or time-fixed-effects dummies for all units of time. We then have
to delete either the first or the last column of each of these matrices.

> (def efemat (panel-set-fixed-effects entity-fat))
EFEMAT
> (def year-units (- year-fat 1981))
YEAR-UNITS
> (def tfemat (panel-set-fixed-effects year-units))
TFEMAT

6.3. USING FIXED-EFFECTS DUMMY VARIABLES 127

> (def efemat (remove-first-columns 1 efemat))
EFRMAT
> (def tfemat (remove-first-columns 1 tfemat))
TFEMAT

For doing regression analyses of panel data with dummy variables for
entity and time fixed effects I have written the OLS-panel function. This
function takes five arguments—in order, the list representing the dependent
variable, a matrix of independent variables excluding fixed-effects dummies,
the matrix of entity fixed-effects dummy variables, the matrix of time-fixed-
effects dummy variables, and the number 1 if a constant is to be included or 0
otherwise. The function performs four sets of OLS-regression calculations—
the first including both entity and time fixed-effects dummies, the second
including only time fixed effects, the third including only entity fixed effects,
and the final one including no fixed effects at all.

We now redo the above regression analysis using the OLS-panel func-
tion.

> (def regressand "Fatality Rate")
REGRESSAND
(def regressors (list "Constant" "Beer Tax"))
REGRESSORS
> (OLS-panel fatrate (bind-columns beertax) efemat tfemat 1)

LINEAR REGRESSION WITH ENTITY AND TIME FIXED EFFECTS

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant 3.536 0.331 10.691 0.000
Beer Tax -0.655 0.196 -3.336 0.001

Entity Fixed Effects:
F-statistic = 53.32628637864364
P-Value = 0.0

Time Fixed Effects:
F-statistic = 2.0268785384373054
P-Value = 0.06219892621491452

128 CHAPTER 6. REGRESSION ANALYSIS OF PANEL DATA

Number of Observations: 336
Degrees of Freedom: 281
R-Squared: 0.9091211907175618
Adjusted R-Squared: 0.8916569355529651
Sum of Squared Errors: 9.898254813553789

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 0.4373068849944737
P-Value = 0.5084251796284349

LINEAR REGRESSION WITH TIME FIXED EFFECTS

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant 1.895 0.086 22.117 0.000
Beer Tax 0.366 0.063 5.848 0.000

Time Fixed Effects:
F-statistic = 0.3204939582857251
P-Value = 0.9261102551516602

Number of Observations: 336
Degrees of Freedom: 328
R-Squared: 0.09854189445907224
Adjusted R-Squared: 0.8916569355529651
Sum of Squared Errors: 98.18418730219717

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 9.303800465332415
P-Value = 0.002286789832524949

6.3. USING FIXED-EFFECTS DUMMY VARIABLES 129

Coefficient Standard Errors Below Are Adjusted to Accommodate
Heteroskedasticity

Coefficient Std. Error T-stat P-Val

Constant 1.895 0.105 18.073 0.000
Beer Tax 0.366 0.053 6.945 0.000

Number of Observations: 336
Degrees of Freedom: 328
R-Squared: 0.09854189445907224
Adjusted R-Squared: 0.8916569355529651
Sum of Squared Errors: 98.18418730219717

LINEAR REGRESSION WITH ENTITY FIXED EFFECTS

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant 3.493 0.311 11.224 0.000
Beer Tax -0.666 0.187 -3.568 0.000

Entity Fixed Effects:
F-statistic = 52.292613405809774
P-Value = 0.0

Number of Observations: 336
Degrees of Freedom: 287
R-Squared: 0.9051880880527936
Adjusted R-Squared: 0.8916569355529651
Sum of Squared Errors: 10.326636882939752

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 0.1196160034817293
P-Value = 0.7294513383951057

130 CHAPTER 6. REGRESSION ANALYSIS OF PANEL DATA

LINEAR REGRESSION WITH NO FIXED EFFECTS

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant 1.853 0.044 42.533 0.000
Beer Tax 0.364 0.062 5.861 0.000

Number of Observations: 336
Degrees of Freedom: 334
R-Squared: 0.09325692110894601
Adjusted R-Squared: 0.8916569355529651
Sum of Squared Errors: 98.75981118322549

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 9.279049918284215
P-Value = 0.002317896237377992

Coefficient Standard Errors Below Are Adjusted to Accommodate
Heteroskedasticity

Coefficient Std. Error T-stat P-Val

Constant 1.853 0.047 39.427 0.000
Beer Tax 0.364 0.053 6.911 0.000

Number of Observations: 336
Degrees of Freedom: 334
R-Squared: 0.09325692110894601
Adjusted R-Squared: 0.8916569355529651
Sum of Squared Errors: 98.75981118322549

The above regression that includes entity fixed effects but not time fixed
effects duplicates the result obtained previously using de-meaned data.

Of course, it makes sense to include additional regressors to control for
other factors that we can measure which might influence any relationship
between beer taxes and traffic fatalities. At this point we reproduce the
right-most regression in Table 8.1 on page 287 of the Stock and Watson

6.3. USING FIXED-EFFECTS DUMMY VARIABLES 131

introductory econometrics textbook. We first have to take the logarithm
of the per capita income variable and consolidate the mandatory jail and
community service variables into a single variable that takes a value of 1 if
either or both apply and zero otherwise.

> (def perinc (log perinc))
PERINC
> (def vmiles (/ vmiles 1000))
VMILES
> (def jailcomserv (+ jaild comserd))
JAILCOMSERV
> (dotimes (i (length jailcomserv))
(if (= (select jailcomserv i) 2)(setf (select jailcomserv i) 1)
) ; end if
) ; end dotimes
NIL

> (def idepmat (bind-columns beertax mlda jailcomserv vmiles
unrate perinc))
IDEPMAT
> (def regressors (list "Constant" "Beer Tax" "Drinking Age"
"Jail-Comm-Service" "Miles per Driver" "Unemployment Rate"
"Per Capita Income"))
REGRESSORS
> (OLS-panel fatrate idepmat efemat tfemat 1)

LINEAR REGRESSION WITH ENTITY AND TIME FIXED EFFECTS

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant -12.601 3.453 -3.649 0.000
Beer Tax -0.474 0.165 -2.878 0.004
Drinking Age -0.002 0.018 -0.107 0.915
Jail-Comm-Service 0.039 0.059 0.664 0.507
Miles per Driver 0.009 0.009 1.027 0.305
Unemployment Rate -0.063 0.011 -5.653 0.000
Per Capita Income 1.787 0.361 4.946 0.000

132 CHAPTER 6. REGRESSION ANALYSIS OF PANEL DATA

Entity Fixed Effects:
F-statistic = 47.635527799478346
P-Value = 0.0

Time Fixed Effects:
F-statistic = 19.548913853023127
P-Value = 0.0

Number of Observations: 336
Degrees of Freedom: 276
R-Squared: 0.9393650302557469
Adjusted R-Squared: 0.9264032070133159
Sum of Squared Errors: 6.604184032335501

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 11.632497706504546
P-Value = 0.07068778606103288

Coefficient Standard Errors Below Are Adjusted to Accommodate
Heteroskedasticity

Coefficient Std. Error T-stat P-Val

Constant -12.601 3.941 -3.197 0.002
Beer Tax -0.474 0.198 -2.389 0.018
Drinking Age -0.002 0.016 -0.121 0.904
Jail-Comm-Service 0.039 0.076 0.518 0.605
Miles per Driver 0.009 0.007 1.260 0.209
Unemployment Rate -0.063 0.010 -5.965 0.000
Per Capita Income 1.787 0.410 4.358 0.000

Number of Observations: 336
Degrees of Freedom: 276
R-Squared: 0.9393650302557469
Adjusted R-Squared: 0.9264032070133159
Sum of Squared Errors: 6.604184032335501

6.3. USING FIXED-EFFECTS DUMMY VARIABLES 133

LINEAR REGRESSION WITH TIME FIXED EFFECTS

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant 15.880 2.177 7.294 0.000
Beer Tax 0.102 0.056 1.835 0.067
Drinking Age -0.011 0.029 -0.386 0.700
Jail-Comm-Service 0.274 0.052 5.268 0.000
Miles per Driver 0.129 0.018 7.245 0.000
Unemployment Rate 0.001 0.014 0.099 0.921
Per Capita Income -1.546 0.210 -7.366 0.000

Time Fixed Effects:
F-statistic = 0.8267459319549197
P-Value = 0.5498357636865194

Number of Observations: 336
Degrees of Freedom: 323
R-Squared: 0.44750342524478237
Adjusted R-Squared: 0.9264032070133159
Sum of Squared Errors: 60.17631528981331

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 126.5800386028212
P-Value = 0.0

Coefficient Standard Errors Below Are Adjusted to Accommodate
Heteroskedasticity

Coefficient Std. Error T-stat P-Val

Constant 15.880 2.782 5.708 0.000
Beer Tax 0.102 0.050 2.025 0.044
Drinking Age -0.011 0.026 -0.424 0.672
Jail-Comm-Service 0.274 0.058 4.715 0.000
Miles per Driver 0.129 0.076 1.701 0.090
Unemployment Rate 0.001 0.015 0.088 0.930
Per Capita Income -1.546 0.239 -6.456 0.000

134 CHAPTER 6. REGRESSION ANALYSIS OF PANEL DATA

Number of Observations: 336
Degrees of Freedom: 323
R-Squared: 0.44750342524478237
Adjusted R-Squared: 0.9264032070133159
Sum of Squared Errors: 60.17631528981331

LINEAR REGRESSION WITH ENTITY FIXED EFFECTS

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant -2.243 3.555 -0.631 0.529
Beer Tax -0.380 0.193 -1.970 0.050
Drinking Age -0.037 0.020 -1.887 0.060
Jail-Comm-Service -0.033 0.069 -0.484 0.629
Miles per Driver -0.004 0.010 -0.361 0.718
Unemployment Rate -0.019 0.012 -1.672 0.096
Per Capita Income 0.669 0.374 1.789 0.075

Entity Fixed Effects:
F-statistic = 32.955518766148494
P-Value = 0.0

Number of Observations: 336
Degrees of Freedom: 282
R-Squared: 0.9135965998207236
Adjusted R-Squared: 0.9264032070133159
Sum of Squared Errors: 9.410806308805885

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 15.508837306993268
P-Value = 0.0166476692094093

6.3. USING FIXED-EFFECTS DUMMY VARIABLES 135

Coefficient Standard Errors Below Are Adjusted to Accommodate
Heteroskedasticity

Coefficient Std. Error T-stat P-Val

Constant -2.243 3.378 -0.664 0.507
Beer Tax -0.380 0.199 -1.913 0.057
Drinking Age -0.037 0.018 -2.133 0.034
Jail-Comm-Service -0.033 0.079 -0.421 0.674
Miles per Driver -0.004 0.007 -0.536 0.593
Unemployment Rate -0.019 0.009 -2.136 0.034
Per Capita Income 0.669 0.352 1.900 0.058

Number of Observations: 336
Degrees of Freedom: 282
R-Squared: 0.9135965998207236
Adjusted R-Squared: 0.9264032070133159
Sum of Squared Errors: 9.410806308805885

LINEAR REGRESSION WITH NO FIXED EFFECTS

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant 15.306 2.146 7.131 0.000
Beer Tax 0.103 0.056 1.861 0.064
Drinking Age 0.000 0.027 0.016 0.987
Jail-Comm-Service 0.273 0.051 5.341 0.000
Miles per Driver 0.132 0.017 7.592 0.000
Unemployment Rate 0.001 0.013 0.056 0.955
Per Capita Income -1.518 0.209 -7.281 0.000

Number of Observations: 336
Degrees of Freedom: 329
R-Squared: 0.4390184538095272
Adjusted R-Squared: 0.9264032070133159
Sum of Squared Errors: 61.100473627879374

136 CHAPTER 6. REGRESSION ANALYSIS OF PANEL DATA

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 133.42931480583533
P-Value = 0.0

Coefficient Standard Errors Below Are Adjusted to Accommodate
Heteroskedasticity

Coefficient Std. Error T-stat P-Val

Constant 15.306 2.588 5.914 0.000
Beer Tax 0.103 0.051 2.021 0.044
Drinking Age 0.000 0.027 0.017 0.987
Jail-Comm-Service 0.273 0.061 4.464 0.000
Miles per Driver 0.132 0.076 1.747 0.082
Unemployment Rate 0.001 0.018 0.040 0.968
Per Capita Income -1.518 0.234 -6.493 0.000

Number of Observations: 336
Degrees of Freedom: 329
R-Squared: 0.4390184538095272
Adjusted R-Squared: 0.9264032070133159
Sum of Squared Errors: 61.100473627879374

NIL

Clearly, both entity and time fixed effects are statistically significant. Only
two of the added control variables are significant—the unemployment rate
has a negative effect on the traffic fatality rate and the logarithm of real per
capita income has a positive effect, with the effect of the beer tax remaining
negative and statistically significant.

6.4. REORGANISATION OF PANEL DATA SETS 137

6.4 Reorganisation of Panel Data Sets

Our panel-entity-demean function requires that the panel be organised in
stacked time-series form. It is thus desirable to be able to convert the form of
these data sets from stacked cross-section to stacked-time-series, and in the
opposite direction as well. I wrote the function panel-switch-stack-order
for this purpose. The function takes as its single argument a list of lists.
The the first list in this list of lists is the entity list when the panel data set
is currently organised as stacked cross-sectional and is being reorganised as
stacked time-series, or the year or datelist when the current organisation is
stacked time-series and we want to reorganise it as stacked cross-sectional.
The second list in this list of lists is the entity or time/date list, whichever
was not given the previous first position. The remaining lists in the list
of lists are the data lists making up the panel being reorganised. When
the first list is the time or date list, that list must be expressed in integers
starting at 1. If the elements are years this simply involves a transformation
whereby the year previous to the earliest year is subtracted from the entire
year list. The function returns a list of lists called newpanel, which is left in
the workspace. This list of lists contains the lists of reorganised data with
the series in exactly the same order as in the original list of lists that was
used as the argument in the function. These can be extracted and renamed
using the select function in the standard way.

As an example, let us reorganise the panel data used in the immediately
previous regression from stacked time-series to stacked-cross-sectional.

> (def yearunits (- year-fat 1981))
YEARUNITS
> (def switchlist (list yearunits entity-fat beertax mlda
jailcomserv vmiles unrate perinc fatrate))
SWITCHLIST
> (def newpanel (panel-switch-stack-order switchlist))
NEWPANEL
> (def newyears (+ (select newpanel 0) 1981))
NEWYEARS
> (def newentity (select newpanel 1))
NEWENTITY
> (def newbeertax (select newpanel 2))
NEWBEERTAX
> (def newmlda (select newpanel 3))
NEWMLDA

138 CHAPTER 6. REGRESSION ANALYSIS OF PANEL DATA

> (def newjailcomserv (select newpanel 4))
JAILCOMSERV
> (def newvmiles (select newpanel 5))
NEWMILES
> (def newunrate (select newpanel 6))
NEWUNRATE
> (def newperinc (select newpanel 7))
NEWPERINC
> (def newfatrate (select newpanel 8))
NEWFATRATE

To demonstrate the validity of this reorganisation, we can rerun the last
regression above using the OLS-cross-section function, leaving out the
entity and time fixed effects.

> (def regressand "Fatality Rate")
REGRESSAND
> (def regressors (list "Constant" "Beer Tax" "Drinking Age"
"Jail-Comm-Service" "Miles per Driver" "Unemployment Rate"
"Per Capita Income"))
REGRESSORS
> (OLS-cross-section newfatrate (bind-columns newbeertax newmlda
newjailcomserv newvmiles newunrate newperinc) 1)

LINEAR REGRESSION

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant 15.306 2.146 7.131 0.000
Beer Tax 0.103 0.056 1.861 0.064
Drinking Age 0.000 0.027 0.016 0.987
Jail-Comm-Service 0.273 0.051 5.341 0.000
Miles per Driver 0.132 0.017 7.592 0.000
Unemployment Rate 0.001 0.013 0.056 0.955
Per Capita Income -1.518 0.209 -7.281 0.000

Number of Observations: 336
Degrees of Freedom: 329
R-Squared: 0.4390184538095272

6.4. REORGANISATION OF PANEL DATA SETS 139

Adjusted R-Squared: 0.4287877873136523
Sum of Squared Errors: 61.100473627879325

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 133.42931480583323
P-Value = 0.0

Coefficient Standard Errors Below Are Adjusted to Accommodate
Heteroskedasticity

Dependent Variable: Fatality Rate

Coefficient Std. Error T-stat P-Val

Constant 15.306 2.588 5.914 0.000
Beer Tax 0.103 0.051 2.021 0.044
Drinking Age 0.000 0.027 0.017 0.987
Jail-Comm-Service 0.273 0.061 4.464 0.000
Miles per Driver 0.132 0.076 1.747 0.082
Unemployment Rate 0.001 0.018 0.040 0.968
Per Capita Income -1.518 0.234 -6.493 0.000

Number of Observations: 336
Degrees of Freedom: 329
R-Squared: 0.4390184538095272
Adjusted R-Squared: 0.4287877873136523
Sum of Squared Errors: 61.100473627879325

These regression results are identical with the previous ones that incorpo-
rated neither entity nor time fixed effects.

When reorganising the panel from stacked cross-sectional to stacked
time-series it is not necessary to transform the year or date variable into
integer units that start at 1. In that case the year list enters the list of lists
that becomes the argument in the panel-switch-stack-order function in
the second position with the entity list taking first position.

140 CHAPTER 6. REGRESSION ANALYSIS OF PANEL DATA

Chapter 7

Instrumental Variables
Regression

A major problem arises in regression analysis when the error term is corre-
lated with one or more of the independent variables. This can occur because
a variable that is correlated with these independent variables is left out of the
regression. It also occurs when there is simultaneous causality—for example,
left-out factors may shift the demand curve, resulting in shifts in the price
and or quantity as a result of movements along the supply curve. This will
lead to correlation between the error term and whichever of price or quantity
is being used as the independent variable in estimating the demand curve.
The obvious remedy of including the left-out variable in the regression may
not be available because of lack of data. Independent variables that are cor-
related with the error term in the equation are called endogenous variables
and those uncorrelated with the error term are called exogenous.

Under these circumstances an instrumental variables approach may be
useful. An excellent introduction to the basics of this topic is Chapter 10
of the Stock and Watson introductory econometrics book, from which data
sets are used in the exposition here. The basic idea is to find variables that
are correlated with the endogenous independent variable but not the error
term, and use them as ‘instruments’ to cleanse the endogenous variable of
its correlation with the error term. To be useful, an instrumental variable
must satisfy two conditions: a) it must be relevant—that is, correlated with
the endogenous variable, and b) it must be exogenous—that is, uncorrelated
with the error term.

141

142 CHAPTER 7. INSTRUMENTAL VARIABLES REGRESSION

7.1 Two-Stage Least Squares

The usual approach to instrumental variable estimation proceeds, using OLS
methods, in two stages—hence its name, two-stage least squares. The first
stage simply involves regressing each endogenous variable in one’s ideal basic
estimating equation (the equation one would run if there was no correlation
of the independent variables with the error term) on one or more instru-
mental variables together with all exogenous variables that would ordinarily
appear in that ideal equation, and then extracting the respective series of
fitted values. These fitted values have the property that they are inde-
pendent of the residuals of the first-stage regression but correlated with the
endogenous variable in question (if the instruments are relevant). Hopefully,
they should thereby be purged of any correlation with the factors that will
determine the residuals of the ideal basic estimating equation. The second
stage then simply applies OLS to this ideal equation where the endogenous
variables are replaced by their fitted values from the first-stage regressions.
The coefficients of the fitted series should be free of the bias that would be
present if the actual series were used in their place.

Since the purpose is to obtain appropriate fitted values of the endogenous
variables, the first-stage regression can best be run using our OLS-basic
function with the right-most argument set to -1 to impose the assumption
that the residuals are homogeneous. It is important that the instruments
be strongly related to the endogenous regressor being used as the dependent
variable in the first stage—this requires that they be statistically significant.
A useful rule-of-thumb when there is a single endogenous regressor is that
the first-stage F-statistic must exceed 10.

As an example, we can use some data on the U.S. commercial bank-
loan market from G. S. Maddala’s introductory econometrics text.1 The file
containing the data is loandata.lsp. The task is to measure the supply
and demand elasticities in that market.2

> (load "addfuncs")
; loading addfuncs.lsp
T
> (load "loandata")
; loading loandata.lsp
T

1G. S. Maddala, Introduction to Econometrics, MacMillan, 1988.
2This econometric exercise should not be taken seriously as a test of economic theory

because the data are for a short period many years ago.

7.1. TWO-STAGE LEAST SQUARES 143

> (variables)
(CBNDRATE DATE7984 INDPROD PRIMRATE QLOANS TBRATE TOTBDEP)

The series run from January 1979 through December 1984 and can be de-
scribed as follows:

QLOANS —Quantity of Commercial Loans Made by Banks
PRIMRATE —Bank’s Prime Rate on Commercial Loans
CBNDRATE —Interest Rate on Corporate Bonds
TBRATE —30-Day Treasury Bill Rate
INDPROD —Industrial Production
TOTDEP —Total Bank Deposits

Appropriate structural equations representing the demand and supply
of commercial bank loans are:

Demand

QLOANS = β0 + β1 PRIMRATE + β2 CBNDRATE + β3 INDPROD

Supply

QLOANS = δ0 + δ1 PRIMRATE + δ2 TBRATE + δ3 TOTDEP

where β1 and δ2 are negative and all the other coefficients are positive.
This says that banks will expand their supply of loans in response to a
higher prime rate, greater deposits, and a lower rate of return on alternative
investments in treasury bills, and that commercial enterprises will increase
their demand for loans in response to a fall in the prime rate, a rise in
the cost of funding through corporate bond issues and an increase in their
output.

144 CHAPTER 7. INSTRUMENTAL VARIABLES REGRESSION

7.2 Estimation Using Ordinary Least Squares

Before proceeding with two-stage least squares analysis, it is useful to run the
demand and supply equations using standard OLS to see what coefficients
result.

> (def regressand "Quantity of Loans")
REGRESSAND
> (def regressors (list "Constant" "Prime Rate" "Corp Bond Rate"
"Ind Prod"))
REGRESSORS
> (def OLSdreg (OLS-basic qloans (bind-columns primrate cbndrate
indprod) 1 -1))

LINEAR REGRESSION

Dependent Variable: Quantity of Loans

Coefficient Std. Error T-stat P-Val

Constant -198.452 69.369 -2.861 0.006
Prime Rate -15.923 1.335 -11.928 0.000
Corp Bond Rate 35.915 2.539 14.147 0.000
Ind Prod 2.258 0.423 5.337 0.000

Number of Observations: 72
Degrees of Freedom: 68
R-Squared: 0.7799598762225272
Adjusted R-Squared: 0.7702522237029328
Sum of Squared Errors: 57135.444677799685
LMSC -- Chi-Square: 113.29014354989683
P-Value: 0.0
Breusch-Pagan -- Chi-Square: 4.908350510490275
P-Value: 0.17863250474467596
Regression F-Statistic: 80.34484904030286
P-Value: 0.0

OLSDREG

7.2. ESTIMATION USING ORDINARY LEAST SQUARES 145

> (def regressors (list "Constant" "Prime Rate" "T-Bill Rate"
"Bank Deposits"))
REGRESSORS
> (def OLSsreg (OLS-basic qloans (bind-columns primrate tbrate
totbdep) 1 -1))

LINEAR REGRESSION

Dependent Variable: Quantity of Loans

Coefficient Std. Error T-stat P-Val

Constant -77.469 11.234 -6.896 0.000
Prime Rate 2.424 0.828 2.927 0.005
T-Bill Rate -1.903 1.071 -1.777 0.080
Bank Deposits 0.332 0.006 51.318 0.000

Number of Observations: 72
Degrees of Freedom: 68
R-Squared: 0.9767416046419778
Adjusted R-Squared: 0.975715498964418
Sum of Squared Errors: 6039.256561301388
LMSC -- Chi-Square: 80.02576052366551
P-Value: 0.0

Breusch-Pagan -- Chi-Square: 6.327661775518827
P-Value: 0.09671258232287316

Regression F-Statistic: 951.89182362267
P-Value: 0.0

OLSSREG

The variables have the expected signs since CBNDRATE and INDPROD stabilise
the demand curve and TBRATE and TOTBDEP stabilise the supply curve so that
changes in PRIMRATE trace out estimated curves with the correctly signed
slopes. Of course, these slope coefficients are biased because of missing
factors affecting the supply and demand curves.

146 CHAPTER 7. INSTRUMENTAL VARIABLES REGRESSION

7.3 First Stage TSLS Estimation

In the first stage of our two-stage analysis, it makes sense to use CBNDRATE
and INDPROD as instruments for the supply equation and TBRATE and TOTBDEP
as instruments for the demand equation because they obviously are related
to PRIMRATE and their inclusion strips the fitted PRIMRATE series of corre-
lation with the portions of the error terms they are responsible for in the
respective supply and demand equations. Since the independent variables
in the first stage are the instruments plus the exogenous variables, we have a
single first-stage regression that determines the fitted values of PRIMRATE to
include, in place of the actual PRIMRATE series, in both second-stage equa-
tions.

> (def regressand "Prime Rate")
REGRESSAND
> (def regressors (list "Constant" "Corp Bond Rate" "Ind Prod"
"T-Bill Rate" "Bank Deposits"))
REGRESSORS
> (def tslsfsreg (OLS-basic primrate (bind-columns cbndrate
indprod tbrate totbdep) 1 -1))

LINEAR REGRESSION

Dependent Variable: Prime Rate

Coefficient Std. Error T-stat P-Val

Constant 1.998 3.014 0.663 0.510
Corp Bond Rate 0.758 0.177 4.281 0.000
Ind Prod 0.007 0.022 0.314 0.754
T-Bill Rate 0.774 0.116 6.665 0.000
Bank Deposits -0.005 0.002 -3.449 0.001

Number of Observations: 72
Degrees of Freedom: 67
R-Squared: 0.8682436231443796
Adjusted R-Squared: 0.8603775707947904
Sum of Squared Errors: 94.37302512953541
LMSC -- Chi-Square: 53.49847382282727
P-Value: 2.58792987040124E-13

7.4. SECOND STAGE TSLS ESTIMATION 147

Breusch-Pagan -- Chi-Square: 5.519748931538307
P-Value: 0.2379989788923309

Regression F-Statistic: 110.37857168465385
P-Value: 0.0

TSLSFSREG
> (def prfitted (send lastreg :fit-values))
PRFITTED

The F-statistic is certainly high enough but it would appear that industrial
production is a weak instrument—we include it anyway because is is an
exogenous variable in the demand-for-loans equation.

7.4 Second Stage TSLS Estimation

The second stage of two-stage least squares estimation also involves a stan-
dard OLS regression but an important refinement is required. The standard
errors of the coefficients produced by standard OLS turn out to be incorrect.
The problem is that the standard OLS regression calculates the regression
residuals as

ê = y −Xb̂

where ê is the vector of second stage regression residuals, y is the vector of
values of the dependent variable, X is the matrix of independent variables
(including the constant) and b̂ is the vector of coefficients. It calculates the
standard error of the regression, ŝ 2, as the sum of squares of these residuals
divided by the degrees of freedom. The correct measure of the residuals is

e = y − Z b̂

where Z is the matrix X with the columns comprised of the fitted values
of PRIMRATE replaced by the actual values. This leads to a correct estimate
of the sum of squared residuals, divided by the degrees of freedom, which
we will simply call s 2. Since this term multiplicatively enters the formula
for the variance-covariance matrix of the coefficients, that matrix must be
multiplied by s 2/ŝ 2 to correctly estimate it. And the coefficient standard-
errors produced by the second-stage OLS regression must be multiplied by
s/ŝ.

I have written five functions with which to perform this second-stage
estimation. The first three of these are modifications of previously written

148 CHAPTER 7. INSTRUMENTAL VARIABLES REGRESSION

OLS regression functions, with OLS replaced by TSLS-SS in the function
definitions:

TSLS-SS-basic takes five arguments—the list representing the dependent
variable, the matrix of independent variables (excluding the constant) with
the endogenous variables replaced by their fitted values from the first-stage
regression, the matrix of independent variables (excluding the constant) with
the actual series of endogenous variables included instead of their fitted
values, the integer 1 if a constant is to be included or 0 otherwise, and
finally, -1 if homoskedastic residuals are to be assumed, 0 if the residuals
are assumed to be heteroskedastic or 1 if the residuals are assumed to be
heteroskedastic and serially correlated.

TSLS-SS-cross-section takes four arguments which are same first four
taken by the TSLS-SS-basic function. This function runs a Breusch-Pagan
test on the residuals and if heteroskedasticity cannot be rejected at the 10%
level it calculates and prints heteroskedasticity-consistent standard errors
and t-ratios of the coefficients in addition to the standard ones.

TSLS-SS-time-series takes the same first three arguments as the above
two functions. The fourth argument is the date-list that the data must
conform to and the fifth is 1 if a constant is to be included or 0 otherwise.
Several LM tests for serial correlation in the residuals are conducted and if
its presence cannot be rejected at the 10% level, HAC standard errors and t-
ratios are calculated and presented along with the standard ones. Unlike the
OLS-time-series function, this function cannot be applied to sub-periods
of the date-list. All series must conform to the desired time period of the
regression before the function is called.

TSLS-SS-panel takes the same first three arguments as the above three
functions. Its fourth argument is the matrix of entity fixed effects and its
fifth is the matrix of time fixed effects. The sixth, and final, argument
is 1 if a constant is to be included or 0 otherwise. If heteroskedasticity
in the residuals cannot be rejected at the 10% level using a Breusch-Pagan
test, heteroskedasticity-consistent coefficient standard-errors and t-ratios are
calculated and presented in addition to the standard ones.

All the above functions produce the same output as OLS with the coefficient
standard-errors and t-ratios adjusted to compensate for the fact that the
fitted values of the endogenous variables from the first-stage are used in
place of the actual values in this second-stage. The corrected residuals are
left as the column vector resid-corr.

7.4. SECOND STAGE TSLS ESTIMATION 149

A final concern is to test whether the instruments are really exogenous—
that is uncorrelated with the second-stage regression residuals. If the num-
ber of instruments exceeds the number of endogenous variables in the second-
stage equation, an over-identifying-restrictions test for endogeneity can be
performed. This involves regressing the corrected residuals from the second-
stage regression on all included instruments and exogenous variables and
obtaining the statistic J = mF where F is the standard F-statistic and m is
the number of instruments. This statistic is distributed as χ2 with degrees
of freedom equal to m − k where k is the number of endogenous variables.
If it is statistically significant we have to reject the null-hypothesis of zero
correlation between the residuals and instruments and conclude that the
instruments are not exogenous. To perform this test, I have written the
function TSLS-OIR which takes four arguments—in order, the corrected
second-stage regression residuals, the matrix of instruments and exdogenous
variables (excluding the constant term), m and k.

We can now do the second-stage analysis using the TSLS-SS-time-
series and TSLS-OIR functions.

> (def regressand "Quantity of Loans")
REGRESSAND
> (def regressors (list "Constant" "Prime Rate" "Corp Bond Rate"
"Ind Prod"))
REGRESSORS
> (TSLS-SS-time-series qloans (bind-columns prfitted cbndrate indprod)
(bind-columns primrate cbndrate indprod) date7984 1)

LINEAR REGRESSION: TSLS---SECOND STAGE

Dependent Variable: Quantity of Bank Loans

Starting Date: 1979.0 Ending Date: 1984.917

Coefficient Std. Error T-stat P-Val

Constant -204.332 74.196 -2.754 0.008
Prime Rate -20.097 1.596 -12.589 0.000
Corp Bond Rate 40.556 2.829 14.337 0.000
Indust Prod 2.306 0.453 5.095 0.000

150 CHAPTER 7. INSTRUMENTAL VARIABLES REGRESSION

Number of Observations: 72
Degrees of Freedom: 68
R-Squared: 0.9061881342923508
Adjusted R-Squared: 0.902049375511131
Sum of Squared Errors: 24359.11492524487
Regression F-Statistic: 218.9516669597422
P-Value: 0.0

LM-Based Test for Serial Correlation in Residuals:
Order = 1 Chisq-stat = 99.49112458999178 P-Value = 0.0

LM-Based Test for Serial Correlation in Residuals:
Order =< 3 Chisq-stat = 112.22572656626016 P-Value = 0.0

LM-Based Test for Serial Correlation in Residuals:
Order =< 18 Chisq-stat = 105.37237073901618 P-Value =
2.275957200481571E-14

Modified Results Using HAC Standard Errors of Coefficients:
Truncation lag = 3

Coefficient Std. Error T-stat P-Val

Constant -204.332 124.899 -1.636 0.106
Prime Rate -20.097 2.148 -9.358 0.000
Corp Bond Rate 40.556 4.142 9.792 0.000
Indust Prod 2.306 0.695 3.317 0.001

NIL
> (TSLS-OIR (copy-matrix-column 0 resids-corr)(bind-columns cbndrate
indprod tbrate totbdep) 2 1)

Test of Over-identifying Restrictions
J = 14.544083005422333
P-Value = 1.3691796589743177E-4

NIL

7.4. SECOND STAGE TSLS ESTIMATION 151

> (def regressors (list "Constant" "Prime Rate" "T-Bill Rate"
"Bank Deposits"))
REGRESSORS
> (TSLS-SS-time-series qloans (bind-columns prfitted tbrate totbdep)
(bind-columns primrate tbrate totbkdep) date7984 1)

LINEAR REGRESSION: TSLS---SECOND STAGE

Dependent Variable: Quantity of Bank Loans

Starting Date: 1979.0 Ending Date: 1984.917

Coefficient Std. Error T-stat P-Val

Constant -88.023 13.966 -6.303 0.000
Prime Rate 6.900 1.901 3.629 0.001
T-Bill Rate -7.080 2.272 -3.116 0.003
Bank Deposits 0.334 0.008 42.946 0.000

Number of Observations: 72
Degrees of Freedom: 68
R-Squared: 0.9802519473557604
Adjusted R-Squared: 0.9793807097391027
Sum of Squared Errors: 5127.763745898886
Regression F-Statistic: 1125.125830902879
P-Value: 0.0

LM-Based Test for Serial Correlation in Residuals:
Order = 1 Chisq-stat = 99.22257608740021 P-Value = 0.0

LM-Based Test for Serial Correlation in Residuals:
Order =< 3 Chisq-stat = 93.78066626238488 P-Value = 0.0

LM-Based Test for Serial Correlation in Residuals:
Order =< 18 Chisq-stat = 98.35405543300283 P-Value = 4.4297898682543746E-13

152 CHAPTER 7. INSTRUMENTAL VARIABLES REGRESSION

Modified Results Using HAC Standard Errors of Coefficients:
Truncation lag = 3

Coefficient Std. Error T-stat P-Val

Constant -88.023 19.403 -4.537 0.000
Prime Rate 6.900 2.532 2.725 0.008
T-Bill Rate -7.080 3.060 -2.314 0.024
Bank Deposits 0.334 0.014 24.279 0.000

NIL

> (TSLS-OIR (copy-matrix-column 0 resids-corr)(bind-columns cbndrate
indprod tbrate totbdep) 2 1)

Test of Over-identifying Restrictions
J = 2.2886547103520276
P-Value = 0.13032283784027232

We have to conclude that one or both instruments are not exogenous in the
estimation of the demand function for loans, although both appear to be
exogenous in the estimation of the supply function.

7.5 An Application to Panel Data

Another interesting instrumental variables problem is presented by Stock
and Watson in Chapter 10 of the textbook referred to earlier. They examine
a annual panel data set dealing with cigarette consumption and the factors
affecting it in 48 U.S. states during the years 1985 and 1995. The object
is to determine whether an increase in the price of cigarettes will reduce
cigarette consumption by an economically significant amount—that is, to
measure the elasticity of demand for cigarettes. The dataset, which has
been copied to the file cigdata.lsp contains the following variables.

PACKPC —Packages of Cigarettes Consumed Per Capita
AVGPRS —Average Price of a Package of Cigarettes
TAX —Taxes on Cigarettes
TAXS —General Sales Tax
CPI —U.S. Consumer Price Index
INCOME —Income
POP —Population
ENTITY —Entity Code – (1, 2, 3, 48)
YEAR —Year – (1985, 1995)

All prices and general sales taxes are measured in cents per package.

7.5. AN APPLICATION TO PANEL DATA 153

> (load "addfuncs")
; loading addfuncs.lsp
T
> (load "cigdata")
; loading cigdata.lsp
T
> (variables)
(AVGPRS CPI ENTITY INCOME PACKPC POP TAX TAXS YEAR)

Because of variations in the supply curve, the price per package will almost
surely be correlated with the error term in an OLS estimate of the demand
curve. Useful instruments appear to be the cigarette tax and sales tax
variables since they should both be positively correlated with the price per
package and should be exogenous with respect to the error term in the OLS
estimated demand curve.

Our first step, after converting income into per-capita terms, expressing
all prices in real terms (deflating by the CPI) and taking logarithms, is to
convert the data into 1995-1985 differences as a way of eliminating entity
fixed effects.

> (def income (/ income pop))
INCOME
> (def income (log (/ income cpi)))
INCOME
> (def avgprs (log (/ avgprs cpi)))
AVGPRS
> (def tax (log (/ tax cpi)))
TAX
> (def taxs (log (/ taxs cpi)))
TAXS
> (def packpc (log packpc))
PACKPC
> (def obslist-85 (panel-collect-obsnums year entity 1985))
OBSLIST-85
> (def obslist-95 (panel-collect-obsnums year entity 1995))
OBSLIST-95
> (def packpc-85 (select packpc obslist-85))
PACKPC-85
> (def packpc-95 (select packpc obslist-95))
PACKPC-95
> (def income-85 (select income obslist-85))
INCOME-85

154 CHAPTER 7. INSTRUMENTAL VARIABLES REGRESSION

> (def income-95 (select income obslist-95))
INCOME-95
> (def tax-85 (select tax obslist-85))
TAX-85
> (def tax-95 (select tax obslist-95))
TAX-95
> (def taxs-85 (select taxs obslist-85))
TAXS-85
> (def taxs-95 (select taxs obslist-95))
TAXS-95
> (def avgprs-85 (select avgprs obslist-85))
AVGPRS-85
> (def avgprs-95 (select avgprs obslist-95))
AVGPRS-95
> (def quant-dif (- packpc-95 packpc-85))
QUANT-DIF
> (def income-dif (- income-95 income-85))
INCOME-DIF
> (def price-dif (- avgprs-95 avgprs-85))
PRICE-DIF
> (def cigtax-dif (- tax-95 tax-85))
CIGTAX-DIF
> (def salestax-dif (- taxs-95 taxs-85))
SALESTAX-DIF

Next, we can estimate the demand curve by OLS to see what the biased
coefficients will be.

> (def regressand "quant-dif")
REGRESSAND
> (def regressors (list "Constant" "price-dif" "income-dif"))
REGRESSORS
> (def reg0 (OLS-basic quant-dif (bind-columns price-dif
income-dif) 1 -1))

7.5. AN APPLICATION TO PANEL DATA 155

LINEAR REGRESSION

Dependent Variable: quant-dif

Coefficient Std. Error T-stat P-Val

Constant -0.085 0.059 -1.453 0.153
price-dif -1.056 0.149 -7.081 0.000
income-dif 0.498 0.304 1.636 0.109

Number of Observations: 48
Degrees of Freedom: 45
R-Squared: 0.5559789872632931
Adjusted R-Squared: 0.5362447200305506
Sum of Squared Errors: 0.3669425174766015
LMSC -- Chi-Square: 1.6365558452394362
P-Value: 0.20079867559105202

Breusch-Pagan -- Chi-Square: 0.7546624898846197
P-Value: 0.6856889052919959

Regression F-Statistic: 28.173277512976448
P-Value: 1.1656797971326682E-8

REG0

Now we can run the first stage of our two-stage least squares analysis using
the OLS-basic function with the cigarette and general sales taxes as in-
struments and per capita income included as the exogenous regressor. The
F-statistic in excess of 24 indicates that the instruments are relevant.

> (def regressand "price-dif")
REGRESSAND
> (def regressors (list "Constant" "cigtax-dif" "salestax-dif"
"income-dif"))
REGRESSORS
> (def regfs (OLS-basic price-dif (bind-columns cigtax-dif
salestax-dif income-dif) 1 -1))

156 CHAPTER 7. INSTRUMENTAL VARIABLES REGRESSION

LINEAR REGRESSION

Dependent Variable: price-dif

Coefficient Std. Error T-stat P-Val

Constant 0.137 0.025 5.566 0.000
cigtax-dif -0.210 0.121 -1.735 0.090
salestax-dif 0.579 0.114 5.077 0.000
income-dif 0.005 0.156 0.032 0.974

Number of Observations: 48
Degrees of Freedom: 44
R-Squared: 0.7575748595702829
Adjusted R-Squared: 0.7410458727228022
Sum of Squared Errors: 0.09017434990530582
LMSC -- Chi-Square: 0.2030011472055949
P-Value: 0.6523092343158037
Breusch-Pagan -- Chi-Square: 3.888801053809374
P-Value: 0.27372466794365335
Regression F-Statistic: 45.83310922567222
P-Value: 1.362243651215067E-13

REGFS
> (def fitprice-dif (send lastreg :fit-values))
FITPRICE-DIF

And finally, we run the second-stage regression and test for exogeneity of
the instruments.

> (def regressand "quant-dif")
REGRESSAND
> (def regressors (list "Constant" "fitprice-dif" "income-dif"))
REGRESSORS
> (def regss (TSLS-SS-cross-section quant-dif
(bind-columns fitprice-dif income-dif)(bind-columns price-dif
income-dif) 1))

7.5. AN APPLICATION TO PANEL DATA 157

LINEAR REGRESSION: TSLS--SECOND STAGE

Dependent Variable: quant-dif

Coefficient Std. Error T-stat P-Val

Constant -0.048 0.063 -0.759 0.452
fitprice-dif -1.200 0.173 -6.918 0.000
income-dif 0.463 0.308 1.502 0.140

Number of Observations: 48
Degrees of Freedom: 45
R-Squared: 0.5433378444067236
Adjusted R-Squared: 0.523041748602578
Sum of Squared Errors: 0.377389259073314

Breusch-Pagan test on the Residuals
Chi-Square Statistic = 0.9141069794299526
P-Value = 0.633146472332637

REGSS
> (TSLS-OIR (copy-matrix-column 0 resids-corr)
(bind-columns cigtax-dif salestax-dif income-dif) 2 1)

Test of Over-identifying Restrictions
J = 5.372354636942074
P-Value = 0.020458342334803037

NIL

The demand elasticity has the correct sign and is somewhat larger than
when the function was estimated by ordinary OLS. The over-identifying-
restrictions test indicates that at least one of the two instruments is not
exogenous. It turns out that when Stock and Watson redo the calculations
using each instrument alone in turn they obtain correctly signed demand
elasticities that bracket the one above. Unfortunately, with only one instru-
ment there is no way of testing it for exogeneity.3

3The coefficient standard-errors differ here from those reported by Stock and Watson
because our TSLS-SS-cross-section function did not use HAC coefficient standard er-
rors, given that the Breusch-Pagan test indicates no statistically significant heteroskedas-

158 CHAPTER 7. INSTRUMENTAL VARIABLES REGRESSION

It is interesting to note that both our two-stage least squares estimates
of demand functions in this chapter suffered from evident lack of instrument
exogeneity. In view of the fact that the standard OLS estimates of the
demand functions yielded correctly signed elasticities, do we gain anything
by basing our conclusions on the instrumental variables estimates instead?

ticity in the second-stage regression residuals. Stock and Watson routinely report only
HAC coefficient standard-errors. They also routinely report HAC regression F-statistics
whereas all functions thus-far used in this work produce only the standard ones. While
the constants differ in magnitude between our results and those of Stock and Watson, this
fact is of little consequence as the difference most likely depends on a different scaling of
the variables.

Chapter 8

Probit, Logit and Nonlinear
Regression

Another set of issues arise when the dependent variable is binary—that is,
takes a value of zero or unity. An example is the problem of determining
whether, other things equal, blacks are more often denied residential mort-
gages than whites in the Boston area. A data set for analysing this problem,
which forms the basis for the analysis of Stock and Watson in Chapter 9
of their introductory econometrics textbook, was obtained and refined in
Chapter 2 of this manual. The Stock and Watson Chapter is an excellent
reference for those needing to upgrade their understanding of the basics.
The dependent variable is the variable DENY, which takes a value of 1 if the
individual is denied a mortgage and 0 otherwise. Here, we are interested in
only two independent variables, the ratio of total monthly debt obligations
to income, denoted by RTDINC and the variable BLACK, which takes a value
of 1 if the applicant is black and 0 if the applicant is white. Readers can use
the remaining data for refining the results presented here.

8.1 The Linear Probability Model

One way of analysing this issue is simply to regress DENY on the two variables
RTDINC and BLACK, together with a constant term. Using our OLS-Basic
function, we proceed as follows, ending with a plot of the fitted values against
the ratio of total payments to income.

> (load "addfuncs.lsp")
; loading addfuncs.lsp

159

160 CHAPTER 8. PROBIT, LOGIT AND NONLINEAR REGRESSION

T

> (load "hmdata")
; loading hmdata.lsp
T
> (variables)
(AMT BLACK CCSCORE CONDO DENMINS DENY HSGRAD MCSCORE OBS-ADJ
PROPVAL PUBREC RHDINC RTDINC SELFEMP SINGLE UNRATE)
> (def regressand "Probability of Denial")
REGRESSAND
> (def regressors (list "Constant" "Payments/Income" "Black"))
REGRESSORS
> (def reg0 (OLS-basic deny (bind-columns rtdinc black) 1 -1))

LINEAR REGRESSION

Dependent Variable: Probability of Denial

Coefficient Std. Error T-stat P-Val

Constant -0.121 0.027 -4.504 0.000
Payments/Income 0.653 0.080 8.201 0.000
Black 0.176 0.019 9.522 0.000

Number of Observations: 2351
Degrees of Freedom: 2348
R-Squared: 0.0704528991455754
Adjusted R-Squared: 0.06966112137653424
Sum of Squared Errors: 229.27510542044902
LMSC -- Chi-Square: 148.12782736404145
P-Value: 0.0
Breusch-Pagan -- Chi-Square: 102.49402936375255
P-Value: 0.0
Regression F-Statistic: 88.98064823275585
P-Value: 0.0

REG0

8.2. PROBIT AND LOGIT MODELS 161

> (def fitt0 (send lastreg :fit-values))
FITTED
> (def plt0 (plot-points rtdinc deny))
PLT0
NIL
> (send plt0 :add-points rtdinc fitt0)
NIL
> (send plt0 :variable-label 0 "All Payments / Income")
NIL
> (send plt0 :variable-label 1 "Probability of Denial")
NIL

The fitted values, which give the probability of denial at each ratio of total
debt payments to income appear along the two upward-sloping lines in the
plot in Figure 13. The lower line gives the fitted values for individuals who
are white and the upper line gives the fitted values for blacks. The P-Value
of the coefficient of BLACK in the regression print-out above indicates clearly
that the variable is positive and statistically significant—the plot gives a
visual indication of the magnitude. The probability that a black home buyer
will be denied a mortgage will always be higher than the probability that
a white buyer will be denied at every given level of the ratio of total debt
payments to income.

The problem is that when the ratio of total debt payments to income is
less than 0.2, the fitted values are negative—an impossible situation since
the probability of an occurrence can never be negative. The reason is that
the true relationship between the probability of denial and the payments-
to-income ratio is non-linear and our linear probability model is making a
linear approximation to that non-linear relationship.

8.2 Probit and Logit Models

It obviously makes sense to use models in which the probability of the de-
pendent variable taking a value of unity ranges between 0 and 1. Probit
and logit models are based on cumulative distribution functions, which have
this characteristic. The probit regression model uses the standard normal
c.d.f. and the logit regression model uses the logistic c.d.f. The probit re-
gression model can be written as

Pr(Y = 1|X1, X2) = Pr(Z) = Φsn(Z)

162 CHAPTER 8. PROBIT, LOGIT AND NONLINEAR REGRESSION

Figure 13: Plot of probability of denial (fitted) against the ratio
of total payments to income. The horizontal lines are
the actual levels of DENY and RTDINC.

where Φsn(Z) gives the standard normal cumulative probability at the quan-
tile Z with

Z = β0 + β1X1 + β2X2

where X1 and X2 are the independent variables, RTDINC and BLACK, in the
example above, with Y being the variable DENY.

The logit regression model differs from the probit model above in that
Φsn(Z) is replaced by Φlo(Z), the logistic cumulative probability of Z, which
equals

Φlo(Z) =
1

e−Z
=

1
e−(β0+β1X1+β2X2)

.

8.3. NONLINEAR LEAST SQUARES ESTIMATION 163

8.3 Nonlinear Least Squares Estimation

Probit estimation by nonlinear least squares involves choosing the values of
the β coefficients above that will minimise

Yt − Φsn(β0 + β1X1 + β2X2)

The first step is to set up the function that is to be fitted to the data.
Operating in batch mode, our function is

(def idepvars (list rtdinc black))
(defun nllsfunc (beta)
(def sumterm (select beta 0))
(dotimes (i (length idepvars))
(def sumterm (+ sumterm (* (select beta (+ i 1))
(select idepvars i))))
) ; end dotimes
(normal-cdf sumterm)
) ; end of function

The first line says that the function arguments consist of the list beta, which
is assigned a length and values in subsequent code-lines. Line two sets up
the constant term as the beginning of a sum of terms. The dotimes function
then loops through the elements of the list idepvars, which contains the
independent variables other than the constant term, multiplying each list
by the relevant element of the list beta. The line (normal-cdf sumterm)
takes the cumulative normal density of the resulting sum. We then set up a
list of initial guesses as to the elements in the coefficient-list beta. A useful
guess is that the constant is zero and the coefficients of the other variables
equal their means.

(def initvals (list 0 (mean rtdinc)(mean black)))

Then, after making sure that the function file maximize.lsp is in the
workspace, we can use the nreg-model function provided in XLispStat as
follows.

(load "maximize")
(def nllsreg (nreg-model #’nllsfunc deny initvals))
Residual sum of squares: 677.032
Residual sum of squares: 236.694
Residual sum of squares: 225.974
Residual sum of squares: 225.014
Residual sum of squares: 224.926
Residual sum of squares: 224.918
Residual sum of squares: 224.917

164 CHAPTER 8. PROBIT, LOGIT AND NONLINEAR REGRESSION

Least Squares Estimates:

Parameter 0 -2.95899 (0.166013)
Parameter 1 4.66769 (0.414271)
Parameter 2 0.699485 (6.828708E-2)

R Squared: 8.812298E-2
Sigma hat: 0.309501
Number of cases: 2351
Degrees of freedom: 2348

The resulting object, to which we have assigned the name nllsreg, can
be sent messages to retrieve all of the variables that can be retrieved from
the regression-model function plus a few more. We can find out exactly
what these are by inserting our favourite profanity (which XLispStat, being
of high moral tone, will not recognise) causing the execution to stop with
an error message. Then we can enter a help message to obtain the list of
messages our nllsreg object will respond to.

Error: The variable SHIT is unbound.
> (send nllsreg :help)
NREG-MODEL-PROTO
Normal Linear Regression Model
Help is available on the following:

ADD-METHOD ADD-SLOT BASIS CASE-LABELS COEF-ESTIMATES
COEF-STANDARD-ERRORS COMPUTE COOKS-DISTANCES COUNT-LIMIT
DELETE-DOCUMENTATION DELETE-METHOD DELETE-SLOT DF DISPLAY
DOC-TOPICS DOCUMENTATION EPSILON EXTERNALLY-STUDENTIZED-RESIDUALS
FIT-VALUES GET-METHOD HAS-METHOD HAS-SLOT HELP INCLUDED INTERCEPT
INTERNAL-DOC ISNEW LEVERAGES MEAN-FUNCTION METHOD-SELECTORS
NEW NEW-INITIAL-GUESS NUM-CASES NUM-COEFS NUM-INCLUDED
OWN-METHODS OWN-SLOTS PARAMETER-NAMES PARENTS PLOT-BAYES-RESIDUALS
PLOT-RESIDUALS PRECEDENCE-LIST PREDICTOR-NAMES PRINT PROTO
R-SQUARED RAW-RESIDUALS REPARENT RESIDUAL-SUM-OF-SQUARES
RESIDUALS RESPONSE-NAME RETYPE SAVE SHOW SIGMA-HAT SLOT-NAMES
SLOT-VALUE STUDENTIZED-RESIDUALS SUM-OF-SQUARES SWEEP-MATRIX
THETA-HAT TOTAL-SUM-OF-SQUARES VERBOSE WEIGHTS X X-MATRIX
XTXINV Y
NIL

8.3. NONLINEAR LEAST SQUARES ESTIMATION 165

For a clearer presentation of the results, I have written the function NLLS
which takes three arguments in the following order—the name of the de-
pendent variable list, a list containing the independent variables lists ex-
cluding the constant, and a list of initial guesses as to the coefficients of all
variables including the constant. An appropriate function called nllsfunc
must previously have been written and be present in the workspace. And, as
with all the other regression functions, a string-object called regressand,
giving the name assigned to the dependent variable, and a list of strings
called regressors, giving the names of the independent variables including
the constant term, must be present in the work-space when the function is
called. A regression-model object called nllsreg is left in the workspace
along with the variables coefs, stderrs, tratios, df, nobs, SSE, TSS and
MSE. Using the NLLS function in the above case, we obtain the following
results.

> (def reg1 (NLLS deny idepvars initvals))

MINIMIZING THE SUM OF SQUARES IN NON-LINEAR REGRESSION

REGRESSION RESULTS

Dependent Variable: Probability of Denial

Coefficient Std. Error T-stat P-Val

Constant -2.959 0.166 -17.824 0.000
All Payts/Inc 4.668 0.414 11.267 0.000
Black 0.699 0.068 10.243 0.000

Number of Observations: 2351
Degrees of Freedom: 2348
Standard Error 0.09579077311734745
R-Squared: 0.08812298295825427

REG1

We can then extract the fitted values from the object reg1 and plot these
in the form that appears in Figure 14.

> (def fitt1 (send reg1 :fit-values))
FITT1

166 CHAPTER 8. PROBIT, LOGIT AND NONLINEAR REGRESSION

> (def plt1 (plot-points rtdinc deny))
PLT1
> (send plt1 :add-points rtdinc fitt1)
NIL
> (send plt1 :variable-label 0 "All Payments / Income")
"All Payments / Income"
> (send plt1 :variable-label 1 "Probability of Denial")
"Probability of Denial"

The problem of negative probabilities of mortgage denial has disappeared.

Figure 14: Actual and fitted from the probit model with
non-linear-least-squares estimation.

The nonlinear least squares method of estimation is rarely used for probit
or logit analysis because, while consistent in the sense that as the sample size
increases the estimated parameters approach their true values, the method is
inefficient in the sense that for any sample size the coefficient estimates will

8.4. MAXIMUM LIKELIHOOD ESTIMATION 167

have a larger variance than when an alternative, the method of maximum
likelihood estimation is used.

My purpose in using nonlinear least squares here was simply to demon-
strate how the method works so that the reader can apply it, where appro-
priate, to other situations where the function being estimated is nonlinear.
All that is required is to modify appropriately the nllsfunc to correctly
represent the function being estimated and, with that object present in the
workspace, construct an appropriate list of initial values and call the NLLS
function.

8.4 Maximum Likelihood Estimation

Maximum likelihood estimation involves choosing the β coefficients so as
to maximize the logarithm of the likelihood function, which for the probit
model is

L =
n∑

i=1

Yi ln(Φsn) +
n∑

i=1

(1− Yi) ln(1− Φsn)

and, for the logit model

L =
n∑

i=1

Yi ln(Φlo) +
n∑

i=1

(1− Yi) ln(1− Φlo)

where Φsn and Φlo are defined in exactly the same way as in the case of
nonlinear least squares estimation.1

We begin by writing appropriate code for the function to be maximized,
probfunc, which will appear in batch file mode as follows.

(def const (repeat 1 (length deny)))
(def variables (list const rtdinc black))
;
(defun probfunc (theta)
(def z 0)
(dotimes (i (length variables))
(setf z (+ z (* (select variables i)(select theta i))))
) ; end dotimes i

1A discussion of how the likelihood function is derived can be found on page 326 of the
Stock and Watson book.

168 CHAPTER 8. PROBIT, LOGIT AND NONLINEAR REGRESSION

(def pz (normal-cdf z))
(+ (sum (* deny (log pz)))(sum (* (- 1 deny)(log (- 1 pz)))))
) ; end of function

The variable pz, representing a list of probabilities that the given list of Zi

values will occur, is defined in the same way as in the nonlinear least squares
case except that we construct an actual constant-term list and include it
in first position on the list variables which replaces the idepvars list
used in that case. In the nonlinear least squares case we did not add the
constant to the list idepvars because the nreg-model adds a constant term
automatically. The actual expression that is to be maximized is given by
the line
(+ (sum (* deny (log pz)))(sum (* (- 1 deny)(log (- 1 pz)))))

which simply translates the log likelihood function into the Lisp language.
We now need to make a guestimate of the initial values of the coefficients.

A useful approach is to use the values obtained from our earlier nonlinear
estimation. Then we can send the interpreter a command to maximize the
likelihood function. For clarity of illustration we switch to interactive mode

> (def initvals (list -3.0 5.0 0.7))
INITVALS
> (def mloutput (newtonmax #’probfunc initvals :return-derivs t))
maximising...
Iteration 0.
Criterion value = -800.790
Iteration 1.
Criterion value = -788.947
Iteration 2.
Criterion value = -788.914
Iteration 3.
Criterion value = -788.914
Reason for termination: gradient size is less than gradient tolerance.
MLOUTPUT
> (length mloutput)
4
> (select mloutput 0)
(-2.3465369111902663 3.0152296895337116 0.7038867102057229)
> (select mloutput 1)
-788.9137272628813

8.4. MAXIMUM LIKELIHOOD ESTIMATION 169

> (select mloutput 2)
(-5.600921040393025E-7 -1.4739872449923207E-7 -1.0818945488287528E-8)
> (print-matrix (select mloutput 3))
#2a(

(-816.345 -282.119 -184.784)
(-282.119 -103.456 -66.0983)
(-184.784 -66.0983 -184.784)

)
NIL

The newtonmax function maximizes the log likelihood function using New-
ton’s method. Its output, which we have defined as the object mloutput
consists of a list. The first element is the list of coefficients, the second
is the maximized value of the log-likelihood, the third is the gradient, and
the fourth is the hessian matrix. The standard-errors of the coefficients can
be found by multiplying the hessian matrix by -1, taking the inverse, and
then extracting the square roots of the resulting diagonal elements. If the
newtonmax function cannot find a maximum, we can use the Nelder-Mead
simplex method via the nelmeadmax function by entering the following com-
mand line.

> (def mloutput (nelmeadmax #’probfunc initvals :return-derivs t))
Value = -800.7899312386357
Value = -800.7899312386357
Value = -800.7899312386357
Value = -800.7899312386357
Value = -800.7899312386357

..............

..............

..............

Value = -788.9137274028564
Value = -788.9137274028564
Value = -788.9137274028564
Value = -788.9137273503475
MLOUTPUT

Unfortunately, the output returned by this function consists only of the three
coefficients, leaving no prospect of calculating their standard-errors. The
trick, then, is to use this function to obtain the coefficient values when the
newtonmax function fails to find a maximum and then feed these coefficient-

170 CHAPTER 8. PROBIT, LOGIT AND NONLINEAR REGRESSION

values as initial guesses to the newtonmax function. To obtain a full pre-
sentation, I have constructed a function called probit which takes as its
arguments in the following order, the dependent variable list, a string object
giving the name of the dependent variable, the list of independent variables
called variables which should be in the workspace when the function is
called, a list of strings called varnames comprising the names of all indepen-
dent variables including the constant, and a list giving the initial guesses as
to the magnitudes of the parameters. This function, which also calculates
the log likelihood to be maximized, yields the following result.

> (probit deny "Probability of Denial" variables varnames
initvals)

DETAILS OF PROBIT LOG LIKELIHOOD MAXIMIZATION
maximizing...
Iteration 0.
Criterion value = -800.790
Iteration 1.
Criterion value = -788.947
Iteration 2.
Criterion value = -788.914
Iteration 3.
Criterion value = -788.914
Reason for termination: gradient size is less than gradient tolerance.

PROBIT REGRESSION RESULTS

Dependent Variable: Probability of Denial

Coefficient Std. Error T-stat P-Val Elasticity

Constant -2.347 0.146 -16.066 0.004
All Payts/Inc 3.015 0.411 7.339 0.004 1.734
Black 0.704 0.084 8.391 0.018 0.170

Log Likelihood with all variables included = -788.9137272628813
Log Likelihood with constant term only = -858.4076312800587
The Pseudo-R-Square = 0.08095676399515228
Likelihood Ratio Statistic for regression = 138.98780803435488

P-Value = 0.0

8.4. MAXIMUM LIKELIHOOD ESTIMATION 171

Number with predicted > .5 that are 1 = 8
Total number that are 1 = 280
Number with predicted < .5 that are 0 = 2067
Total number that are 0 = 2071
Number of correct predictions = 2075
Total number of cases = 2351
Fraction correctly predicted = 0.8826031475967673

NIL
> (def plmax1 likemax)
PLMAX1

In addition to the coefficient estimates, the function calculates their stan-
dard errors and P-Values (in the limit these are normally distributed) and
the elasticities of response of the probability that the dependent variable will
be 1 to a change in the actual values of the independent variables (change
in the mean value in the case of binary variables like BLACK) evaluated at
their mean values. The output from the function also includes a pseudo-
R-Square, using McFadden’s method of calculation, and a likelihood ratio
statistic to test the null-hypothesis that all the coefficients but the constant
term are zero, together with its P-Value.2

Finally the output supplies us with information about the predictive
accuracy of the model culminating in an estimate of the fraction correctly
predicted—that is, the fraction of observations of the dependent variable
that were 1 when the probability of them being 1 exceeded 0.5 or 0 when
the probability of them being 1 fell short of 0.5. After the probit function
did its thing, the maximum of the log likelihood function was then saved for
use in further tests that will be discussed later.

We can now plot the actual and fitted values. The latter are left in the
workspace as the list fitted by the probit function.

> (def plt2 (plot-points rtdinc deny))
PLT2
> (send plt2 :add-points rtdinc fitted)
NIL
> (send plt2 :variable-label 0 "All Payments / Income")
"All Payments / Income"
> (send plt2 :variable-label 1 "Probability of Denial")
"Probability of Denial"

2D. McFadden, “The Measurement of Urban Travel Demand,” Journal of Political
Economy, Vol. 93, 1974, pp. 417-425. The formula for the pseudo-R-Square is R2 =
1−L0/Lβ where Lβ is the value of the log likelihood when all variables are included and
L0 is the value with the constant term only. The Likelihood Ratio Statistic, which is
distributed as χ2 with degrees of freedom equal to the number of independent variables
excluding the constant, is LR = 2(Lβ − L0).

172 CHAPTER 8. PROBIT, LOGIT AND NONLINEAR REGRESSION

Figure 15: Actual and fitted from the probit model with
maximum-likelihood estimation.

The plot appears in Figure 15. We can use the variable coefs, left in
the workspace by the probit function, to calculate the difference in the
probability of being denied a mortgage by blacks and whites at the means.

> (def zmeans (+ (select coefs 0)(* (select coefs 1)(mean rtdinc))
(* (select coefs 2)(mean black))))
ZMEANS
> (def pzmeans (normal-cdf zmeans))
PZMEANS
> (def zwhite (+ (select coefs 0)(* (select coefs 1)(mean rtdinc))))
ZWHITE
> (def pzwhite (normal-cdf zwhite))
PZWHITE
> (def zblack (+ (select coefs 0)(* (select coefs 1)(mean rtdinc))
(* (select coefs 2) 1)))
ZBLACK

8.4. MAXIMUM LIKELIHOOD ESTIMATION 173

> (def pzblack (normal-cdf zblack))
PZBLACK
> pzmeans
0.10449309629778049
> pzwhite
0.08735003022819859
> pzblack
0.2567592964344873

At the means of the independent variables the mean probability of being
denied mortgage finance is slightly above .1. At the mean value of the ratio
of total payments obligations to income, which is about .33, the probability
of a white person being denied is nearly .09 while the probability of a black
person being denied is over .25. This represents the vertical distance between
the two lines in Figure 15 at the .33 position along the horizontal axis.

Estimation of the logit regression is essentially the same. All that differs
is the likelihood function we ask the newtonmax function to maximize. The
code for this function is as follows.

(defun logitcalc (theta)
(def z 0)
(dotimes (i (length variables))
(setf z (+ z (* (select variables i)(select theta i))))
) ; end dotimes i
(def pz (/ 1 (+ 1 (exp (* -1 z)))))
(+ (sum (* deny (log pz)))(sum (* (- 1 deny)(log (- 1 pz)))))
) ; end of function logitcalc

As in the case of the maximum likelihood estimation of the probit function,
this function is automatically created by the logit function I wrote to cal-
culate and present the results which follow. This function takes exactly the
same arguments as the probit function.

> (logit deny "Probability of Denial" variables varnames initvals)

DETAILS OF LOGIT LOG LIKELIHOOD MAXIMIZATION
maximizing...
Iteration 0.
Criterion value = -895.975
Iteration 1.
Criterion value = -792.901

174 CHAPTER 8. PROBIT, LOGIT AND NONLINEAR REGRESSION

Iteration 2.
Criterion value = -786.632
Iteration 3.
Criterion value = -786.565
Iteration 4.
Criterion value = -786.565
Reason for termination: gradient size is less than gradient tolerance.

LOGIT REGRESSION RESULTS

Dependent Variable: Probability of Denial

Coefficient Std. Error T-stat P-Val Elasticity

Constant -4.352 0.291 -14.940 0.004
All Payts/Inc 6.051 0.794 7.622 0.004 1.806
Black 1.262 0.147 8.584 0.017 0.158

Log Likelihood with all variables included = -786.5654230654864
Log Likelihood with constant term only = -858.4076312800587
The Pseudo-R-Square = 0.08369241558051055
Likelihood Ratio Statistic for regression = 143.68441642914468

P-Value = 0.0

Number with predicted > .5 that are 1 = 12
Total number that are 1 = 280
Number with predicted < .5 that are 0 = 2066
Total number that are 0 = 2071
Number of correct predictions = 2078
Total number of cases = 2351
Fraction correctly predicted = 0.8838792003402808

NIL
> (def llmax1 likemax)
LLMAX1

The output consists of the same details that are presented by the probit
function. We also save the maximum of the log likelihood, under the name
llmax1. Using code essentially the same as was used in the probit maximi-
sation, we also produce a plot of the actual and fitted shown in Figure 16.

8.4. MAXIMUM LIKELIHOOD ESTIMATION 175

Figure 16: Actual and fitted from the logit model with
maximum-likelihood estimation.

We can now expand the analysis using some additional variables that
Stock and Watson consider, a binary variable taking a value of 1 if the indi-
vidual has completed high school and 0 otherwise, HSGRAD, another dummy
called SINGLE that takes a value of 1 if the applicant is single and 0 otherwise
and, finally, the U.S. unemployment rate, UNRATE. We run both the probit
and logit functions using these additional independent variables, saving the
maximums of the log likelihoods as plmax2 and llmax2 respectively. We set
the initial guestimates of the coefficients of the added variables at zero.

> (def variables (list const rtdinc black single hsgrad unrate))
VARIABLES
> (def varnames (list "Constant" "All Payts/Inc" "Black" "Single"
"HSchool" "Unemprate"))
VARNAMES

176 CHAPTER 8. PROBIT, LOGIT AND NONLINEAR REGRESSION

> (def initvals (list -2.0 5.15 0.71 0.0 0.0 0.0))
INITVALS

> (probit deny "Probability of Denial" variables varnames initvals)

DETAILS OF PROBIT LOG LIKELIHOOD MAXIMIZATION
Criterion value = -1384.38
Iteration 1.
Criterion value = -798.647
Iteration 2.
Criterion value = -779.969
Iteration 3.
Criterion value = -779.796
Iteration 4.
Criterion value = -779.796
Reason for termination: gradient size is less than gradient tolerance.

PROBIT REGRESSION RESULTS

Dependent Variable: Probability of Denial

Coefficient Std. Error T-stat P-Val Elasticity

Constant -2.143 0.282 -7.602 0.001
All Payts/Inc 2.977 0.414 7.190 0.001 1.723
Black 0.696 0.085 8.184 0.001 0.169
Single 0.201 0.071 2.817 0.000 0.136
HSchool -0.452 0.230 -1.964 0.037 -0.769
Unemprate 0.043 0.016 2.648 0.107 0.284

Log Likelihood with all variables included = -779.7961520433254
Log Likelihood with constant term only = -858.4076312800587
The Pseudo-R-Square = 0.09157826232218813
Likelihood Ratio Statistic for regression = 393.0573961836666

P-Value = 0.0

Number with predicted > .5 that are 1 = 10
Total number that are 1 = 280
Number with predicted < .5 that are 0 = 2068
Total number that are 0 = 2071

8.4. MAXIMUM LIKELIHOOD ESTIMATION 177

Number of correct predictions = 2078
Total number of cases = 2351
Fraction correctly predicted = 0.8838792003402808

NIL
> (def plmax2 likemax)
PLMAX2
> (logit deny "Probability of Denial" variables varnames initvals)

DETAILS OF LOGIT LOG LIKELIHOOD MAXIMIZATION
maximizing...
Iteration 0.
Criterion value = -1429.47
Iteration 1.
Criterion value = -823.675
Iteration 2.
Criterion value = -780.815
Iteration 3.
Criterion value = -778.434
Iteration 4.
Criterion value = -778.421
Iteration 5.
Criterion value = -778.421
Reason for termination: gradient size is less than gradient tolerance.

LOGIT REGRESSION RESULTS

Dependent Variable: Probability of Denial

Coefficient Std. Error T-stat P-Val Elasticity

Constant -3.999 0.514 -7.781 0.001
All Payts/Inc 5.909 0.800 7.391 0.001 1.767
Black 1.245 0.150 8.286 0.001 0.156
Single 0.357 0.135 2.647 0.000 0.125
HSchool -0.775 0.403 -1.924 0.046 0.681
Unemprate 0.078 0.030 2.587 0.112 0.265

Log Likelihood with all variables included = -778.4208810486587
Log Likelihood with constant term only = -858.4076312800587

178 CHAPTER 8. PROBIT, LOGIT AND NONLINEAR REGRESSION

The Pseudo-R-Square = 0.09318038111115545
Likelihood Ratio Statistic for regression = 399.9337511570002

P-Value = 0.0

Number with predicted > .5 that are 1 = 16
Total number that are 1 = 280
Number with predicted < .5 that are 0 = 2065
Total number that are 0 = 2071
Number of correct predictions = 2081
Total number of cases = 2351
Fraction correctly predicted = 0.8851552530837942

NIL
> (def llmax2 likemax)
LLMAX2

Finally we can perform likelihood ratio tests of the null-hypothesis that
the added variables all have zero coefficients. The relevant likelihood ratio
statistics in the probit and logit cases are respectively

LR = 2 (plmax1 - plmax2) and LR = 2 (llmax1 - llmax2).

I have written the function LogProb-LRtest to make the calculations and
present the results. The function takes two arguments—first the maximum
log likelihood in the restricted case, where the coefficients of the variables
in question are zero (they are not in the model) and second, the maximum
log likelihood in the unrestricted case where the variables in question are
included in the model for which the likelihood is being maximized. The
resulting likelihood ratio statistic is distributed as χ2 with degrees of freedom
equal to the number of restrictions—three in this case. The results are

> (LogProb-LRtest plmax1 plmax2 3)

Likelihood-Ratio Test of Added Variables
Chi-square Statistic = 27.352725658667623
P-Value = 4.9654400989807E-6

NIL

8.4. MAXIMUM LIKELIHOOD ESTIMATION 179

> (LogProb-LRtest llmax1 llmax2 3)

Likelihood-Ratio Test of Added Variables
Chi-square Statistic = 24.433626049812915
P-Value = 2.027834783413507E-5

NIL

Clearly, the the null-hypothesis that all the added variables have zero coef-
ficients must be rejected.

From all appearances, black people are being discriminated against in
the Boston home mortgage market. Our analysis, however, has been rather
cursory as the main interest is with econometric rather than economic is-
sues. The reader is invited to further explore the dataset using the tools
developed here. A much more extensive analysis, based on the same data,
can be found in an article by Alicia H. Munnell, Geoffrey M. B. Tootell,
Lynne E. Browne, and James McEneaney, researchers at the Federal Re-
serve Bank of Boston, “Mortgage Lending in Boston: Interpreting HMDA
Data,” American Economic Review, 1996, pp 25-53.

180 CHAPTER 8. PROBIT, LOGIT AND NONLINEAR REGRESSION

Chapter 9

Spurious Regression and
Cointegration

We must now address the problem of spurious regression and how to deal
with it. Readers lacking background should read my note “Some Basics
of Time-Series Analysis,” available from my website and then pages 211
through 224 of the previously cited textbook by Walter Enders. The problem
of spurious regression was brought to the profession’s attention by Clive
Granger and Paul Newbold.

It turns out that if one were to run an OLS regression of a non-stationary,
random walk or unit root variable on one or more totally unrelated vari-
ables that have the same time series structure, statistically significant coef-
ficients, using standard t-tests, and substantial R-square statistics would be
frequently obtained. Without knowing that results such as these are spuri-
ous, one would easily conclude that significant relationships exist when none
are present. Our task is to make sure that this does not happen.

9.1 Checking for Stationarity

Since apparently significant but spurious results will not occur if the under-
lying variables are stationary, we must always check our time series variables
for stationarity. Here we use Dickey-Fuller Tests designed by David Dickey
and Wayne Fuller and Phillips-Perron tests designed by Peter Phillips and
Pierre Perron.

181

182 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

9.1.1 Dickey-Fuller Tests

A basic Dickey-Fuller unit-root or stationarity test of the time series yt

involves running three regressions.

∆yt = α + βt t + δ yt−1 + β1 ∆yt−1 + β2 ∆yt−2 + β3 ∆yt−3 + + εt

∆yt = α + δ yt−1 + β1 ∆yt−1 + β2 ∆yt−2 + β3 ∆yt−3 + + εt

∆yt = δ yt−1 + β1 ∆yt−1 + β2 ∆yt−2 + β3 ∆yt−3 + + εt

where ∆yt = yt−yt−1, t = t0, t1,, T is time, and the error or shock terms
εt are statistically independent with constant variance. The null-hypothesis
is that δ ≥ 0 in which case yt will wander without limit and, as time passes,
not necessarily ever return to any initial or other particular level. The
alternative hypothesis, that δ < 0, implies that yt will eventually return
to some average or trend level. Levels of yt−1 above that average or trend
level will have a negative effect on ∆yt while levels below average or trend
will have a positive influence. The average or trend level will be defined
by the terms α + β t. This trend will be deterministic in that it occurs
independently of the εt shocks. A positive or negative value of α will impose
a positive or negative deterministic trend while a positive or negative value
of β will cause that trend to increase or decrease at some rate through time.
If β is zero the deterministic trend will be constant and if α is also zero there
will be no deterministic trend. If δ is zero, trends will appear in the data as
a result of runs of primarily positive or negative εt shocks—these stochastic
trends will be additional to any deterministic trends. To determine if yt

is stationary around a deterministic trend—and there is thus no stochastic
trend—we must test for the statistical significance of any deviations of α and
β from zero as well as negative values of δ. In all cases, a sufficiently negative
value of δ allows us to reject the null-hypothesis of non-stationarity, although
stationarity may be around a deterministic trend rather than around zero.

Doing this test is simply a matter of running the above three regressions
to obtain the t-values of α, β and δ and F-Statistics for the null-hypothesis
that both δ and α or all three of these parameters are zero. It turns out,
however, that under the null-hypothesis that δ = 0, the t- and F-statistics
are not distributed according to their standard distributions. As a result a
special set of statistical tables, developed by Dickey and Fuller have to be
used in determining statistical significance. These tables can be found at
the end of this document.

The above equations assume that the data-generating process contains
only autoregressive lags. What if it also contains moving-average lags? It
turns out that any autoregressive moving-average can be transformed into
an autoregressive process with an infinite number of lags. In addition, Said

9.1. CHECKING FOR STATIONARITY 183

and Dickey have shown that any such process can be well approximated by
an autoregression containing no more than T 1/3 lags, where T is the sample
size.1 How do we determine the number of lags to use? One way is to run
the test with the maximum conceivable number of lags to begin with and
then successively reduce that number by one and run the test again until
the longest lag becomes statistically significant. Another option is to use the
Akaike information criterion (AIC) and Schwartz Bayesian criterion (SBC),
calculated as

AIC = T ln(sse) + 2 n

SBC = T ln(sse) + n ln(T)

where T is the number of observations, ln(sse) is the natural logarithm of
the sum of the squared residuals and n is the number of restrictions includ-
ing the constant term. In creating lagged variables some lags are lost. The
number of observations used in the regression, and hence T , must be the
same for all regressions being compared—the T used for the regression with
the maximum number of lags must therefore be used for the regressions hav-
ing less lags when comparing the regressions’ AIC and SBC. The number
of lags chosen should be that which minimises one or both of these criteria
(both criteria can be negative). The SBC will always select a more parsi-
monious model than the AIC, and has superior large sample properties. My
function aicsbc calculates the AIC and SBC. It takes three arguments—in
order, the series, the number of parameters calculated, and the number of
observations.

I have written a function called dfunit for performing Dickey-Fuller unit
root tests. The function takes four arguments. The first is the series being
tested. The second is a string object giving the name of that series. The
third is the number of lags to include, and the fourth is the observation
number at which the test is to start (counting from 1). This observation
number must be at least one greater than the number of lags. An example
where we test the Canada/US real exchange rate for stationarity follows.
This series, along with corresponding series for a number of other countries
have been saved in the file rexmdata.lsp.

> (load "addfuncs")
; loading addfuncs.lsp
T
> (load "rexmdata")
; loading rexmdata.lsp
T

1S. Said and David Dickey, “Testing for a Unit Root in Autoregressive-Moving-Average
Models with Unknown Order,” Biometrika, Vol. 71, 1984, pp. 599-607.

184 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

> (variables)
(DATESMO REXMCAUS REXMFRGR REXMFRUS REXMGRUS REXMJNUS REXMUKUS)
> (def sername "Canada/US Real Exchange Rate: Monthly")
SERNAME
> (dfunit rexmcaus sername 11 12)

DICKEY-FULLER TEST --- Canada/US Real Exchange Rate: Monthly
Lags = 11
Starting observation = 12
Number of observations = 540

Coefficients:

Constant 0.212189 -0.036665
Trend -0.000915
Y(t-1) -0.013528 -0.004039 -0.004206

t-Statistics:

Constant 1.792832 -0.868635
Trend -2.249362
Y(t-1) -2.435313 -1.113299 -1.161146
Lagged (Y(t)-Y(t-1)) 3.157601 3.124249 3.170512

........ -0.582598 -0.659891 -0.612436

........ -0.871285 -0.936020 -0.889680

........ 0.194456 0.105337 0.163455

........ 0.468610 0.384154 0.439581

........ 0.429784 0.340780 0.395287

........ 0.456998 0.363070 0.420411

........ 3.565049 3.458613 3.527528

........ -0.562677 -0.681977 -0.630417

........ 3.766463 3.647798 3.709247

........ 1.966183 1.801926 1.861674

F-Statistics:

All Three Coefficients = 0 2.392661
Constant & Y(t-1) Coef = 0 1.051080
Trend & Y(t-1) Coefs = 0 3.154306
All Lags = 0 4.141926 3.884665 4.120257

AIC = 3355.7314065826968
SBC = 3415.813374536513

9.1. CHECKING FOR STATIONARITY 185

> (dfunit rexmcaus sername 10 12)

DICKEY-FULLER TEST --- Canada/US Real Exchange Rate: Monthly
Lags = 10
Starting observation = 12
Number of observations = 540

Coefficients:

Constant 0.191251 -0.041525
Trend -0.000858
Y(t-1) -0.012080 -0.003254 -0.003417

t-Statistics:

Constant 1.618104 -0.983713
Trend -2.107498
Y(t-1) -2.188071 -0.901673 -0.947601
Lagged (Y(t)-Y(t-1)) 3.498658 3.443697 3.508065

........ -0.679749 -0.744793 -0.693625

........ -0.618124 -0.700797 -0.638830

........ 0.193629 0.109969 0.176036

........ 0.463173 0.384312 0.447046

........ 0.431355 0.347659 0.409623

........ 0.427388 0.341539 0.405621

........ 3.479030 3.386332 3.459595

........ -0.651986 -0.757212 -0.701036

........ 4.020989 3.893316 3.972357

F-Statistics:

All Three Coefficients = 0 2.106431
Constant & Y(t-1) Coef = 0 0.932792
Trend & Y(t-1) Coefs = 0 2.629931
All Lags = 0 4.146980 3.931707 4.166280

AIC = 3357.6856631832907
SBC = 3413.4760619975486

186 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

> (dfunit rexmcaus sername 9 12)

DICKEY-FULLER TEST --- Canada/US Real Exchange Rate: Monthly
Lags = 9
Starting observation = 12
Number of observations = 540

Coefficients:

Constant 0.153780 -0.053071
Trend -0.000763
Y(t-1) -0.009520 -0.001708 -0.001881

t-Statistics:

Constant 1.286792 -1.243797
Trend -1.852385
Y(t-1) -1.711465 -0.469770 -0.517454
Lagged (Y(t)-Y(t-1)) 3.363956 3.320112 3.395934

........ -0.164186 -0.237186 -0.159239

........ -0.627448 -0.700211 -0.621127

........ 0.178872 0.105620 0.189116

........ 0.475189 0.405479 0.485185

........ 0.390381 0.317902 0.395404

........ 0.287053 0.215457 0.293284

........ 3.352378 3.275144 3.362117

........ -0.173654 -0.280887 -0.197184

F-Statistics:

All Three Coefficients = 0 1.751580
Constant & Y(t-1) Coef = 0 0.907533
Trend & Y(t-1) Coefs = 0 1.826514
All Lags = 0 2.732765 2.614381 2.797887

AIC = 3372.0037974689067
SBC = 3423.5026271436063

9.1. CHECKING FOR STATIONARITY 187

Judging from the significance of the lags and the AIC and SBC, it would
appear that the most suitable number of lags is 10. Comparison of the rele-
vant t- and F-statistics with the critical values in the first of the Statistical
Tables at the end of this document clearly indicates that the null hypothesis
of a unit root (non-stationarity) can not be rejected at any reasonable level
of significance.

9.1.2 Phillips-Perron Tests

The Dickey-Fuller tests assume that the shocks εt are statistically indepen-
dent of each other and have a constant variance. An alternative procedure,
developed by Peter Phillips and Pierre Perron, can be used to conduct the
tests under the assumption that there is some interdependence of the shocks
and they are heterogeneously distributed. This procedure is discussed by
Enders on pages 239 and 240 of the book previously cited. The following
equations are estimated by ordinary-least-squares:

yt = a0 + a1 yt−1 + a2 (t− T/2) + ut

yt = ã0 + ã1 yt−1 + vt

yt = â1 yt−1 + wt

where T is the number of observations and ut, vt and wt are error or shock
terms. Test statistics are then calculated based on modifications of the
conventional t-statistics to allow for heterogeneity and interdependence of
the shock process. This is a complicated process which is described in the
Appendix to Chapter 5 in the Enders book. The critical values for the es-
timated coefficients are the same as those for the corresponding statistics
estimated using the Dickey-Fuller approach. The major problem in estima-
tion is to choose the truncation lag. The commercial econometrics program
RATS uses a default lag of 4. An alternative is to use the highest significant
lag (at the 5% level) in the autocorrelation or partial-autocorrelations of the
first-differenced level of the series up to a maximum of T 1/3. This limit is
chosen on the basis of the above-mentioned result, due to S. E. Said and
David Dickey, that any unit-root autoregressive-moving-average process can
be well approximated by a unit-root autoregressive process of order T 1/3.
We can find the autocorrelations and partial-autocorrelations using the acf
and pacf functions by examining the resulting plots.

We demonstrate the ppunit function using the U.K./U.S. real exchange
rate as follows where the plots of the autocorrelation and partial autocorre-
lation functions, not shown, suggested a truncation lag of unity.

> (def sername "UK/US Real Exchange Rate: Monthly")

188 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

SERNAME
> (ppunit rexmukus sername 1)

PHILLIPS-PERRON TEST --- UK/US Real Exchange Rate: Monthly
Lags Truncated at 1

Least Squares Estimates:

Constant 4.827510E-2 (9.500181E-2)
Trend 1.207029E-3 (7.880230E-4)
Lagged Y 0.978297 (8.871178E-3)

R Squared: 0.975210
Sigma hat: 2.22998
Number of cases: 551
Degrees of freedom: 548

Standard t-ratios:

Constant 0.5081492680757081
Trend 1.5317175364171403
Lagged Y = 0 110.27812390482883
Lagged Y = 1 -2.4464792798134205

Least Squares Estimates:

Constant 4.907684E-2 (9.511677E-2)
Lagged Y 0.987161 (6.731916E-3)

R Squared: 0.975104
Sigma hat: 2.23271
Number of cases: 551
Degrees of freedom: 549

Standard t-ratios:

Constant 0.5159640885651551
Lagged Y = 0 146.6389373657781
Lagged Y = 1 -1.9071874981089139

9.1. CHECKING FOR STATIONARITY 189

Least Squares Estimates:

Lagged Y 0.987155 (6.727415E-3)

R Squared: 0.975092
Sigma hat: 2.23122
Number of cases: 551
Degrees of freedom: 550

Standard t-ratios:

Lagged Y = 0 146.73622095274848
Lagged Y = 1 -1.9092805580788528

PP t-ratio for Coefficient of Lagged Y = 1:
-2.781617384738435

PP t-ratio for Constant = 0:
0.44550728543536067

PP t-ratio for Trend Coefficient = 0:
0.9339088799071322

PP Statistic for Coefficients of Trend = 0 and Lagged Y = 1:
3.3165591198878333

PP t-ratio for Coefficient of Lagged Y = 1 in regression without trend:
-2.154592593819233

PP t-ratio for Coefficient of Lagged Y = 1 in regression with
neither constant nor trend:

-2.158242131639434

190 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

> (ppunit rexmukus sername 4)

PHILLIPS-PERRON TEST --- UK/US Real Exchange Rate: Monthly
Lags Truncated at 4

Least Squares Estimates:

Constant 4.827510E-2 (9.500181E-2)
Trend 1.207029E-3 (7.880230E-4)
Lagged Y 0.978297 (8.871178E-3)

R Squared: 0.975210
Sigma hat: 2.22998
Number of cases: 551
Degrees of freedom: 548

Standard t-ratios:

Constant 0.5081492680757081
Trend 1.5317175364171403
Lagged Y = 0 110.27812390482883
Lagged Y = 1 -2.4464792798134205

Least Squares Estimates:

Constant 4.907684E-2 (9.511677E-2)
Lagged Y 0.987161 (6.731916E-3)

R Squared: 0.975104
Sigma hat: 2.23271
Number of cases: 551
Degrees of freedom: 549

Standard t-ratios:

Constant 0.5159640885651551
Lagged Y = 0 146.6389373657781
Lagged Y = 1 -1.9071874981089139

9.1. CHECKING FOR STATIONARITY 191

Least Squares Estimates:

Lagged Y 0.987155 (6.727415E-3)

R Squared: 0.975092
Sigma hat: 2.23122
Number of cases: 551
Degrees of freedom: 550

Standard t-ratios:

Lagged Y = 0 146.73622095274848
Lagged Y = 1 -1.9092805580788528

PP t-ratio for Coefficient of Lagged Y = 1:
-3.0019197164698124

PP t-ratio for Constant = 0:
0.41188031501552036

PP t-ratio for Trend Coefficient = 0:
0.5870504873172182

PP Statistic for Coefficients of Trend = 0 and Lagged Y = 1:
3.662878923469961

PP t-ratio for Coefficient of Lagged Y = 1 in regression without trend:
-2.309416786507457

PP t-ratio for Coefficient of Lagged Y = 1 in regression with
neither constant nor trend:

-2.313848246044837

192 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

9.1.3 The Problem of Low Power

A problem with the above unit-root tests is that they have low power—that
is, they tend to accept the null-hypothesis of non-stationarity too frequently
when it is false. For example, suppose that the true coefficient of yt−1 is
equal to -.01 in the Dickey-Fuller regressions and .99 in the Phillips-Perron
regressions. It will turn out that the corresponding statistics of yt−1 will
exceed their 1%, 5%, and 10% critical values only slightly more than 1%,
5%, and 10% of the time, respectively. We will reject the null-hypothesis
very rarely, even though it is false. The situation does not get all that
better when the respective coefficients of yt−1 are -.05 and -.95, or even -
.15 and .85. There will almost surely be a tendency to conclude that the
series in question is non-stationary on occasions, very common in practice,
in which it is stationary with very slow mean reversion. This has to be kept
in mind when making decisions about whether a series is non-stationary or
stationary.

9.2 Testing for Cointegration

Some years ago, it was fashionable to routinely take the first-differences of
non-stationary series, and then second-differences if the first-difference turns
out to be non-stationary, and then to work with the differenced series. It
is now well-known that such a procedure is inappropriate—by differencing
series, one is throwing away information provided by their levels. Instead,
one should check to see if the relevant time series are cointegrated, in which
case we can do our analysis using OLS regressions of the undifferenced series.

Two or more non-stationary series are cointegrated if a linear combina-
tion of them is stationary. For example, consumption and income may both
be non-stationary but if consumption tends to be a more-or-less constant
proportion of income, the two variables are cointegrated—the difference be-
tween consumption and income (measured in real terms) or the ratio of
consumption to income will be stationary processes.2 More generally, a
regression of a non-stationary time series on other non-stationary time se-
ries will not be spurious if those time series are cointegrated. If they are
cointegrated the error-term of the regression will be stationary.

If a non-stationary variable is regressed on stationary variables in ad-
dition to non-stationary ones, the coefficients of the stationary variables

2An excellent discussion of these issues can be found on pages 571, 572, and the first
half of 573, of James Hamilton’s book Time Series Analysis referenced earlier.

9.2. TESTING FOR COINTEGRATION 193

will always be statistically insignificant if the non-stationary variables are
not cointegrated. But if the non-stationary variables are cointegrated, the
stationary variables may well be statistically significant—it will depend on
whether they are correlated with the residual from a linear relationship be-
tween the non-stationary variables. If a stationary variable is regressed on
non-stationary variables and the latter are statistically significant, it must be
that those non-stationary variables are cointegrated—the stationary resid-
ual from a linear relationship between them is correlated with the stationary
dependent variable.

9.2.1 Tests of Regression Residuals for Cointegration

The most obvious way of determining whether a OLS-regression result is
spurious is to run a unit-root test on the regression residuals using either or
both of the dfunit or ppunit functions. It turns out that the t-statistics
from these regressions follow neither the standard t-distribution nor the
distribution for which Dickey and Fuller calculated the critical values shown
in the first table in the Statistical Tables at the end of this document. The
appropriate critical values, calculated by Engle and Yoo and Phillips and
Ouliaris, can be found in the second table in the Statistical Tables at the
end of this document.

These residuals-based cointegration tests are demonstrated below using
a regression of the logarithm of the Canada/United States real exchange rate
on the two real variables (of several tried) that survive when HAC coefficient-
standard-errors are obtained—the logarithm of an index of U.S. dollar com-
modity prices divided by an index of the U.S. dollar prices of U.S. traded
goods, and the difference between the Canadian and U.S. net capital inflows
(calculated as the negatives of the respective trade balances) measured as
percentages of their respective GDPs. The real exchange rate and net capi-
tal inflow variables can be shown to be non-stationary using the dfunit and
ppunit functions while the commodity price variable can be shown to be
stationary. The basic regression result is obtained as follows after loading
the relevant data which is contained in the file rexmdata.lsp.

> (load "addfuncs")
; loading addfuncs.lsp
T
> (load "rexqdata")
; loading rexqdata.lsp
T
> (variables)
(BCOMPXEN DATES72 NGDPCA NGDPUS PCRUDUS PEXPUS PIMPUS REXCAUS
TABGSCA TABGSUS)

194 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

> (def rexcaus (log rexcaus))
REXCAUS
> (def ptgdsus (* 0.5 (+ pexpus pimpus)))
PTGDSUS
> (def pcompxen (/ bcompxen ptgdsus))
PCOMPXEN
> (def pcompxen (base pcompxen dates72 1982.0 32))
PCOMPXEN
> (def pcompxen (log pcompxen))
PCOMPXEN
> (def rntabyca (* -100 (/ tabgsca ngdpca)))
RNTABYCA
> (def rntabyus (* -100 (/ tabgsus ngdpus)))
RNTABYUS
> (def diffntab (- rntabyca rntabyus))
DIFFNTAB
> (def regressand "Canada/U.S. Real Exchange Rate -- rexcaus")
REGRESSAND
> (def regressors (list
"constant"
"pcompxen"
"diffntab"))
REGRESSORS
> (def reg3 (OLS-time-series rexcaus (bind-columns pcompxen diffntab)
dates72 1974.0 2002.75 1 1))

LINEAR REGRESSION

Dependent Variable: Canada/U.S. Real Exchange Rate -- rexcaus

Starting Date: 1974.0 Ending Date: 2002.75

Coefficient Std. Error T-stat P-Val

constant 3.878 0.247 15.698 0.000
pcompxen 0.197 0.052 3.795 0.000
diffntab 0.031 0.003 12.095 0.000

9.2. TESTING FOR COINTEGRATION 195

Number of Observations: 116
Degrees of Freedom: 113
R-Squared: 0.7438335246515728
Adjusted R-Squared: 0.7392996047339017
Sum of Squared Errors: 0.47521761052226746
Regression F-Statistic: 164.0596962801281
P-Value: 0.0

LM-Based Test for Serial Correlation in Residuals:
Order = 1 Chisq-stat = 496.26092143729045 P-Value = 0.0

LM-Based Test for Serial Correlation in Residuals:
Order =< 4 Chisq-stat = 515.5116078230459 P-Value = 0.0

LM-Based Test for Serial Correlation in Residuals:
Order =< 29 Chisq-stat = 488.9337042721325 P-Value = 0.0

Modified Results Using HAC Standard Errors of Coefficients:
Truncation lag = 4

Coefficient Std. Error T-stat P-Val

constant 3.878 0.341 11.372 0.000
pcompxen 0.197 0.071 2.787 0.006
diffntab 0.031 0.004 8.605 0.000

REG3

We then extract the residuals and perform dfunit and ppunit on them.
Since, in Dickey-Fuller unit-root regressions the AIC and SBC were min-
imised with no lagged change in residuals, and lagged changes in residuals
were statistically insignificant when included, we show below the test with
zero lags. The autocorrelation functions and partial autocorrelation func-
tions (not shown) indicated no evidence of autocorrelations of the differenced
residuals, we run a Phillips-Perron test for illustrative purposes with one lag.

196 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

> (def resids (send reg3 :residuals))
RESIDS
> (dfunit resids "Regression Residuals" 0 1)

DICKEY-FULLER TEST --- Regression Residuals
Lags = 0
Starting observation = 1
Number of observations = 115

Coefficients:

Constant 0.005304 -0.000132
Trend -0.000094
Y(t-1) -0.114980 -0.099087 -0.099096

t-Statistics:

Constant 0.958037 -0.050133
Trend -1.115996
Y(t-1) -2.650709 -2.415747 -2.426624

F-Statistics:

All Three Coefficients = 0 2.365874
Constant & Y(t-1) Coef = 0 2.919747
Trend & Y(t-1) Coefs = 0 3.546978

AIC = -271.9911839227797
SBC = -263.75638753769
NIL

9.2. TESTING FOR COINTEGRATION 197

> (ppunit resids "Regression Residuals" 1)

PHILLIPS-PERRON TEST --- rexcaus
Lags Truncated at 1

Least Squares Estimates:

Constant 0.108233 (9.650086E-2)
Trend -1.158849E-4 (7.343177E-5)
Lagged Y 0.976305 (2.054816E-2)

R Squared: 0.981949
Sigma hat: 1.745832E-2
Number of cases: 123
Degrees of freedom: 120

Standard t-ratios:

Constant 1.121570349176525
Trend -1.5781295137591502
Lagged Y = 0 47.51299238973615
Lagged Y = 1 -1.1531580971215212

Least Squares Estimates:

Constant -1.317336E-2 (5.861712E-2)
Lagged Y 1.00215 (1.248238E-2)

R Squared: 0.981574
Sigma hat: 1.756552E-2
Number of cases: 123
Degrees of freedom: 121

Standard t-ratios:

Constant -0.2247356342436982
Lagged Y = 0 80.2855945899325
Lagged Y = 1 0.17263597501639005

198 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

Least Squares Estimates:

Lagged Y 0.999351 (3.359577E-4)

R Squared: 0.981566
Sigma hat: 1.749703E-2
Number of cases: 123
Degrees of freedom: 122

Standard t-ratios:

Lagged Y = 0 2974.632878480824
Lagged Y = 1 -1.9326938057202339

PP t-ratio for Coefficient of Lagged Y = 1:
-1.3048293087229004

PP t-ratio for Constant = 0:
1.2763684518649856

PP t-ratio for Trend Coefficient = 0:
15.770596142448092

PP Statistic for Coefficients of Trend = 0 and Lagged Y = 1:
1.028483271826358

PP t-ratio for Coefficient of Lagged Y = 1 in regression without trend:
-0.010215118935383127

PP t-ratio for Coefficient of Lagged Y = 1 in regression with
neither constant nor trend:

-1.8994768951008596

NIL

The 10% critical value in the second table in the Statistical Tables when
there are two variables plus a constant is slightly less than 3.59, which far
exceeds the statistics estimated in either test. We have to conclude from
this that the regression residuals are non-stationary and that there is no
cointegration.

9.2. TESTING FOR COINTEGRATION 199

9.2.2 Johansen Cointegration Tests

The problem with the above tests is that they have low power when there is
significant serial correlation, and hence slow mean-reversion, in stationary
regression residuals. An alternative test, developed by Soren Johansen, is
capable of finding cointegration where residual-based tests cannot.3 It is
also capable of finding more than one cointegrating vector with the result
that the test for cointegration will not hinge on which variable one chooses
to be the dependent variable in the cointegrating regression. Johansen’s
approach allows the number of cointegrating relationships equal to as many
as one less than the number of non-stationary variables being analysed.4

The n variables under consideration are expressed as an (n × 1) vector
yt with each variable in the vector expressed as a linear function of lagged
values of itself and the other variables. The system is written in the form

∆yt = α + ξ0 yt−1 + ξ1 ∆yt−1 + ξ2 ∆yt−1 + · · ·
· · ·+ ξp−1 ∆yt−p+1 + εt (9.1)

where α is an n-element column vector of constants, ξ0, ξ1, ξ2, etc., are n×n
matrices of coefficients, and εt is an n-element column vector of residuals.

The number of independent cointegrating vectors is equal to the rank of
the matrix ξ0 which is in turn equal to the number of its characteristic roots
or eigenvalues that differ from zero.

In performing a Johansen test, the first step is to estimate two sets of
OLS regressions. The first regresses ∆yt on constant terms plus p − 1 of
own lags.

∆yt = φ + Φ1∆yt−1 + Φ2∆yt−2 + · · · · · ·+ Φp−1∆yt−p+1 + ut (9.2)

where the Φi are (n×n) matrices of coefficients and ut is the (n×1) column
vector of OLS residuals. The second set regresses yt on a constant and the
same (p− 1) lags as in the previous regression

yt−1 = θ + Θ1Θyt−1 + Θ2∆yt−2 + · · · · · ·+ Θp−1∆yt−p+1 + vt (9.3)
3See Soren Johansen, “Statistical Analysis of Cointegration Vectors,” Journal of Eco-

nomic Dynamics and Control, Vol. 12, 1988, pp. 231-54.
4His approach involves full-information maximum likelihood estimation (FIML) of a

system of equations written in vector-autoregressive form. Here we program the cal-
culations following the explanation of James Hamilton in Chapter 20 of his previously
referenced book Time Series Analysis. For an excellent discussion of the issues involved
in Johansen tests, read pages 385 through 405 of the Enders book Applied Economic Time
Series referenced earlier. An appropriate review of the basic mathematics issues can be
found in the Appendix to the chapter that includes those pages.

200 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

where vt is the resulting vector of regression residuals.
We then calculate the sample variance-covariance matrices of the resid-

uals ut and vt

Σvv = (1/T)
T∑

t=1

vtv′t (9.4)

Σuu = (1/T)
T∑

t=1

utu′t (9.5)

Σuv = (1/T)
T∑

t=1

utv′t (9.6)

Σvu = Σ′
uv (9.7)

and from these find the eigenvalues of the matrix

Σ−1
vvΣvuΣ−1

uuΣuv (9.8)

ordered from large to small — λ1 > λ2 > · · · > λn. Let h be the number
of cointegrating vectors. The test-statistic for the null-hypothesis of no
cointegrating vectors (h = 0) as opposed to one or more, called the Trace
Statistic, turns out to be

−T
n∑

i=1

log(1− λi) (9.9)

while the test-statistic for the null-hypothesis of one cointegrating vector as
opposed to none, the L-Max Statistic, is

−T log(1− λ1). (9.10)

The Trace Statistic for more than h cointegrating vectors as opposed to the
null-hypothesis of only h is

−T
n∑

i=h+1

log(1− λi) (9.11)

and the L-Max Statistic for h + 1 cointegrating vectors as opposed to the
null-hypothesis of h is

−T log(1− λh+1). (9.12)

The critical values for these statistics are given in the third table in the
Statistical Tables at the end of this document. The estimation outlined

9.2. TESTING FOR COINTEGRATION 201

above allows α to be non-zero so that it is fully compatible with deterministic
trend-drift in the data. One could, in addition, restrict the estimation to
rule out the possibility of deterministic trend-drift, forcing α to be zero.
In the above case of unrestricted estimation, the critical values depend on
whether or not there are really deterministic trends in the data—if there
are, the critical values are given in the top panel of the table while if there
are not, the critical values are given in the middle panel.

We can restrict the estimation to exclude deterministic trends by re-
peating the above calculations with the constant terms eliminated from the
system of auxiliary regressions given by equations (9.2) and (9.3).

An alternative restricted estimation is to exclude deterministic trends
for all the variables but allow constant terms in the cointegrating relations.
In this case we have to estimate three auxiliary equations instead of two in
the previous cases. First we estimate equation (9.2) without the constant
vector α. Then we regress a constant term on the (p− 1) lags of ∆yt

1 = ω ′
1∆yt−1 + ω ′

2∆yt−2 + · · · · · ·+ ω ′
p−1∆yt−p+1 + wt. (9.13)

Finally we estimate equation (9.3) without the constant vector θ. Let the
residuals from the first and third regressions be û and v̂. Then we construct
a vector ŵt equal to the column vector v̂t with wt added on top of it.

We then calculate the variance-covariance matrices of the residuals

Σ̂ww = (1/T)
T∑

t=1

ŵtŵ′
t (9.14)

Σ̂uu = (1/T)
T∑

t=1

ûtû′t (9.15)

Σ̂uw = (1/T)
T∑

t=1

ûtŵ′
t (9.16)

Σwu = Σ̂′
uw (9.17)

and from these find the eigenvalues of the matrix

Σ−1
wwΣwuΣ−1

uuΣuw (9.18)

ordered from large to small — λ̂1 > λ̂2 > · · · > λ̂n. The Trace and L-Max
statistics are obtained in the same way as before. In this case, the critical
values are in the bottom panel of the third table in the Statistical Tables.
They assume that the data conforms to the estimation—that is, no trend
drift but a constant in any cointegrating vector.

202 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

To test for the presence of an intercept in the cointegrating vector but no
trends in the data as opposed to unrestricted trend-drift, we can calculate
the statistic

T

[
log|Σ̂uu| − log|Σuu|+

h∑

i=1

log(1− λ̂i)−
h∑

i=1

log(1− λi)

]
(9.19)

which is asymptotically χ2 with (n−h) degrees of freedom. The terms |Σ̂uu|
and λ̂i are from the restricted estimation while the terms |Σuu| and λi are
from the unrestricted estimation. If the difference between the restricted
and non-restricted terms is big enough, and the test-statistic is therefore
sufficiently large, we can reject the null-hypothesis of no deterministic trends
in the series but intercepts in the cointegrating vectors in favour of the
alternative of unrestricted deterministic trends—a test statistic that large is
unlikely to have occurred on the basis of pure chance.

Similarly, we can test whether there are no deterministic trends in any
of the series and no constants in the cointegrating vectors by calculating
a test-statistic similar to the above, where the restricted case uses the pa-
rameters from the calculations with the vector α omitted from the auxiliary
regressions and the unrestricted case is the restricted case above, where con-
stants are present in the cointegrating vectors but deterministic time trends
are not allowed. The resulting test-statistic will also be distributed as χ2

with (n− h) degrees of freedom. If it is large enough we can reject the null
hypothesis of no deterministic trends and no constant in the cointegrating
vectors in favour of no deterministic trends but constants in the cointegrat-
ing vectors.

In all the above cases, the cointegrating vectors will be the eigenvectors
associated with the statistically significant eigenvalues. If a1 is a cointegrat-
ing vector, then a1 multiplied by a constant will also be a version of the same
cointegrating vector. Accordingly, a cointegrating vector can be normalised
so that the variable that we want to put on the left-side of our cointegrat-
ing regression will have a coefficient equal to unity and the the remaining
elements of the normalised vector will represent the coefficients of the right-
hand side variables in our cointegrating regression. Also, if there are two or
more cointegrating vectors, all linear combinations of those vectors are also
cointegrating vectors.

We can also conduct useful tests of hypotheses about the cointegrating
vectors such as the null hypothesis that a particular variable is not really in
them. To do this we set up a matrix D′ with which we transform the Σvv

9.2. TESTING FOR COINTEGRATION 203

(or Σww) and Σuv (or Σuw) terms as follows,

Σvv = D′ΣvvD (9.20)
Σuv = ΣuvD, (9.21)

before combining these and the appropriate Σuu term to calculate the eigen-
values. D′ is simply the identity matrix with the row corresponding to the
variable alleged to be missing from the cointegrating vectors deleted. We
then plug the above-modified matrices and the unrestricted ones into an
equivalent of equation (9.19). The resulting test-statistic is χ2 with (n− h)
degrees of freedom. If it is high enough, we can reject the null-hypothesis
that the variable in question is not in the cointegrating vector.

To test a relationship between the coefficients of the first and only coin-
tegrating vector—for example, that the second two coefficients are both the
negative of the first—we can follow the same procedure as above except that
D′ takes the form (1 -1 -1). This statistic is distributed as χ2 with (n− 1)
degrees of freedom. Here, the presence of more than one cointegrating vec-
tor would make no sense—we are postulating a specific relationship among
the variables.

One further issue must be faced before we can proceed to do Johansen
tests—we must figure out how many lags to include in the basic system
(9.1). The common procedure is to estimate the system in the levels (using
undifferenced data) with various lag lengths

yt = a + b1 yt−1 + b2 yt−2 + b3 yt−2 + · · · · · ·+ et (9.22)

and then calculate test-statistics for a Likelihood Ratio test of the form,
suggested by Chris Sims,

(T − c)(log|ΣR| − log|ΣU |)

where T is the number of observations, c is the number of parameters in
the unrestricted system (the one including the most lags) and log|ΣR| and
log|ΣU | are the logarithms of determinants of the variance-covariance ma-
trices of the residuals in the respective restricted and unrestricted systems.
This statistic is distributed as χ2 with degrees of freedom equal to the num-
ber of coefficient restrictions. In this case, each lag has n2 coefficients (n
lags of n variables) so the number of coefficients will equal m × n2 where
m is the difference in the number of lags of the restricted as opposed to
the unrestricted system. Alternatively, we can select the lag length that

204 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

minimises the following multivariate generalisation of AIC or SBC.5

AIC = T log|Σ|+ N

SBC = T log|Σ|+ N log(T)

where |Σ| is the variance-covariance matrix of the residuals and N is the
number of parameters estimated in all equations. The same sample period
must be used for all systems compared.

To enable a proper choice of lag-length, I have written a function called
VAR-lag-length that takes six arguments in the following order:

—the list of variables
—a list of strings giving the names of the above variables
—the maximum lag-length
—the datelist for the data
—the starting date (which must be in the datelist)
—the ending date (which must be in the datelist)

The maximum lag-length must not be greater than the excess of the starting
date over the first date in the datelist. This function calculates the statistical
significance of each lag in turn, starting from the largest, and calculates
AIC and SBC for each lag-length. All results are printed out. For example,
consider the problem of choosing the lag-length for the above analysis of the
Canada/U.S. real exchange rate.

> (def varlist (list rexcaus diffntab))
VARLIST
> (def varnames (list "rexcaus" "diffntab"))
VARNAMES

5For a discussion of these issues, see pages 296, 297 and 315 of the Enders book.

9.2. TESTING FOR COINTEGRATION 205

> (VAR-lag-length varlist varnames 8 dates72 1974.0 2002.75)

LAG SELECTION INFORMATION

Variables are (rexcaus diffntab)

Degrees of Freedom Data Points Less LR-Test
Lag Per Equation All Parameters PVal AIC BIC

8 99 198 -974.58 -880.96
7 101 202 0.157 -978.23 -895.63
6 103 206 0.058 -979.70 -908.11
5 105 210 0.256 -984.63 -924.05
4 107 214 0.424 -990.73 -941.17
3 109 218 0.001 -984.56 -946.01
2 111 222 0.188 -989.00 -961.46
1 113 226 0.005 -986.06 -969.54

The P-Value is for the restriction of removing the previous lag.

When doing Johansen cointegration tests 2 additional degrees
of freedom per equation will be lost, reducing the data
points minus total parameters estimated by 4

NIL

On the basis of the Likelihood Ratio tests and the AIC, it would appear
that at most 4 lags, and possibly as few as 2, would be appropriate.

We are now in a position to test whether the two non-stationary vari-
ables are cointegrated using my Johansen-coint function, which takes the
following seven arguments:

—the list of variables
—a list of strings giving the names of the above variables
—the lag-length
—the datelist for the data
—the starting date (which must be in the datelist)
—the ending date
—1 if results are to be printed to screen, 0 otherwise

206 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

> (Johansen-coint varlist varnames 4 dates72 1974.0 2002.75 1)

JOHANSEN COINTEGRATION TEST

Variables are (rexcaus diffntab)

Number of Lags = 4

Results when deterministic trends are included:

Coint
Vectors Eigen-
Under Null Values L-max Trace

0.000 0.135 16.768 17.645
1.000 0.008 0.876 0.876

Eigenvectors together with the associated variables

rexcaus -1.000
diffntab 0.045

Likelihood Ratio Tests of null-hypothesis of no deterministic trends
but constants in the cointegrating vectors against the alternative
of no restrictions on deterministic trends

Coint Chisq
Vectors P-Values

1.000 0.219

9.2. TESTING FOR COINTEGRATION 207

Results when deterministic trends are not included and a
constant is present in the cointegrating relationships:

Coint
Vectors Eigen-

Under Null Values L-max Trace

0.000 0.135 16.799 19.190
1.000 0.020 2.391 2.391

Eigenvectors together with the associated variables

rexcaus -1.000
constant 4.857
diffntab 0.045

Likelihood Ratio Tests of null hypothesis of no deterministic
trends and no constants in the cointegrating relationships
versus the alternative of no deterministic trends with
constants in the cointegrating relationships

Coint Chisq
Vectors P-Values

1.000 0.000

208 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

Results when deterministic trends are not included and no
constant is present in the cointegrating relationship:

Coint
Vectors Eigen-
Under Null Values L-max Trace

0.000 0.027 3.137 3.696
1.000 0.005 0.559 0.559

Eigenvectors together with the associated variables

rexcaus -1.000
diffntab -0.823

NIL

We can conclude that there are either trends in the data or a constant in
the cointegrating vector, rejecting the null-hypothesis of no trends and no
constant. We cannot reject the presence of a constant in the cointegrating
vector with no trends in the data at a reasonable significance level as com-
pared to the alternative of unrestricted estimation. In the case where no
restrictions are imposed, the Trace statistic of 17.645 and L-max statistic of
16.768 both indicate cointegration at the 5% significance level with one coin-
tegrating vector if we allow for trend drift in the data. When the estimation
rules out trend drift in the data but includes a constant in the cointegrating
vector, the Trace and L-max statistics of 19.190 and 16.799, respectively,
indicate the presence of one cointegrating vector at about the 5% level. The
null-hypothesis of no trend-drift in the data and no constant in the cointe-
grating vector can clearly be rejected. The issue of whether the individual
variables are present in the cointegrating vector is not of concern—were they
not present, there would be no vector, let alone a cointegrating one.

9.2. TESTING FOR COINTEGRATION 209

As an example of Johansen cointegration tests where hypotheses are
tested about the nature of the cointegrating vector, we test the stationarity
of the real exchange rate and purchasing-power-parity using Canadian and
U.S. monthly data from 1957 through 2002. I wrote the function Johansen-
cointvector-test for this purposes. The function takes two arguments—
first the D matrix defined above and second, 1 if the result is to be printed or
0 otherwise. Three variables enter the test—the Canadian CPI, the nominal
exchange rate expressed as the U.S. dollar price of the Canadian dollar and
the U.S. CPI. The data are in the files nexmdata.lsp and cpimdata.lsp.
Stationarity of the real exchange rate requires that these three variables be
cointegrated, and purchasing-power-parity requires that the logarithms of
the three variables enter the cointegrating vector with coefficients propor-
tional to 1, -1 and 1, respectively. The results are as follows.

> (load "addfuncs")
; loading addfuncs.lsp
T
> (load "nexmdata")
; loading nexmdata.lsp
T
> (load "cpimdata")
; loading cpimdata.lsp
T
> (variables)
(CPIMCA CPIMFR CPIMGR CPIMJN CPIMUK CPIMUS DATESMO NEXMCA
NEXMFR NEXMGR NEXMJN NEXMUK)
> (def nexmca (/ 1 nexmca))
NEXMCA
> (def cpica (log cpimca))
CPICA
> (def cpius (log cpimus))
CPIUS
> (def nexca (log nexmca))
NEXCA
> (def varlist (list cpica nexca cpius))
VARLIST
> (def varnames (list "cpica" "nexca" "cpius"))
VARNAMES

210 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

> (VAR-lag-length varlist varnames 30 datesmo 1960.0 2002.915)

LAG SELECTION INFORMATION

Variables are (cpica nexca cpius)

Degrees of Freedom Data Points Less LR-Test
Lag Per Equation All Parameters PVal AIC BIC

30 425 1275 -17026.88 -15867.69
29 428 1284 0.002 -17027.26 -15906.29
28 431 1293 0.192 -17039.54 -15956.79
27 434 1302 0.001 -17037.16 -15992.62
26 437 1311 0.056 -17046.15 -16039.82
25 440 1320 0.041 -17054.41 -16086.30
24 443 1329 0.000 -17049.81 -16119.91
23 446 1338 0.250 -17063.03 -16171.35
22 449 1347 0.021 -17069.78 -16216.31
21 452 1356 0.004 -17072.55 -16257.30
20 455 1365 0.100 -17083.42 -16306.39
19 458 1374 0.017 -17089.91 -16351.08
18 461 1383 0.016 -17096.25 -16395.64
17 464 1392 0.290 -17110.06 -16447.66
16 467 1401 0.002 -17111.09 -16486.91
15 470 1410 0.012 -17116.95 -16530.98
14 473 1419 0.007 -17121.64 -16573.90
13 476 1428 0.003 -17124.41 -16614.88
12 479 1437 0.000 -17082.48 -16611.16
11 482 1446 0.000 -17069.93 -16636.82
10 485 1455 0.000 -17056.79 -16661.90
9 488 1464 0.000 -17044.39 -16687.72
8 491 1473 0.000 -17040.97 -16722.52
7 494 1482 0.013 -17047.58 -16767.34
6 497 1491 0.057 -17057.73 -16815.70
5 500 1500 0.000 -17047.68 -16843.86
4 503 1509 0.000 -17043.64 -16878.04
3 506 1518 0.000 -17035.67 -16908.29
2 509 1527 0.000 -17016.27 -16927.10
1 512 1536 0.000 -16772.36 -16721.41

9.2. TESTING FOR COINTEGRATION 211

The P-Value is for the restriction of removing the previous lag.

When doing Johansen cointegration tests 2 additional degrees
of freedom per equation will be lost, reducing the data
points minus total parameters estimated by 6

NIL

On the basis of the AIC, we choose 13 lags.

> (Johansen-coint varlist varnames 13 datesmo 1960.0 2002.915 1)

JOHANSEN COINTEGRATION TEST

Variables are (cpica nexca cpius)

Number of Lags = 13

Results when deterministic trends are included:

Coint
Vectors Eigen-

Under Null Values L-max Trace

0.000 0.022 11.424 18.072
1.000 0.009 4.861 6.647
2.000 0.003 1.787 1.787

Eigenvectors together with the associated variables

cpica -1.000 -1.000
nexca 0.798 -0.186
cpius 1.212 1.008

Exclusion tests of variables in the cointegrating relationships

cpica 0.113 0.090
nexca 0.014 0.093
cpius 0.079 0.092

212 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

Likelihood Ratio Tests of null hypothesis of no deterministic trends
but constants in the cointegrating vectors against the alternative
of no restrictions on deterministic trends

Coint Chisq
Vectors P-Values

1.000 0.122
2.000 0.153

Results when deterministic trends are not included and con-
stants are present in the cointegrating relationships:

Coint
Vectors Eigen-
Under Null Values L-max Trace

0.000 0.023 12.230 23.084
1.000 0.014 7.022 10.854
2.000 0.007 3.831 3.831

Eigenvectors together with the associated variables

cpica -1.000 -1.000
constant -0.724 -0.372
nexca 0.986 0.063
cpius 1.242 1.080

Exclusion tests of variables in the cointegrating relationships

constant 0.075 0.087
cpica 0.239 0.115
nexca 0.023 0.106
cpius 0.187 0.103

9.2. TESTING FOR COINTEGRATION 213

Likelihood Ratio Tests of null hypothesis of no deterministic
trends and no constants in the cointegrating relationships
versus the alternative of no deterministic trends with
constants in the cointegrating relationships

Coint Chisq
Vectors P-Values

1.000 0.001
2.000 0.002

Results when deterministic trends are not included and no
constant is present in the cointegrating relationship:

Coint
Vectors Eigen-

Under Null Values L-max Trace

0.000 0.017 9.068 13.458
1.000 0.008 4.096 4.390
2.000 0.001 0.294 0.294

Eigenvectors together with the associated variables

cpica -1.000 -1.000
nexca -1.207 -0.072
cpius 0.882 0.995

Exclusion tests of variables in the cointegrating relationships

cpica 0.452 0.059
nexca 0.034 0.420
cpius 0.499 0.059

NIL

214 CHAPTER 9. SPURIOUS REGRESSION AND COINTEGRATION

> (def D (bind-columns (list 1 -1 1)))
D
> (Johansen-cointvector-test D 1)

D matrix

1.000
-1.000
1.000

Chisquare Statistic = 9.293670058789424

P-Value = 0.009591912059625507

NIL

It is obvious from a glance at the third row of any of the three panels in the
third of our Statistical Tables that no cointegrating relationship holds, im-
plying what we knew previously—that the Canadian real exchange rate with
respect to the United States is non-stationary. And, not surprisingly, the
null-hypothesis implying purchasing-power-parity is clearly rejected. Were
it not for purposes of illustration, there would have been no point in running
the Johansen-cointvector-test function.

Chapter 10

Further Topics in Regression
Analysis

We now explore a number of further issues in the application of regression
analysis to economics. First, we extend the testing of joint hypotheses be-
yond the ‘rule of thumb’ F-tests outlined in the multicollinearity section of
Chapter 5. Then we outline some non-nested hypotheses tests that can en-
able us to distinguish between two competing theories explaining observed
behaviour of economic variables. Our third topic is generalised least squares,
which we introduce with an analysis of traditional ways of dealing with serial
correlation in time-series residuals. Finally, we apply these GLS principles
to the use of seemingly unrelated regression techniques in analysing a system
of equations.

10.1 Joint Hypotheses Tests

In Chapter 5 we showed that a general hypothesis about the coefficients
in a linear regression can be tested by running the regression with and
without imposing the implied constraints and then running an F-test on
the difference between the sum-of-squared residuals in the two cases. The
resulting F-statistic was

F =
(SSER− SSEU)/q

SSEU/DFU

where SSER and SSEU are the restricted and unrestricted sum of squared
regression residuals, q is the number of restrictions (degrees of freedom in the
numerator) and DFU is the degrees of freedom in the unrestricted regression

215

216 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

(and in the denominator). One of the difficulties with this ‘rule of thumb’
F-test is that it does not accommodate adjustment for heteroskedasticity
and autocorrelation in the regression residuals.

An alternative approach is to express the restriction or set of joint re-
strictions in the following matrix form

Rβ̂ = r

where R is a matrix whose rows are represented by the individual restrictions
and whose columns equal the number of regressors including the constant,
r is a column vector equal in length to the number of restrictions and,
hence to the number of rows in R, and β̂ is the vector of coefficients of the
unrestricted regression. The F-statistic, identical to the one above in the
cases where the errors are homoskedastic, can then be expressed as

F = (Rβ̂ − r)′[RΣR′]−1(Rβ̂ − r)/q

where Σ is the variance-covariance matrix of the coefficients in the unre-
stricted regression. These variances and covariances may or may not be
adjusted to accommodate heteroskedasticity and autocorrelation in the re-
gression residuals, as the situation requires. In the case where the regression
residuals are homoskedastic, Σ = σ2I, where I is the identity matrix and
the denominator becomes identical to that in the previous ‘rule of thumb’
F-statistic. The numerators are also identical, but that fact is not obvious.

When the restriction being tested is simply that the coefficient of the
second variable is zero in a regression that has, say, three variables plus a
constant term, R and r become

R = [0 1 0 0] and r = 0

and in the case where the restriction is that the second and third coefficients
are equal they become

R = [0 1 -1 0] and r = 0.

In a test of the significance of the regression—that is, of the null-hypothesis
that all coefficients except that of the constant term are jointly zero—R and
r become

R =




0 1 0 0
0 0 1 0
0 0 0 1


 and r =




0
0
0


 .

10.1. JOINT HYPOTHESES TESTS 217

The null-hypothesis is that R post-multiplied by the four-element column
vector β equals r—that is, β2 = 0 in the first case above, β2 = β3 in the
second case and in the last case, β2 = β3 = β4 = 0.

To apply the above methods we use a data set collected by my late
colleague Trevor Dick, used in our joint working paper “Capital Imports and
the Jacksonian Economy: A New View of the Balance of Payments” which
studied the operation of the bi-metallic gold/silver and gold standards in the
United States during the period 1820 through 1860.1 The data, contained
in the file antbdata.lsp, can be described as follows, where ROW refers to
the rest of the world:2

YEAR — 1820 through 1860
USTOTN —US terms of trade, 1850 = 100
USROWRN —US/ROW non-traded goods price index, 1850 = 1000
USCPIBDS —US CPI, 1850 = 100
ROWPL —Rest of world price level, 1850 = 100

(ROW = UK, France, Germany and Sweden)
NPRUSROW —US/ROW price level USCPIBDS/ROWPL

equals a real exchange rate estimate
REXUSROW —US/ROW price level and real exchange rate

based on USIPDB/ROWPL
ROWRGNP —Rest of world real GNP
USNGNPB —US nominal GNP
USRGNPB —US real GNP
USRGNPBI —US real GNP – Index 1850 = 100
USIPDB —US implicit GNP deflator, 1850 = 100
USRDSB —US real debt service balance – using USCPIBDS
USRPLS —US real public land sales in thous. of 1850 dollars
USRCANI —US real canal investment in mill. of 1850 dollars
USRRMP —US railroad mileage – = zero to 1830
USTBN —US balance of trade in goods and services in mill. curr. $
USSERV —US service balance excluding services of capital
USTBNGS —US balance of trade in goods and services excluding

the services of capital – mill. current $
USTBRGS —US real balance of trade in goods and services

excluding the services of capital –mill. 1850 $

1The on-line version of this paper can be obtained at
http://www.economics.utoronto.ca/ecipa/archive/UT-ECIPA-FLOYD-01-01.html.

2These data are a subset of the full data set available, along with other data collected
by Trevor Dick, at

http://www.economics.utoronto.ca/floyd/dick.html .

218 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

USNCIDSB —US real net capital inflow plus DSB = USTBNGS/USIPDB
millions of 1850 dollars

UKOMDR —UK open market discount rate
UKCONSOL —UK consol rate
USSINT —US short-term interest rate – based on several series
INTDIF —US/UK interest rate differential — USSINT/UKOMDR
USSPTC —Specie stock in US in millions of current dollars
NRESFLOW —Nominal flow of reserves into the US – USSPTC(T)-USSPTC(T-1)
RRESFLOW —Real flow of reserves into the US evaluated at T-1

prices – = 100*NRESFLOW(T)/USCPIBDS(T-1)
USMONT —US money stock in millions of current dollars
USRMON —US real money stock in 1850 dollars — USMONT/USCPIBDS
USRSPRES —US real stock of specie reserves – millions 1850 $

= 100* USSPTC/USCPIBDS
USMM —US money multiplier – USMONT/USSPTC
USRNCIXS —US real net capital imports less specie exports
USSPECXP —US specie exports – mill. of current dollars
USUKMPO —US dollar / Sterling mint parity in $ per pound
USUKEXRB —Anglo-American nominal exchange rate – estimate 1
USUKEXRP —Anglo-American nominal exchange rate – estimate 2

We can now bring these data into the XLispStat workspace.

> (load "addfuncs.lsp")
; loading addfuncs.lsp
T
> (load "antbdata.lsp")
; loading antbdata.lsp
T
> (variables)
(INTDIF NPRUSROW NRESFLOW REXUSROW ROWPL ROWRGNP RRESFLOW
UKCONSOL UKOMDR USCPIBDS USIPDB USMM USNCIDSB USNGNPB
USNMONT USRCANI USRDSB USRGNPB USRGNPBI USRMON USRNCIXS
USROWRN USRPLS USRRMP USRSPRES USSERV USSINT USSPECXP USSPTC
USTBN USTBNGS USTBRGS USTOTN USUKEXRB USUKEXRP USUKMPO YEAR)

We begin the analysis by setting up a reduced form estimating equation
to explain movements in the U.S. real balance of trade in goods and services
during the period. The obvious explanatory variables are real incomes in
the U.S. and the rest of the world and the U.S. real exchange rate with
respect to the rest of the world. Additional potential regressors are the debt

10.1. JOINT HYPOTHESES TESTS 219

service balance, changes in which will cause U.S. relative to foreign incomes
to change in ways that might not entirely be captured by our U.S. and
rest-of-world real income variables, and various factors affecting long-term
real net capital inflows which we proxy by real public land sales, real canal
investment and railroad mileage. Of course, these real net capital inflows
will only cause the real trade balance to change at a given real exchange
rate if they happen to be accompanied by shifts in the supply relative to
the demand of actual real capital goods—otherwise, the real exchange rate
will adjust until the current account deficit equals the net capital inflow.
The estimated equation is a reduced form because, although it might be
reasonable to expect a negative relationship between the real trade balance
and the real exchange rate, the observed relationship will undoubtedly suffer
from simultaneity bias and need not even be negative. The reason is that
swings in the demand for U.S. exports relative to imports will cause real
exchange rate movements that may be unrelated to changes in the real
trade balance, since the latter must be equal to the negative of the real net
capital inflow, which will change only if there are changes in U.S. investment
relative to savings.3

We use a measure of the real exchange rate that, given the fixed nom-
inal exchange rate implied by the fixing of the values of the domestic and
foreign currencies in terms of silver and gold, matches the movement of the
U.S. implicit GNP deflator relative to the rest-of-world price level. This
contrasts with the working paper where the U.S. consumer price index was
used instead of the GNP deflator. The change is made because it favours
the theory which the working paper cited and our analysis here ultimately
rejects.

> (def regressand "Real Trade Balance")
REGRESSAND
> (def regressors (list "Constant " "Real Exch Rate" "US Real Income"
"ROW Real Income" "Pub Land Sales" "Canal Inv" "Rail Mileage" "Net Rep
Earn"))
REGRESSORS
> (def idepvars (bind-columns rexusrow usrgnpbi rowrgnp usrpls usrcani
usrrmp usrdsb))
IDEPVARS

3For a discussion of the important analytical economic issues involved here, see section
four of the Dick-Floyd working paper cited above.

220 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

> (def botreg0 (OLS-time-series ustbrgs idepvars year 1821 1860 1 1))

LINEAR REGRESSION

Dependent Variable: Real Trade Balance

Starting Date: 1821 Ending Date: 1860

Coefficient Std. Error T-stat P-Val

Constant 16.512 41.997 0.393 0.697
Real Exch Rate -1.127 0.340 -3.318 0.002
US Real Income -1.858 0.628 -2.960 0.006
ROW Real Income 2.818 0.741 3.802 0.001
Pub Land Sales -0.001 0.001 -1.193 0.242
Canal Inv -0.513 1.122 -0.457 0.651
Rail Mileage 0.000 0.001 0.065 0.949
Net Rep Earn 0.885 1.543 0.574 0.570

Number of Observations: 40
Degrees of Freedom: 32
R-Squared: 0.6585746784064198
Adjusted R-Squared: 0.5838878893078241
Sum of Squared Errors: 9493.458670355627
Regression F-Statistic: 8.817820210974942
P-Value: 5.166106475940069E-6

LM-Based Test for Serial Correlation in Residuals:
Order = 1 Chisq-stat = 0.4902235532202323 P-Value = 0.4838275994293749

LM-Based Test for Serial Correlation in Residuals:
Order =< 3 Chisq-stat = 4.423102728808192 P-Value = 0.2192527646014042

LM-Based Test for Serial Correlation in Residuals:
Order =< 10 Chisq-stat = 19.1514051673986 P-Value = 0.0383812185605269

Modified Results Using HAC Standard Errors of Coefficients:
Truncation lag = 3

10.1. JOINT HYPOTHESES TESTS 221

Coefficient Std. Error T-stat P-Val

Constant 16.512 31.234 0.529 0.601
Real Exch Rate -1.127 0.216 -5.205 0.000
US Real Income -1.858 0.590 -3.150 0.004
ROW Real Income 2.818 0.617 4.567 0.000
Pub Land Sales -0.001 0.000 -2.554 0.016
Canal Inv -0.513 0.646 -0.793 0.434
Rail Mileage 0.000 0.001 0.080 0.936
Net Rep Earn 0.885 1.456 0.608 0.548

BOTREG0

It is interesting to note that the test routine of our OLS-time-series func-
tion found evidence of only high-order serial correlation in the regression
residuals. The results also indicate that the debt service balance (net repa-
triated earnings) and all the proxies for long-term real capital growth except
public land sales are individually not statistically significant. We therefore
do a joint hypothesis test of whether they are significant as a group. First
we create the R matrix and the column vector r and then use the joint-
hypothesis-test function that I wrote to use these objects along with the
variance-covariance matrix of the coefficients to calculate the F-statistic.
The function takes only two arguments, the regression-model object and a
coefficient that determines whether HAC standard errors are used. It takes
a value of -1 in the homoskedastic case, 0 when there is adjustment for het-
eroskedasticity alone and a positive value equal to the number of lags when
the adjustment is for autocorrelation as well as heteroskedasticity. The num-
ber of restrictions, q, is automatically obtained from the length of the vector
r. In the homoskedastic case the function delivers an F-statistic while with
HAC coefficient standard errors it produces a χ2 statistic, which is equal to
q times the Fq,∞ statistic.

> (def bigr (bind-rows (list 0 0 0 0 0 1 0 0)))
BIGR
> (def bigr (bind-rows bigr (list 0 0 0 0 0 0 1 0)))
BIGR
> (def bigr (bind-rows bigr (list 0 0 0 0 0 0 0 1)))
BIGR
> (def litr (bind-columns (repeat 0 3)))
LITR

222 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

> (joint-hypothesis-test botreg0 -1)

Joint Hypothesis Significance Test

R =
0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

r =
0.000
0.000
0.000

F-Statistic = 0.2812963619298308
P-Value = 0.8384901630007598

NIL

It turns out that the above variables plus public land sales are as a group also
insignificant except when HAC coefficient standard errors are incorporated.

> (def bigr (bind-rows (list 0 0 0 0 1 0 0 0)))
BIGR
> (def bigr (bind-rows bigr (list 0 0 0 0 0 1 0 0)))
BIGR
> (def bigr (bind-rows bigr (list 0 0 0 0 0 0 1 0)))
BIGR
> (def bigr (bind-rows bigr (list 0 0 0 0 0 0 0 1)))
BIGR
> (def litr (bind-columns (repeat 0 4)))
LITR
> (joint-hypothesis-test botreg0 -1)

Joint Hypothesis Significance Test

R =
0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

10.1. JOINT HYPOTHESES TESTS 223

r =
0.000
0.000
0.000
0.000

F-Statistic = 0.8103204407983537
P-Value = 0.5278954330345068

NIL
> (joint-hypothesis-test botreg0 3)

Joint Hypothesis Significance Test

R =
0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

r =
0.000
0.000
0.000
0.000

Chisquare Statistic = 14.47502000468472
P-Value = 0.005923594186175163

NIL

When rerun the regression including Public Land Sales but omitting the
other insignificant variables, the Public Land Sales variable turns out to be
statistically insignificant with no serial correlation present in the residuals.
Accordingly, we then drop that variable as well.4

4All these results are programmed in the batch file JHTbatch.lsp.

224 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

> (def regressors (list "Constant " "Real Exch Rate" "US Real Income"
"ROW Real Income"))
REGRESSORS
> (def idepvars (bind-columns rexusrow usrgnpbi rowrgnp))
IDEPVARS
> (def botreg1 (OLS-time-series ustbrgs idepvars year 1821 1860 1 1))

LINEAR REGRESSION

Dependent Variable: Real Trade Balance

Starting Date: 1821 Ending Date: 1860

Coefficient Std. Error T-stat P-Val

Constant 20.682 38.882 0.532 0.598
Real Exch Rate -1.267 0.261 -4.858 0.000
US Real Income -2.099 0.315 -6.657 0.000
ROW Real Income 2.976 0.613 4.853 0.000

Number of Observations: 40
Degrees of Freedom: 36
R-Squared: 0.6239916887697411
Adjusted R-Squared: 0.5926576628338862
Sum of Squared Errors: 10455.051622163568
Regression F-Statistic: 19.914188175089233
P-Value: 8.848164156916027E-8

LM-Based Test for Serial Correlation in Residuals:
Order = 1 Chisq-stat = 0.008244934976584888 P-Value = 0.9276502193756687

LM-Based Test for Serial Correlation in Residuals:
Order =< 3 Chisq-stat = 0.9741448859630093 P-Value = 0.8075077845041004

LM-Based Test for Serial Correlation in Residuals:
Order =< 10 Chisq-stat = 6.840725699046722 P-Value = 0.7403910127566262

BOTREG1

10.1. JOINT HYPOTHESES TESTS 225

The estimation of a balance of trade equation is a preview to the estima-
tion of balance of payments equations—that is, equations determining the
balance of payments surplus, represented by the real net inflow of specie.
There are two theories of how the net specie flow is determined. The stan-
dard classical price-specie-flow mechanism starts with the fact that the bal-
ance of payments surplus is the sum of the balance of trade surplus and
the surplus on capital account and then argues that the surplus will then
be determined by the factors above determining the balance of trade plus
the debt service balance plus the factors that determine the net capital in-
flow. The latter equals the exogenous long-term net capital flow plus the
short-term net capital flow which is taken as a positively related function
of the ratio of domestic to foreign interest rates. This suggests a balance of
payments equation identical to the balance of trade equation initially used
above with one variable added, the domestic/foreign short-term interest rate
differential.

> (def regressand "Real Reserve Flow")
REGRESSAND
> (def regressors (list "Constant " "Real Exch Rate" "US Real Income"
"ROW Real Income" "Pub Land Sales" "Canal Inv" "Rail Mileage"
"Net Rep Earn" "LT-Int Diff"))
REGRESSORS
> (def idepvars (bind-columns rexusrow usrgnpbi rowrgnp usrpls usrcani
usrrmp usrdsb intdif))
IDEPVARS
> (def bopreg0 (OLS-time-series rresflow idepvars year 1821 1860 1 1))

LINEAR REGRESSION

Dependent Variable: Real Reserve Flow

Starting Date: 1821 Ending Date: 1860

Coefficient Std. Error T-stat P-Val

Constant -26.902 80.356 -0.335 0.740
Real Exch Rate 1.287 0.603 2.136 0.041
US Real Income 3.346 1.083 3.088 0.004
ROW Real Income -3.577 1.245 -2.872 0.007
Pub Land Sales -0.002 0.001 -1.609 0.118

226 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

Canal Inv 0.020 1.862 0.011 0.991
Rail Mileage -0.004 0.002 -1.738 0.092
Net Rep Earn 0.722 2.575 0.281 0.781
LT-Int Diff 6.060 7.351 0.824 0.416

Number of Observations: 40
Degrees of Freedom: 31
R-Squared: 0.3308652691782573
Adjusted R-Squared: 0.15818533864361395
Sum of Squared Errors: 25086.147245758668
Regression F-Statistic: 1.9160609351292193
P-Value: 0.09308907718050308

LM-Based Test for Serial Correlation in Residuals:
Order = 1 Chisq-stat = 6.194712545745048 P-Value = 0.012813253407204517

LM-Based Test for Serial Correlation in Residuals:
Order =< 3 Chisq-stat = 14.746748575585531 P-Value = 0.002046371879090625

LM-Based Test for Serial Correlation in Residuals:
Order =< 10 Chisq-stat = 34.099430920955776 P-Value = 1.77670045580114E-4

Modified Results Using HAC Standard Errors of Coefficients:
Truncation lag = 3

Coefficient Std. Error T-stat P-Val

Constant -26.887 32.890 -0.817 0.420
Real Exch Rate 1.287 0.648 1.985 0.056
US Real Income 3.346 1.651 2.027 0.051
ROW Real Income -3.577 2.112 -1.693 0.100
Pub Land Sales -0.002 0.001 -1.938 0.062
Canal Inv 0.020 0.982 0.020 0.984
Rail Mileage -0.004 0.002 -2.743 0.010
Net Rep Earn 0.722 2.014 0.359 0.722
LT-Int Diff 6.059 4.533 1.337 0.191

BOPREG0

10.1. JOINT HYPOTHESES TESTS 227

The resulting equation has the real exchange rate and real income variables
wrongly signed and, apart from railroad mileage, nothing is statistically
significant at the 1% level when HAC standard-errors are obtained although
the real exchange rate, U.S. real income and public land sales are significant
at somewhat more than the 5% level. The regression as a whole is significant
only at the 10% level. Since the above F-statistic is based on homoskedastic
errors, it is useful to calculate a version based on HAC coefficient standard
errors.

(def imat (identity-matrix 8))
IMAT
> (def litr (bind-columns (repeat 0 8)))
LITR
(def bigr (bind-columns litr imat))
BIGR
> (joint-hypothesis-test bopreg0 3)

Joint Hypothesis Significance Test

R =
0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

r =
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Chisquare Statistic = 47.62976870177372
P-Value = 1.1627327711760671E-7

NIL

228 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

By this measure the regression as a whole turns out to be statistically sig-
nificant but we must keep in mind that this F-test is asymptotically valid
and we have here only 31 degrees of freedom. Indeed, it is interesting to test
the null-hypothesis that the regression is, in fact, spurious. Phillips-Perron
tests on the residuals of the regression yield the following result.

> (def bopresids (send bopreg0 :residuals))
BOPRESIDS
> (ppunit bopresids "BOP Residuals" 1)

PHILLIPS-PERRON TEST --- BOP Residuals
Lags Truncated at 1

Least Squares Estimates:

Constant 1.19076 (3.89816)
Trend 0.150196 (0.350802)
Lagged Y -0.459965 (0.181064)

R Squared: 0.152049
Sigma hat: 24.2283
Number of cases: 39
Degrees of freedom: 36

Standard t-ratios:

Constant 0.3054661233514375
Trend 0.42814886486135173
Lagged Y = 0 -2.540347806411093
Lagged Y = 1 -8.063263863475918

Least Squares Estimates:

Constant 1.23641 (3.85346)
Lagged Y -0.445585 (0.175947)

R Squared: 0.147731
Sigma hat: 23.9594
Number of cases: 39
Degrees of freedom: 37

10.1. JOINT HYPOTHESES TESTS 229

Standard t-ratios:

Constant 0.3208564808157305
Lagged Y = 0 -2.5324967921016355
Lagged Y = 1 -8.21602611939811

Least Squares Estimates:

Lagged Y -0.440307 (0.173096)

R Squared: 0.145360
Sigma hat: 23.6749
Number of cases: 39
Degrees of freedom: 38

Standard t-ratios:

Lagged Y = 0 -2.5437109552948645
Lagged Y = 1 -8.320845831058989

PP t-ratio for Coefficient of Lagged Y = 1:
-8.182562762648711

PP t-ratio for Constant = 0:
0.27433122076451394

PP t-ratio for Trend Coefficient = 0:
0.4842965671890996

PP Statistic for Coefficients of Trend = 0 and Lagged Y = 1:
34.05700309671205

PP t-ratio for Coefficient of Lagged Y = 1 in regression without trend:
-8.344304386352

PP t-ratio for Coefficient of Lagged Y = 1 in regression with
neither constant nor trend:

-8.431710306208258

230 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

> (ppunit bopresids "BOP Residuals" 5)

PHILLIPS-PERRON TEST --- BOP Residuals
Lags Truncated at 5

Least Squares Estimates:

Constant 1.19076 (3.89816)
Trend 0.150196 (0.350802)
Lagged Y -0.459965 (0.181064)

R Squared: 0.152049
Sigma hat: 24.2283
Number of cases: 39
Degrees of freedom: 36

Standard t-ratios:

Constant 0.3054661233514375
Trend 0.42814886486135173
Lagged Y = 0 -2.540347806411093
Lagged Y = 1 -8.063263863475918

Least Squares Estimates:

Constant 1.23641 (3.85346)
Lagged Y -0.445585 (0.175947)

R Squared: 0.147731
Sigma hat: 23.9594
Number of cases: 39
Degrees of freedom: 37

Standard t-ratios:

Constant 0.3208564808157305
Lagged Y = 0 -2.5324967921016355
Lagged Y = 1 -8.21602611939811

10.1. JOINT HYPOTHESES TESTS 231

Least Squares Estimates:

Lagged Y -0.440307 (0.173096)

R Squared: 0.145360
Sigma hat: 23.6749
Number of cases: 39
Degrees of freedom: 38

Standard t-ratios:

Lagged Y = 0 -2.5437109552948645
Lagged Y = 1 -8.320845831058989

PP t-ratio for Coefficient of Lagged Y = 1:
-9.01676806716786

PP t-ratio for Constant = 0:
0.1866501290724194

PP t-ratio for Trend Coefficient = 0:
0.6952444241484584

PP Statistic for Coefficients of Trend = 0 and Lagged Y = 1:
42.93694292645266

PP t-ratio for Coefficient of Lagged Y = 1 in regression without trend:
-9.405545541990548

PP t-ratio for Coefficient of Lagged Y = 1 in regression with
neither constant nor trend:

-9.459314068000017

While the number of variables exceeds that covered by the relevant table
in our Statistical Tables, the magnitudes of the statistics obtained suggests
that the regression is probably not spurious.

The alternative theory of balance of payments adjustment is a portfolio-
based theory which takes into account that individuals were free to buy and

232 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

sell assets in exchange for gold across international boundaries. According
to this theory, the balance of trade and balance of payments equilibrium
should be unrelated to each other. The real exchange rate adjusts until the
balance of trade equals the net capital outflow. Given the fixed nominal
exchange rate, this determines the U.S. price level relative to the price level
abroad. Domestic and foreign residents then buy or sell existing assets in
return for gold until the world gold stock has been optimally distributed
between countries. It is changes in the demand or supply of gold alone in a
country that determine its net gold inflow and balance of payments surplus.
Accordingly, Trevor Dick and I set up an equation that explains the real
reserve flow, or balance of payments surplus, on the basis of changes in the
factors which cause the demand for real money balances to change—namely,
the change in domestic real income and domestic interest rates.

Equality of the demand and supply of gold reserves, denoted by G, im-
plies that

G = P L(r, Y,m, b) (10.1)

where L(...) is the demand function for gold, P is the general price level (the
price of output in terms of gold), r is the nominal interest rate, Y is the
level of real income, m is the money multiplier, or the ratio of the quantity
of paper money in circulation to the stock of gold, and b is the debt service
balance which equals interest and dividends received from abroad minus
interest and dividends paid to foreigners. Taking relative changes of this
equation yields

∆G

G
=

∆P

P
+

∆L(r, Y, m, b)
L(r, Y, m, b)

=
∆P

P
+ η ∆r + ε

∆Y

Y
+ µ

∆m

m
+ ϑ

∆b

b
(10.2)

where η is the interest semi-elasticity of demand for gold, ε is the income
elasticity of demand for gold, and µ and ϑ are the elasticities of demand
for gold with respect to the money multiplier and the debt service balance.5

Multiplication of both sides by G/P produces

∆G

P
=

[
G

P

]
∆P

P
+

[
η G

P

]
∆r +

[
εG

P

]
∆Y

Y

+
[
µG

P

]
∆m

m
+

[
ϑG

P

]
∆b

b
(10.3)

5I follow a convention here of working with the absolute change rather than the relative
change in the interest rate, which explains why η is the interest semi-elasticity of demand
for gold rather than the actual interest elasticity of demand.

10.1. JOINT HYPOTHESES TESTS 233

which can be converted into the OLS regression function

RRESFLOW = γ0 + γ1 PVAR + γ2 RVAR + γ3 YVAR + γ4 MMVAR + γ5 DSBVAR

where the RRESFLOW variable is already in the dataset loaded into the work-
space above and the remaining variables, whose meanings should be obvious,
can now be constructed. We begin by taking one period lags of the relevant
variables by removing their last elements and then constructing conformable
current levels of these variables by removing their first elements. This en-
ables us to then construct the first differences and relative changes multiplied
by the initial (t−1) levels of the real stock of specie reserves. We also use the
change in the U.K. consol rate as our interest rate variable—this is consis-
tent with the existence of a world capital market in which U.S. interest rates
will differ from U.K. interest rates by a risk premium that we assume to be
relatively stable. Also, a good interest rate on widely-traded U.S. securities
was not available—the USSINT variable is a very rough construct.6

> (def usrspres-lag (remove-last-element usrspres))
USRSPRES-LAG
> (def usrspres (remove-first-element usrspres))
USRSPRES
> (def uscpibds-lag (remove-last-element uscpibds))
USCPIBDS-LAG
> (def uscpibds (remove-first-element uscpibds))
USCPIBDS
> (def usrgnpb-lag (remove-last-element usrgnpb))
USRGNPB-LAG
> (def usrgnpb (remove-first-element usrgnpb))
USRGNPB
> (def ukconsol-lag (remove-last-element ukconsol))
UKCONSOL-LAG
> (def ukconsol (remove-first-element ukconsol))
UKCONSOL
> (def ukomdr-lag (remove-last-element ukomdr))
UKOMDR-LAG
> (def ukomdr (remove-first-element ukomdr))
UKOMDR

6This can be seen from an examination of the extensive catalogue file antebell.cat

available from my website at the same place as the data collected by Trevor Dick.

234 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

> (def usmm-lag (remove-last-element usmm))
USMM-LAG
> (def usmm (remove-first-element usmm))
USMM
> (def usrdsb-lag (remove-first-element usrdsb))
USRDSB-LAG
> (def usrdsb (remove-last-element usrdsb))
USRDSB
> (def pvar (* usrspres-lag (/ (- uscpibds uscpibds-lag) uscpibds-lag)))
PVAR
> (def yvar (* usrspres-lag (/ (- usrgnpb usrgnpb-lag) usrgnpb-lag)))
YVAR
> (def rvar (* usrspres-lag (- ukconsol ukconsol-lag)))
RVAR
> (def mmvar (* usrspres-lag (/ (- usmm usmm-lag) usmm-lag)))
MMVAR
> (def dsbvar (* usrspres-lag (/ (- usrdsb usrdsb-lag) usrdsb-lag)))
DSBVAR
> (def rresflow (remove-first-element rresflow))
RRESFLOW
> (def year (remove-first-element year))
YEAR

Notice that it was necessary, using the last two commands above, to remove
the first elements from the real reserve flow variable and the datelist to make
them conform to the shortened lists representing the other variables. While
our regressions must now start with the year 1821, that starting-date was
already chosen in the earlier regressions to ensure comparability.

> (def regressand "Real Reserve Flow")
REGRESSAND
> (def regressors (list "Constant" "Price Level" "LT-Int Rate"
"Income" "MoneyMult" "DSB"))
REGRESSORS
> (def idepvars (bind-columns pvar rvar yvar mmvar dsbvar))
IDEPVARS

10.1. JOINT HYPOTHESES TESTS 235

> (def portreg0 (OLS-time-series rresflow idepvars year 1821 1860 1 1))

LINEAR REGRESSION

Dependent Variable: Real Reserve Flow

Starting Date: 1821 Ending Date: 1860

Coefficient Std. Error T-stat P-Val

Constant 1.529 2.101 0.728 0.472
Price Level -0.293 0.469 -0.624 0.537
LT-Int Rate -0.393 0.151 -2.605 0.014
Income 1.179 0.202 5.849 0.000
MoneyMult -0.654 0.075 -8.755 0.000
DSB -0.386 0.044 -8.869 0.000

Number of Observations: 40
Degrees of Freedom: 34
R-Squared: 0.8854715005163816
Adjusted R-Squared: 0.8686290741217318
Sum of Squared Errors: 4293.722429193762
Regression F-Statistic: 52.57386790763498
P-Value: 4.9960036108132044E-15

LM-Based Test for Serial Correlation in Residuals:
Order = 1 Chisq-stat = 0.11607536592302566 P-Value = 0.7333306806930482

LM-Based Test for Serial Correlation in Residuals:
Order =< 3 Chisq-stat = 7.2057006081004715 P-Value = 0.06562251808487496

LM-Based Test for Serial Correlation in Residuals:
Order =< 10 Chisq-stat = 10.658399764662036 P-Value = 0.3847434818505274

236 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

Modified Results Using HAC Standard Errors of Coefficients:
Truncation lag = 3

Coefficient Std. Error T-stat P-Val

Constant 1.529 1.681 0.910 0.369
Price Level -0.293 0.362 -0.809 0.424
LT-Int Rate -0.393 0.167 -2.349 0.025
Income 1.179 0.173 6.797 0.000
MoneyMult -0.654 0.047 -13.878 0.000
DSB -0.386 0.016 -23.417 0.000

PORTREG0

Since serial correlation in the residuals was found for less than three lags at
the 10% level and not at all for less than 10 lags, we should pay attention
only to the results with non-HAC coefficient standard errors. Contrary to
what would have been expected, the price variable is not only less than unity
but also negative. Upon reflection, it would appear that this is due to the
fact that our price variable represents the level of current inflation which not
only increases the quantity of specie that would have to be held to keep the
real stock of specie constant, but also increases the alternative opportunity
cost of holding specie—this cost would be incorporated in a U.S. interest rate
variable but not in the U.K. consol rate. The relative change in the debt
service balance was included because Trevor and I found it to be significant
in similar Canadian and Australian regressions.7 I suspect that this variable,
which is negative and increases in size over the period, captures the increase
in the demand for specie reserves associated with the development of the
U.S. economy over the period—it is really a proxy for the net capital inflow
which increased over the period. Since that imported capital was owned
abroad, it’s return did not form part of U.S. GNP but its growth increased
the volume of transactions that had to be made in the U.S. economy. In
comparison to the classical specie-flow regression, the results here indicate a
high degree of statistical significance of all but the price level variable with

7See Trevor J. O. Dick and John E. Floyd, Canada and the Gold Standard, Cambridge
University Press, 1992, and T. J. O. Dick, John E. Floyd and David Pope, “Balance of
Payments Adjustment Under Gold Standard Policies: Canada and Australia Compared,”
in T. Bayoumi, B. Eichengreen and M. Taylor, eds. Modern Perspectives on the Gold
Standard, Cambridge University Press, 1996.

10.2. NON-NESTED HYPOTHESES TESTS 237

a sum of squared errors of only 4293 as compared to 25086 in the case of
the immediately previous specie-flow regression. Moreover, unlike the latter
regression, all these coefficients in the portfolio-theory regression have the
correct, or at least plausible, signs.

10.2 Non-Nested Hypotheses Tests

Useful statistical techniques can be illustrated by making further tests of
the above two regressions that will demonstrate conclusively the superiority
of the portfolio approach. The tests to be discussed and applied here are
non-nested hypotheses tests in the sense that the hypotheses in question are
related only in that the dependent variables are the same—one hypothesis
is not nested inside the other. Three types of tests will be considered–F-
tests, J-tests, and complete-parameter-encompassing (CPE) tests of which
the first two tests are subsets.

10.2.1 F-Tests

Consider the two equations claimed in the previous section to explain real
reserve flows—the specie-flow-based equation and the portfolio-based equa-
tion. An obvious way of trying to determine which theory is the correct one
is to combine the two equations by adding all their independent variables
to the right-side of a regression with the real reserve flow as the dependent
variable, and then test whether the set of variables proposed by each theory
is statistically significant. We will continue in the workspace used for the
previous section. It turns out that the easiest F-test to do is the ‘rule-of-
thumb’ F-test since the results we obtain will not be reversed by obtaining
HAC coefficient-standard-errors. We combine the variables in the two the-
ories into a single regression—this requires that we drop the first elements
of the price-specie-flow variables.

> (def spfvars (bind-columns rexusrow usrgnpbi rowrgnp usrpls
usrcani usrrmp intdif))
SPFVARS
> (def spfvars (remove-first-rows 1 spfvars))
SPFVARS
> (def spfvars (bind-columns spfvars usrdsb))
SPFVARS
> (def prtvars (bind-columns pvar rvar yvar mmvar dsbvar))
PRTVARS

238 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

> (def idepvars (bind-columns spfvars prtvars))
IDEPVARS
> (def regressand "Real Reserve Flow")
REGRESSAND
> (def regressors (list "Constant " "Real Exch Rate" "US Real Income"
"ROW Real Income" "Pub Land Sales" "Canal Inv" "Rail Mileage"
"LT Int Diff" "Net Rep Earn" "Price Var" "LT-Int Rate Var" "Income Var"
"MoneyMult Var" "DSB Var"))
REGRESSORS
> (def combreg (OLS-basic rresflow (bind-columns spfvars prtvars) 1 -1))

LINEAR REGRESSION

Dependent Variable: Real Reserve Flow

Coefficient Std. Error T-stat P-Val

Constant -16.289 38.345 -0.425 0.674
Real Exch Rate 0.177 0.337 0.525 0.604
US Real Income 0.862 0.706 1.220 0.233
ROW Real Income -0.367 0.699 -0.525 0.604
Pub Land Sales 0.000 0.001 0.217 0.830
Canal Inv -0.330 0.958 -0.344 0.733
Rail Mileage -0.001 0.001 -0.893 0.380
LT Int Diff -2.066 3.693 -0.559 0.581
Net Rep Earn 1.846 1.564 1.180 0.249
Price Var -0.074 0.616 -0.120 0.906
LT-Int Rate Var -0.402 0.199 -2.023 0.053
Income Var 0.585 0.289 2.024 0.053
MoneyMult Var -0.616 0.108 -5.690 0.000
DSB Var 0.445 0.075 5.911 0.000

Number of Observations: 40
Degrees of Freedom: 26
R-Squared: 0.8886817654142649
Adjusted R-Squared: 0.8330226481213974
Sum of Squared Errors: 4173.368225149846
LMSC -- Chi-Square: 1.5654447896569428
P-Value: 0.2108697757959489

10.2. NON-NESTED HYPOTHESES TESTS 239

Breusch-Pagan -- Chi-Square: 14.67215609440315
P-Value: 0.32826394183145324

Regression F-Statistic: 15.966508429125682
P-Value: 3.423546890424234E-9

COMBREG

Now we apply our F-restriction function to test the portfolio-based-theory
variables and then the price-specie-flow variables for joint significance.

> (f-restriction spfreg0 combreg) ; portfolio-theory variables
dropped

F-statistic = 26.057238431976923
P-Value = 2.3513613278680623E-9

NIL
> (f-restriction prtreg0 combreg) ; specie-flow-theory variables

dropped
F-statistic = 0.5980760460913643
P-Value = 0.7706497234112054

NIL

Clearly, the portfolio-based-theory variables are important determinants of
the real reserve flow while the specie-flow-theory variables are not, leading
us to choose the portfolio-based theory over the specie-flow one.

10.2.2 J-Tests

Another useful non-nested hypothesis test is the Davidson-MacKinnon J-
test.8 This procedure tests whether the predicted or fitted values from one
theory can explain the residual from the regression based on the alternative
theory—in effect, whether it can explain that other theory’s residual vari-
ance. This contrasts with the F-test, which explains whether the variables
proposed by one theory contribute to the prediction of the mean of the de-
pendent variable in the presence of the variables proposed by the alternative
theory.

The procedure is simply to include the fitted values from each of the two
theories in the proposed OLS regression equation of the other and check
to see whether those fitted values are statistically significant. To facilitate
this test, we saved the fitted values from the above price-specie-flow and

8See R. Davidson and J. G. MacKinnon, “Several Tests for Model Specification in the
Presence of Alternative Hypotheses,” Econometrica, Vol. 49, No. 3 (May), 1981, 789-93.

240 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

portfolio-based regression equations purporting to explain the real reserve
flow. We now insert each theory’s fitted values in the estimating equation
of the other theory.

> (def regressors (list "Constant " "Real Exch Rate" "US Real Income"
"ROW Real Income" "Pub Land Sales" "Canal Inv" "Rail Mileage"
"Net Rep Earn" "LT Int Diff" "PORT-Fitted"))
REGRESSORS
> (def idepvars (bind-columns spfvars fitprt0))
IDEPVARS
> (def spfprtfit (OLS-basic rresflow idepvars 1 -1))

LINEAR REGRESSION

Dependent Variable: Real Reserve Flow

Coefficient Std. Error T-stat P-Val

Constant -5.081 34.240 -0.148 0.883
Real Exch Rate -0.006 0.279 -0.023 0.982
US Real Income 0.345 0.526 0.657 0.516
ROW Real Income -0.043 0.608 -0.071 0.944
Pub Land Sales 0.000 0.001 0.303 0.764
Canal Inv -0.470 0.794 -0.592 0.558
Rail Mileage -0.001 0.001 -0.452 0.654
Net Rep Earn -0.382 3.174 -0.120 0.905
LT Int Diff 1.058 1.096 0.965 0.342
PORT-Fitted 0.985 0.083 11.884 0.000

Number of Observations: 40
Degrees of Freedom: 30
R-Squared: 0.8827655569490073
Adjusted R-Squared: 0.8475952240337095
Sum of Squared Errors: 4395.169410859924
LMSC -- Chi-Square: 1.669274888973247
P-Value: 0.1963556852510796
Breusch-Pagan -- Chi-Square: 11.490678908061561
P-Value: 0.24356772349986533
Regression F-Statistic: 25.099721378100355
P-Value: 1.3172907209479945E-11

SPFPRTFIT

10.2. NON-NESTED HYPOTHESES TESTS 241

> (def regressors (list "Constant" "Price Var" "LT-Int Rate Var"
"Income Var" "MoneyMult Var" "DSB Var" "SPFT-Fitted"))
REGRESSORS
> (def idepvars (bind-columns prtvars fitspf0))
IDEPVARS
> (def prtspffit (OLS-basic rresflow idepvars 1 -1))

LINEAR REGRESSION

Dependent Variable: Real Reserve Flow

Coefficient Std. Error T-stat P-Val

Constant 0.407 2.368 0.172 0.865
Price Var -0.030 0.529 -0.056 0.955
LT-Int Rate Var -0.409 0.175 -2.336 0.026
Income Var 0.720 0.240 3.002 0.005
MoneyMult Var -0.609 0.082 -7.471 0.000
DSB Var 0.389 0.052 7.514 0.000
SPFT-Fitted 0.128 0.147 0.869 0.391

Number of Observations: 40
Degrees of Freedom: 33
R-Squared: 0.8711451333742724
Adjusted R-Squared: 0.8477169758059583
Sum of Squared Errors: 4830.824060702846
LMSC -- Chi-Square: 0.9691940279642736
P-Value: 0.3248812682652966

Breusch-Pagan -- Chi-Square: 12.471635286052374
P-Value: 0.0522372948817168

Regression F-Statistic: 37.18368082654824
P-Value: 2.59015031645049E-13

PRTSPFFIT

The portfolio-based theory fitted values clearly are significant in the price-
specie-flow equation but the specie-flow fitted values are statistically in-
significant in the portfolio-based estimating equation, further confirming
our conclusion in the case of the F-tests.

242 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

10.2.3 Complete Parameter Encompassing Tests

The complete parameter encompassing test is a joint test of whether the
means and conditional variances of one model are consistent with the pre-
dictions of the other.9 The F- and J-tests are thus special cases of the
complete parameter encompassing test.

The procedure, which is not intuitive, involves calculating the following
statistics,

S CPE
1 =

Y′Mx Z (Z ′Mx Z)−1 Z ′Mx Y
s2

(10.4)

S CPE
2 =

S CPE
1

q
(10.5)

where Y is a T × 1 vector representing the dependent variable, with T
being the number of observations, X is the matrix of independent variables,
constant included, of the the theory being used as the base for the test,
and Z is the matrix of independent variables, excluding the constant, of the
other theory. The former theory is referred to as the null-theory for the test.
The dimensions of X and Z are T × k and T × q respectively. Furthermore,

Mx = I−X (X ′X)−1 X ′

and

s2 =
Y′MxY
T − k

where I is a T ×T identity matrix. S CPE
2 is distributed as χ2(q) and S CPE

1 ,
interpreted conservatively, as F (q, T − k).

Within this framework the F-statistic for the previous F-test can be
expressed

SF =
(T − k − q) ĉ′∗ Z ′Mx Z ĉ∗

T q σ2
F

(10.6)

where
ĉ∗ = (Z ′Mx Z)−1Z ′MxY

and
T σ2

F = Y ′MxY − ĉ′∗ Z
′Mx Z ĉ∗.

9See Grayham E. Mizon and Jean-Francois Richard, “The Encompassing Principle and
its Application to Testing Non-Nested Hypotheses,” Econometrica, Vol. 54, No. 3 (May),
1986, 657-678.

10.2. NON-NESTED HYPOTHESES TESTS 243

This F-statistic has q degrees of freedom in the numerator and T − k − q
degrees of freedom in the denominator. After we add a constant term to the
matrix Z, the F-statistic for the J-test is

SJ =
(T − k − 1) û2 γ̂ ′ Z ′Mx Z γ̂

T σ2
J

(10.7)

where
γ̂ = (Z ′ Z)−1Z ′Y

û = (γ̂ ′ Z ′Mx Z γ)−1 γ̂ ′ Z ′MxY

and
T σ2

J = Y ′MxY − û2 γ̂ ′ Z ′Mx Z γ̂.

This F-statistic has q degrees of freedom in the numerator and T −k degrees
of freedom in the denominator.

I have written the function CPE-test to perform the above calculations.
The function takes four arguments—in order, the dependent variable list,
the matrix of independent variables for the null-theory and the matrix of
independent variables for the alternative theory, excluding the constant in
both cases and, finally, a string expression giving an appropriate name for
the null-theory. We now apply this function in the XLispStat workspace
above.

> (CPE-test rresflow spfvars prtvars "Price-Specie-Flow Theory")

COMPLETE PARAMETER ENCOMPASSING TEST OF REGRESSORS

Null theory (null-hypothesis --> no effects of other theory):

===> Price-Specie-Flow Theory

F-test F-statistic = 26.057238431977044
P-Value = 2.3513613278680623E-9

J-test F-statistic = 141.22989969697537
P-Value = 0.0

CPE Chisq-statistic = 25.84279456258403
P-Value = 9.572338076979658E-5

CPE F-statistic = 5.168558912516806
P-Value = 0.0014580336808481809

NIL

244 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

> (CPE-test rresflow prtvars spfvars "Portfolio-Based Theory")

COMPLETE PARAMETER ENCOMPASSING TEST OF REGRESSORS

Null theory (null-hypothesis --> no effects of other theory):

===> Portfolio-Based Theory

F-test F-statistic = 0.59807604609136
P-Value = 0.7706497234112086

J-test F-statistic = 0.7551241265123415
P-Value = 0.6434968516611761

CPE Chisq-statistic = 5.284351276727298
P-Value = 0.7267967720120485

CPE F-statistic = 0.6605439095909122
P-Value = 0.7217671411368487

NIL

The F- and J- statistics are the same as those obtained earlier, keeping in
mind that in the regressions in which the fitted values are included the square
of the t-statistic equals the F-statistic here. The P-values differ because our
OLS-basic function reports two-sided P-values and allowance must also be
made for rounding error. The complete parameter encompassing statistics
and their P-values confirm our earlier conclusion that the portfolio-based
theory is the one supported by the evidence.

10.3. GENERALISED LEAST SQUARES 245

10.3 Generalised Least Squares

As demonstrated by the many regression results above, heteroskedasticity
and autocorrelation in the residuals is a widespread problem. One way of
dealing with it is to calculate HAC coefficient standard errors. Another way
is using generalised least squares instead of standard OLS.

10.3.1 The Nature of GLS

The basic assumption of ordinary least squares analysis is that the residuals
have constant variance and are uncorrelated. This implies that the variance
covariance matrix of the residuals will equal σ2I, where I is a T ×T identity
matrix with T being the number of observations. The estimated coefficients
are given by

b̂ = (X′X)−1

= (X′ (σ2 I)−1 X)−1 X′ (σ2 I)−1 Y (10.8)

and the variance-covariance matrix of the coefficients is equal to

V = σ2 (X′X)−1 = (X′ (σ2 I)−1 X)−1. (10.9)

When the residuals are heteroskedastic, σ2 I is replaced by a matrix Ω which
has unequal diagonal elements with off-diagonal elements equal to zero. And
when the residuals are autocorrelated, at least some of the off-diagonal ele-
ments of Ω will be non-zero. When we have an estimate of this symmetric
matrix, call it Ω̂, the above two estimating equations become

b̂ = (X′ Ω̂−1 X)−1 X′ Ω̂−1 Y (10.10)
V = (X′ Ω̂−1 X)−1. (10.11)

An example in the case of heteroskedasticity alone is a situation where
the σ2

i happen to be proportional to the square of a variable zi, (i = 1....T),
which may or may not actually be an independent variable in the regression.
In this case,

Ω̂ =




σ2z2
1 0 0 · · · · · · 0

0 σ2z2
2 0 · · · · · · 0

0 0 σ2z2
3 · · · · · · 0

· · · · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · 0
0 0 0 0 0 σ2z2

T




246 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

10.3.2 Quasi-Differencing

One of the earliest ways of dealing with serial correlation in regression resid-
uals was to adopt a quasi-differencing approach. Suppose, for example, we
are fitting the regression

yt = β0 + β1 x1t + β2 x2t + β3 x3t + · · · · · ·+ βm xmt + εt (10.12)

and the residuals εt are of the form

εt = ρ εt−1 + µt (10.13)

where µt is normally distributed with a zero mean and constant variance.
Substituting (10.13) into (10.12) and then substituting into the result an
equation obtained by lagging (10.12) one period and moving εt−1 to the left
side, we obtain

yt − ρ yt−1 = β0 + β1 (x1t − ρ x1(t−1)) + β2 (x2t − ρ x2(t−1))
+β3 (x3t − ρ x3(t−1)) + · · · · · ·+ βm (xmt − ρ xm(t−1)) + µt (10.14)

which can be estimated by OLS after all the variables have been quasi-
differenced by subtracting ρ times their lagged values from their current
values.

Let us try this technique out in estimating the Canadian demand func-
tion for money for the period 1973 to the present. We first load the data
file demonca.lsp which contains the necessary variables. The variables are
obvious from their labels once we note that M1SACA and M1BSACA are al-
ternative estimates of the narrowly-defined money stock and CPAPM1CA and
CPAPM3CA are the interest rates on 1-month and 3-month commercial paper.
Our first step after loading the data is to obtain real money stock and real
GDP measures on a common base and then take their logarithms. We use
only the first of the money stock measures noted above and the 1-month
commercial paper rate.

> (load "addfuncs")
; loading addfuncs.lsp
T
> (load "demonca")
; loading demonca.lsp
T
> (variables)
(CPAPM1CA CPAPM3CA CPICA DATE M1BSACA M1SACA RGDPCA)

10.3. GENERALISED LEAST SQUARES 247

> (def rm1ca (log (base (/ m1saca cpica) date 1990.0 4)))
RM1CA
> (def rgdpca (log (base rgdpca date 1990.0 4)))
RGDPCA
> (def regressand "Real M1")
REGRESSAND
> (def regressors (list "Constant" "1-mo Com Pap Rate" "Real GDP"))
REGRESSORS
> (def dmreg1 (OLS-basic rm1ca (bind-columns cpapm1ca rgdpca) 1 -1))

LINEAR REGRESSION

Dependent Variable: Real M1

Coefficient Std. Error T-stat P-Val

Constant 0.248 0.173 1.438 0.153
1-mo Com Pap Rate -0.046 0.003 -15.834 0.000
Real GDP 1.050 0.037 28.478 0.000

Number of Observations: 132
Degrees of Freedom: 129
R-Squared: 0.9162832942178732
Adjusted R-Squared: 0.9149853607948946
Sum of Squared Errors: 1.7447201339790075
LMSC -- Chi-Square: 597.9720054998154
P-Value: 0.0

Breusch-Pagan -- Chi-Square: 1.3729047806842019
P-Value: 0.5033586252100067

Regression F-Statistic: 705.9555428621574
P-Value: 0.0

DMREG1

Before proceeding further one should always deal with the question of whether
the regression results could be spurious. Phillips-Perron tests of the variables
indicate that we can not reject non-stationarity in the case of any of them.
And a Phillips-Perron unit root test of the regression residuals indicates that
we can not reject the null hypothesis that these residuals are non-stationary
at the 10% level. This suggests that we run the more powerful Johansen

248 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

test.
First, we need to use the VAR-lag-length function in order to deter-

mine how many lags to use. Then, having decided upon three lags, we call
the Johansen-coint function.

> (VAR-lag-length (list rm1ca cpapm1ca rgdpca)
(list "Real M1" "Int Rate" "RGDP") 10 date 1973.0 2002.75)

LAG SELECTION INFORMATION

Variables are (Real M1 Int Rate RGDP)

Degrees of Freedom Data Points Less LR-Test
Lag Per Equation All Parameters PVal AIC BIC

10 89 267 -2019.60 -1760.36
9 92 276 0.037 -2026.15 -1792.00
8 95 285 0.032 -2032.65 -1823.59
7 98 294 0.133 -2043.59 -1859.62
6 101 303 0.011 -2047.99 -1889.10
5 104 312 0.000 -2039.79 -1905.99
4 107 321 0.006 -2043.31 -1934.60
3 110 330 0.009 -2048.41 -1964.78
2 113 339 0.000 -2046.32 -1987.78
1 116 348 0.000 -2024.12 -1990.67

The P-Value is for the restriction of removing the previous lag.

When doing Johansen cointegration tests 2 additional degrees
of freedom per equation will be lost, reducing the data
points minus total parameters estimated by 6

NIL

10.3. GENERALISED LEAST SQUARES 249

> (Johansen-coint (list rm1ca cpapm1ca rgdpca)
(list "Real M1" "IntRate" "RGDP") 1 date 1973.0 2002.75 1)

JOHANSEN COINTEGRATION TEST

Variables are (Real M1 IntRate RGDP)

Number of Lags = 3

Results when deterministic trends are included:

Coint
Vectors Eigen-

Under Null Values L-max Trace

0.000 0.159 20.791 34.730
1.000 0.110 13.921 13.939
2.000 0.000 0.018 0.018

Eigenvectors together with the associated variables

Real M1 -1.000 -1.000
IntRate -0.117 -0.044
RGDP 0.215 1.504

Exclusion tests of variables in the cointegrating relationships

Real M1 0.153 0.001
IntRate 0.023 0.000
RGDP 0.805 0.000

Likelihood Ratio Tests of null hypothesis of no deterministic trends
but constants in the cointegrating vectors against the alternative
of no restrictions on deterministic trends

Coint Chisq
Vectors P-Values

1.000 0.007
2.000 0.004

250 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

Results when deterministic trends are not included and con-
stants are present in the cointegrating relationships:

Coint
Vectors Eigen-
Under Null Values L-max Trace

0.000 0.210 28.350 52.266
1.000 0.123 15.784 23.915
2.000 0.066 8.131 8.131

Eigenvectors together with the associated variables

Real M1 -1.000 -1.000
constant 10.984 0.160
IntRate -0.180 -0.066
RGDP -0.857 1.111

Exclusion tests of variables in the cointegrating relationships

constant 0.001 0.595
Real M1 0.449 0.007
IntRate 0.062 0.006
RGDP 0.582 0.018

Likelihood Ratio Tests of null hypothesis of no deterministic
trends and no constants in the cointegrating relationships
versus the alternative of no deterministic trends with
constants in the cointegrating relationships

Coint Chisq
Vectors P-Values

1.000 0.000
2.000 0.000

10.3. GENERALISED LEAST SQUARES 251

Results when deterministic trends are not included and no
constant is present in the cointegrating relationship:

Coint
Vectors Eigen-

Under Null Values L-max Trace

0.000 0.129 16.608 32.227
1.000 0.121 15.502 15.619
2.000 0.001 0.117 0.117

Eigenvectors together with the associated variables

Real M1 -1.000 -1.000
IntRate -0.060 -0.065
RGDP 0.993 1.166

Exclusion tests of variables in the cointegrating relationships

Real M1 0.788 0.000
IntRate 0.802 0.000
RGDP 0.817 0.000

NIL

Since we can clearly reject the null-hypotheses that involve restrictions on
the trend, the first Trace and L-Max statistics are the ones to focus on. The
Trace statistic of 34.73 and the L-Max statistic of 20.791 indicate that the
null-hypothesis of no cointegrating vectors can be rejected at the 5% level—
the corresponding critical values, obtained from the top panel of the relevant
table in the Statistical Tables are 29.509 and 20.778. The 10% critical values
for the null-hypothesis of one cointegrating vector versus the alternative
of two are 13.338 and 12.099 while the corresponding Trace and L-max
statistics are 13.939 and 13.921 suggesting rejection, by a slight margin, of
the hypothesis that there is a second cointegrating vector.

These results are very interesting. The eigenvector associated with the
second largest eigenvalue is very comparable to the regression results while
the eigenvector associated with the first, and clearly statistically signifi-
cant, eigenvector has the right signs but the magnitudes are further from
the regression coefficients. And the the null-hypotheses that the individual

252 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

variables are not in the respective eigenvectors can not be rejected in the
case of the largest eigenvalue but can be clearly rejected in the case of the
smaller one—that is, our regression coefficients correspond more closely to
the second, marginally insignificant, eigenvector which is the only one in
which the variables are significantly present!

As will be subsequently argued, there is no question that our regression
is a cointegrating relationship—the above result demonstrates that we must
use judgement in interpreting cointegration tests! We proceed with the
quasi-differencing analysis.

> (def dmres1 (send dmreg1 :residuals))
DMRES1
> (def lagres (remove-last-element dmres1))
LAGRES
> (def curres (remove-first-element dmres1))
CURRES
> (def regressand "Regression Residual")
REGRESSAND
> (def regressors (list "Constant" "Reg Resid-L1"))
REGRESSORS
> (def rhoreg (OLS-basic curres (bind-columns lagres) 1 -1))

LINEAR REGRESSION

Dependent Variable: Regression Residual

Coefficient Std. Error T-stat P-Val

Constant -0.001 0.004 -0.235 0.815
Reg Resid-L1 0.895 0.037 24.289 0.000

Number of Observations: 131
Degrees of Freedom: 129
R-Squared: 0.8205676617998233
Adjusted R-Squared: 0.8191767134416824
Sum of Squared Errors: 0.30356088069963255
LMSC -- Chi-Square: 1.20725779453787
P-Value: 0.2718758894595398

10.3. GENERALISED LEAST SQUARES 253

Breusch-Pagan -- Chi-Square: 0.32955957761872334
P-Value: 0.565918539873963

Regression F-Statistic: 589.9339518949264
P-Value: 0.0

RHOREG
> (def rho (select (send rhoreg :coef-estimates) 1))
> rho
0.8951609929007297
RHO
> (def lagrm1 (remove-last-element rm1ca))
LAGRM1
> (def rm1 (remove-first-element rm1ca))
RM1
> (def drm1 (- rm1 (* rho lagrm1)))
DRM1
> (def lagrgdp (remove-last-element rgdpca))
LAGRGDP
> (def rgdp (remove-first-element rgdpca))
RGDP
> (def drgdp (- rgdp (* rho lagrgdp)))
DRGDP
> (def lagintr (remove-last-element cpapm1ca))
LAGINTR
> (def intr (remove-first-element cpapm1ca))
INTR
> (def dintr (- intr (* rho lagintr)))
DINTR
> (def regressand "Quasi-Difference of M1")
REGRESSAND
> (def regressors (list "Constant" "Quasi-Diff Intr" "Quasi-Diff RGDP"))
REGRESSORS

254 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

> (def GLSreg (OLS-basic drm1 (bind-columns dintr drgdp) 1 -1))

LINEAR REGRESSION

Dependent Variable: Quasi-Difference of M1

Coefficient Std. Error T-stat P-Val

Constant -0.153 0.044 -3.496 0.001
Quasi-Diff Intr -0.015 0.002 -6.588 0.000
Quasi-Diff RGDP 1.372 0.092 14.965 0.000

Number of Observations: 131
Degrees of Freedom: 128
R-Squared: 0.6856741695333268
Adjusted R-Squared: 0.6807628284322851
Sum of Squared Errors: 0.1204414962061645
LMSC -- Chi-Square: 1.330055538584672
P-Value: 0.24879533765399853
Breusch-Pagan -- Chi-Square: 6.276881534139337
P-Value: 0.04335033850785619
Regression F-Statistic: 139.61037432075022
P-Value: 0.0

QDREG

The coefficients of this regression have the expected signs and are highly
statistically significant. And there is no longer first-order serial correlation
in the residuals. This implies that a non-spurious relationship between the
real money stock, interest rates and real income along lines suggested by
economic theory surely exists—it is difficult to imagine that residuals con-
taining no first-order autocorrelation could be non-stationary. As a matter
of interest, however, we do a Phillips-Perron test on these regression resid-
uals.

10.3. GENERALISED LEAST SQUARES 255

> (def qdres (send qdreg :residuals))
QDRES
> (ppunit qdres "QD-residuals" 1)

PHILLIPS-PERRON TEST --- QD-residuals
Lags Truncated at 1

Least Squares Estimates:

Constant -7.451810E-5 (2.682737E-3)
Trend 4.510634E-5 (7.159764E-5)
Lagged Y 9.740360E-2 (8.827513E-2)

R Squared: 1.319918E-2
Sigma hat: 3.058516E-2
Number of cases: 130
Degrees of freedom: 127

Standard t-ratios:

Constant -0.027776893933704135
Trend 0.6299976196924618
Lagged Y = 0 1.1034092509913784
Lagged Y = 1 -10.224809280151813

Least Squares Estimates:

Constant -5.189249E-5 (2.676170E-3)
Lagged Y 0.100558 (8.792519E-2)

R Squared: 1.011526E-2
Sigma hat: 3.051302E-2
Number of cases: 130
Degrees of freedom: 128

Standard t-ratios:

Constant -0.019390583804669008
Lagged Y = 0 1.143671243141247
Lagged Y = 1 -10.229633979287446

256 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

Least Squares Estimates:

Lagged Y 0.100559 (8.758383E-2)

R Squared: 1.011235E-2
Sigma hat: 3.039457E-2
Number of cases: 130
Degrees of freedom: 129

Standard t-ratios:

Lagged Y = 0 1.1481433477424405
Lagged Y = 1 -10.269488895684393

PP t-ratio for Coefficient of Lagged Y = 1:
-10.192632020566615

PP t-ratio for Constant = 0:
-0.02834647189241949

PP t-ratio for Trend Coefficient = 0:
0.668096865378308

PP Statistic for Coefficients of Trend = 0 and Lagged Y = 1:
51.9939402459723

PP t-ratio for Coefficient of Lagged Y = 1 in regression without trend:
-10.202391305121873

PP t-ratio for Coefficient of Lagged Y = 1 in regression with
neither constant nor trend:

-10.247814227010167

NIL

10.3. GENERALISED LEAST SQUARES 257

> (ppunit qdres "QD-residuals" 5)

PHILLIPS-PERRON TEST --- QD-residuals
Lags Truncated at 5

Least Squares Estimates:

Constant -7.451810E-5 (2.682737E-3)
Trend 4.510634E-5 (7.159764E-5)
Lagged Y 9.740360E-2 (8.827513E-2)

R Squared: 1.319918E-2
Sigma hat: 3.058516E-2
Number of cases: 130
Degrees of freedom: 127

Standard t-ratios:

Constant -0.027776893933704135
Trend 0.6299976196924618
Lagged Y = 0 1.1034092509913784
Lagged Y = 1 -10.224809280151813

Least Squares Estimates:

Constant -5.189249E-5 (2.676170E-3)
Lagged Y 0.100558 (8.792519E-2)

R Squared: 1.011526E-2
Sigma hat: 3.051302E-2
Number of cases: 130
Degrees of freedom: 128

Standard t-ratios:

Constant -0.019390583804669008
Lagged Y = 0 1.143671243141247
Lagged Y = 1 -10.229633979287446

258 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

Least Squares Estimates:

Lagged Y 0.100559 (8.758383E-2)

R Squared: 1.011235E-2
Sigma hat: 3.039457E-2
Number of cases: 130
Degrees of freedom: 129

Standard t-ratios:

Lagged Y = 0 1.1481433477424405
Lagged Y = 1 -10.269488895684393

PP t-ratio for Coefficient of Lagged Y = 1:
-10.975535652758587

PP t-ratio for Constant = 0:
-0.023475993597467184

PP t-ratio for Trend Coefficient = 0:
0.28944099322948186

PP Statistic for Coefficients of Trend = 0 and Lagged Y = 1:
60.39309160511617

PP t-ratio for Coefficient of Lagged Y = 1 in regression without trend:
-10.991135344932863

PP t-ratio for Coefficient of Lagged Y = 1 in regression with
neither constant nor trend:

-11.024688852456903

NIL

As can easily be seen by comparing these results with the critical values in
the appropriate table in our Statistical Tables, these residuals are clearly
stationary.

10.3. GENERALISED LEAST SQUARES 259

The above procedure is, in fact, generalised least squares—it involves
specification of the nature of the regression residuals and running a regres-
sion based on that specification. Accordingly, essentially the same results
can be obtained by defining the variance-covariance matrix of the residuals
as

Ω̂ = σ2




1 ρ ρ 2 ρ 3 · · · ρT−1

ρ 1 ρ · · · · · · ρT−2

ρ 2 ρ 1 · · · · · · ρT−3

ρ 3 · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
ρT−1 ρT−2 ρT−3 · · · · · · 1




where we can replace σ2 with σ2
µ/(1− ρ2) with σ2

µ being the mean-squared-
error of µt, the quasi-differenced-regression residual.10 We can reproduce
the quasi-difference results to a close approximation using the calculations
in equations (10.10) and (10.11) and extensions thereof, with the mean-
squared error from QDREG being our estimate of σ2

µ.
Using ρ = 0.895, the value obtained from RHOREG above, we can use

the GLS function that I have written to obtain the result below. The
GLS function takes three arguments—in order, the dependent variable, the
matrix of independent variables including the constant if one is desired and
the matrix Ω̂ calculated using the above values assigned to ρ and σ2

µ. Our
first task is to construct an estimate of Ω̂. We continue to work in the
previous XLispStat workspace.

> (def reg1df (send dmreg1 :df))
REG1DF
> (def reg1mse (/ (sum (^ dmres1 2)) reg1df))
REG1MSE
> (def bigT (length rm1ca))
BIGT
> (def OMEG (identity-matrix bigT))
OMEG
> (dotimes (i bigT)
(dotimes (j (- bigT i))
(setf (aref OMEG i (+ j i))(^ rho j))
) ; end dotimes j
) ; end dotimes i
NIL

10This result can be obtained by simply taking the variance of equation (10.13), keeping
in mind that the current and lagged residuals must have the same variance.

260 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

> (dotimes (i bigT)
(setf (aref OMEG i i) 0.5)
) ; end dotimes i
NIL
> (def OMEGA (* (/ Qdifmse (- 1 (^ rho 2)))(+ (transpose OMEG) OMEG)))
OMEGA
> (def regressand "Real M1")
REGRESSAND
> (def regressors (list "Constant" "1-mo Com Pap Rate" "Real GDP"))
REGRESSORS
> (def const (repeat 1 bigT))
CONST
> (def Xmat (bind-columns const cpapm1ca rgdpca))
XMAT
> (GLS rm1ca Xmat omega)

GENERALISED LEAST SQUARES REGRESSION

Dependent Variable: Real M1

Coefficient Std. Error T-stat P-Val

Constant -0.228 0.317 -0.720 0.472
1-mo Com Pap Rate -0.015 0.002 -6.682 0.000
Real GDP 1.107 0.071 15.654 0.000

Number of Observations: 132
Degrees of Freedom: 129
R-Squared: 0.8366306285697146

NIL

The coefficient of the interest rate is the same as in the quasi-differenced
regression while the coefficient of real income is about 20 percent smaller.
Both are highly significant.

The usual procedure at this point is to optimise the result by trying
values of RHO ranging between 0 and 1 and picking the value that minimises
the sum of squared errors of the quasi-differenced regression—our use of the
above GLS regression is purely illustrative. The first step is to use the RHO

10.3. GENERALISED LEAST SQUARES 261

values [.1 .2 .3 .4 .5 .6 .7 .8 .9] and then, having selected the value that
gives the minimum sum of squared error, iterate more finely in differences
of .01 and .001 with in a range of .2 around that maximum to zero-in on
a more exact maximum value of RHO.11 In our case, it turns out that the
minimum sum of squared errors occurs at .9 in the first round and then
diminishes as the selected RHO value is increased above that level. The
maximum occurs when RHO = 1 that is when we run first-differences instead
of quasi-differences. This implies that the error term in our initial (DMREG1)
regression has a unit root, a result that conforms to our cointegration test on
the residuals of that regression and is not grossly violated by our Johansen
cointegration test. To ensure that this result is not due to programming
errors, I ran the test in the commercial program SHAZAM using exactly
the same data. Using maximum likelihood estimation, SHAZAM settled
upon a value of RHO of .99122 and using a Cochrane-Orcutt approach the
optimum value was .99653. We obtain very similar values for the coefficients
to those obtained by SHAZAM for both of these RHO values. Our result for
RHO = .99122 is

> (GLS rm1ca Xmat omega)

GENERALISED LEAST SQUARES REGRESSION

Dependent Variable: Real M1

Coefficient Std. Error T-stat P-Val

Constant 0.817 0.811 1.008 0.314
1-mo Com Pap Rate -0.011 0.002 -5.050 0.000
Real GDP 0.893 0.180 4.961 0.000

Number of Observations: 132
Degrees of Freedom: 129
R-Squared: 0.6204408078922425

NIL

11This approach goes back to the work of Clifford Hildreth and John Y. Lu, Demand
Relations with Autocorrelated Disturbances, Agriculture Experiment Station Technical
Bulletin 276, Michigan State University, East-Lansing, Michigan, 1960. An alternative
approach, due to D. Cochrane and Guy H. Orcutt, “Application of Least-Squares Regres-
sion to Relationships Containing Auto-correlated Error Terms,” Journal of the American
Statistical Association, Vol. 44, No. 1 (1949), 32-61, involves interaction around the ini-
tial value of RHO obtained in our regression RHOREG above. Of these two approaches, the
Hildreth-Lu approach is probably best because there is less chance of ending up at a local
rather than global maximum.

262 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

The corresponding coefficients obtained by SHAZAM were 0.83252 for the
constant, -0.010737 for the interest rate and 0.88998 for real GDP. SHAZAM
cannot settle on a value of RHO as large as 1 because the variance of the
residual of the counterpart to our DMREG1 will become infinite—that is, the
residual becomes a random walk.

One has to conclude that, apart from the fact that the signs of the co-
efficients are correct, the above results are essentially nonsense! It makes
no sense for the residual of the demand function for money to be a random
walk, since that would imply that holding the interest rate, real income
and the nominal quantity of money constant, the price level can eventu-
ally approach zero or infinity! The fact that the signs of the interest rate
and income variables are the expected ones and those variables are signifi-
cant in quasi-differenced and first-differenced regressions suggests that there
must be a stable demand function for money having the conventionally ex-
pected characteristics. Thus, while the above results illustrate how one can
calculate the statistics we obtain, it makes no sense to use this analytical
technique for analysing the demand for money.

Indeed, as Jack Carr showed many years ago, the practice of using these
techniques to rid the residuals of a model of serial correlation focuses on the
wrong issues.12 The residuals are serially correlated because autocorrelated
variables are left out of the regression or because the form of the regression
function is incorrect. The focus should therefore be on finding the correct
explanatory variables or adopting a different, perhaps non-linear, regression
function. It is not clear that our estimates of the regression coefficients will
be more accurate when we quasi-difference for first-order serial correlation
(or similarly handle higher-order serial correlation) in the regression resid-
uals than if we go with the original coefficient estimates—in the case of
left-out variables, it will depend on the direction of the correlation of these
variables with the regression residual, with the included variables and with
the dependent variable. The best bet when confronted by serial correlation
in regression residuals arising from an unknown source, or one that cannot
be dealt with, is probably to adopt HAC coefficient-standard-errors and live
with the observed coefficients as rough estimates.

Indeed, there is a literature that attempts to provide an economic expla-
nation the observed serial correlation in demand-function-for-money resid-
uals. The problem is that a change in the nominal stock of money will
significantly affect prices, and hence the real money stock, only after some

12See Jack Carr, “A Suggestion for the Treatment of Serial Correlation: A Case in
Point,” Canadian Journal of Economics, Vol. 2, May 1972, 301-306.

10.3. GENERALISED LEAST SQUARES 263

time has elapsed. Serial correlation in the residuals will therefore be a con-
sequence of this adjustment process. The way to deal with this serial cor-
relation is therefore to incorporate into the regression equation a model of
the adjustment process.13

10.3.3 Seemingly Unrelated Regression Techniques

One use of generalised least squares for which there is often substantial sup-
port from economic theory involves systems estimation that uses seemingly
unrelated regression techniques. Suppose our model consists of two equa-
tions the can be represented in a form suitable for OLS estimation. Because
they are part of the same model the residuals of these two estimating equa-
tions may be correlated—left out variables can affect both equations. If this
is the case, we can take advantage of this fact to increase the efficiency of
our estimates.

Suppose that the two equations are

y1 = X1 β̂1 + ε1 (10.15)
y2 = X2 β̂2 + ε2 (10.16)

where y1 and y2 are T × 1 column vectors, T being the number of obser-
vations, X1 and X1 are m1 × T and m2 × T matrices, with m1 and m2

being the number of independent variables including the constant in the
two equations, β̂1 and β̂1 are the m1 × 1 and m2 × 1 vectors of coefficients
and ε1 and ε2 are the T × 1 vectors of residuals. The matrices X1 and X2

may contain many of the same variables, but cannot be identical.14 When
we stack these equations as follows

[
y1

y2

]
=

[
X1 0
0 X2

] [
β̂1

β̂2

]
+

[
ε1

ε2

]
(10.17)

and estimate them by OLS as a system, it may be inappropriate to assume,
even when homoskedasticity holds, that the variance-covariance matrix of
the true vector of errors is of the form[

σ 2
1 I 0
0 σ 2

2 I

]

13For analysis along these lines, see Jack Carr and Michael R. Darby, “The Role of
Money Supply Shocks in the Short-run Demand for Money,” Journal of Monetary Eco-
nomics, Vol. 8, No. 2 (September), 1981, 183-199.

14If the independent variables are the same in the two equations, nothing will be gained
by using the techniques applied here—the equations can just as well be estimated sepa-
rately by OLS.

264 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

where σ 2
1 and σ 2

2 are residual variances of the two equations,

ε ′
1 ε1

T −m1
and

ε ′
2 ε2

T −m2
.

It is probably the case that σ12 is non-zero.
Accordingly, it is appropriate to obtain estimates of σ 2

1 , σ 2
2 and σ12 in

the usual fashion after estimating the two equations separately using OLS,
and construct the matrix

Ω̂ =

[
s 2
1 I s12 I

s12 I s 2
2 I

]

and estimate the two-equation system by GLS, calculating (10.10) and (10.11)
and related statistics with our GLS function.

It is useful to apply these techniques to the issues outlined in the first
section of this chapter—the problem of whether the classical price-specie-
flow theory or a modern portfolio approach best describes the operation of
the commodity standard in the U.S. during the years 1820 to 1860. It was
noted there that the price-specie-flow mechanism assumes that the balance
of payments surplus is additively determined by the balance of trade and
the net capital flow, where the latter treated as positively related to the
ratio of the U.S. to the rest-of-world interest rate. It should therefore be
the case that the effects of changes in the real exchange rate and U.S. and
foreign incomes on the balance of payments should be identical to the effects
of these variables on the balance of payments.

First we load the data and run the two equations separately using OLS.
Following our earlier results, we estimate the balance of trade as a function
of the real exchange rate and U.S. and rest-of-world incomes and the balance
of payments as a function of these same variables plus several proxies for
the long-term net capital inflow into the U.S., the real debt service balance
and the ratio of U.S. to foreign interest rates.

> (load "addfuncs.lsp")
; loading addfuncs.lsp
T
> (load "antbdata.lsp")
; loading antbdata.lsp
T

10.3. GENERALISED LEAST SQUARES 265

> (variables)
(INTDIF NPRUSROW NRESFLOW REXUSROW ROWPL ROWRGNP RRESFLOW UKCONSOL
UKOMDR USCPIBDS USIPDB USMM USNCIDSB USNGNPB USNMONT USRCANI USRDSB
USRGNPB USRGNPBI USRMON USRNCIXS USROWRN USRPLS USRRMP USRSPRES
USSERV USSINT USSPECXP USSPTC USTBN USTBNGS USTBRGS USTOTN USUKEXRB
USUKEXRP USUKMPO YEAR)
> (def consterm (repeat 1 41))
CONSTERM
> (def idepvarbot (bind-columns consterm rexusrow usrgnpbi rowrgnp))
IDEPVARBOT
> (def idepvarbop (bind-columns consterm rexusrow usrgnpbi rowrgnp
usrpls usrcani usrrmp usrdsb intdif))
IDEPVARBOP
> (def ustbrgs (remove-first-element ustbrgs))
USTBRGS
> (def rresflow (remove-first-element rresflow))
RRESFLOW
> (def regressand "Real Trade Balance")
REGRESSAND
> (def regressors (list "Constant " "Real Exch Rate" "US Real Income"
"ROW Real Income"))
REGRESSORS
> (def botreg0 (OLS-basic ustbrgs idepvarbot 0 -1))

LINEAR REGRESSION

Dependent Variable: Real Trade Balance

Coefficient Std. Error T-stat P-Val

Constant 20.682 38.882 0.532 0.598
Real Exch Rate -1.267 0.261 -4.858 0.000
US Real Income -2.099 0.315 -6.657 0.000
ROW Real Income 2.976 0.613 4.853 0.000

Number of Observations: 40
Degrees of Freedom: 36
R-Squared: 0.6239916887697452

266 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

Adjusted R-Squared: 0.5926576628338907
Sum of Squared Errors: 10455.051622163453
LMSC -- Chi-Square: 0.008244934976584888
P-Value: 0.9276502193756687
Breusch-Pagan -- Chi-Square: 4.728292600020851
P-Value: 0.31632912615677045
Regression F-Statistic: 19.914188175089578
P-Value: 8.848164156916027E-8

BOTREG0
> (def regressand "Real Reserve Flow")
REGRESSAND
> (def regressors (list "Constant " "Real Exch Rate" "US Real Income"
"ROW Real Income" "Pub Land Sales" "Canal Inv" "Rail Mileage"
"Net Rep Earn" "ST Int Diff"))
REGRESSORS
> (def bopreg0 (OLS-basic rresflow idepvarbop 0 -1))

LINEAR REGRESSION

Dependent Variable: Real Reserve Flow

Coefficient Std. Error T-stat P-Val

Constant -26.887 80.357 -0.335 0.740
Real Exch Rate 1.287 0.603 2.136 0.041
US Real Income 3.346 1.083 3.088 0.004
ROW Real Income -3.577 1.245 -2.872 0.007
Pub Land Sales -0.002 0.001 -1.608 0.118
Canal Inv 0.020 1.862 0.011 0.992
Rail Mileage -0.004 0.002 -1.738 0.092
Net Rep Earn 0.722 2.575 0.281 0.781
ST Int Diff 6.059 7.351 0.824 0.416

Number of Observations: 40
Degrees of Freedom: 31
R-Squared: 0.3308652691782614
Adjusted R-Squared: 0.15818533864361928

10.3. GENERALISED LEAST SQUARES 267

Sum of Squared Errors: 25086.14724575851
LMSC -- Chi-Square: 6.194712545745064
P-Value: 0.012813253407204406

Breusch-Pagan -- Chi-Square: 18.43904085444853
P-Value: 0.03040834955072791

Regression F-Statistic: 1.9160609351292557
P-Value: 0.09308907718049675

BOPREG0

We use the OLS-basic function here because we are not interested in pro-
ducing HAC coefficient standard errors. Next, we calculate the variances
and covariances of the residuals of the two equations and use these to con-
struct our Ω̂, which we will call SUROMEGA.

> (def resbot0 (send botreg0 :residuals))
RESBOT0
> (def resbop0 (send bopreg0 :residuals))
RESBOP0
> (def covbtp (covariance resbot0 resbop0))
COVBTP
> (def varbt (variance resbot0))
VARBT
> (def varbp (variance resbop0))
VARBP
> (def upleft (* varbt (identity-matrix 40)))
UPLEFT
> (def lorite (* varbp (identity-matrix 40)))
LORITE
> (def offdiag (* covbtp (identity-matrix 40)))
OFFDIAG
> (def topSUROMEGA (bind-columns upleft offdiag))
TOPSUROMEGA
> (def botSUROMEGA (bind-columns offdiag lorite))
BOTSUROMEGA
> (def SUROMEGA (bind-rows topSUROMEGA botSUROMEGA))
SUROMEGA

Then we calculate the stacked y-vector and X-matrix and apply the GLS
function.

268 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

> (def zeromatt (make-array ’(40 9) :initial-element 0))
ZEROMATT
> (def topmat (bind-columns idepvarbot zeromatt))
TOPMAT
> (def zeromatp (make-array ’(40 4) :initial-element 0))
ZEROMATP
> (def botmat (bind-columns zeromatp idepvarbop))
BOTMAT
> (def SURXmat (bind-rows topmat botmat))
SURXMAT
> (def SURYvar (append ustbrgs rresflow))
SURYVAR
> (def regressand "SUR: Real Trade Balance (Top) // Real Net Capital
Inflow")
REGRESSAND
> (def regressors (list "Constant" "Real Exch Rate" "US Real Income"
"ROW Real Income" "Constant" "Real Exch Rate" "US Real Income"
"ROW Real Income" "Pub Land Sales" "Canal Inv" "Rail Mileage" "Net Rep Earn"
"ST Int Diff"))
REGRESSORS
> (GLS SURYvar SURXmat SUROMEGA)

GENERALISED LEAST SQUARES REGRESSION

Dependent Variable: SUR: Real Trade Balance (Top) // Real Net Capital
Inflow

Coefficient Std. Error T-stat P-Val

Constant 20.682 37.356 0.554 0.580
Real Exch Rate -1.267 0.251 -5.057 0.000
US Real Income -2.099 0.303 -6.929 0.000
ROW Real Income 2.976 0.589 5.051 0.000
Constant -23.786 71.569 -0.332 0.740
Real Exch Rate 1.256 0.536 2.341 0.019
US Real Income 3.297 0.964 3.421 0.001
ROW Real Income -3.573 1.109 -3.221 0.001
Pub Land Sales -0.002 0.001 -1.718 0.086
Canal Inv 0.093 1.656 0.056 0.955
Rail Mileage -0.004 0.002 -1.918 0.055

10.3. GENERALISED LEAST SQUARES 269

Net Rep Earn 0.641 2.289 0.280 0.779
ST Int Diff 6.531 6.534 1.000 0.318

Number of Observations: 80
Degrees of Freedom: 67
R-Squared: 0.48671281791871945

NIL

Finally, we do a joint-hypothesis test of the null-hypothesis that the coeffi-
cients of the real exchange rate and real income variables are the same in
determining the balance of payments surplus as in determining the balance
of trade surplus. This requires that we calculate

F = (Rβ̂ − r)′[RΣR′]−1(Rβ̂ − r)/q

where Σ is the variance-covariance matrix of the coefficients in the above
GLS regression and q is the number of restrictions, 3 in this case. To do
this I have written a function GLS-joint-hypothesis-test which takes q
as its single argument and uses values of R and r that we must create in
the workspace and the variance-covariance-matrix of the coefficients GLSVCV
left in the workspace by the previously run GLS function.

> (def bigr1 (bind-rows (list 0 1 0 0 0 -1 0 0 0 0 0 0 0)))
BIGR1
> (def bigr2 (bind-rows (list 0 0 1 0 0 0 -1 0 0 0 0 0 0)))
BIGR2
> (def bigr3 (bind-rows (list 0 0 0 1 0 0 0 -1 0 0 0 0 0)))
BIGR3
> (def bigr (bind-rows bigr1 bigr2 bigr3))
BIGR
> (def litr (bind-columns 0 0 0))
LITR

270 CHAPTER 10. FURTHER TOPICS IN REGRESSION ANALYSIS

> (GLS-joint-hypothesis-test 3)

GLS Joint Hypothesis Significance Test

R =
0.000 1.000 0.000 0.000 0.000 -1.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000

0.000 0.000 1.000 0.000 0.000 0.000 -1.000 0.000 0.000
0.000 0.000 0.000 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000 -1.000 0.000
0.000 0.000 0.000 0.000

r =
0.000 0.000 0.000

F-Statistic = 11.810200066243135
P-Value = 2.65968840329478E-6

Chisq-Statistic = 35.43060019872941
P-Value = 9.8798098480124E-8

NIL

We can easily reject the null hypothesis that the respective coefficients are
the same in the balance of trade and specie-flow balance of payments equa-
tions. This is not surprising because these coefficients all have opposite signs
in the respective equations.

Chapter 11

Vector Autoregression
Analysis

We now turn to vector autoregression analysis. For background, readers
should work through pages 291-353 of the Enders textbook, and pages 257-
372 of the Hamilton book. They should also read sections of a book by
Helmut Lütkepohl.1 A vector autoregression (VAR) is a set of regressions of
each series in a vector of time series on lagged values both of itself and the
other series in that vector. Consider the following economic model with two
variables, y1 and y2, each of which depends on itself lagged, on the current
and lagged values of the other variable and on a iid error term:

y1(t) = v10 + v12 y2(t) + a11 y1(t−1) + a12 y2(t−2) + e1(t) (11.1)

y2(t) = v20 + v21 y1(t) + a21 y1(t−1) + a22 y2(t−2) + e2(t) (11.2)

This system can be written in matrix notation as
[

y1(t)

y2(t)

]
=

[
v10

v20

]
+

[
0 v12

v21 0

] [
y1(t)

y2(t)

]

+

[
a11 a12

a21 a22

] [
y1(t−1)

y2(t−1)

]
+

[
e1(t)

e2(t)

]
(11.3)

or, in general matrix notation with m variables and p lags we would write

1See Helmut Lütkepohl Introduction to Multiple Time Series Analysis, Springer-Verlag,
1991, pages 9-27, 43-58 and 97-117.

271

272 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

yt = v + A0 yt + A1 yt−1 + A2 yt−2 + A3 yt−3 + · · ·
+ · · ·+ Ap yt−p + et (11.4)

where yt, v and et are m × 1 column vectors and A0, A1, A2, · · · Ap are
m×m matrices of coefficients. The vector et is a m-element vector of white
noise residuals that satisfies E{etet

′} = D, where D is a diagonal matrix. An
appropriate scaling of the elements of y would make D an identity matrix.

Equations (11.1) and (11.2), which are called a structural VAR or a
primitive system, can be solved simultaneously to yield the reduced form or
standard form of the VAR:

y1(t) = b10 + b11 y1(t−1) + b12 y2(t−2) + u1(t) (11.5)
y2(t) = b20 + b21 y1(t−1) + b22 y2(t−2) + u2(t) (11.6)

or
[

y1(t)

y2(t)

]
=

[
b10

b20

]
+

[
b11 b12

b21 b22

] [
y1(t−1)

y2(t−1)

]
+

[
u1(t)

u2(t)

]
(11.7)

where

b10 =
v10 + v12 v20

1− v12 v21

b11 =
v12 a11 + a21

1− v12 v21

b12 =
a12 + v12 a22

1− v12 v21

b20 =
v20 + v21 v10

1− v12 v21

b21 =
a21 + v21 a11

1− v12 v21

b22 =
v21 a12 + a22

1− v12 v21

and

u1(t) =
1

1− v12 v21

[
e1(t) + v12 e2(t)

]

u2(t) =
1

1− v12 v21

[
v21 e1(t) + e2(t)

]
.

273

In the general m variable case with p lags we have

(I−A0)yt = v + A1 yt−1 + A2 yt−2 + A3 yt−3 + · · ·
· · ·+ AP yt−p + et (11.8)

which reduces to

yt = (I−A0)−1v + (I−A0)−1A1 yt−1 + (I−A0)−1A2 yt−2

+(I−A0)−1A3 yt−3 + · · ·+ (I−A0)−1AP yt−p

+(I−A0)−1et. (11.9)

Letting b = (I − A0)−1v, B1 = (I − A0)−1A1, B2 = (I − A0)−1A2, · · ·
etc., and ut = (I−A0)−1 et we can write the VAR in standard form in the
general case as

yt = b + B1 yt−1 + B2 yt−2 + B3 yt−3 + · · ·
· · ·+ BP yt−p + ut. (11.10)

All this assumes, of course, that the matrix (I−A0) has an inverse. Given
that E{etet

′} = D, the variance-covariance matrix of the vector of residuals
ut equals

Ω = E{utut
′}

= E{[(I−A0)−1et][(I−A0)−1et]′}
= E{[(I−A0)−1]etet

′[(I−A0)−1]′}
= [(I−A0)−1]E{etet

′}[(I−A0)−1]′

= [(I−A0)−1]D [(I−A0)−1] ′.

The equations in (11.10) can be estimated by ordinary least squares—
because the independent variables in all equations are the same, there is no
efficiency gain by estimating these equations as a system using the seemingly
unrelated regression technique.

274 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

11.1 Standard-Form Estimation

The first problem in estimation is to decide what number of lags to use.
Our VAR-lag-length function, which was used previously in the chapter
on cointegration analysis, is designed to help us deal with this problem. It
will be recalled that the function takes six arguments—in order, a list of
variables that will enter the VAR, a list of strings giving the names of these
variables, the maximum lag length to be tested, the datelist corresponding
to the variables to be in the VAR, the starting date and, finally, the ending
date of the VAR we plan to run. Of course, the specified maximum lag must
be consistent with the starting date in relation to the beginning date of the
datelist.

For illustration we will do a vector autoregression analysis of interest
rate, price level and income determination in the United States for the period
1965 through 2005. We focus solely on conditions in the United States
because that is one of the few economies that one might treat, at considerable
risk, as if it were a closed economy. This is probably defensible because the
U.S. authorities pay little attention to the effects of their policies on the rest
of the world and the country is large enough that changes in the domestic
money supply and output can have a significant effect on world levels of
those variables.2 The data are contained in the file causdat.lsp, which we
first load into the workspace along with addfuncs.lsp.

> (load "addfuncs")
; loading addfuncs.lsp
T
>(load "causdat")
; loading causdat.lsp
T
> (variables)
(CAUSNPR CAUSREX DATESMO DATESQ USCPAPR USCPI USCURR USEXB USFFR
USINDPRO USIPD USM1SA USM2SA USMBADJ USNBREXB USNBRSA USNGDP
USRGDP USTRARR USUNRATE)

2To the extent that other countries are concerned about the effects of U.S. monetary
shocks on their exchange rates with respect to the U.S. dollar, and adjust their monetary
policies to offset these effects, their monetary conditions will mimic those in the U.S.,
whose authorities will then effectively control world monetary policy.

11.1. STANDARD-FORM ESTIMATION 275

Of these series, the following are monthly, running from January 1962
through December 2005,

DATESMO —Monthly datelist running from 1962.0 to 2005.916
CAUSREX —Canada/US real exchange rate – index, 1990 = 100
CAUSNPR —Canada/US price level ratio – index, 1990 = 100
USCPAPR —US interest rate on 1-month commercial paper
USCPI —US consumer price index – 1990 = 100
USCURR —US currency in circulation – billions of $
USFFR —US federal funds rate
USM1SA —US M1 – seasonally adjusted, in billions of $
USM2SA —US M2 – seasonally adjusted, in billions of $
USMBADJ —US monetary base adjusted for reserve requirement

changes – seasonally adjusted in billions of $
USNBRSA —Non-borrowed reserves of the US banking system

seasonally adjusted in billions of $
USNBREXB —Non-borrowed reserves plus extended borrowings of the US

banking system – seasonally adjusted in billions of $
USTRARR —Total reserves of US banks, adjusted for reserve requirements

changes – seasonally adjusted in billions of $
USINDPRO —US industrial production – 2002 = 100
USUNRATE —US unemployment rate – persons 16 years and older

and the following series are quarterly, running from the first quarter of 1959
through the fourth quarter of 2005,

DATESQ —Quarterly datelist running from 1959.0 to 2005.75
USIPD —US implicit GDP deflator – 1990 = 100
USNGDP —US nominal GDP – seasonally adjusted in billions of $
USRGDP —US real GDP – seasonally adjusted in billions of year 2000 $.

The analysis that follows is a simplification of that found in a paper
by Christiano, Eichenbaum and Evans in a recent Handbook of Macroeco-
nomics.3 Sufficient data is included in causdat.lsp to enable the reader to
extend our analysis to re-examine for a longer data period the results in that
paper and to try alternative VARs using monthly data. The four variables

3See Lawrence J. Christiano, Martin Eichenbaum and Charles L. Evans, “Monetary
Policy Shocks: What Have We Learned and to What End?”, in John B. Taylor and
Michael Woodford, eds., Handbook of Macroeconomics, Volume 1A, Elsevier Press, 1999,
Chapter 2, pp. 65-148.

276 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

in our VAR are real GDP, the implicit GDP deflator, the 1-month corporate
paper interest rate, and the stock of M1, with all but the interest rate in
logarithms and the interest rate expressed as a fraction of unity rather than
in annual percentage terms. As a preliminary step, we must be convert the
money and interest rate series to quarterly averages and shorten the quar-
terly series to be consistent with the monthly ones. All the calculations that
follow can be found in the batch file VARbatch.lsp.

> (def uscpapr (m2q-avg uscpapr 0 1962.0 2005.75))
USCPAPR
> (def usm1 (m2q-avg usm1sa 0 1962.0 2005.75))
USM1
> (def usrgdp (remove-first 12 usrgdp))
USRGDP
> (def usipd (remove-first 12 usipd))
USIPD
> (def datesq (remove-first 12 datesq))
DATESQ
> (def logrgdp (remove-first 4 (log usrgdp)))
LOGRGDP
> (def logm1 (remove-first 4 (log usm1)))

LOGM1
> (def logipd (remove-first 4 (log usipd)))
LOGIPD
> (def intrate (/ (remove-first 4 (copy-list uscpapr)) 100))
INTRATE
> (def newdates (remove-first 4 datesq))
NEWDATES

Our four variables, LOGRGDP, INTRATE, LOGIPD and LOGM1 now begin at date
1963.0. We now apply the VAR-lag-length function.

> (def varlist (list logrgdp logipd intrate logm1))
VARLIST
> (def varnames (list "LOGRGDP" "LOGIPD" "INTRATE" "LOGM1"))
VARNAMES
> (VAR-lag-length varlist varnames 8 newdates 1965.0 2005.75)

11.1. STANDARD-FORM ESTIMATION 277

LAG SELECTION INFORMATION

Variables are (LOGRGDP LOGIPD INTRATE LOGM1)

Degrees of Freedom Data Points Less LR-Test
Lag Per Equation All Parameters PVal AIC BIC

8 131 524 -6676.32 -6267.14
7 135 540 0.001 -6685.92 -6326.33
6 139 556 0.012 -6702.32 -6392.33
5 143 572 0.000 -6686.08 -6425.69
4 147 588 0.000 -6680.62 -6469.83
3 151 604 0.000 -6670.53 -6509.33
2 155 620 0.000 -6642.52 -6530.92
1 159 636 0.000 -6443.18 -6381.18

When doing Johansen cointegration tests 2 additional degrees
of freedom per equation will be lost, reducing the data
points minus total parameters estimated by 8

NIL

The BIC suggests that 2 lags are appropriate, the AIC suggests 6 lags and the
LR-test suggests even more than 6 lags. For simplicity, we follow Christiano,
Eichenbaum and Evans and settle on 4 lags.

I have written two functions that can be used to estimate a standard-form
VAR. The first, VAR-setup, sets up and runs the VAR and leaves a number
of important objects in the workspace for subsequent use. The second VAR-
run-standard-form calls the previous function and writes relevant results
to the screen along with tests of the significance of the lagged values of each
of the variables in each equation. This latter function enables us to observe
and analyse the standard-form results. Both of the above functions take the
same arguments—(1) a list of the variables ordered appropriately for any
subsequent Choleski decomposition, (2) the number of lags, (3) the datelist
to which the variables conform, (4) the beginning date of the VAR, and (5)
the ending date. Obviously, the beginning and ending dates and the number
of lags must be consistent with the datelist.

The VAR-setup function leaves some very important variables in the
workspace. First, it leaves a list of the lists that represent the variables in

278 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

the VAR, called xlists. Second, it leaves a list of matrices of the lagged
values of the variables, called xmats. Third, it leaves a list containing the
lists of coefficients of the constant and the lagged values of the variables
produced by the standard-form regressions, called coefslists, a list called
VCVcoefslist giving the variance-covariance matrices of the coefficients,
and three additional aptly-named objects, nobs, numlags, numvars and
dates. The latter is a datelist representing the dates over which the VAR is
run. The function also leaves a list of the lists of residuals from the regres-
sions, residslists. And, finally, it leaves a list called lagslists which
contains lists of the lagged values of the variables associated with the first
observations of the series in the VAR. The elements of all the above lists
have the same ordering as the ordering in the list of variables given as an
argument in the function. Most of these lists will ultimately be required in
subsequent bootstrapping used to obtain confidence limits. This function
prints nothing to the screen or to file—its purpose is to leave objects in the
workspace that can be used by subsequent functions.

The VAR-run-standard-form function calls the VAR-setup function
(as previously noted, it takes the same arguments as that function) and uses
the resulting objects in the workspace to run the standard-form regressions
using the OLS-basic function, printing out the results. It requires that
three additional objects be present in the workspace, a list of strings called
regressands giving the names of the variables in the VAR, a list of strings
called regressors giving the names of the regressors, including the constant
and the lagged values of each variable in the correct order (this list will
be the same for all the standard-form regressions), and a list of strings
called varnames giving shortened names for the regressands that are eight
or less capitalised characters long. No adjustments for heteroskedasticity
and autocorrelation in the residuals are made. Finally, the function does
F-tests of the significance of the blocks of lags of each variable in each
equation. To do this, it calls my VAR-block-lag-significance function,
which takes no arguments. In situations where we are not interested in the
actual coefficients of the standard form regressions but only in whether the
blocks of lags of the variables are statistically significant, we can simply run
the VAR-setup function followed by the VAR-block-lag-significance
function, bypassing the VAR-run-standard-form function and requiring
only varnames in the workspace.

Continuing in the above workspace, we now run the VAR-run-standard-
form function after setting up the lists of variable names it requires.

> (def regressands (list "Log RGDP" "Log Price Level" "Interest Rate"
"Log of M1"))
REGRESSANDS

11.1. STANDARD-FORM ESTIMATION 279

> (def regressors (list "Constant" "LRGDP-L1" "LRGDP-L2" "LRGDP-L3"
"LRGDP-L4" "LPLEV-L1" "LPLEV-L2" "LPLEV-L3" "LPLEV-L4" "INTRATE-L1"
"INTRATE-L2" "INTRATE-L3" "INTRATE-L4" "MON1-L1" "MON1-L2" "MON1-L3"
"MON1-L4"))
REGRESSORS
> (VAR-run-standard-form varlist 4 newdates 1965 2005.75)

LINEAR REGRESSION

Dependent Variable: Log RGDP

Coefficient Std. Error T-stat P-Val

Constant 0.356 0.068 5.227 0.000
LRGDP-L1 1.014 0.081 12.465 0.000
LRGDP-L2 0.029 0.115 0.254 0.800
LRGDP-L3 -0.166 0.109 -1.529 0.129
LRGDP-L4 0.075 0.081 0.926 0.356
LPLEV-L1 0.212 0.205 1.033 0.303
LPLEV-L2 -0.260 0.370 -0.701 0.484
LPLEV-L3 -0.146 0.370 -0.396 0.693
LPLEV-L4 0.258 0.201 1.284 0.201
INTRATE-L1 0.062 0.060 1.039 0.300
INTRATE-L2 -0.395 0.087 -4.554 0.000
INTRATE-L3 0.225 0.096 2.339 0.021
INTRATE-L4 -0.128 0.076 -1.681 0.095
MON1-L1 -0.134 0.078 -1.717 0.088
MON1-L2 0.214 0.134 1.589 0.114
MON1-L3 -0.277 0.129 -2.139 0.034
MON1-L4 0.168 0.071 2.379 0.019

Number of Observations: 164
Degrees of Freedom: 147
R-Squared: 0.9996812848880877
Adjusted R-Squared: 0.9996465948078797
Sum of Squared Errors: 0.006810505760288649
LMSC -- Chi-Square: 0.004168096343878904
P-Value: 0.948523700040339

Breusch-Pagan -- Chi-Square: 18.66095993008918
P-Value: 0.2866360188022552

Regression F-Statistic: 28817.49707380823
P-Value: 0.0

280 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

LINEAR REGRESSION

Dependent Variable: Log Price Level

Coefficient Std. Error T-stat P-Val

Constant -0.038 0.027 -1.389 0.167
LRGDP-L1 -0.033 0.033 -1.002 0.318
LRGDP-L2 0.030 0.046 0.641 0.522
LRGDP-L3 0.032 0.044 0.726 0.469
LRGDP-L4 -0.021 0.033 -0.643 0.521
LPLEV-L1 1.485 0.083 17.999 0.000
LPLEV-L2 -0.359 0.149 -2.409 0.017
LPLEV-L3 0.070 0.149 0.467 0.641
LPLEV-L4 -0.199 0.081 -2.459 0.015
INTRATE-L1 0.069 0.024 2.859 0.005
INTRATE-L2 -0.040 0.035 -1.135 0.258
INTRATE-L3 -0.017 0.039 -0.436 0.664
INTRATE-L4 -0.001 0.031 -0.021 0.983
MON1-L1 0.020 0.031 0.628 0.531
MON1-L2 -0.036 0.054 -0.664 0.508
MON1-L3 0.047 0.052 0.895 0.372
MON1-L4 -0.032 0.028 -1.131 0.260

Number of Observations: 164
Degrees of Freedom: 147
R-Squared: 0.9999748960802404
Adjusted R-Squared: 0.9999721636808108
Sum of Squared Errors: 0.0011030293589719025
LMSC -- Chi-Square: 8.886876603194301
P-Value: 0.0028722766819196943
Breusch-Pagan -- Chi-Square: 36.57057664130322
P-Value: 0.0024092577978486185
Regression F-Statistic: 365969.5157455311
P-Value: 0.0

11.1. STANDARD-FORM ESTIMATION 281

LINEAR REGRESSION

Dependent Variable: Interest Rate

Coefficient Std. Error T-stat P-Val

Constant -0.039 0.093 -0.417 0.677
LRGDP-L1 0.304 0.111 2.724 0.007
LRGDP-L2 0.047 0.157 0.300 0.765
LRGDP-L3 -0.348 0.149 -2.341 0.021
LRGDP-L4 -0.001 0.111 -0.011 0.991
LPLEV-L1 0.710 0.281 2.529 0.012
LPLEV-L2 -0.363 0.508 -0.715 0.476
LPLEV-L3 -0.813 0.507 -1.605 0.111
LPLEV-L4 0.449 0.276 1.630 0.105
INTRATE-L1 1.044 0.082 12.781 0.000
INTRATE-L2 -0.567 0.119 -4.768 0.000
INTRATE-L3 0.709 0.132 5.371 0.000
INTRATE-L4 -0.230 0.104 -2.205 0.029
MON1-L1 -0.072 0.107 -0.678 0.499
MON1-L2 0.110 0.184 0.597 0.552
MON1-L3 0.112 0.177 0.630 0.530
MON1-L4 -0.135 0.097 -1.395 0.165

Number of Observations: 164
Degrees of Freedom: 147
R-Squared: 0.9191641039093563
Adjusted R-Squared: 0.910365639028742
Sum of Squared Errors: 0.012780655335275127
LMSC -- Chi-Square: 0.29345478769501226
P-Value: 0.588015079581959

Breusch-Pagan -- Chi-Square: 56.105966203984394
P-Value: 2.337418282816195E-6

Regression F-Statistic: 104.46869043423216
P-Value: 0.0

282 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

LINEAR REGRESSION

Dependent Variable: Log of M1

Coefficient Std. Error T-stat P-Val

Constant 0.111 0.072 1.546 0.124
LRGDP-L1 -0.147 0.086 -1.709 0.090
LRGDP-L2 0.056 0.121 0.462 0.645
LRGDP-L3 0.139 0.115 1.206 0.230
LRGDP-L4 -0.056 0.086 -0.653 0.515
LPLEV-L1 0.063 0.217 0.290 0.772
LPLEV-L2 0.173 0.392 0.443 0.659
LPLEV-L3 -0.563 0.391 -1.439 0.152
LPLEV-L4 0.375 0.213 1.764 0.080
INTRATE-L1 -0.400 0.063 -6.353 0.000
INTRATE-L2 0.440 0.092 4.792 0.000
INTRATE-L3 -0.210 0.102 -2.062 0.041
INTRATE-L4 0.080 0.080 1.000 0.319
MON1-L1 1.451 0.082 17.635 0.000
MON1-L2 -0.353 0.142 -2.485 0.014
MON1-L3 -0.109 0.137 -0.799 0.426
MON1-L4 -0.024 0.075 -0.318 0.751

Number of Observations: 164
Degrees of Freedom: 147
R-Squared: 0.9999042573960518
Adjusted R-Squared: 0.9998938364323567
Sum of Squared Errors: 0.007615018419883402
LMSC -- Chi-Square: 0.12096269224351269
P-Value: 0.7279927086616176
Breusch-Pagan -- Chi-Square: 20.701149446228996
P-Value: 0.19028616284157995
Regression F-Statistic: 95951.22741589398
P-Value: 0.0

11.1. STANDARD-FORM ESTIMATION 283

BLOCK SIGNIFICANCE OF LAGGED VARIABLES IN THE VAR REGRESSIONS

DEPENDENT VARIABLE: LOGRGDP
VARIABLES:

LOGRGDP
F-Statistic = 2084.055621672752
P-Value = 0.0

LOGIPD
F-Statistic = 5.727482623035133
P-Value = 2.597686944233457E-4

INTRATE
F-Statistic = 12.647095677807318
P-Value = 7.184948302985106E-9

LOGM1
F-Statistic = 4.09272400662194
P-Value = 0.003564192340450578

DEPENDENT VARIABLE: LOGIPD
VARIABLES:

LOGRGDP
F-Statistic = 1.4980953404379063
P-Value = 0.20572872071571946

LOGIPD
F-Statistic = 9071.412558881657
P-Value = 0.0

INTRATE
F-Statistic = 2.538059184806069
P-Value = 0.04244181168910077

LOGM1
F-Statistic = 0.8589336440201597
P-Value = 0.49027316087667505

284 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

DEPENDENT VARIABLE: INTRATE
VARIABLES:

LOGRGDP
F-Statistic = 4.607304439245293
P-Value = 0.0015597354293287458

LOGIPD
F-Statistic = 3.5399415429494914
P-Value = 0.008651163920694982

INTRATE
F-Statistic = 118.32820734275121
P-Value = 0.0

LOGM1
F-Statistic = 0.9775788873314419
P-Value = 0.42174878177457287

DEPENDENT VARIABLE: LOGM1
VARIABLES:

LOGRGDP
F-Statistic = 1.0787944757740493
P-Value = 0.3692071858571786

LOGIPD
F-Statistic = 3.3598967856234205
P-Value = 0.011538539958598548

INTRATE
F-Statistic = 11.776077766341993
P-Value = 2.5248844237601986E-8

LOGM1
F-Statistic = 2220.107133049346
P-Value = 0.0

NIL

11.2. MOVING AVERAGE REPRESENTATION 285

Had we used the VAR-setup function followed by the VAR-block-
lag-significance function, only the above material giving the results of
F-tests of the block lags would have appeared and the regressands and
regressors objects would not have had to be in the workspace.

11.2 Moving Average Representation

The standard form system given by (11.10) can be manipulated to express
the current value of each variable as a function solely of the vector of resid-
uals ut. This is called its moving average representation—yt is a moving
average of the current and past values of ut.

yt = C0 ut + C1 ut−1 + C2 ut−2 + · · ·+ Cs ut−s + y0 (11.11)

where y0 is some initial value of yt.
To see how we can do this, suppose for the moment that we have only

one lag of each variable in the VAR (i.e., a VAR(1) process). Under this
assumption, (11.10) reduces to

yt = b + Byt−1 + ut. (11.12)

Lagging (11.12) n times, we obtain

yt−1 = b + Byt−2 + ut−1

yt−2 = b + Byt−3 + ut−2

yt−3 = b + Byt−4 + ut−3

· · ·
· · ·
· · ·
· · ·

yt−s = b + Byt−s + ut−s−1

Successive substitution into (11.12) yields

yt = [1 + B + B2 + B3 + B4 + · · ·+ Bs]b
+ ut + But−1 + B2 ut−2 + B3 ut−3 + · · · · · ·+ Bs ut−s

= (1−B)−1 b + ut + But−1 + B2 ut−2

+B3 ut−3 + · · · · · ·+ Bs ut−s. (11.13)

286 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

In terms of (11.11) this yields y0 = (1−B)−1 b and Ck = Bk, k = 0 · · · s.
When there are p > 1 lags, we first convert the VAR(p) system into a

VAR(1) system of the form



yt

yt−1

yt−2

yt−3
...
...
...

yt−p+1




=




b
0
0
0
...
...
...
0




+




B1 B2 B3 · · · BP−1 BP

Im 0 0 · · · 0 0
0 Im 0 · · · 0 0
0 0 Im · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · Im 0







yt−1

yt−2

yt−3

yt−4
...
...
...

yt−p




+




ut

0
0
0
...
...
...
0




which can be expressed more simply as

Yt = Υ + BYt−1 + Ψt. (11.14)

Here, Yt, Υ, and Ψt are mp×1 column vectors and B is an mp×mp matrix.
This system is formed by taking the expression (11.10) as the first equation
(more correctly, set of equations) and adding the p − 1 equations (sets of
equations)

yt−1 = yt−1

yt−2 = yt−2

yt−3 = yt−3

· · ·
· · ·
· · ·

yt−p+2 = yt−p+2

yt−p+1 = yt−p+1

sequentially below.
By analogy with equation (11.13), the moving average representation of

(11.14) is seen to be

Yt = [Imp − B]−1 Υ + Ψt + BΨt−1 + B 2 Ψt−2

+B 3 Ψt−3 + · · · · · ·+ B n Ψt−s (11.15)

where Imp is an mp×mp identity matrix.

11.2. MOVING AVERAGE REPRESENTATION 287

It turns out that the moving average representation of our original VAR(p)
system is represented by selected parts of the top m equations of the sys-
tem (11.15). We can strip off these terms by operating on (11.15) with the
m×mp matrix

J = [Im 0 0 0 · · · 0].

We thereby obtain (11.11), reproduced below,

yt = C0 ut + C1 ut−1 + C2 ut−2 + · · ·+ Cs ut−s + y0. (11.11)

where

y0 = J Υ
C0 = JB 0J ′ = J Imp J ′

C1 = JB 1J ′ = JBJ ′

C2 = JB 2J ′

C3 = JB 3J ′

· · ·
· · ·
· · ·
Cs = JB sJ ′

I have written the function VAR-MA-representation to perform the
above calculations. It takes the list objects xlists and lagmats produced
and left in the workspace by the VAR-setup function and reruns the VAR,
calculating and leaving in the work space an object called mairlist which
is a list of the matrices Ci in the equation (11.11) above. That equation
gives the responses of the series in the yt vector in the current and all future
periods to a shock u0 in an initial period. The function leaves a second object
called omega in the workspace. This object is the variance-covariance matrix
of the series in the vector given by ut. Finally, a variable called initlevs,
giving the initial levels of the variables, is also left in the workspace for
future use. The function takes as its single parameter the number of Ci

matrices we wish to calculate—conventionally referred to as the number of
steps and denoted by s in the above equation. In the present illustration, it
would seem reasonable to calculate five years (twenty quarters) of responses
to current shocks.

288 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

> (VAR-MA-representation 20)
NIL
> (length mairlist)
21
> (write-matrix omega)

0.000 -0.000 0.000 0.000
-0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000

NIL
> (print-matrix omega)
#2a(

(4.152747E-5 -1.213825E-6 1.324442E-5 2.633268E-8)
(-1.213825E-6 6.725789E-6 3.768801E-6 2.850485E-6)
(1.324442E-5 3.768801E-6 7.793083E-5 6.049515E-6)
(2.633268E-8 2.850485E-6 6.049515E-6 4.643304E-5)
)

NIL
> (write-matrix (select mairlist 0))

1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000

NIL
> (write-matrix (select mairlist 1))

1.014 0.212 0.062 -0.134
-0.033 1.485 0.069 0.020
0.304 0.710 1.044 -0.072

-0.147 0.063 -0.400 1.451
NIL

For illustration, we also wrote to screen the matrix omega (it had to be
done a second time using the print-matrix function because my write-
matrix function records only to the third decimal point) and the responses
to one-unit shocks u0 for the current and the subsequent period.

11.3. IDENTIFICATION 289

11.3 Identification

The moving average representation (11.11) does not give a proper indication
of how the system responds to shocks to the individual structural equations.
The problem is that the shocks to the equations contained in the vector ut

are correlated with each other. We therefore cannot determine what the
effects on the m variables of a shock to an individual structural equation
alone would be—an observed ut will represent the combined shocks to a
number of equations. This can be seen from the fact that from (11.9)

ut = (I−A0)−1 et.

In order to determine the effects of a shock to an individual structural equa-
tion of the system we have to be able to solve the system for A0 and thereby
obtain (I −A0)−1. This will enable us to operate on (11.11) to transform
the ut−j ’s in into et−j ’s. In the process, of course, the matrices Cj will also
be transformed into a useful representation of the impulse-responses.

One way to obtain the matrix A0 is to statistically estimate the struc-
tural model (11.4). Were we to do this, we would not be running a VAR.
Indeed, the reason for VAR analysis is to avoid multi-equation structural
models.

The approach used to identify A0 in VAR analysis is to find the matrix
that will orthogonalize the errors—i.e., transform the ut−j series into the
et−j series, the elements of which will be uncorrelated with each other.

Given any matrix G that has an inverse, equation (11.11) can be rewrit-
ten

yt = C0 GG−1 ut + C1 GG−1 ut−1 + C2 GG−1 ut−2

+ · · · · · ·+ Cs GG−1 ut−s + y0. (11.16)

Our task is to find the G for which

G = (I−A0)−1.

Then

yt = Z0 et + Z1 et−1 + Z2 et−2

+ · · · · · ·+ Zs et−s + y0 (11.17)

where
Zj = Cj G

and
et−j = G−1 ut−j ==⇒ ut−j = Get−j

290 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

11.3.1 Choleski Decompositions

Suppose that the matrix A0 takes the following form:



0 0 0 · · · · · · · · · · · · 0 0
a0

21 0 0 · · · · · · · · · · · · 0 0
a0

31 a0
32 0 · · · · · · · · · · · · 0 0

a0
41 a0

42 a0
43 · · · · · · · · · · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
a0

m1 a0
m2 a0

m3 · · · · · · · · · · · · a0
m(m−1) 0




This will mean that the structural equations will take the form:

y1t = a1
11 y1(t−1) + a1

12 y2(t−1) ·
y2t = a0

21 y1t + a1
21 y1(t−1) + a1

22 y2(t−1) ·
y3t = a0

31 y1t + a0
32 y2t + a1

31 y1(t−1) + a1
32 y2(t−1) · · · · · · · · · · · · · · · · · ·

y4t = a0
41 y1t + a0

42 y2t + a0
43 y3t + a1

41 y1(t−1) + a1
42 y2(t−1) · · · · · · · · ·

· · · = ·
· · · = ·
· · · = ·

None of the current year values of y2, y3, y4, · · · · · · · · · , ym enter into the
determination of the current year level of y1. The current year level of y1

enters into the determination of the current year level of y2 and both the
current levels of y1 and y2 enter into the determination of the current level
of y3, the current levels of y1, y2 and y3 enter into the determination of the
current level of y4, and so forth. This system is a recursive system.

The standard approach to identifying the elements of A0 in VAR analysis
is to decompose the matrix of reduced form residuals

ut u′t = Ω = Get(Get)′ = Gete′t G′ = GDG′.

If we choose implicit units of measurement for the variables for which the
standard deviations of the structural errors are unity, D = I, and our prob-
lem is to choose the matrix G for which

GG′ = Ω.

11.3. IDENTIFICATION 291

This simply involves doing a Choleski Decomposition of the matrix Ω. We
thus obtain

(I− Ã0)−1 = G

and, hence,
Ã0 = I−G−1

where Ã0 is a representation of A0 after scaling of the variables to render
D = I. Using the matrix G so obtained we can obtain the Zj matrices in
equation (11.17) with the errors et having unit variance.

The upper-left-corner element of Z0 gives the response of y1 to a one
standard-deviation shock to the first equation in the current period. The
sum of the upper-left-corner elements of Z0 and Z1 gives the response of
y1 to a one standard-deviation shock to the first equation in the previous
period. And sum of the of the upper-left-corner elements of Z0,Z1 and Z2

gives the response of that variable to a one standard-deviation shock to the
first equation two periods previously, and so forth. The response of the
first variable to a one-standard-deviation shock to the second variable in the
current and previous periods is given by the second elements from the left
in the top rows of the Zj matrices. And the response of the second variable
to orthogonal one-standard-deviation shocks to the other variables is given
by the elements of the second rows of the Zj matrices, and so forth. These
matrices are called impulse-response functions.

It is important to emphasize that this decomposition of Ω and the
impulse-response functions that are obtained from it are critically dependent
on the ordering of the variables in the VAR. Had we ordered the variables
differently, putting the fourth variable first and the first variable fourth, for
example, the Choleski decomposition would have led to different impulse-
response functions.4 Economic theory has to be used to decide which order-
ing of the variables to use. In many cases, no such ordering is acceptable
because the theoretical system that the VAR is being used to analyse is not
recursive.

The impulse responses for our United States VAR are calculated with
the following ordering as specified in the ordering of the variables in the
object varlist—the log of RGDP, the log of the implicit GDP deflator,
the interest rate on 1-month commercial paper (measured as a fraction of
unity), and the logarithm of M1.

4This assumes that the error terms in the equations of the standard-form representation
are correlated with each other so that the off-diagonal elements of Ω are non-zero. If these
off-diagonal terms are zero, the impulse-response functions obtained from all the different
orderings will be the same.

292 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

I have written the function VAR-Choleski-decomp to perform a Chol-
eski decomposition of the matrix omega left in the workspace by the imme-
diately previously run VAR-MA-representation function. It takes no
arguments and writes nothing to the screen. On the basis of this decompo-
sition and the object mairlist left in the workspace by the latter function, it
produces three lists of matrices and leaves them in the workspace—rofmats,
rtomats and fevmats. The matrices in rofmats give the responses of each
variable in turn, one per matrix, to one-standard-deviation shocks to all vari-
ables. The matrices in rtomats give the responses to one-standard-deviation
shocks of each variable in turn, one variable per matrix, of all variables mea-
sured in units of their own standard deviations. The matrices in fevmats
give the forecast-error variance decompositions for each of the variables in
turn.

The variance of any given dependent variable in response to the orthogo-
nal shocks to it can be thought of as the variance of the errors in forecasting
it using (11.17) because without the shocks we would forecast the variable to
remain unchanged. The central question is: What fractions of these forecast
errors are due to the individual shocks?

Consider the forecast error for period t obtained from (11.17) which is
reproduced below.

yt = Z0 et + Z1 et−1 + Z2 et−2

+ · · · · · ·+ Zn et−n + y0 (11.17)

The vector of one step ahead forecast errors is given by Z0 et. Consider
the simple case where there are only two equations. Letting z0

ij be the ij-th
element of Z0, we can express the current-period forecast errors as

y1t = z0
11e1t + z0

12e2t

y2t = z0
21e1t + z0

22e2t

from which it follows that

Var{y1} = (z0
11)

2Var{e1}+ (z0
12)

2Var{e2} = (z0
11)

2 + (z0
12)

2

Var{y2} = (z0
21)

2Var{e1}+ (z0
22)

2Var{e2} = (z0
21)

2 + (z0
22)

2

since e1 and e2 are independent shocks with unit variance. The standard
errors of y1 and y2 are therefore

Std{y1} =
√

(z0
11)2 + (z0

12)2 and Std{y2} =
√

(z0
21)2 + (z0

22)2

11.3. IDENTIFICATION 293

and the fraction of the error variance attributable to the shock to the first
and second equations are, respectively,

(z0
11)

2

(z0
11)2 + (z0

12)2
and

(z0
12)

2

(z0
11)2 + (z0

12)2
.

Now consider the two step ahead forecast. In this case the forecast errors
in response to the two period’s shocks are

y1t = z0
11e1t + z0

12e2t + z1
11e1(t−1) + z1

12e2(t−1)

y2t = z0
21e1t + z0

22e2t + z1
21e1(t−1) + z1

22e2(t−1)

where z1
ij is the ij-th element of Z1. The variances of the respective two-

period forecast errors are

(z0
11)

2 + (z0
12)

2 + (z1
11)

2 + (z1
12)

2

and
(z0

21)
2 + (z0

22)
2 + (z0

21)
2 + (z0

22)
2

and the standard errors of the two-period forecasts are
√

(z0
11)2 + (z0

12)2 + (z1
11)2 + (z1

12)2

and √
(z0

21)2 + (z0
22)2 + (z0

21)2 + (z0
22)2.

The fraction of the two-step ahead forecast error variance of y1 attributable
to the shock to the first shock is

(z0
11)

2 + (z1
11)

2

(z0
11)2 + (z0

12)2 + (z1
11)2 + (z1

12)2

and the fraction attributable to the second shock is

(z0
12)

2 + (z1
12)

2

(z0
11)2 + (z0

12)2 + (z1
11)2 + (z1

12)2

And the fractions of the two-step ahead forecast error variance of y2 at-
tributable to the respective shocks are

(z0
21)

2 + (z1
21)

2

(z0
21)2 + (z0

22)2 + (z1
21)2 + (z1

22)2

294 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

and
(z0

22)
2 + (z1

22)
2

(z0
21)2 + (z0

22)2 + (z1
21)2 + (z1

22)2
.

The derivations of the forecast error variances and the fractions attributable
to the two shocks for forecasts greater than two-steps ahead are straight-
forward extensions of the calculations above.

As follow-ups to the VAR-Choleski-decomp function, I have writ-
ten a number of functions to print the results to screen and plot them on
graphs. The function VAR-print-impulse-responses prints the matrices
in rofmats and rtomats to the screen. To print the forecast-error-variance-
decompositions to the screen, I wrote the function VAR-print-forecast-
error-variance-decompositions and to print them to a LATEXfile I wrote
the function VAR-write-fev-decomps-to-LaTeX-file. The two functions
VAR-plot-impulse-responses-of and VAR-plot-impulse-responses-to
plot rofmats and rtomats, respectively, to the screen. Each of these latter
functions will send m2 plots to the screen, where m is the number of vari-
ables, with each plot containing the response of a single variable to a shock
to another variable. All these functions take as their single argument a list
of strings giving the names of the variables—the varnames object required
earlier can be used as the argument. The print-to-screen functions yield the
following results.

> (VAR-choleski-decomp)
NIL
> (VAR-print-impulse-responses varnames)

Responses of LOGRGDP to one-standard-deviation shocks to

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00644418 0.00000000 0.00000000 0.00000000
1 0.00662420 0.00050002 0.00045479 -0.00089564
2 0.00655329 0.00034005 -0.00174511 -0.00077810
3 0.00518368 -0.00089579 -0.00312284 -0.00205856
4 0.00416718 -0.00173739 -0.00355574 -0.00256404
5 0.00327178 -0.00252315 -0.00500637 -0.00339257
6 0.00246164 -0.00307182 -0.00609400 -0.00390922
7 0.00172531 -0.00366446 -0.00641680 -0.00419985
8 0.00115625 -0.00397119 -0.00684735 -0.00451328
9 0.00077554 -0.00411592 -0.00720284 -0.00472475
10 0.00049694 -0.00423856 -0.00719111 -0.00479430

11.3. IDENTIFICATION 295

11 0.00032502 -0.00422380 -0.00713198 -0.00480603
12 0.00023368 -0.00411133 -0.00708591 -0.00477270
13 0.00018060 -0.00398541 -0.00692205 -0.00466951
14 0.00015516 -0.00382599 -0.00673150 -0.00453189
15 0.00014850 -0.00363319 -0.00657588 -0.00437774
16 0.00014366 -0.00344445 -0.00640549 -0.00420062
17 0.00013547 -0.00326000 -0.00623229 -0.00401298
18 0.00012477 -0.00307362 -0.00608561 -0.00382685
19 0.00010901 -0.00289639 -0.00594815 -0.00364187
20 0.00008837 -0.00272964 -0.00581354 -0.00346134

Responses of LOGIPD to one-standard-deviation shocks to

Step LOGRGDP LOGIPD INTRATE LOGM1
0 -0.00018836 0.00258656 0.00000000 0.00000000
1 -0.00035018 0.00397350 0.00058834 0.00013184
2 -0.00032374 0.00511017 0.00105526 0.00014248
3 -0.00002894 0.00654274 0.00133369 0.00033841
4 0.00019242 0.00773483 0.00170874 0.00060104
5 0.00036937 0.00878545 0.00201931 0.00085074
6 0.00053788 0.00973613 0.00218462 0.00103628
7 0.00068250 0.01053297 0.00232162 0.00118612
8 0.00080816 0.01119964 0.00241274 0.00128540
9 0.00092202 0.01177020 0.00242851 0.00131971

10 0.00102598 0.01223910 0.00241586 0.00129912
11 0.00112547 0.01261918 0.00238617 0.00122433
12 0.00122789 0.01293216 0.00232737 0.00109622
13 0.00133464 0.01318393 0.00225410 0.00092375
14 0.00144598 0.01338210 0.00217571 0.00071415
15 0.00156280 0.01353770 0.00208712 0.00047197
16 0.00168401 0.01365593 0.00199052 0.00020418
17 0.00180763 0.01374031 0.00188962 -0.00008251
18 0.00193203 0.01379565 0.00178214 -0.00038327
19 0.00205530 0.01382482 0.00166721 -0.00069324
20 0.00217540 0.01382931 0.00154589 -0.00100783

296 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

Responses of INTRATE to one-standard-deviation shocks to

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00205525 0.00160674 0.00843357 0.00000000
1 0.00396819 0.00343456 0.00876557 -0.00048430
2 0.00523914 0.00474875 0.00516767 -0.00064992
3 0.00487093 0.00451758 0.00647225 0.00031562
4 0.00408721 0.00448514 0.00651966 0.00061655
5 0.00344362 0.00478296 0.00417188 0.00027019
6 0.00267923 0.00428559 0.00354825 0.00042758
7 0.00192126 0.00376159 0.00334960 0.00056121
8 0.00137341 0.00366134 0.00226442 0.00042064
9 0.00091188 0.00337259 0.00170143 0.00038942
10 0.00053970 0.00301850 0.00161900 0.00040280
11 0.00033061 0.00288243 0.00128355 0.00031164
12 0.00021626 0.00275848 0.00105020 0.00023909
13 0.00015126 0.00259800 0.00106572 0.00020666
14 0.00014919 0.00251770 0.00102418 0.00014284
15 0.00018534 0.00246573 0.00096449 0.00007547
16 0.00023011 0.00239218 0.00098929 0.00002849
17 0.00028295 0.00233546 0.00099990 -0.00002374
18 0.00033812 0.00229036 0.00097611 -0.00007996
19 0.00038430 0.00223153 0.00096771 -0.00012751
20 0.00042142 0.00216919 0.00095362 -0.00017344

Responses of LOGM1 to one-standard-deviation shocks to

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00000409 0.00110233 0.00050630 0.00670534
1 -0.00177662 0.00111842 -0.00264272 0.00972724
2 -0.00393131 0.00118990 -0.00384115 0.01207732
3 -0.00553450 0.00001584 -0.00422753 0.01349657
4 -0.00652980 -0.00060509 -0.00562112 0.01388883
5 -0.00704905 -0.00110883 -0.00627667 0.01409145
6 -0.00734969 -0.00167394 -0.00604258 0.01395536
7 -0.00726554 -0.00180368 -0.00594522 0.01342058
8 -0.00689997 -0.00173103 -0.00566668 0.01270098
9 -0.00637462 -0.00154891 -0.00498871 0.01193625

11.3. IDENTIFICATION 297

10 -0.00572383 -0.00112858 -0.00433419 0.01108471
11 -0.00501521 -0.00054142 -0.00372072 0.01020815
12 -0.00431409 0.00011398 -0.00302537 0.00937127
13 -0.00364148 0.00085934 -0.00238072 0.00856166
14 -0.00301451 0.00167379 -0.00183554 0.00779022
15 -0.00245352 0.00250418 -0.00132875 0.00708023
16 -0.00195985 0.00334507 -0.00088152 0.00642575
17 -0.00152800 0.00419106 -0.00051671 0.00582079
18 -0.00115500 0.00501997 -0.00020556 0.00526861
19 -0.00083328 0.00582474 0.00006016 0.00476379
20 -0.00055282 0.00660451 0.00027507 0.00429810

Responses in standard-deviation-units
to a one-standard-deviation shock to LOGRGDP

Step LOGRGDP LOGIPD INTRATE LOGM1
0 1.00000000 -0.07263012 0.23281479 0.00059967
1 1.02793434 -0.13502799 0.44950832 -0.26072356
2 1.01693115 -0.12483021 0.59347927 -0.57693017
3 0.80439660 -0.01115767 0.55176940 -0.81220310
4 0.64665700 0.07419740 0.46299071 -0.95826709
5 0.50771054 0.14242651 0.39008592 -1.03446732
6 0.38199399 0.20740412 0.30349755 -1.07858822
7 0.26773194 0.26316703 0.21763630 -1.06623852
8 0.17942568 0.31161855 0.15557678 -1.01259027
9 0.12034747 0.35552256 0.10329576 -0.93549275

10 0.07711456 0.39560836 0.06113604 -0.83998823
11 0.05043681 0.43397242 0.03745036 -0.73599662
12 0.03626213 0.47346360 0.02449785 -0.63310475
13 0.02802557 0.51462653 0.01713476 -0.53439735
14 0.02407809 0.55756057 0.01689951 -0.44238721
15 0.02304375 0.60260256 0.02099533 -0.36006086
16 0.02229231 0.64934090 0.02606637 -0.28761309
17 0.02102136 0.69700984 0.03205238 -0.22423852
18 0.01936132 0.74497715 0.03830137 -0.16949882
19 0.01691565 0.79250857 0.04353260 -0.12228590
20 0.01371301 0.83881591 0.04773776 -0.08112853

298 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

Responses in standard-deviation-units
to a one-standard-deviation shock to LOGIPD

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00000000 0.99735894 0.18200792 0.16177049
1 0.07759171 1.53214974 0.38905948 0.16413145
2 0.05276918 1.97044392 0.53792901 0.17462155
3 -0.13900833 2.52282916 0.51174176 0.00232427
4 -0.26960582 2.98249225 0.50806787 -0.08879822
5 -0.39153924 3.38760314 0.54180346 -0.16272351
6 -0.47668149 3.75417661 0.48546263 -0.24565601
7 -0.56864574 4.06143062 0.42610528 -0.26469516
8 -0.61624357 4.31849446 0.41474951 -0.25403312
9 -0.63870331 4.53849923 0.38203970 -0.22730659
10 -0.65773438 4.71930283 0.34192933 -0.16562268
11 -0.65544381 4.86586018 0.32651558 -0.07945514
12 -0.63799168 4.98654308 0.31247539 0.01672618
13 -0.61845038 5.08362377 0.29429573 0.12611078
14 -0.59371164 5.16003396 0.28519968 0.24563397
15 -0.56379409 5.22003409 0.27931300 0.36749487
16 -0.53450585 5.26562125 0.27098140 0.49089899
17 -0.50588272 5.29815656 0.26455662 0.61505026
18 -0.47695990 5.31949679 0.25944683 0.73669422
19 -0.44945755 5.33074473 0.25278278 0.85479764
20 -0.42358217 5.33247517 0.24572141 0.96923054

Responses in standard-deviation-units
to a one-standard-deviation shock to INTRATE

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00000000 0.00000000 0.95533784 0.07430163
1 0.07057410 0.22686046 0.99294609 -0.38782613
2 -0.27080324 0.40689915 0.58538334 -0.56369980
3 -0.48459865 0.51426015 0.73316372 -0.62040228
4 -0.55177493 0.65887513 0.73853383 -0.82491448
5 -0.77688195 0.77863175 0.47258237 -0.92111873
6 -0.94565892 0.84237088 0.40193850 -0.88676565
7 -0.99575040 0.89519827 0.37943587 -0.87247706

11.3. IDENTIFICATION 299

8 -1.06256356 0.93033366 0.25650830 -0.83160160
9 -1.11772748 0.93641480 0.19273441 -0.73210651

10 -1.11590672 0.93153552 0.18339731 -0.63605501
11 -1.10673144 0.92008988 0.14539795 -0.54602680
12 -1.09958213 0.89741775 0.11896483 -0.44398109
13 -1.07415566 0.86916499 0.12072278 -0.34937681
14 -1.04458572 0.83893664 0.11601664 -0.26936998
15 -1.02043624 0.80477569 0.10925522 -0.19499832
16 -0.99399545 0.76752993 0.11206461 -0.12936540
17 -0.96711942 0.72862390 0.11326630 -0.07582899
18 -0.94435773 0.68717897 0.11057187 -0.03016693
19 -0.92302649 0.64286284 0.10961980 0.00882886
20 -0.90213727 0.59608504 0.10802363 0.04036783

Responses in standard-deviation-units
to a one-standard-deviation shock to LOGM1

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00000000 0.00000000 0.00000000 0.98402704
1 -0.13898481 0.05083825 -0.05486081 1.42750053
2 -0.12074396 0.05494046 -0.07362146 1.77238018
3 -0.31944495 0.13048860 0.03575238 1.98065893
4 -0.39788486 0.23175630 0.06984102 2.03822498
5 -0.52645457 0.32803814 0.03060627 2.06795941
6 -0.60662812 0.39958076 0.04843486 2.04798898
7 -0.65172702 0.45735828 0.06357221 1.96950780
8 -0.70036492 0.49564189 0.04764966 1.86390423
9 -0.73318105 0.50886963 0.04411229 1.75167888

10 -0.74397280 0.50092962 0.04562806 1.62671279
11 -0.74579435 0.47209407 0.03530202 1.49807407
12 -0.74062151 0.42269245 0.02708349 1.37526061
13 -0.72460895 0.35619274 0.02341006 1.25644783
14 -0.70325335 0.27536980 0.01618097 1.14323718
15 -0.67933185 0.18198715 0.00854873 1.03904368
16 -0.65184702 0.07872959 0.00322718 0.94299697
17 -0.62272951 -0.03181442 -0.00268883 0.85421702
18 -0.59384654 -0.14778593 -0.00905767 0.77318265
19 -0.56514105 -0.26730964 -0.01444448 0.69910002
20 -0.53712614 -0.38861201 -0.01964737 0.63075884

300 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

NIL
> (VAR-print-forecast-error-variance-decompositions varnames)

Forecast-Error-Variance-Decomposition of LOGRGDP

Step LOGRGDP LOGIPD INTRATE LOGM1
0 100.00000000 0.00000000 0.00000000 0.00000000
1 98.54727191 0.28847958 0.23865752 0.92559100
2 96.23215905 0.27414602 2.43834480 1.05535013
3 88.67824158 0.66732843 7.42931413 3.22511586
4 80.40751143 1.95050623 11.94898908 5.69299325
5 68.31995409 3.93344169 18.90192075 8.84468348
6 56.32132964 5.94554228 26.12962656 11.60350153
7 46.74776317 8.12240755 31.36049272 13.76933656
8 39.06276177 9.92117548 35.48114942 15.53491333
9 33.06524174 11.25531586 38.77088821 16.90855420
10 28.58668990 12.35873774 41.07676801 17.97780435
11 25.19856281 13.19795195 42.77441918 18.82906606
12 22.57642156 13.78150908 44.13544052 19.50662885
13 20.54032704 14.21209290 45.20295942 20.04462064
14 18.93463538 14.52280790 46.07015911 20.47239761
15 17.63961199 14.72357771 46.83096135 20.80584894
16 16.58175491 14.84916958 47.51084741 21.05822810
17 15.70627926 14.92075457 48.12996292 21.24300324
18 14.96954646 14.94567003 48.71450002 21.37028349
19 14.34179525 14.93561022 49.27334940 21.44924513
20 13.80148315 14.90016893 49.80929340 21.48905452

Forecast-Error-Variance-Decomposition of LOGIPD

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.52751349 99.47248651 0.00000000 0.00000000
1 0.68740653 97.73207005 1.50494725 0.07557616
2 0.52213773 96.50406807 2.89895390 0.07484031
3 0.27747217 96.15547799 3.40692479 0.16012505
4 0.19012436 95.59264654 3.89266911 0.32455999
5 0.18192737 95.04404581 4.25921387 0.51481295
6 0.21290292 94.71179918 4.39805828 0.67723963

11.3. IDENTIFICATION 301

7 0.25951090 94.49161959 4.43966083 0.80920868
8 0.31119868 94.36181278 4.42140864 0.90557990
9 0.36424548 94.33482146 4.33992598 0.96100707

10 0.41720128 94.37882999 4.22451392 0.97945480
11 0.47038693 94.46956946 4.09405660 0.96598702
12 0.52538578 94.59623069 3.95205327 0.92633026
13 0.58353828 94.74338202 3.80495398 0.86812571
14 0.64586266 94.89651333 3.65836181 0.79926220
15 0.71327971 95.04599825 3.51359136 0.72713068
16 0.78638110 95.18335231 3.37157541 0.65869119
17 0.86538084 95.30115435 3.23334128 0.60012353
18 0.95023617 95.39414060 3.09898564 0.55663758
19 1.04065382 95.45849169 2.96839602 0.53245847
20 1.13610477 95.49144161 2.84164499 0.53080863

Forecast-Error-Variance-Decomposition of INTRATE

Step LOGRGDP LOGIPD INTRATE LOGM1
0 5.42027252 3.31268819 91.26703930 0.00000000
1 10.94019004 7.87636609 81.05495437 0.12848950
2 18.26134257 14.22130426 67.26436138 0.25299179
3 20.57444357 16.58123863 62.62552945 0.21878836
4 20.64631724 18.20284256 60.88370028 0.26713992
5 20.87207637 21.00209886 57.87260109 0.25322368
6 20.71329240 23.00174184 56.01511678 0.26984897
7 20.27446248 24.35718115 55.05529534 0.31306103
8 19.86995618 25.83928816 53.95782506 0.33293059
9 19.49161766 27.11811083 53.03998794 0.35028358

10 19.14044993 28.09659076 52.39252887 0.37043045
11 18.83630836 29.00001813 51.78338966 0.38028385
12 18.57278746 29.82503342 51.21803562 0.38414350
13 18.33843917 30.53077430 50.74468203 0.38610450
14 18.12493824 31.17910672 50.31117022 0.38478482
15 17.92906949 31.79053540 49.89898627 0.38140883
16 17.74856096 32.34774326 49.52617601 0.37751977
17 17.58196584 32.86314409 49.18108967 0.37380040
18 17.42966915 33.34736365 48.85179916 0.37116804
19 17.29159181 33.79429320 48.54390188 0.37021311
20 17.16715560 34.20513951 48.25621211 0.37149279

302 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

Forecast-Error-Variance-Decomposition of LOGM1

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00003596 2.61696900 0.55207316 96.83092188
1 2.07052761 1.61765106 4.74949456 91.56232677
2 5.64105027 1.17657246 6.66647594 86.51590133
3 8.78398544 0.69250568 7.11156399 83.41194489
4 11.09545467 0.51301719 8.62992589 79.76160226
5 12.67436605 0.49040911 9.92503829 76.91018655
6 13.92022258 0.58928693 10.48873090 75.00175960
7 14.81460354 0.68790287 10.89842683 73.59906676
8 15.41114924 0.75651458 11.18561018 72.64672600
9 15.79647531 0.79440488 11.24910571 72.16001409
10 16.01363106 0.78911559 11.20668316 71.99057019
11 16.10233970 0.75486465 11.11537145 72.02742420
12 16.10223806 0.72136139 10.97130974 72.20509081
13 16.03793445 0.72391251 10.80085047 72.43730257
14 15.92483707 0.80625487 10.62409975 72.64480832
15 15.77471444 1.01181595 10.44354184 72.76992776
16 15.59382945 1.38338103 10.26195868 72.76083084
17 15.38443499 1.96129158 10.08053626 72.57373716
18 15.14745095 2.77544540 9.89719258 72.17991106
19 14.88309194 3.84560659 9.70956855 71.56173292
20 14.59151945 5.18202209 9.51533851 70.71111995

NIL

The function VAR-write-fev-decomps-to-LaTeX-file writes the above
forecast-error-variance-decompositions to the file fevmats.tex which can
be processed as a stand-alone LATEX file or embedded as a table in a larger
LATEX document. The function also puts some garbage on the screen

> (VAR-write-fev-decomps-to-LaTex-file varnames)
\\\\\\cccc\\\cccc\
\\cccc\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\cccc\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\
NIL

11.3. IDENTIFICATION 303

The impulse-responses are shown in Figure 17 with the responses mea-
sured in standard-deviation units of the responding variable. Note that the
vertical scale on the upper right panel is greater than the common vertical
scale on the remaining panels. The shocks are one unit shocks, equal to one
standard deviation of the relevant component of the vector et. These results
might give superficial encouragement to those that interpret U.S. monetary
policy as operating through changes in the level at which the Federal Re-
serve sets short-term interest rates. An upward shock to the interest rate
on 1-month commercial paper the lower-left panel is associated with a sub-
sequent negative response of both M1, over which the Fed has some control,
and real GDP. While the Fed operates on the federal funds rate and not on
commercial paper rates, those two interest rates move very closely together.
The argument would be that the Fed announces a tighter policy, causing
short-term rates to rise and then validates that announcement with a subse-
quent decline in M1, resulting in a decline in real GDP. There are, however,
some obvious difficulties with this interpretation. First, as can also be seen
in the lower-left panel, the price level subsequently increases in response to
the positive shock to short-term interest rates at a time when real GDP is
falling. Furthermore, as is evident in the lower-right panel a positive shock
to M1, while causing the price level to rise, leads to a subsequent fall in real
GDP.

The crucial assumption underlying the results in Table 17 is that the
model is assumed to be recursive, with real GDP being unaffected by shocks
to all the other variables in the current quarter, the implicit GDP deflator
being affected only by current-quarter real GDP shocks, along with shocks
to itself, the interest rate being affected only by current-quarter shocks to
real GDP, the GDP deflator and itself, and the M1 variable being affected by
current-quarter shocks to itself and to all the other variables. This implies
that the Fed, in setting monetary policy, pays attention to observed levels
of all of the other variables during the current quarter but its policies have
no current-quarter effects on any of those other variables. An alternative
assumption would be to order the variables in exactly the opposite fashion,
with M1 shocks unaffected by current-quarter shocks to any of the the other
variables, interest rate shocks being affected by current-quarter shocks to it-
self and to M1, price level being affected by current-quarter shocks to itself,
interest rates and base money, and real GDP being affected by current-
quarter shocks to all the variables, including itself. This ordering would
have the Fed basing its current policy only on what is observed in previous
quarters but not on what is happening in the current quarter. Its inability
to use within-quarter information about the other variables could be inter-

304 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Response to RGDP Shock

RGDP
IPD

INTR
M1

-1

0

1

2

3

4

5

6

0 5 10 15 20

Response to Price Level Shock

RGDP
IPD

INTR
M1

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Response to Interest Rate Shock

RGDP
IPD

INTR
M1

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Response to M1

RGDP
IPD

INTR
M1

Figure 17: The responses of the four variables to first period shocks of each.
These responses are measured in standard-deviation units of the responding
variable. The decomposition of Choleski with the variables ordered left-to-
right, top-to-bottom.

11.3. IDENTIFICATION 305

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Response to M1 Shock

M1
INTR

IPD
RGDP

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Response to Interest Rate Shock

M1
INTR

IPD
RGDP

-1

0

1

2

3

4

5

6

0 5 10 15 20

Response to Price Level Shock

M1
INTR

IPD
RGDP

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Response to RGDP Shock

M1
INTR

IPD
RGDP

Figure 18: The responses of the four variables to first period shocks of each.
These responses are measured in standard-deviation units of the responding
variable. The decomposition is Choleski with the variables ordered left-to-
right, top-to-bottom.

306 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

preted as resulting from the lag in the availability of statistics measuring
the levels of those variables.

Figure 18 plots the impulse-responses that arise when we use the reverse
ordering of the variables to that in Figure 17 in the Choleski decomposition.
The results are hardly distinguishable from those in Figure 17 although
it appears that a positive shock to the interest rate now has a stronger
positive effect on real GDP in the current quarter and the one that follows
as compared to that in Figure 17.

It turns out that the impulse-responses will be identical for the two
orderings of the variables if the off-diagonal terms in the matrix Ω are zero.
In fact, we have previously printed out that matrix for the initial ordering
of variables and, for convenience, reproduce that print-out here.

RGDP IPD INTR M1
RGDP 4.152747E-5 -1.213825E-6 1.324442E-5 2.633268E-8
IPD -1.213825E-6 6.725789E-6 3.768801E-6 2.850485E-6
INTR 1.324442E-5 3.768801E-6 7.793083E-5 6.049515E-6
M1 2.633268E-8 2.850485E-6 6.049515E-6 4.643304E-5

It is interesting that the only off-diagonal element that exceeds in magnitude
any of the diagonal elements is the covariance of the log real GDP residuals
with those of the interest rate. But this covariance still falls short of the
variances of the residuals of either of these variables.

11.3.2 Structural Decompositions

The problem with the above analyses is that the system we are trying to
model may not be recursive, making a Choleski decomposition inappropri-
ate. Sims5 and Bernanke6 model the innovations using economic analysis
that postulates non-recursive relationships between the variables.

As in the Choleski decomposition, the object is to extract the coefficients
of G from the variance-covariation matrix of the reduced-form system Ω.
The latter matrix is symmetric with the variances of the shocks along the
diagonal and the covariances in the off-diagonal elements. It thus contains
only (m2 + m)/2 distinct elements, m being the number of variables. We
are therefore able to identify the same number of elements of (I − A0)−1

in G. This is precisely the number of elements identified by the Choleski
5“Christopher Sims, “Are Forecasting Models Usable for Policy Analysis?” Federal

Reserve Bank of Minneapolis Quarterly Review (Winter 1986), 3–16.
6Ben Bernanke, “Alternative Explanations of Money-Income Correlation,” Carnegie-

Rochester Conference Series on Public Policy 25 (1986), 49–100.

11.3. IDENTIFICATION 307

decomposition. In a structural VAR, however, we can place the elements we
want to identify anywhere in the m×m grid in accordance with the dictates
of economic theory.

Bernanke’s paper provides us with a method of exact identification. We
can represent Ω as

Ω = E{utu′t} =
∑

utu′t
n

= M (11.39)

where n is the number of observations. Then, from (11.10) we have

(I−A0)Ω(I−A0)′ = (I−A0)M(I−A0)′ = D. (11.40)

Since D is diagonal, all the off-diagonal elements of the matrix on the left-
hand side must be zero. We can take advantage of this fact to solve for the
elements of A0.

Under our initial Choleski decomposition the matrix A0 was configured
as follows, according to the way the variables were ranked.




0 0 0 0
a21 0 0 0
a31 a32 0 0
a41 a42 a43 0


 =

RGDP IPD INTR M1
RGDP 0 0 0 0
IPD a21 0 0 0
INTR a31 a32 0 0
M1 a41 a42 a43 0

The decomposition identifies six coefficients plus the variances of the resid-
uals of the four equations.

Conventional macroeconomics would suggest that current-quarter real
GDP should be negatively related to the real interest rate in the current as
well as subsequent quarters. Since the real interest rate is the nominal inter-
est rate minus the expected rate of inflation, and our model contains only
the observed nominal interest rate, we might expect that current-quarter
real GDP will also depend on the current-quarter inflation rate since the
latter will affect the expected rate of inflation. It is probably the case, how-
ever, that expectations of future inflation will be based almost entirely on
past inflation experienced with current variations in the inflation rate having
little effect. We could thus express our RGDP equation as

RGDP = a13 INTR + ε1.

It is generally thought that the price level is slow to adjust to aggregate
demand and supply shocks, suggesting that it will be determined entirely by

308 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

what has happened in past quarters. Given the fact that prices in different
industries adjust differently and at different times, there will be current-
period random shocks to the price level.

IPD = ε2

The current-quarter interest rate will depend on that quarter’s demand for
and supply of money. The quantity of money demanded depends on current
output (the volume of transactions), current inflation (which represents an
addition to the nominal volume of transactions) and the cost of holding
money, represented by the rate of interest. The supply of money depends
on the quantity of base money supplied by the authorities together with a
money multiplier (ratio of M1 to base money) that will depend on all of our
other variables. The equation determining the interest rate will thus be of
the form

INTR = a31 RGDP + a32 IPD + a33 INTR + a34 M1 + ε3.

The price level is relevant here because it affects the real stock of money.
Finally, the authorities will try to set the stock of base money at a level
that will produce output and price level stability around full-employment
levels. In doing so, they will pay attention to the current inflation rate,
the current interest rate, and the current deviation of output from its full-
employment level. They will be able to observe current interest rate levels
on a day-by-day basis and can estimate the inflation rate and price level
on a monthly basis. The current levels of the interest rate and prices will
therefore certainly be in their response function. Given the fact that output
growth can really only be estimated on a quarter-by-quarter basis, it would
not seem unreasonable to imagine that the authorities base their monetary
policy on past levels of output rather than current levels that are imprecisely
measured. Under the assumption that M1 is indirectly controlled by the
authorities as a result of their monetary policy, the money equation will
then be

M1 = a42 IPD + a43 INTR + ε4

This implies the following A0 matrix.

RGDP IPD INTR M1
RGDP 0 0 a13 0
IPD 0 0 0 0
INTR a31 a32 0 a34

M1 0 a42 a43 0

11.3. IDENTIFICATION 309

One might be tempted to add parameters to the above matrix, but that
would result in the system being under-determined—all but six non-diagonal
entries must be zero restrictions or we will not be able to solve the system.
Imposing more zero restrictions would make the system over-identified. As
it stands, the system is just-identified with six aij ’s to be solved for.

Letting sij be the ij-th element of M in equation (11.40) and expanding
(I−A0)M (I−A0)′, we obtain




1 0 −a13 0
0 1 0 0

−a31 −a32 1 −a34

0 −a42 −a43 1







s11 s21 s31 s41

s21 s22 s32 s42

s31 s32 s33 s43

s41 a42 s43 s44







1 0 −a31 −a41

0 1 −a32 −a42

−a13 0 1 0
0 0 −a34 1




=




g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44







1 0 −a31 0
0 1 −a32 −a42

−a13 0 1 −a43

0 0 −a34 1




where

g11 = s11 − a13s31

g12 = s21 − a13s32

g13 = s31 − a13s33

g14 = s41 − a13s43

g21 = s21

g22 = s22

g23 = s32

g24 = s42

g31 = −a31s11 − a32s21 + s31 − a34s41

g32 = −a31s21 − a32s22 + s32 − a34s42

g33 = −a31s31 − a32s32 + s33 − a34s43

g34 = −a31s41 − a32s42 + s43 − a34s44

g41 = −a42s21 − a43s31 + s41

g42 = −a42s22 − a43s32 + s42

g43 = −a42s32 − a43s33 + s43

g44 = −a42s42 − a43s43 + s44

310 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

Multiplying together the above two matrices, we then obtain

D =




d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44




where

d11 = g11 − g13a13

= s11 − a31s31 − a13s31 + a2
13s33 (11.41)

d22 = g22 = s22 (11.42)
d33 = − a31g31 − a32g32 + g33 − g34a34

= a2
31s11 + a31a32s21 − a31s31 + a31a34s41

+ a32a31s21 + a2
32s22 − a32s32 + a32a34s42

− a31s31 − a32s32 + s33 − a34s43 + a34a31s41

+ a34a32s42 − a34s43 + a2
34s44 (11.43)

d44 = − a42g42 − a43g43 + g44

= + a2
42s22 + a42a43s32 − a42s42 + a43a42s32 + a2

43s33

− a42s42 − a43s43 + s44 (11.44)
d12 = d21 = g12

= s21 − a13s32 = 0 (11.45)
d13 = d31 = − a31g11 − a32g12 + g13 − a34g14

= − a31s11 + a31a13s31 − a32s21 + a32a13s32

+ s31 − a13s33 − a34s41 + a34a13s43 = 0 (11.46)
d14 = d41 = −a42g12 − a43g13 + g14

= − a42s21 + a42a13s32 − a43s31 + a43a13s33

+ s41 − a13s43 = 0 (11.47)
d23 = d32 = − a31g21 − a32g22 + g23 − a34g24

= −a31s21 − a32s22 + s32 − a34s42 = 0 (11.48)
d24 = d42 = − a42g22 − a43g23 + g24

= − a42s22 − a43s32 + s42 = 0 (11.49)
d34 = d43 = − a31g41 − a32g42 + g43 − a34g44

= a42a31s21 + a42a32s22 − a42s32 + a42a34s42 + a43a31s31

+ a43a32s32 − a43s33 + a43a34s43 − a31s41

− a32s42 + s43 − a34s44 = 0 (11.50)

11.3. IDENTIFICATION 311

The last six of these equations, (11.45) through (11.50) can be solved for
a13, a31, a32, a34, a42 and a43. This gives us an estimate of the matrix A0

and, by matrix substitution, I −A0. These solutions for the aij can then
be plugged into equations (11.41) through (11.44) to obtain the diagonal
elements d11, d22, d33 and d44 and, hence, the matrix D.

Calculation of (I−A0) by itself is insufficient to obtain the matrix G
and the impulse-response functions. The matrix (I−A0) has to be scaled to
reduce D to an identity matrix to ensure that the orthogonalized residuals
have unit variance. Thus,

G = (I−A0)−1 D1/2

= (I− Ã0)−1 (11.51)

where Ã0 is the representation of A0 for which the et have unit variance.
The task now at hand is to solve the above equations for the matrices

A0 and D. First, note from (11.45) that

a13 =
s21

s32
.

This value of a13 enables us to identify the magnitudes of g11, g12, g13 and
g14. Equations (11.47) and (11.49) form the following two-equation system
in a42 and a43,

g12 a42 + g13 a43 = g14 (11.52)
s22 a42 + s32 a43 = s42 (11.53)

When this system is solved for a41 and a42 we can then obtain the mag-
nitudes of g41, g42, g43 and g44 which, when substituted along with the
earlier-determined gij into (11.46) and (11.50) form with equation (11.48)
the following three-equation system in a31, a32 and a33.

g11 a31 + g12 a32 + g14 a34 = g13 (11.54)
s21 a31 + s22 a32 + s42 a34 = s32 (11.55)
g41 a31 + g42 a32 + g44 a34 = g43 (11.56)

Once this system is solved, the solutions for d11, d22, d33 and d44 can be
obtained by substitution.

To perform the structural-decomposition we have to write a function
that makes the above calculations. Since each individual problem will re-
quire a unique function, there is no point in copying our function to the

312 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

file addfuncs.lsp. Rather, we copy it to a separate file strucdec.lsp so
that it can be used as a template for calculating future functions to perform
other just-identified structural-decompositions. Of course, our function has
to be included a the batch file that contains the code for the particular VAR
analysis we are performing. For the above problem, the function is shown
below—we always name it VAR-calc-Gmat-just-identified so that it can
be called by that name in other functions included in addfuncs.lsp that
will use it. There is no need to include in the function’s definition a descrip-
tion of what the function does because it will never need to be accessed in
response to a help command.

(defun VAR-calc-Gmat-just-identified()
(def A0mat (make-array ’(4 4) :initial-element 0))
(setf (aref A0mat 0 2)(/ (aref omega 1 0)(aref omega 2 1)))
(def a13 (/ (aref omega 1 0)(aref omega 2 1)))
(def g11 (- (aref omega 0 0)(* a13 (aref omega 2 0))))
(def g12 (- (aref omega 1 0)(* a13 (aref omega 2 1))))
(def g13 (- (aref omega 2 0)(* a13 (aref omega 2 2))))
(def g14 (- (aref omega 3 0)(* a13 (aref omega 3 2))))
;
(def sys1 (make-array ’(2 2) :initial-element 0))
(setf (aref sys1 0 0) g12)
(setf (aref sys1 0 1) g13)
(setf (aref sys1 1 0)(aref omega 1 1))
(setf (aref sys1 1 1)(aref omega 2 1))
(def con1 (bind-columns (list g14 (aref omega 3 1))))
;
(def a4243 (matmult (inverse sys1) con1))
(setf (aref A0mat 3 1)(aref a4243 0 0))
(setf (aref A0mat 3 2)(aref a4243 1 0))
(def a42 (aref a4243 0 0))
(def a43 (aref a4243 1 0))
;
(def g41 (- (aref omega 3 0)(* a42 (aref omega 1 0))
(* a43 (aref omega 2 0))))
(def g42 (- (aref omega 3 1)(* a42 (aref omega 1 1))
(* a43 (aref omega 2 1))))
(def g43 (- (aref omega 3 2)(* a42 (aref omega 2 1))
(* a43 (aref omega 2 2))))
(def g44 (- (aref omega 3 3)(* a42 (aref omega 3 1))
(* a43 (aref omega 3 2))))
;

11.3. IDENTIFICATION 313

(def sys2 (make-array ’(3 3) :initial-element 0))
(setf (aref sys2 0 0) g11)
(setf (aref sys2 0 1) g12)
(setf (aref sys2 0 2) g14)
(setf (aref sys2 1 0)(aref omega 1 0))
(setf (aref sys2 1 1)(aref omega 1 1))
(setf (aref sys2 1 2)(aref omega 3 1))
(setf (aref sys2 2 0) g41)
(setf (aref sys2 2 1) g42)
(setf (aref sys2 2 2) g44)
(def con2 (bind-columns (list g13 (aref omega 2 1) g43)))
(def a313234 (matmult (inverse sys2) con2))
;
(setf (select A0mat 2 0)(select a313234 0 0))
(setf (select A0mat 2 1)(select a313234 1 0))
(setf (select A0mat 2 3)(select a313234 2 0))
;
(def a31 (select A0mat 2 0))
(def a32 (select A0mat 2 1))
(def a34 (select A0mat 2 3))
;
(def g31 (- (select omega 2 0)(* a31 (aref omega 0 0))
(* a32 (aref omega 1 0))(* a34 (aref omega 3 0))))
(def g32 (- (select omega 2 1)(* a31 (aref omega 1 0))
(* a32 (aref omega 1 1))(* a34 (aref omega 3 1))))
(def g33 (- (select omega 2 2)(* a31 (aref omega 2 0))
(* a32 (aref omega 2 1))(* a34 (aref omega 3 2))))
(def g34 (- (select omega 3 2)(* a31 (aref omega 3 0))
(* a32 (aref omega 3 1))(* a34 (aref omega 3 3))))
;
(def Dmat (make-array ’(4 4) :initial-element 0))
(setf (aref Dmat 0 0)(- g11 (* g13 a13)))
(setf (aref Dmat 1 1)(aref omega 1 1))
(setf (aref Dmat 2 2)(- g33 (* a31 g31)(* a32 g32)(* a34 g34)))
(setf (aref Dmat 3 3)(- g44 (* a42 g42)(* a43 g43)))
;
(def Imat (identity-matrix 4))
(def I-A0mat (- Imat A0mat))
(def Gmat (matmult (inverse I-A0mat)(^ Dmat (/ 1 2))))
) ; end function

314 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

The function leaves the aptly-named objects A0mat, Dmat, I-A0mat and Gmat
in the workspace for future use.

After setting up a batch file to read our data into the workspace and
modify it appropriately (the code used is the same as that applied earlier in
this chapter), we add the above function to it, along with lines calling the
VAR-setup and VAR-MA-representation functions and the new func-
tion VAR-calc-Gmat-just-identified. This involves three lines of code in
addition to the above code defining VAR-calc-Gmat-just-identified.

(VAR-setup varlist 6 newdates 1965 2005.75)
(VAR-MA-representation 20)
(VAR-calc-Gmat-just-identified)

When we run the batch file we obtain the following results:

XLISP-PLUS version 3.04
Portions Copyright (c) 1988, by David Betz.
Modified by Thomas Almy and others.
XLISP-STAT Release 3.52.14 (Beta).
Copyright (c) 1989-1999, by Luke Tierney.

; loading vartest.lsp
; loading addfuncs.lsp
; loading causdat.lsp
>

Nothing is printed but we can now work interactively to have a look at the
important objects now in the workspace.

> (write-matrix A0mat)
0.000 0.000 -0.322 0.000
0.000 0.000 0.000 0.000
0.837 0.705 0.000 0.015
0.000 0.395 0.052 0.000

NIL
> (write-matrix Dmat)

0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000

NIL

11.3. IDENTIFICATION 315

> (print-matrix Dmat)
#2a(

(5.814258E-5 0 0 0)
(0 6.725789E-6 0 0)
(0 0 8.132176E-5 0)
(0 0 0 4.496747E-5)

)
NIL
> (write-matrix I-A0mat)

1.000 0.000 0.322 0.000
0.000 1.000 0.000 0.000

-0.837 -0.705 1.000 -0.015
0.000 -0.395 -0.052 1.000

NIL
> (write-matrix Gmat)

0.006 -0.001 -0.002 -0.000
0.000 0.003 0.000 0.000
0.005 0.001 0.007 0.000
0.000 0.001 0.000 0.007

NIL
> (print-matrix Gmat)
#2a(

(6.005555E-3 -4.680417E-4 -2.289328E-3 -2.629827E-5)
(0.000000 2.593413E-3 0.000000 0.000000)
(5.028605E-3 1.453221E-3 7.108125E-3 8.165341E-5)
(2.589743E-4 1.099125E-3 3.660700E-4 6.709984E-3)

)
NIL

When there are suspiciously located zeros, or very small numbers, in a matrix
printed by the write-matrix function it is best to also print it using the
print-matrix function.

I have written a function called VAR-check-struct-decomp, which
takes no arguments, to check the calculations above and similar calculations
for other structural-decompositions. This function uses the Gmat object pro-
duced above to recalculate Dmat using the omega object previously in mem-
ory and then recalculates a new version of omega. The new and old Dmat and
omega objects are printed on the screen—if they are not identical, calcula-
tion errors were made in constructing the Var-calc-Gmat-just-identified
function. We can now check our results.

316 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

> (VAR-check-struct-decomp)

G matrix is
#2a(

(6.005555E-3 -4.680417E-4 -2.289328E-3 -2.629827E-5)
(0.000000 2.593413E-3 0.000000 0.000000)
(5.028605E-3 1.453221E-3 7.108125E-3 8.165341E-5)
(2.589743E-4 1.099125E-3 3.660700E-4 6.709984E-3)
)

D =
#2a(

(5.814258E-5 0 0 0)
(0 6.725789E-6 0 0)
(0 0 8.132176E-5 0)
(0 0 0 4.496747E-5)
)

Check D =
#2a(

(5.814258E-5 -5.014782E-23 -6.856784E-21 0.000000)
(-5.014782E-23 6.725789E-6 2.421733E-22 4.235165E-22)
(-2.769401E-21 2.421733E-22 8.132176E-5 8.470329E-22)
(7.341228E-24 4.235165E-22 5.738565E-24 4.496747E-5)
)

omega =
#2a(

(4.152747E-5 -1.213825E-6 1.324442E-5 2.633268E-8)
(-1.213825E-6 6.725789E-6 3.768801E-6 2.850485E-6)
(1.324442E-5 3.768801E-6 7.793083E-5 6.049515E-6)
(2.633268E-8 2.850485E-6 6.049515E-6 4.643304E-5)
)

Check omega =
#2a(

(4.152747E-5 -1.213825E-6 1.324442E-5 2.633268E-8)
(-1.213825E-6 6.725789E-6 3.768801E-6 2.850485E-6)
(1.324442E-5 3.768801E-6 7.793083E-5 6.049515E-6)
(2.633268E-8 2.850485E-6 6.049515E-6 4.643304E-5)
)

NIL

11.3. IDENTIFICATION 317

Having established that our calculation of Gmat is correct, we now pro-
duce the impulse-responses and forecast-error-decompositions that result
from our structural decomposition. I have written the function VAR-
extend-struct-decomp to do this. The function takes three arguments.
The first argument takes the value 1 if we want the impulse-responses and
forecast-error-decompositions plotted and zero otherwise. The second takes
the value 1 if we want these results written to the screen and 0 otherwise.
And the final argument is a list of strings giving the names of the variables,
ordered in the same way as when the matrix Gmat was calculated. We can
now apply this function.

> (VAR-extend-struct-decomp 0 1 varnames)

Forecast-Error-Variance-Decomposition of LOGRGDP

Step LOGRGDP LOGIPD INTRATE LOGM1
0 86.85020600 0.52751349 12.62061510 0.00166540
1 88.42419356 0.25312215 10.34975500 0.97292929
2 80.20752862 0.17850627 18.47318720 1.14077792
3 68.75973554 1.05734263 26.76338126 3.41954056
4 58.98310099 2.79249809 32.24130083 5.98310009
5 47.63590148 5.06139238 38.05709231 9.24561383
6 38.01533934 7.16619385 42.72063845 12.09782835
7 31.27377937 9.32912303 45.07026275 14.32683485
8 26.48882624 11.04137479 46.33135765 16.13844132
9 23.11910657 12.26463067 47.07040397 17.54585878

10 20.79911051 13.26134764 47.30116585 18.63837600
11 19.14905112 14.00679030 47.33741487 19.50674371
12 17.92676798 14.51181158 47.36359817 20.19782227
13 17.00292852 14.87860024 47.37207724 20.74639401
14 16.28584906 15.13800351 47.39345260 21.18269484
15 15.71421978 15.29741578 47.46506613 21.52329831
16 15.25315670 15.38932123 47.57588683 21.78163523
17 14.87860657 15.43298559 47.71705501 21.97135283
18 14.57208915 15.43428100 47.89086678 22.10276306
19 14.32094403 15.40381680 48.09010010 22.18513908
20 14.11560552 15.35041245 48.30624972 22.22773231

318 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

Forecast-Error-Variance-Decomposition of LOGIPD

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00000000 100.00000000 0.00000000 0.00000000
1 0.10163652 98.40347708 1.41160939 0.08327701
2 0.39843500 97.01426988 2.50239885 0.08489627
3 1.04839695 96.21704356 2.56006784 0.17449165
4 1.71957019 95.29396657 2.64156259 0.34490065
5 2.27828701 94.48268001 2.69831337 0.54071960
6 2.70760384 93.94804626 2.63765895 0.70669095
7 3.04335025 93.57084081 2.54487710 0.84093184
8 3.30725171 93.31629327 2.43791761 0.93853741
9 3.51043693 93.18641974 2.30900337 0.99413996
10 3.67170016 93.14304010 2.17326524 1.01199450
11 3.80620502 93.15700554 2.03940607 0.99738338
12 3.92328031 93.21334848 1.90722375 0.95614746
13 4.03082378 93.29399625 1.77910813 0.89607184
14 4.13468378 93.38280813 1.65733389 0.82517420
15 4.23792284 93.46903005 1.54210846 0.75093865
16 4.34231065 93.54357597 1.43370462 0.68040876
17 4.44877450 93.59883013 1.33255854 0.61983683
18 4.55719485 93.62954683 1.23876627 0.57449205
19 4.66685739 93.63207893 1.15241359 0.54865009
20 4.77680188 93.60393954 1.07368324 0.54557533

Forecast-Error-Variance-Decomposition of INTRATE

Step LOGRGDP LOGIPD INTRATE LOGM1
0 32.44783585 2.70990389 64.83370488 0.00855538
1 41.10848917 6.54877182 52.24816146 0.09457754
2 48.01553143 11.90989236 39.86138853 0.21318768
3 50.84706902 13.92864153 35.02591548 0.19837397
4 51.05641150 15.41875303 33.25860510 0.26623037
5 50.75115159 18.01062892 30.98231383 0.25590565
6 50.16387384 19.89860303 29.66077840 0.27674473
7 49.38554904 21.21909122 29.07009375 0.32526599
8 48.55178029 22.67594181 28.42491830 0.34735960
9 47.76609832 23.95155047 27.91617530 0.36617591
10 47.06329157 24.94744321 27.60130002 0.38796520

11.3. IDENTIFICATION 319

11 46.42391583 25.87385170 27.30349432 0.39873815
12 45.85064462 26.72324327 27.02301911 0.40309300
13 45.34129368 27.45384076 26.79936958 0.40549598
14 44.87716943 28.12461520 26.59381577 0.40439959
15 44.45241947 28.75451193 26.39203987 0.40102873
16 44.06728898 29.32659271 26.20909304 0.39702527
17 43.71646334 29.85330862 26.03717170 0.39305634
18 43.39665605 30.34531103 25.86798981 0.39004310
19 43.10769082 30.79720565 25.70649419 0.38860934
20 42.84715093 31.21078037 25.55274142 0.38932728

Forecast-Error-Variance-Decomposition of LOGM1

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.14443955 2.60175888 0.28860327 96.96519829
1 4.21362076 1.80844958 2.65626984 91.32165981
2 9.37723066 1.49258840 2.91806640 86.21211454
3 13.43746092 0.90958238 2.53374239 83.11921431
4 17.07612321 0.61777389 2.85798782 79.44811508
5 19.71994162 0.48957934 3.21147561 76.57900343
6 21.59050218 0.48099902 3.26002182 74.66847698
7 22.93754984 0.49949477 3.29837790 73.26457749
8 23.84393101 0.51420148 3.33070144 72.31116607
9 24.36159154 0.51835409 3.29364029 71.82641408

10 24.60294212 0.50071931 3.23657530 71.65976327
11 24.64902181 0.47265493 3.17896489 71.69935837
12 24.54840848 0.45846645 3.11264582 71.88047925
13 24.34824425 0.48974631 3.04537687 72.11663257
14 24.08233746 0.60653483 2.98287307 72.32825465
15 23.76971578 0.84843180 2.92398036 72.45787207
16 23.42269836 1.25516219 2.86842187 72.45371758
17 23.04786979 1.86457566 2.81560249 72.27195205
18 22.64749262 2.70459189 2.76402067 71.88389482
19 22.22216820 3.79356651 2.71230232 71.27196298
20 21.77205252 5.14077879 2.65912302 70.42804568

320 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

Responses of LOGRGDP to one-standard-deviation shocks to

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00600556 -0.00046804 -0.00228933 -0.00002630
1 0.00636926 0.00001758 -0.00193100 -0.00091788
2 0.00550867 -0.00013681 -0.00395847 -0.00082362
3 0.00365764 -0.00126992 -0.00471251 -0.00211283
4 0.00249900 -0.00203546 -0.00472828 -0.00261853
5 0.00109448 -0.00275412 -0.00573573 -0.00345868
6 -0.00008518 -0.00324250 -0.00644401 -0.00398350
7 -0.00092660 -0.00378009 -0.00646536 -0.00427439
8 -0.00163112 -0.00404468 -0.00665395 -0.00459001
9 -0.00212237 -0.00416138 -0.00684467 -0.00480369
10 -0.00238615 -0.00426346 -0.00673076 -0.00487193
11 -0.00252430 -0.00423625 -0.00661469 -0.00488234
12 -0.00258538 -0.00411745 -0.00654248 -0.00484817
13 -0.00256793 -0.00398800 -0.00637498 -0.00474305
14 -0.00251294 -0.00382715 -0.00619360 -0.00460334
15 -0.00245063 -0.00363438 -0.00605259 -0.00444755
16 -0.00238164 -0.00344579 -0.00589858 -0.00426866
17 -0.00231506 -0.00326123 -0.00574078 -0.00407919
18 -0.00226013 -0.00307456 -0.00560689 -0.00389152
19 -0.00221382 -0.00289665 -0.00547956 -0.00370506
20 -0.00217379 -0.00272885 -0.00535284 -0.00352306

Responses of LOGIPD to one-standard-deviation shocks to

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00000000 0.00259341 0.00000000 0.00000000
1 0.00015290 0.00398844 0.00056981 0.00013840
2 0.00042101 0.00512019 0.00096714 0.00015360
3 0.00089215 0.00652756 0.00108325 0.00035088
4 0.00131294 0.00770043 0.00132117 0.00061626
5 0.00165978 0.00873542 0.00151845 0.00086824
6 0.00194023 0.00967135 0.00158631 0.00105457
7 0.00217788 0.01045558 0.00164060 0.00120504
8 0.00237268 0.01111136 0.00166271 0.00130459
9 0.00252313 0.01167215 0.00162184 0.00133843
10 0.00264733 0.01213226 0.00156120 0.00131714

11.3. IDENTIFICATION 321

11 0.00275528 0.01250411 0.00148914 0.00124152
12 0.00285102 0.01280883 0.00139119 0.00111227
13 0.00294149 0.01305218 0.00128028 0.00093852
14 0.00303078 0.01324173 0.00116475 0.00072757
15 0.00311864 0.01338844 0.00103924 0.00048394
16 0.00320522 0.01349755 0.00090594 0.00021460
17 0.00329021 0.01357273 0.00076886 -0.00007368
18 0.00337161 0.01361889 0.00062626 -0.00037610
19 0.00344753 0.01363903 0.00047789 -0.00068780
20 0.00351654 0.01363478 0.00032538 -0.00100416

Responses of INTRATE to one-standard-deviation shocks to

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00502860 0.00145322 0.00710813 0.00008165
1 0.00705365 0.00313728 0.00669702 -0.00040740
2 0.00704564 0.00435569 0.00285175 -0.00061720
3 0.00715152 0.00415187 0.00419637 0.00036384
4 0.00643583 0.00417644 0.00451647 0.00066847
5 0.00501993 0.00452021 0.00254776 0.00029947
6 0.00405167 0.00407968 0.00224768 0.00045342
7 0.00323896 0.00361211 0.00234337 0.00058816
8 0.00233503 0.00355192 0.00152827 0.00043823
9 0.00168478 0.00329745 0.00117404 0.00040293

10 0.00128454 0.00297133 0.00123825 0.00041705
11 0.00096095 0.00285080 0.00100367 0.00032319
12 0.00076285 0.00273549 0.00083031 0.00024864
13 0.00069691 0.00258015 0.00087242 0.00021670
14 0.00067473 0.00250021 0.00083716 0.00015247
15 0.00068364 0.00244576 0.00077066 0.00008432
16 0.00072920 0.00236915 0.00078037 0.00003746
17 0.00077837 0.00230875 0.00077358 -0.00001485
18 0.00081825 0.00225975 0.00073357 -0.00007154
19 0.00085430 0.00219772 0.00071138 -0.00011935
20 0.00087965 0.00213285 0.00068716 -0.00016556

322 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

Responses of LOGM1 to one-standard-deviation shocks to

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.00025897 0.00109912 0.00036607 0.00670998
1 -0.00252118 0.00124450 -0.00197871 0.00970516
2 -0.00495126 0.00147229 -0.00236184 0.01205098
3 -0.00666264 0.00041777 -0.00213924 0.01347288
4 -0.00812876 -0.00012923 -0.00307617 0.01385441
5 -0.00888037 -0.00059393 -0.00349351 0.01405224
6 -0.00911552 -0.00113571 -0.00315181 0.01392008
7 -0.00901122 -0.00127122 -0.00308123 0.01338607
8 -0.00856638 -0.00122531 -0.00294447 0.01266799
9 -0.00782292 -0.00108183 -0.00249357 0.01190840
10 -0.00695475 -0.00070988 -0.00211432 0.01106116
11 -0.00603599 -0.00017574 -0.00179799 0.01018816
12 -0.00509041 0.00042701 -0.00140471 0.00935575
13 -0.00418336 0.00112155 -0.00105132 0.00855015
14 -0.00334958 0.00188832 -0.00077688 0.00778181
15 -0.00258990 0.00267576 -0.00051600 0.00707477
16 -0.00191345 0.00347858 -0.00028774 0.00642287
17 -0.00132363 0.00429097 -0.00011524 0.00581985
18 -0.00080892 0.00509060 0.00002786 0.00526927
19 -0.00035983 0.00586988 0.00014683 0.00476579
20 0.00003101 0.00662722 0.00023317 0.00430107

Responses in standard-deviation-units
to a one-standard-deviation shock to LOGRGDP

Step LOGRGDP LOGIPD INTRATE LOGM1
0 0.93193458 0.00000000 0.56963002 0.03800520
1 0.98837323 0.05895533 0.79902271 -0.36998954
2 0.85482919 0.16233741 0.79811566 -0.72661109
3 0.56758772 0.34400488 0.81010978 -0.97776167
4 0.38779215 0.50626026 0.72903745 -1.19291904
5 0.16984057 0.63999810 0.56864741 -1.30321948
6 -0.01321889 0.74813588 0.45896440 -1.33772832
7 -0.14378842 0.83977343 0.36690312 -1.32242144

11.3. IDENTIFICATION 323

8 -0.25311447 0.91488881 0.26450788 -1.25714056
9 -0.32934620 0.97290148 0.19084802 -1.14803484

10 -0.37027941 1.02079111 0.14550975 -1.02062924
11 -0.39171746 1.06241297 0.10885406 -0.88579826
12 -0.40119621 1.09933015 0.08641433 -0.74703169
13 -0.39848856 1.13421558 0.07894487 -0.61391952
14 -0.38995506 1.16864502 0.07643190 -0.49156058
15 -0.38028612 1.20252437 0.07744088 -0.38007501
16 -0.36958002 1.23590760 0.08260209 -0.28080380
17 -0.35924817 1.26868088 0.08817270 -0.19424653
18 -0.35072420 1.30006807 0.09268976 -0.11871154
19 -0.34353834 1.32934133 0.09677352 -0.05280595
20 -0.33732579 1.35595103 0.09964464 0.00455088

Responses in standard-deviation-units
to a one-standard-deviation shock to LOGIPD

Step LOGRGDP LOGIPD INTRATE LOGM1
0 -0.07263012 1.00000000 0.16461786 0.16129969
1 0.00272779 1.53791035 0.35538411 0.18263436
2 -0.02123002 1.97430630 0.49340384 0.21606287
3 -0.19706462 2.51697661 0.47031514 0.06130855
4 -0.31586055 2.96922636 0.47309896 -0.01896464
5 -0.42738024 3.36831184 0.51204054 -0.08716026
6 -0.50316682 3.72919784 0.46213743 -0.16666922
7 -0.58658931 4.03159030 0.40917296 -0.18655505
8 -0.62764774 4.28445618 0.40235458 -0.17981765
9 -0.64575731 4.50069116 0.37352833 -0.15876130

10 -0.66159811 4.67810580 0.33658595 -0.10417682
11 -0.65737597 4.82148971 0.32293321 -0.02578977
12 -0.63894043 4.93898562 0.30987084 0.06266448
13 -0.61885252 5.03282025 0.29227397 0.16459106
14 -0.59389241 5.10591033 0.28321903 0.27711588
15 -0.56397875 5.16248059 0.27705042 0.39267556
16 -0.53471328 5.20455274 0.26837252 0.51049187
17 -0.50607344 5.23353993 0.26152994 0.62971235
18 -0.47710644 5.25133992 0.25597978 0.74705929
19 -0.44949909 5.25910594 0.24895339 0.86142171
20 -0.42345944 5.25746850 0.24160525 0.97256312

324 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

Responses in standard-deviation-units
to a one-standard-deviation shock to INTRATE

Step LOGRGDP LOGIPD INTRATE LOGM1
0 -0.35525505 0.00000000 0.80519380 0.05372181
1 -0.29964949 0.21971284 0.75862487 -0.29038165
2 -0.61427066 0.37292148 0.32304014 -0.34660647
3 -0.73128067 0.41769220 0.47535616 -0.31393900
4 -0.73372878 0.50943409 0.51161623 -0.45143695
5 -0.89006270 0.58550246 0.28860466 -0.51268305
6 -0.99997286 0.61166767 0.25461294 -0.46253649
7 -1.00328600 0.63260390 0.26545219 -0.45217934
8 -1.03255095 0.64112955 0.17311959 -0.43210935
9 -1.06214703 0.62537070 0.13299300 -0.36593867
10 -1.04447081 0.60198483 0.14026669 -0.31028266
11 -1.02645890 0.57420138 0.11369417 -0.26386076
12 -1.01525429 0.53643376 0.09405569 -0.20614571
13 -0.98926070 0.49366505 0.09882651 -0.15428447
14 -0.96111524 0.44912054 0.09483130 -0.11400963
15 -0.93923270 0.40072158 0.08729873 -0.07572379
16 -0.91533446 0.34932403 0.08839882 -0.04222699
17 -0.89084653 0.29646598 0.08762921 -0.01691197
18 -0.87006963 0.24148170 0.08309707 0.00408922
19 -0.85031138 0.18427148 0.08058336 0.02154750
20 -0.83064718 0.12546274 0.07784053 0.03421884

Responses in standard-deviation-units
to a one-standard-deviation shock to LOGM1

Step LOGRGDP LOGIPD INTRATE LOGM1
0 -0.00408093 0.00000000 0.00924953 0.98470909
1 -0.14243616 0.05336552 -0.04614985 1.42425900
2 -0.12780826 0.05922796 -0.06991545 1.76851553
3 -0.32786649 0.13529538 0.04121531 1.97718329
4 -0.40633970 0.23762363 0.07572273 2.03317364
5 -0.53671375 0.33478564 0.03392359 2.06220649
6 -0.61815517 0.40663355 0.05136288 2.04281079

11.3. IDENTIFICATION 325

7 -0.66329510 0.46465539 0.06662574 1.96444341
8 -0.71227239 0.50303946 0.04964149 1.85906342
9 -0.74543066 0.51608705 0.04564293 1.74759079

10 -0.75602008 0.50787787 0.04724236 1.62325580
11 -0.75763483 0.47872126 0.03661039 1.49514185
12 -0.75233294 0.42888253 0.02816572 1.37298328
13 -0.73602073 0.36188714 0.02454686 1.25475841
14 -0.71434040 0.28054716 0.01727140 1.14200294
15 -0.69016595 0.18660238 0.00955213 1.03824237
16 -0.66240478 0.08274759 0.00424286 0.94257411
17 -0.63300404 -0.02841092 -0.00168238 0.85407910
18 -0.60388051 -0.14502170 -0.00810370 0.77328064
19 -0.57494615 -0.26521049 -0.01351975 0.69939367
20 -0.54670350 -0.38719642 -0.01875449 0.63119354

NIL

The responses of all the variables, in own standard-deviation units, to
shocks to each variable in turn are plotted in Figure 19. A careful comparison
of that figure with Figure 17 reveals that the two decompositions result in
much the same pattern of impulse responses, the important exception being
that in the initial period real GDP falls in response to an interest rate shock
in Figure 19, whereas it is unaffected in the current period in Figure 17.

An alternative way of doing structural-decompositions that can produce
a satisfactory result even when the system is over-determined—implying, in
our example above, more than 10 zero entries and less than six parameter
entries in the A0 matrix—is to maximize the log likelihood function

log|I− Ā0|2 −
m∑

i=1

log [(I− Ā0)M(I− Ā0)′]ii

where M is the matrix omega left in the workspace by the VAR-MA-
representation function and Ā0 is the measure of A0 to be achieved by
the maximisation process.

To perform this estimation we need to write another function, which will
again be specific to the maximisation problem at hand, that can be used
with either the newtonmax function or the nelmeadmax function provided in
XLispStat. This function, which we will call varstd, is also saved as a tem-
plate in the file strucdec.lsp from where it can be modified appropriately
and used again in other situations.

326 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Response to RGDP Shock

RGDP
IPD

INTR
M1

-1

0

1

2

3

4

5

6

0 5 10 15 20

Response to Price Level Shock

RGDP
IPD

INTR
M1

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Response to Interest Rate Shock

RGDP
IPD

INTR
M1

-1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20

Response to M1 Shock

RGDP
IPD

INTR
M1

Figure 19: The responses of the four variables to first period shocks of each.
These responses are measured in standard-deviation units of the responding
variable. The decomposition is structural with the A0 matrix given in the
text.

11.3. IDENTIFICATION 327

(defun varstd (theta)
(let* ((alf02 (select theta 0))

(alf20 (select theta 1))
(alf21 (select theta 2))
(alf23 (select theta 3))
(alf31 (select theta 4))
(alf32 (select theta 5))
) ; first end of let*
(def alfmat (make-array ’(4 4) :initial-element 0))
(def idmat (identity-matrix numvars))
(setf (aref alfmat 0 2) alf02)
(setf (aref alfmat 2 0) alf20)
(setf (aref alfmat 2 1) alf21)
(setf (aref alfmat 2 3) alf23)
(setf (aref alfmat 3 1) alf31)
(setf (aref alfmat 3 2) alf32)
(def thetmat (- idmat alfmat))

(- (log (^ (determinant thetmat) 2))
(sum (log (diagonal (matmult thetmat omega (transpose thetmat))))))
) ; second end of let*

) ; end of function varstd

We then call a function I wrote, called VAR-maxlike-calc-Gmat, which
calls the above varstd function and requires in the workspace a list called
thetlist giving initial values of the A0 elements to be determined, ordered
left-to-right, row-by-row, top-to-bottom. To obtain this list from the object
A0mat left in the workspace by the just-identified structural-decomposition
above we call another function I wrote, VAR-calc-thetlist, which takes
no arguments. The function VAR-maxlike-calc-Gmat takes a single ar-
gument, zero if the newtonmax function is to be applied or unity if the
nelmeadmax function is to be applied instead. The best procedure is to try
to find optimum first using the newtonmax function and resort to the other
function if these initial efforts fail.

> (VAR-calc-thetlist 0)
THETLIST
> THETLIST
(-0.3220719938737918 0.8366593493548039 0.70479833203939
0.015448039667841666 0.3949559732790447 0.05150022412303335)

328 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

> (VAR-maxlike-calc-Gmat 0)
maximizing...
Iteration 0.
Criterion value = 41.5648
Iteration 1.
Backtracking: lambda = 0.333018
Backtracking: lambda = 0.126635
Backtracking: lambda = 5.096508E-2
Backtracking: lambda = 2.132702E-2
Backtracking: lambda = 8.158968E-3
Criterion value = 41.5648
Reason for termination: gradient size is less than gradient tolerance.

1.000 0.000 0.322 0.000
0.000 1.000 0.000 0.000

-0.837 -0.705 1.000 -0.015
0.000 -0.394 -0.051 1.000

Standard errors of non-Zero off-diagonal elements
reading left-to-right, top-to-bottom:

(3.7102328899057184 5.303684719856929 2.7403274100994377 1.6461184700385827
1.90341308910964 0.9444339152214692)
A0MAT

The result is an estimate of the A0 matrix that should be identical to the
one previously calculated plus a list of standard-errors of the elements in
that matrix estimated. The magnitudes of these standard errors suggests
that none of the estimated elements of A0 are significantly different from
zero. It is to obtain these standard-errors that we should always call the
VAR-calc-thetlist and VAR-maxlike-calc-Gmat functions after doing
a just-identified structural decomposition.

It is tempting to forego the initial just-identified structural decomposi-
tion and simply rely on maximum likelihood estimation, arbitrarily setting
thetlist as a list of zeros or ones.

> (def thetlist (list 0 0 0 0 0 0))
THETLIST
> (VAR-maxlike-calc-Gmat 0)
maximizing...
Iteration 0.

11.3. IDENTIFICATION 329

Criterion value = 41.4359
Iteration 1.
Criterion value = 41.5558
Iteration 2.
Backtracking: lambda = 0.259378
Criterion value = 41.5620
Iteration 3.
Criterion value = 41.5642
Iteration 4.
Criterion value = 41.5648
Iteration 5.
Criterion value = 41.5648
Iteration 6.
Criterion value = 41.5648
Reason for termination: gradient size is less than gradient tolerance.

1.000 0.000 0.322 0.000
0.000 1.000 0.000 0.000
-0.837 -0.705 1.000 -0.015
0.000 -0.394 -0.051 1.000

Standard errors of non-Zero off-diagonal elements
reading left-to-right, top-to-bottom:

(#C(0.0 1.0343693636602518) #C(0.0 1.9575078619747457) 1.9446540242557864
#C(0.0 3.3416950133122287) 1.6567713599448393 #C(0.0 1.9949100906025918))
A0MAT

We get the correct values for the matrix elements, yet all but one of the stan-
dard errors are imaginary numbers. Application of the nelmeadmax function
by using 1 instead of 0 as the argument in VAR-maxlike-calc-Gmat yields
an identical result. Alternatively, if we initialise all the elements of thetlist
at unity we get garbage with the newtonmax application, the iteration limit
having been exceeded.

> (def thetlist (list 1 1 1 1 1 1))
THETLIST
(VAR-maxlike-calc-Gmat 0)
maximizing...
Iteration 0.
Criterion value = 39.1633

330 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

Iteration 1.
Criterion value = 39.7078
Iteration 2.
Criterion value = 40.0347
Iteration 3.
Criterion value = 40.2609
Iteration 4.
Criterion value = 40.5031
Iteration 5.
Criterion value = 40.9342
Iteration 6.
Backtracking: lambda = 0.492226
Criterion value = 41.1692
Iteration 7.
Criterion value = 41.3788
Iteration 8.
Criterion value = 41.4693
.....
.....
Iteration 97.
Criterion value = 41.5373
Iteration 98.
Criterion value = 41.5373
Iteration 99.
Criterion value = 41.5373
Iteration 100.
Criterion value = 41.5373
Reason for termination: iteration limit exceeded.

1.000 0.000 -1377.261 0.000
0.000 1.000 0.000 0.000

-5.445 -1.529 1.000 -0.034
0.000 -0.389 -0.058 1.000

Standard errors of non-Zero off-diagonal elements
reading left-to-right, top-to-bottom:

(0.3249537545448562 0.4451422015073173 3.1926068278714554
0.46089240276344035 3.256804838519031 0.3375676002252116)
NIL

11.3. IDENTIFICATION 331

The following error message, indicating an attempt to divide by zero, results
when nelmeadmax is applied.

Error: illegal zero argument
Happened in: #<Subr-LOG: #8135408>

Even if we do not feel that a sufficient number of the off-diagonal elements of
A0 should be non-zero to make the system just-identified, we should always
start with a just-identified case so that the global (rather than a local)
maximum can be found for that case. Then we can experiment with an
over-identified estimation by setting additional elements to zero while using
the remaining elements of our just-identified thetmat as initial values for the
maximum-likelihood estimation. In the case at hand, for example, it would
seem that elements (1,3) and (3,1) should be non-zero to reflect the evident
clear relationship between interest rates and real GDP and that the element
(4,3) should be non-zero on the grounds that the monetary authority will
certainly observe market interest rates within-period. This requires that we
eliminate (or comment out) all lines in our varstd function relating to those
entries that we now want to set equal to zero and make sure that the theta
entries are numbered contiguously. When we do this, our varstd function
becomes

(defun varstd (theta)
(let* ((alf02 (select theta 0))

(alf20 (select theta 1))
; (alf21 (select theta 2))
; (alf23 (select theta 3))
; (alf31 (select theta 4))

(alf32 (select theta 2))
) ; first end of let*
(def alfmat (make-array ’(4 4) :initial-element 0))
(def idmat (identity-matrix numvars))
(setf (aref alfmat 0 2) alf02)
(setf (aref alfmat 2 0) alf20)

; (setf (aref alfmat 2 1) alf21)
; (setf (aref alfmat 2 3) alf23)
; (setf (aref alfmat 3 1) alf31)

(setf (aref alfmat 3 2) alf32)
(def thetmat (- idmat alfmat))

;
(- (log (^ (determinant thetmat) 2))

332 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

(sum (log (diagonal (matmult thetmat omega (transpose thetmat))))))
) ; second end of let*

) ; end of function varstd

and we reset thetlist by eliminating the third, fourth and fifth entries of
the original list and rerun the VAR-maxlike-calc-Gmat function

> (def thetlist (list -0.3220719938737918 0.8366593493548039
0.05150022412303335))
THETLIST
> (VAR-maxlike-calc-Gmat 0)
maximizing...
Iteration 0.
Criterion value = 41.5006
Iteration 1.
Backtracking: lambda = 0.100000
Backtracking: lambda = 1.000000E-2
Backtracking: lambda = 1.000000E-3
Criterion value = 41.5006
Iteration 2.
Criterion value = 41.5018
Iteration 3.
Backtracking: lambda = 0.326219
Criterion value = 41.5018
Iteration 4.
Backtracking: lambda = 0.481460
Criterion value = 41.5018
Iteration 5.
Backtracking: lambda = 0.430707
Criterion value = 41.5018
Iteration 6.
Backtracking: lambda = 0.374482
Criterion value = 41.5018
...
...
...
Iteration 79.
Backtracking: lambda = 0.327214
Criterion value = 41.5018
Iteration 80.
Backtracking: lambda = 0.327436

11.3. IDENTIFICATION 333

Criterion value = 41.5018
Iteration 81.
Backtracking: lambda = 0.323776
Criterion value = 41.5018
Reason for termination: gradient size is less than gradient tolerance.

1.000 0.000 0.867 0.000
0.000 1.000 0.000 0.000
-1.523 0.000 1.000 0.000
0.000 0.000 -0.077 1.000

Standard errors of non-Zero off-diagonal elements
reading left-to-right, top-to-bottom:

(#C(0.0 45.668017134873985) #C(0.0 66.60451111932105) 0.5439894547366717)

Two of the three standard errors are imaginary numbers! Using the nelmead-
max function gives the same result.

If we impose zero restrictions on all coefficients except that giving the
effect of the interest rate on real GDP we get a maximum, again with a high
standard-error. The batch code is

(defun varstd (theta)
(let* ((alf02 (select theta 0))

) ; first end of let*
(def alfmat (make-array ’(4 4) :initial-element 0))
(def idmat (identity-matrix numvars))
(setf (aref alfmat 0 2) alf02)
(def thetmat (- idmat alfmat))
(- (log (^ (determinant thetmat) 2))
(sum (log (diagonal (matmult thetmat omega
(transpose thetmat))))))
) ; second end of let*

) ; end of function varstd
(def thetlist (list -0.3220719938737918))
(VAR-maxlike-calc-Gmat 0)

334 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

and the results are

maximizing...
Iteration 0.
Criterion value = 41.0994
Iteration 1.
Backtracking: lambda = 0.380734
Criterion value = 41.4882
Iteration 2.
Criterion value = 41.4916
Iteration 3.
Criterion value = 41.4916
Reason for termination: gradient size is less than gradient tolerance.

1.000 0.000 -0.170 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000

Standard errors of non-Zero off-diagonal elements
reading left-to-right, top-to-bottom:

(1.030853703517676)
A0MAT
>

The single coefficient is not statistically significant. The uniformly high
standard-errors in the above structural decompositions suggest that there is
no significant current-period interaction among the variables, which is con-
sistent with the fact that the impulse-responses obtained from the Choleski-
decompositions were little affected by the ordering of the variables.

We can impose zero current-period interaction among the variables by
setting all elements of A0 equal to zero, in which case I−A0 = I and
G = D1/2. The results can be obtained with a few lines of code in the batch
file after reading in and setting up the data.

(VAR-setup varlist 6 newdates 1965 2005.75)
(VAR-run-standard-form varlist 6 newdates 1965 2005.75)
(VAR-MA-representation 20)
(def Gmat (diagonal (sqrt (diagonal omega))))
(VAR-extend-struct-decomp 0 1 varnames)

The impulse-responses are plotted in Figure 20. They differ from those in
Figure 18 and Figure 19 primarily in their levels in period 0.

11.3. IDENTIFICATION 335

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

Response to RGDP Shock

RGDP
IPD

INTR
M1

-1

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20

Response to Price Level Shock

RGDP
IPD

INTR
M1

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

Response to Interest Rate Shock

RGDP
IPD

INTR
M1

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20

Response to M1 Shock

RGDP
IPD

INTR
M1

Figure 20: The responses of the four variables to first period shocks of
each. These responses are measured in standard-deviation units of the re-
sponding variable. The decomposition is structural with all current-period
interactions of the variables set equal to zero.

336 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

11.3.3 Blanchard-Quah Decompositions

For certain types of problems it is useful to decompose Ω by a method de-
veloped by Blanchard and Quah.7 Their method assumes a two variable
VAR with two equations and two types of shock, real and nominal, that
are statistically independent of each other and affect both equations. Here
we take the two variables to be the real and nominal exchange rates. A
Blanchard-Quah decomposition identifies the real and nominal shocks un-
der the assumption that one type of shock, in our case the nominal shock,
has a temporary but no permanent effect on the level of one of the variables,
in our case the real exchange rate, and a permanent effect on the level of
the other variable, the nominal exchange rate. The other type of shock,
a real shock, has permanent effects on the levels of both variables. Nei-
ther the real nor the nominal shocks have permanent long-run effects on the
first differences of either of the variables. Decomposition is accomplished
by imposing one restriction on the two-variable VAR—the restriction, in
our case, that nominal shocks can have no permanent effects on the level
of the real exchange rate. In using the Blanchard-Quah method, our inter-
est is directed more toward decomposition of the standard-form errors into
orthogonal structural errors than to obtaining the elements of the matrix
A0.

We are still interested in the matrix G which will reduce the moving av-
erage representation (11.16) to (11.17) and in particular enable us to obtain
the orthogonal errors

et−j = G−1ut−j .

Now, however, the identifying restriction is that the sum of the upper left
corner elements of the (now 2 × 2) matrices Z0 = C0G, Z1 = C1G, Z2 =
C2G, · · · · · · , Zn = CnG, be equal to zero. This assumes that the real
exchange rate equation is the first equation and that the nominal shock is
the first shock. Had we wanted to assume that the nominal shock is the
second shock the identifying restriction would have been that the sum of
the upper right corner elements of the above matrices is zero. There is no
requirement that the nominal shock be identified with the nominal exchange
rate variable. The statistical results will be the same whether the nominal
shock is the first or the second shock.

The sum of the matrices C0, C1, C2, · · · · · · , etc. can be obtained
by calculating the sum of the corresponding elements in equation (11.15)

7Olivier Jean Blanchard and Danny Quah, “The Dynamic Effects of Aggregate Demand
and Supply Disturbances,” American Economic Review, 79, September 1989, 655–73.

11.3. IDENTIFICATION 337

using the relationship

S = Imp + B + B 2 + B 3 + B 4 + · · · · · · · · · · · ·
= (Imp − B)−1. (11.57)

and stripping off the upper-left 2 × 2 matrix of elements from S using the
(now 2×2p) matrix J used to obtain equation (11.11) from equation (11.17).
We thus obtain

S = JSJ ′. (11.58)

The Blanchard-Quah condition is that the upper left element of the 2 × 2
matrix SG (which is the sum of the upper-left elements of the Cj matrices
after each has been post-multiplied by G) be zero.

In addition, the G matrix must have the property GG′ = Ω. A Choleski
decomposition of Ω produces a matrix with this property, as does the trans-
formation of (I−A)−1 by (11.51) we made in the structural VAR calcula-
tions. It turns out that any orthogonal transformation of a matrix obtained
from a Choleski decomposition will also possess this property. The pro-
cedure here is therefore to make a Choleski decomposition of Ω to obtain
some matrix E which we can then transform using some orthogonal matrix
P to impose upon it the Blanchard-Quah condition and thereby obtain the
desired matrix G. The two requirements are that

GG′ = EP(EP)′

= EPP′E′

= EE′ = Ω (11.59)

since orthogonality of P implies PP′ = I, and that the upper left corner
element of the (2× 2) matrix

SG = SEP = SEP = HP (11.60)

equal zero, where H = SE. Expanding the latter condition we have8

h11p11 + h12p21 = 0. (11.61)

8Were we to designate the second shock as the nominal shock, this condition would
become

h11p21 + h12p22 = 0.

338 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

From the fact that PP′ = I we obtain
[

p 2
11 + p 2

12 p11p21 + p12p22

p21p11 + p22p12 p 2
21 + p 2

22

]
=

[
1 0
0 1

]

which yields the three conditions

p 2
11 + p 2

12 = 1 (11.62)
p11p21 = − p12p22 (11.63)

p 2
21 + p 2

22 = 1 (11.64)

Given the values of S and E and H, calculated from the data, the four
equations (11.61) through (11.64) solve for the four elements of P. The
latter matrix can then be multiplied by E to obtain G. Using this matrix,
the impulse-response functions can be calculated from (11.17).9

These calculations are illustrated using monthly data on the Canada/U.S.
real and nominal exchange rates. The real exchange rate and ratio of Cana-
dian to U.S. price levels data are contained in the file causdat.lsp. From
these, an appropriate nominal exchange rate series can can be obtained and,
after putting all three series on a base of 1990 = 100, the logarithms of the
two exchange rate series can be taken.

(def causnex (/ causrex causnpr))
(def causrex (base causrex datesmo 1990.0 12))
(def causnex (base causnex datesmo 1990.0 12))
(def nex (log causnex))
(def rex (log causrex))

9In calculating the elements of the matrix P it is useful to rearrange (11.61) to obtain

p11 = −h12

h11
p21 = w p21

and then square both sides of this equation and substitute the resulting expression for p2
11

into the square of equation (11.63). From there it can be shown that

p12 = p21 =

√
1

1 + w2
,

which will be positive regardless of the sign of w. Multiplication of p21 by w then yields
p11. Using these results along with (11.63), it can then be shown that

p22 = −p11.

11.3. IDENTIFICATION 339

Then we extract from these series-lists, using our set-time-series function,
the portions that we will need later.

(def actser1 (set-time-series rex datesmo 1962.0 2005.9166 0))
(def actser2 (set-time-series nex datesmo 1962.0 2005.9166 0))
(def nprser (set-time-series causnpr datesmo 1974.0 2005.9166 0))

Next, we take the first differences of the series and adjust the datelist ac-
cordingly.10

(def difdates (remove-first 1 datesmo))
(def drex (difference rex))
(def dnex (difference nex))
(def dnpr (difference (log nprser)))

After constructing appropriate lists of variables and of their names, we at-
tack the problem of determining the appropriate lag length using our VAR-
lag-length function. Based on the resulting printout (not shown) we choose
a lag-length of 18 months—the longest lag length supported by our tests of
the first-differences and levels of the two series. The appropriate code is

(def varlstdca (list drex dnex))
(def varnamesd (list "drex" "dnex"))
(VAR-lag-length varlstdca varnamesd 24 difdates 1972.0 2005.9166)
(def varlstlca (list rex nex))
(def varnamesl (list "rex" "nex"))
(VAR-lag-length varlstlca varnamesl 24 difdates 1972.0 2005.9166)

Before calling our VAR functions we need to put in the workspace some lists
that they will require.

(def varlist (list drex dnex))
(def filelist (list "rexch" "nexch"))
(def lablist (list "real exch rate" "nom exch rate"))
(def shocklist (list "mon shk" "real shk"))
(def histlabs (list "real exch rate -- money (pts) and real shocks"
"nom exch rate -- money (pts) and real shocks"))

Apart from varlist, which is a list of the lists of the two variables that will
be in our VAR, the above lists represent various labels that will be needed.

10The decision to use logarithms as well as first differences (which should always be
used) follows from the work of Enders—see page 338 of the book previously cited.

340 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

The first list is a list of the file names, while the other three are labels
giving appropriate names of the variables and shocks that will be useful
later on. The list filelist will not be used until we do bootstrapping
to obtain confidence intervals. After running the batch file that we are, in
effect, constructing here it should be apparent why particular forms of labels
were chosen, although many possible alternative expressions could have been
used.

We can now run the VAR, starting as usual with the VAR-setup
and VAR-MA-representation functions and adopting 20 steps for the
impulse-responses and forecast-error-variance decompositions. Next we call
the function I wrote to perform a Blanchard-Quah decomposition. This
function VAR-BlanQuah-decomp, which takes no arguments, follows the
analytical framework presented above. It uses the variance-covariance ma-
trix omega left in memory by the previous VAR functions as well as a matrix
litS which the previous functions will also have created. The first of the two
shocks is designated as the nominal shock. Three lists with the same names
as the corresponding lists produced by Choleski and structural decomposi-
tions, rofmats, rtomats and fevmats, containing four matrices each, are
also left in the workspace. The same functions used to print out and plot
our earlier VARs can also be used here.

(VAR-setup varlist 18 difdates 1974.0 2005.9166)
(VAR-MA-representation 20)
(VAR-BlanQuah-decomp)
(VAR-print-forecast-error-variance-decompositions lablist)
(VAR-print-impulse-responses lablist)
(VAR-plot-impulse-responses-of lablist)
(VAR-plot-impulse-responses-to lablist)

The printing and plotting functions draw on the matrices rofmats, rtomats
and fevmats, already in the workspace and take as their single argument the
list of labels lablist that we have already read into the workspace. When
these functions are used to print and plot results obtained by a Blanchard-
Quah decomposition, they require a list of strings called shocklist that
gives the names of the shocks—this list was also previously read into the
workspace.

In addition to the impulse-responses and forecast-error-variance decom-
positions, historical decompositions of the actual movements of the two vari-
ables over the time-period being studied into portions caused by the separate
shocks is also of interest in Blanchard-Quah VARs. I have written two func-
tions, VAR-blanquah-history and bq-exch-rate-history to calculate,

11.3. IDENTIFICATION 341

print and plot the resulting time-series. The first of these functions takes
two arguments—the first is set at 1 or zero according to whether or not the
historical decompositions are to be plotted on the screen, and the second is
the number of bootstrap runs if subsequent bootstrapping to obtain confi-
dence intervals is to be undertaken. If bootstrapping is to take place and the
number of bootstrap runs is therefore greater than zero, the historical de-
compositions are automatically plotted. This function must always be called
prior to bootstrapping, before the initial Gmat matrix is overwritten. It pro-
duces a list of historical decompositions of the variables called histlists,
ordered by variable and for each variable by shock, first nominal and then
real, giving the cumulative percentage variation of the variable around zero
resulting from the respective shocks. These are always written to the file
bqhist.mat, which will be overwritten each time the function is called. It
also leaves in the workspace a number of objects that will be used by the
second function bq-exch-rate-history, if it is called.

This second function, which is specific to Blanchard-Quah decomposi-
tions involving real and nominal exchange rates of the sort we are doing
here, modifies the results of the previous function appropriately to incor-
porate trends in the historical decompositions. All the trend in the real
exchange rate is applied to the real shock and none of it to the correspond-
ing monetary shock. In the case of the nominal exchange rate the difference
between trends in the actual nominal and real exchange rates is assigned to
the monetary shock and the remaining movements of the nominal exchange
rate are assigned to the real shock. All series are converted from the log-
arithms back to their original scale and their average values are set equal
to 100. If the function’s single argument is set equal to unity, they plotted
on the screen. These series are always written to the file bqhist.mat, over-
writing the file of the same name created by the function VAR-blanquah-
history. This data file can be read by Gnuplot. The variables this file
contains are left in the workspace as the lists actrex, actnex (the actual
series), rexmonshk, rexrealshk, nexmonshk, nexrealshk and nprser. The
last of these series, which is the domestic/foreign price-level ratio, is not
used by either of the above functions, but must be present in the workspace
before the functions are called—the bq-exch-rate-history function merely
takes it from the workspace and incorporates it in the output file. We can
call either the first or both of these functions in our batch file any time after
the VAR-BlanQuah-decomp function but before any bootstrapping.

(VAR-blanquah-history 1 0)
(bq-exch-rate-history 1)

The historical decompositions of the Canada/U.S. real exchange rates are
shown in Figure 21.

342 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

 70

 80

 90

 100

 110

 120

 130

 140

 150

 1975 1980 1985 1990 1995 2000 2005

1974-2005 = 100

HISTORICAL DECOMPOSITION: REAL EXCHANGE RATE

Actual Level
Due to Money Shocks

Due to Real Shocks

 70

 80

 90

 100

 110

 120

 130

 140

 150

 1975 1980 1985 1990 1995 2000

1974-2005 = 100

HISTORICAL DECOMPOSITION: NOMINAL EXCHANGE RATE

Actual Level
Due to Money Shocks

Due to Real Shocks

Figure 21: Blanchard-Quah-VAR historical decompositions of Canada’s
real and nominal exchange rates with respect to the U.S. dollar into the
movements attributable to real and money shocks.

11.4. BOOTSTRAPPING CONFIDENCE INTERVALS 343

11.4 Bootstrapping Confidence Intervals

Finally, we turn to the problem of calculating confidence intervals for our
impulse-responses and forecast-error-variance decompositions. The stan-
dard approach is to use bootstrapping. The residuals of the standard-form-
VAR regressions are treated as draws from a population of random shocks.
Repeated draws from the elements contained in this sample, replacing each
element drawn to make it equally available in future draws, can be used to
create alternative series of error-shocks to the variables in the VAR. Each
series of draws can be used to recalculate the values of the series in the
VAR based on based on the coefficients of the original VAR and the lagged
values that determine the predicted levels of the first observations of the
variables—each observation on each variable is obtained by adding the error
term to the predicted value obtained by applying the relevant original re-
gression coefficients to the lagged values of all the variables, with the newly
calculated observations becoming the one-period lagged values to be used
in calculating the next observation. A new VAR result can then be ob-
tained by running the VAR on these new representations of the variables.
By doing this repeatedly, we can obtain a range of estimates of the impulse-
responses and forecast-error-variance decompositions reflecting alternative
possible sets of draws from the underlying population. The upper and lower
5% of these values for each step can then be used as our confidence limits.

I have written the function VAR-bootstrap-values, which takes no ar-
guments, to create new values of the series-lists in the list-object xlists and
the lagged values in the lists of matrices lagmats based on the list-object
residslists and the list of coefficients, coefslists. All of these objects
will have been left in the workspace by our VAR-standard-form function.
Before calling this bootstrap function, however, we must create objects to
house the impulse-response and forecast-error-variance-decomposition func-
tions from the successive reruns of our VAR using the bootstrapped values.
I wrote the function VAR-results-vectors to create matrices of successive
rofmats, rtomats, or fevmats values to which the new matrices produced
by successive runs of the VAR can be added. This function has to be applied
three times, once for each of rofmats, rtomats, or fevmats, with its single
argument being one of these lists. The initial entries in these matrices are
the results from our original VAR calculation, with successive entries being
added with each bootstrap run. The function produces the output object
irslists which can be appropriately named rofout, rtoout or fevout as
the situation requires. I wrote the VAR-add-results-vectors function to
add the successive bootstrap results to these matrices. This function takes

344 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

two arguments—the first is either rofmats, rtomats, or fevmats, and the
second is the corresponding output object, named rofout, rtoout or fevout
above.

After the bootstrapping is complete we need functions calculate the con-
fidence intervals. I wrote VAR-calc-conf-limits to perform this task. It
takes as its single argument rofout, rtoout or fevout and writes the object
cllists to be renamed climrof, climrto or climfev as the case may be.

Then we need to print and plot the confidence intervals. For this pur-
pose I wrote the function VAR-plot-conf-limits. Because of the amount
of data involved, it makes little sense to print the bootstrapped results to
the screen. Instead, my function VAR-write-conf-limits-to-file writes
them to file. Both of these functions take two arguments. The first is ei-
ther climrof, climrto or climfev and the second is an integer— 1 if we
are writing or plotting impulse-responses-of, 2 if we are writing or plot-
ting impulse-responses-to, and 3 if we are writing or plotting forecast-error-
variance-decompositions. Both functions require that a list of strings denot-
ing the shocks, called shocklist be present in the workspace if a Blanchard-
Quah decomposition is being used. And the function that writes the results
to file requires that a list of strings, called filelist, be present in the
workspace, giving the first four characters of the names of the files to which
the confidence limits will be written. The characters “rto”, “rof”, or “fev”
is added to these file names to designate their contents and the suffix “.mat”
is added to all of them to indicate that the file is a matrix. The strings in
filelist place the variables in the same order as they appear in lablist.

None of the above functions are designed to be used interactively. Rather,
they are to be called by the main comprehensive functions I wrote to cal-
culate VARs quickly and simply. It is worthwhile to examine the code for
these functions to understand what is happening when we call them.

To run a VAR using a Choleski decomposition we call the function VAR-
estimate-choleski which takes 10 arguments as indicated and described in
its code presented below.

(defun VAR-estimate-choleski (x y l d b e s w p n)
"Args: (x y l d b s w p n)
Estimates a VAR involving y lags of the variables in the list x
with names in the list l using a Choleski-decomposition with
ordering by position in the lists. The starting and ending dates
of the VAR are b and e on the date list d, to which x must conform.
The number of steps for the impulse-responses and forecast error
variance decompositions is indicated by s. All of the impulse-

11.4. BOOTSTRAPPING CONFIDENCE INTERVALS 345

responses and the forecast-error-variance-decompositions are
printed to screen. Set n equal to the number of bootstrap runs
and to 0 to avoid bootstrapping. If n = 0, set p = 1 to plot the
responses, in turn, of each variable to shocks to all other variables
and the responses to shocks to each variable, in turn, of all other
variables. The latter responses are scaled by the standard deviations
of the responding variables. To forego the plots set p = 0. If
n = 0, set w = 1 to write all impulse-responses and forecast-error-
variance-decompositions to the screen and w = 0 otherwise. If n > 0,
w and p are automatically set equal to zero regardless of whether
their values are 0 or 1 on the command line. A list of names of the
variables, limited to 4 characters each, called filelist, must be
present in the workspace if n > 0."
;
(def lablist (copy-list l))
(VAR-setup x y d b e)
(VAR-MA-representation s)
(VAR-Choleski-decomp)
(if (> n 0)
(def w 0))
(if (> n 0)
(def p 0))
(if (> w 0)
(VAR-print-forecast-error-variance-decompositions l))
(if (> w 0)
(VAR-print-impulse-responses l))
(if (> p 0)
(VAR-plot-impulse-responses-of l))
(if (> p 0)
(VAR-plot-impulse-responses-to l))
(if (> n 0)
(def rtoout (VAR-results-vectors rtomats)))
(if (> n 0)
(def rofout (VAR-results-vectors rofmats)))
(if (> n 0)
(def fevout (VAR-results-vectors fevmats)))
(if (> n 0)
(dotimes (v n)
(terpri)(princ "Bootstrap Run Number ")(princ v)(terpri)
(VAR-bootstrap-values)

346 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

(VAR-MA-representation s)
(VAR-Choleski-decomp)
(def rtoout (VAR-add-results-vectors rtomats rtoout))
(def rofout (VAR-add-results-vectors rofmats rofout))
(def fevout (VAR-add-results-vectors fevmats fevout))
)) ; end dotimes v
(if (> n 0)
(def climrto (VAR-calc-conf-limits rtoout)))
(if (> n 0)
(def climrof (VAR-calc-conf-limits rofout)))
(if (> n 0)
(def climfev (VAR-calc-conf-limits fevout)))
(if (> n 0)
(VAR-plot-conf-limits climrof 1))
(if (> n 0)
(VAR-plot-conf-limits climrto 2))
(if (> n 0)
(VAR-plot-conf-limits climfev 3))
(if (> n 0)
(VAR-write-conf-limits-to-file climrof 1))
(if (> n 0)
(VAR-write-conf-limits-to-file climrto 2))
(if (> n 0)
(VAR-write-conf-limits-to-file climfev 3))
;
) ; end of function
;

If we use this function to calculate our U.S. VAR, setting n > 0, the files
rofRGDP.mat, rtoRGDP.mat, fevRGDP.mat, rofPLEV.mat, rtoPLEV.mat,
fevPLEV.mat, rofINTR.mat, rtoINTR.mat, fevINTR.mat, rofMON1.mat,
rtoMON1.mat, and fevMON1.mat will appear, or be overwritten, on the hard
disk. Of course, the list filelist must be created in the workspace using
the command

(def filelist (list "RGDP" "PLEV" "INTR" "MON1"))

before the function is called.
The graphs produced by XLispStat are not easy to incorporate in TEX

or LATEX documents. To create better graphs, using Gnuplot, I have written
the function write-graphs-to-TeXfile, which takes six arguments in the

11.4. BOOTSTRAPPING CONFIDENCE INTERVALS 347

following order, with the maximum number of variables in the VAR limited
to eight: 1) a list of strings giving the names of .mat files like the above,
incorporating either the “rof”, “rto” or “fev” versions for all variables, 2)
the list of strings called filelist above, 3) a list of full variable names that
allows the names to be longer than in filelist, 4) a single character, sur-
rounded by quotation marks, that will designate the particular VAR whose
results are being printed, 5) the number of steps, denoted by s in the VAR-
estimate-choleski function, surrounded by quotation marks, and 6) the
integer 1, 2, or 3, not surrounded by quotation marks, according to whether
a response of, response to, or forecast-error-decomposition is being plotted.
This function writes a number of files to the hard disk. To illustrate, let us
assume that we are running our U.S. VAR above and that we are writing the
responses of the variables to a TEX file. Since this is the first VAR we are
running that will contain confidence intervals, let us assume that we desig-
nate it with the single character ”1” in the fourth argument to the function.
The function will first produce a number of gnuplot files equal to the square
of the number of variables in the VAR.

0roRGDP1.plt 1roRGDP1.plt 2roRGDP1.plt 3roRGDP1.plt
0roINFL1.plt 1roINFL1.plt 2roINFL1.plt 3roINFL1.plt
0roINTR1.plt 1roINTR1.plt 2roINTR1.plt 3roINTR1.plt
0roBMON1.plt 1roBMON1.plt 2roBMON1.plt 3roBMON1.plt

Had we been plotting the ‘responses to’ instead of ‘responses of’ the
letters ro in the above filenames would be replaced with the letters rt. And,
alternatively, were we plotting the forecast-error-variance decompositions,
these letters would be fe. The number 1 before the suffix in all the filenames
indicates that this is VAR1, our first VAR.

The function will also produce a script file named VARrof1.bat in the
above case. Simply typing this name in a command window in MS-Windows
will, assuming Gnuplot is installed, automatically run all sixteen gnuplot
files, resulting in sixteen postscript files, equivalently named except that they
will have the suffix .eps. On unix-based machines this script must be made
executable and copied to a directory from which executable files can be run.
Finally, the function produces a TEX file called, in this case, VARrof1.tex
which can be processed directly with TEX or edited and processed either
with TEX or LATEX. In its raw form, this file will produce a number of pages
of charts equal to the number of variables in the VAR and a full plotting
of all the results will use up three times that number of pages. For the
VAR above, the responses to one-standard-deviation shocks are presented
in Figure 22. Finally, the function also calculates a set of bootstrapped

348 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

confidence limits for the elements of the matrix A0 and writes them to the
text file conflims.txt. The contents of that file in the present example are
as follows.

Dependent Variable: LOGRGDP
LC-Limit Estimate UC-Limit

LOGRGDP 144.994 154.179 187.853
LOGIPD 0.000 0.000 0.000
INTRATE 0.000 0.000 0.000
LOGM1 0.000 0.000 0.000

Dependent Variable: LOGIPD
LC-Limit Estimate UC-Limit

LOGRGDP -14.583 11.300 39.839
LOGIPD 371.240 385.613 456.747
INTRATE -0.000 0.000 0.000
LOGM1 0.000 0.000 0.000

Dependent Variable: INTRATE
LC-Limit Estimate UC-Limit

LOGRGDP -72.347 -39.970 -14.226
LOGIPD -152.671 -73.656 1.462
INTRATE 108.997 117.574 151.576
LOGM1 0.000 0.000 0.000

Dependent Variable: LOGM1
LC-Limit Estimate UC-Limit

LOGRGDP -20.537 1.066 22.002
LOGIPD -112.782 -57.996 -15.268
INTRATE -26.359 -8.953 14.117
LOGM1 143.856 148.135 179.279

When these confidence limits bracket zero, they suggest that the relevant
coefficient is not significantly different from zero. The code for these and
the other results in this Chapter, and extensions of them, is contained in
the batch file VARbatch.lsp which can be examined and processed to learn
more about these procedures. To preserve the .mat files that provide the
data for the gnuplot files and the file conflims.txt it will be necessary to
copy them to new names that contain the label-character, 1 in this case, at
the ends of the root-file names, right before the decimal point.

11.4. BOOTSTRAPPING CONFIDENCE INTERVALS 349

All the above results, based on bootstrapping with 1000 repetitions, are
produced, once the data are set up, using the following lines of code.

(def varlist (list logrgdp logipd intrate logm1))
(def varnames (list "LOGRGDP" "LOGIPD" "INTRATE" "LOGM1"))
(def filelist (list "RGDP" "PLEV" "INTR" "MON1"))
;
(VAR-estimate-choleski varlist 4 varnames newdates 1965 2005.75 20
1 1 1000)
;
(def varnames (list "LOG REAL GDP" "LOG PRICE LEVEL" "INTEREST RATE"
"LOG M1"))
;
(def roflist (list "rofRGDP.mat" "rofPLEV.mat" "rofINTR.mat" "rofMON1.mat"))
(def rtolist (list "rtoRGDP.mat" "rtoPLEV.mat" "rtoINTR.mat" "rtoMON1.mat"))
(def fevlist (list "fevRGDP.mat" "fevPLEV.mat" "fevINTR.mat" "fevMON1.mat"))
;
(write-graphs-to-TeXfile roflist filelist varnames "1" "20" 1)
(write-graphs-to-TeXfile rtolist filelist varnames "1" "20" 2)
(write-graphs-to-TeXfile fevlist filelist varnames "1" "20" 3)

The varnames list was redefined in mid-stream to provide a more suitable
presentation of the printed output that followed.

350 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG REAL GDP

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG PRICE LEVEL

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

INTEREST RATE

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG M1

Figure 22a: Response of log real GDP to one-standard-deviation shocks to
the variables. The decomposition is Choleski, with the variables ordered as
follows: log of real GDP, log of implicit GDP deflator, 1-month commercial
paper rate and log of M1.

11.4. BOOTSTRAPPING CONFIDENCE INTERVALS 351

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG REAL GDP

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG PRICE LEVEL

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

INTEREST RATE

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG M1

Figure 22b: Response of the log of the implicit GDP deflator to one-
standard-deviation shocks to the variables. The decomposition is Choleski,
with the variables ordered as follows: log of real GDP, log of implicit GDP
deflator, 1-month commercial paper rate and log of M1.

352 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG REAL GDP

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG PRICE LEVEL

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

INTEREST RATE

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG M1

Figure 22c: Response of the 1-month commercial paper rate to one-
standard-deviation shocks to the variables. The decomposition is Choleski
with the variables ordered as follows: log of real GDP, log of implicit GDP
deflator, 1-month commercial paper rate and log of M1.

11.4. BOOTSTRAPPING CONFIDENCE INTERVALS 353

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG REAL GDP

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG PRICE LEVEL

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

INTEREST RATE

-0.005

 0

 0.005

 0.01

 0.015

 0 5 10 15 20

LOG M1

Figure 22d: Response of log M1 to one-standard-deviation shocks to the
variables. The decomposition is Choleski with the variables ordered as fol-
lows: log of real GDP, log of implicit GDP deflator, 1-month commercial
paper rate and log of M1.

354 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

For bootstrapped estimation of structural VARs I have constructed the
function VAR-estimate-structural. As in the case of VAR-estimate-
choleski, by setting the number of bootstrap runs equal to zero, the function
can also be used to simply estimate the VAR without bootstrapping. The
VAR-estimate-structural function takes twelve arguments which must
appear in the following order:

1. The list of variables.

2. The number of lags.

3. A list of the names of the variables.

4. An indicator variable equal to 1 if the system is over-identified and 0
if it is just-identified.

5. An indicator variable equal to 0 if the newtonmax function is to be
used in over-identified estimation and equal to 1 if the nelmeadmax
function is to be used.

6. The datelist to which the variables must all conform (this will be longer
than the interval over which the VAR will be run to accommodate lags
of the variables).

7. The beginning date of the VAR.

8. The ending date of the VAR.

9. The number of steps for the impulse-responses and forecast-error-
variance decompositions.

10. An indicator variable equal 1 if the impulse-responses and forecast-
error-variance decompositions are to be written to the screen and zero
otherwise.

11. An indicator variable equal to 1 if the impulse-responses are to be
plotted to the screen and zero otherwise.

12. The number of bootstrap runs.

As in the case of the VAR-estimate-choleski function, which takes all
the arguments above except 4) and 5), when the number of bootstrap runs
exceeds zero the indicator variables specified in 10) and 11) are automati-
cally set equal to zero, regardless of what is entered on the command line.

11.4. BOOTSTRAPPING CONFIDENCE INTERVALS 355

In this event, the estimated impulse-responses and forecast-error-variance
decompositions are automatically plotted and printed along with their boot-
strapped confidence intervals. Also as in the case of the VAR-estimate-
choleski function, a list of strings giving the names of the variables, limited
to 5 characters each, called filelist, must be present in the workspace if
the number of bootstrap runs is positive, as must be a list of variable names,
called varnames, for use in writing the confidence limits of the elements in
the A0 matrix to the file conflims.txt. If the system is just-identified an
appropriate function named VAR-calc-Gmat-just-identified must have
already been constructed and read into the workspace. If the system is
over-identified, an appropriate function named varstd must be present in
the workspace.

Given that the data have been appropriately set up and the VAR-calc-
Gmat-just-identified and varstd are present in the workspace along with
the lists filelist and varnames, the code lines for estimating the just-
identified and over-identified systems are, respectively,

(VAR-estimate-structural varlist 4 varnames 0 0 newdates 1965 2005.75 20
1 1 1000)

and

(VAR-estimate-structural varlist 4 varnames 1 0 newdates 1965 2005.75 20
1 1 1000)

where the 0 appearing just before newdates on the second command line
should be changed to a 1 if the nelmeadmax function is to be used in the
over-identified case. Also, to print our results to file we need to include,
after each of the above commands, code lines of the form

(def roflist (list "rofRGDP.mat" "rofPLEV.mat" "rofINTR.mat" "rofMON1.mat"))
(def rtolist (list "rtoRGDP.mat" "rtoPLEV.mat" "rtoINTR.mat" "rtoMON1.mat"))
(def fevlist (list "fevRGDP.mat" "fevPLEV.mat" "fevINTR.mat" "fevMON1.mat"))
(def varnames (list "LOG REAL GDP" "LOG PRICE LEVEL" "INTEREST RATE"
"LOG M1"))
(write-graphs-to-TeXfile roflist filelist varnames "2" "20" 1)
(write-graphs-to-TeXfile rtolist filelist varnames "2" "20" 2)
(write-graphs-to-TeXfile fevlist filelist varnames "2" "20" 3)
(VAR-write-fev-decomps-to-LaTeX-file varnames)
(def varnames (list "LOGRGDP" "LOGIPD" "INTRATE" "LOGM1"))

where the arguments "2" in the write-graphs-to TeXfile function must
be replaced by "3" (or some other number) in the calculations involving
the over-identified system and the last varnames command can be dropped.
Since the results for these alternative structural-decompositions turn out to

356 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

be quite similar to the choleski-decomposition results we gain nothing from
presenting their plots here.

For estimation and bootstrapping Blanchard-Quah VARs I have written
the function VAR-estimate-blanquah function, the nature of which can
be best understood by examining the code by which it is defined.

(defun VAR-estimate-blanquah (x y l d b e s w p n)
"Args: (x y l d b s w p n)
Estimates a VAR involving y lags of the variables in the list x
with names in the list l using a Blanchard-Quah-decomposition with
ordering by position in the lists. The starting and ending dates
of the VAR are b and e on the date list d, to which x must conform.
The number of steps for the impulse-responses and forecast error
variance decompositions is indicated by s. All of the impulse-
responses and the forecast-error-variance-decomposition are printed
to screen. Set p = 1 to plot the responses, in turn, of each
variable to the two shocks. These responses are scaled by the
standard deviations of the responding variables. To forego the
plots set p = 0. Set w = 1 to write all impulse-responses and
forecast-error-variance-decompositions to the screen and w = 0
otherwise. Set n equal to the number of bootstrap runs and equal
to 0 to forego bootstrap calculation of confidence intervals.
If n > 0, w and p are automatically set equal to zero regardless of
their values on the command line. The function writes results to
five files--bqhist.mat, fevvar1.mat, fevvar2.mat, rofvar1.mat and
rofvar2.mat, where var1 and var2 are the names of the respective
variables in the list l. These can be used to make customised
plots using Gnuplot."
;
(VAR-setup x y d b e)
(VAR-MA-representation s)
(VAR-BlanQuah-decomp)
(VAR-blanquah-history p n)
(if (> n 0)
(def w 0))
(if (> n 0)
(def p 0))
(if (> w 0)
(VAR-print-forecast-error-variance-decompositions l))

11.4. BOOTSTRAPPING CONFIDENCE INTERVALS 357

(if (> w 0)
(VAR-print-impulse-responses l))
(if (> p 0)
(VAR-plot-impulse-responses-of l))
(if (> n 0)
(def rtoout (VAR-results-vectors rtomats)))
(if (> n 0)
(def rofout (VAR-results-vectors rofmats)))
(if (> n 0)
(def fevout (VAR-results-vectors fevmats)))
(if (> n 0)
(dotimes (v n)
(terpri)(princ "Bootstrap Run Number ")(princ v)(terpri)
(VAR-bootstrap-values)
(VAR-MA-representation s)
(VAR-BlanQuah-decomp)
(def rtoout (VAR-add-results-vectors rtomats rtoout))
(def rofout (VAR-add-results-vectors rofmats rofout))
(def fevout (VAR-add-results-vectors fevmats fevout))
)) ; end dotimes v
(if (> n 0)
(def climrto (VAR-calc-conf-limits rtoout)))
(if (> n 0)
(def climrof (VAR-calc-conf-limits rofout)))
(if (> n 0)
(def climfev (VAR-calc-conf-limits fevout)))
(if (> n 0)
(VAR-plot-conf-limits climrof 1))
(if (> n 0)
(VAR-plot-conf-limits climfev 3))
(if (> n 0)
(VAR-write-conf-limits-to-file climrof 1))
(if (> n 0)
(VAR-write-conf-limits-to-file climfev 3))
;
) ; end of function

358 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

A careful examination will reveal that this function differs from the VAR-
estimate-choleski and VAR-estimate-structural functions only in mi-
nor details. In our Canada/U.S. real exchange rate VAR, the function writes
five files—bqhist.mat, fevrexch.mat, fevnexch.mat, rofrexch.mat and
rofnexch.mat which I have used to make, using Gnuplot, the customised
plots in Figure 23. To do this I created eight Gnuplot files, rofn2m.plt,
rofn2r.plt, rofr2m, rofr2r.plt, fevn2m.plt, fevn2r.plt, fevr2m, and
fevr2r.plt and the LATEX file stmlspf23.tex. These files are provided
along with this document for use as templates for use in analyses of other
countries’ real and nominal exchange rates. With minor modifications, they
can also be adapted to Blanchard-Quah VARs that do not involve real and
nominal exchange rates.

After the data have been prepared, as was done above, our Blanchard-
Quah real and nominal exchange rate VAR can be run using the following
code.

(def varlist (list drex dnex))
(def filelist (list "rexch" "nexch"))
(def lablist (list "real exch rate" "nom exch rate"))
(def shocklist (list "mon shk" "real shk"))
(def histlabs (list "real exch rate (pts) and money shocks"
"real exch rate (pts) and real shocks"
"nom exch rate (pts) money shocks" "nom exch rate (pts) and real shocks"))
(VAR-estimate-blanquah varlist 18 lablist difdates 1974.0 2005.9166 20
1 1 1000)

The impulse-responses and forecast-error-variance-decompositions are plot-
ted in Figure 23. The historical decompositions were plotted in Figure
21. The LATEX file stmlspf21.tex and the two Gnuplot files histnca.plt
and histrca.plt used to create those plots are also provided along with
this document as templates. These Gnuplot files referenced the data file
bqhistca.mat which is simply the file bqhist.mat renamed. That file was
produced by the function VAR-blanquah-history which was called by the
VAR-estimate-blanquah function above.

11.4. BOOTSTRAPPING CONFIDENCE INTERVALS 359

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20%
 o

f o
ne

-s
ta

nd
ar

d-
de

vi
at

io
n

sh
oc

k

TO A MONETARY SHOCK

RESPONSE OF REAL EXCHANGE RATE

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20%
 o

f o
ne

-s
ta

nd
ar

d-
de

vi
at

io
n

sh
oc

k

TO A REAL SHOCK

RESPONSE OF REAL EXCHANGE RATE

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20%
 o

f o
ne

-s
ta

nd
ar

d-
de

vi
at

io
n

sh
oc

k

TO A MONETARY SHOCK

RESPONSE OF NOMINAL EXCHANGE RATE

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20%
 o

f o
ne

-s
ta

nd
ar

d-
de

vi
at

io
n

sh
oc

k

TO A REAL SHOCK

RESPONSE OF NOMINAL EXCHANGE RATE

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

P
er

ce
nt

DUE TO A MONETARY SHOCK

FORECAST-ERROR-VARIANCE OF REAL EXCH. RATE

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

P
er

ce
nt

DUE TO A REAL SHOCK

FORECAST-ERROR-VARIANCE OF REAL EXCH. RATE

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

P
er

ce
nt

DUE TO A MONETARY SHOCK

FORECAST-ERROR-VARIANCE OF NOM. EXCH. RATE

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

P
er

ce
nt

DUE TO A REAL SHOCK

FORECAST-ERROR-VARIANCE OF NOM. EXCH. RATE

Figure 23: Blanchard-Quah VAR impulse-responses and forecast-error-
variance decompositions for Canada’s real and nominal exchange rates with
respect to the U.S. dollar. The confidence intervals are 90 percent.

360 CHAPTER 11. VECTOR AUTOREGRESSION ANALYSIS

Chapter 12

Forecasting

Our final topic deals with econometric issues involved in forecasting eco-
nomic time-series. Time-series forecasts must deal with the fact that the
underlying models on which forecasts are based inevitably change through
time in a wide variety of dimensions as changes in the economic structure
and economic policy occur and as agents learn about the magnitudes of
those changes. In analytical work directed toward understanding how the
economy functions, we often use pseudo-forecasts—that is, forecasts of past
economic changes whose results are now known—to model how agents may
have predicted and reacted to those events. A good example is the problem
of constructing an unanticipated money shock series to use in analysing the
historical effects of unanticipated money shocks on interest rates, exchange
rates, etc. Most of what follows deals with this type of forecast although
some minimal effort will be devoted to actually forecasting future, as yet un-
known, levels of time-series. We begin with the crudest of forecasts—simple
trend projection.

12.1 Trend Projections

For making trend projections I wrote the function OLS-trend-projection
which takes the following five arguments in order—the series being projected,
the datelist to which it conforms, the number of observations over which the
trend is to be calculated, the date of the first forecasted value, and the
number of subsequent values to be forecasted. The function leaves a list of
the predicted values, called predvals in the workspace. Using the USM1SA
variable in the data file causdat.lsp we illustrate by making a 12-month
projection, starting at the beginning of 2005. We take the logarithm of

361

362 CHAPTER 12. FORECASTING

the M1 series, multiply it by 100 and then subtract the level of the first
observation of the resulting series from all observations, thereby expressing
each period’s value as, roughly, the percent increase from January 1962. The
predicted and actual values of the series from the beginning of 2000 onward
are plotted to the screen and written to file for plotting below as Figure 24
using Gnuplot.

 200

 205

 210

 215

 220

 225

 230

 235

 2000 2001 2002 2003 2004 2005 2006

P
er

ce
nt

ag
e

In
cr

ea
se

 S
in

ce
 J

an
ua

ry
 1

96
2

Actual
Forecasted

Figure 24: Actual and forecasted values of United States M1 for the year
2005 based on a trend projection of 2004 levels.

> (load "causdat")
; loading causdat.lsp
T
> (load "addfuncs")
; loading addfuncs.lsp
T
> (variables)
(CAUSNPR CAUSREX DATESMO DATESQ USCPAPR USCPI USCURR USEXB USFFR USIPD
USM1SA USM2SA USMBADJ USNBREXB USNBRSA USNGDP USRGDP USTRARR)
> (def logm1 (* 100 (log usm1sa)))
LOGM1
> (def m1 (- logm1 (select logm1 0)))
M1
> (OLS-trend-projection m1 datesmo 12 2005.0 12)
(225.29081744341556 225.7078925933587 226.12496774330185 226.542042893245
226.95911804318814 227.37619319313131 227.79326834307446 228.2103434930176
228.62741864296075 229.0444937929039 229.46156894284704 229.87864409279018)

12.1. TREND PROJECTIONS 363

> (def newm1 (remove-last 12 m1))
NEWM1
> (def newm1 (append newm1 predvals))
NEWM1
> (date2obs datesmo 2000.0)
456
> (def plotdates (- (remove-first 455 datesmo) 1900))
PLOTDATES
> (def plot1 (plot-lines plotdates (remove-first 455 m1)))
PLOT1
> (send plot1 :add-lines plotdates (remove-first 455 newm1))
NIL
> (write-matrix-to-file (bind-columns (remove-first 455 datesmo)
(remove-first 455 m1)(remove-first 455 newm1)) "stmlspf24.mat")
T

The forecast is terrible! For purposes of calculating the unanticipated money
shock we need to make a running one-period ahead forecast. This can be
done using my function running-trend-projection, which takes, in or-
der, the following five arguments—the series being projected, the datelist
to which it conforms, the number of periods over which the trend is to be
calculated, and the first and last periods forecasted, respectively. The re-
sulting series, plotted in the bottom panel of Figure 25, and some useful
information about it is calculated using the following code, where running
four-month trends are projected.

(running-trend-projection m1 datesmo 4 2000.0 2005.917)
(def uasm1 (* 100 (/ (- actlist predlist) predlist)))
(def msqfe (mean (/ (inner-product uasm1 uasm1)(length predlist))))
(mean uasm1)
(standard-deviation uasm1)
(sqrt msqfe)

The mean of the unanticipated money shocks, taken as percentages of pre-
dicted levels, is -0.015 for the period 2000-2005 and the standard-deviation
is 0.453. The root-mean-square-forecast-error is 0.450. One will, of course,
get a different measure of the unanticipated money shock for each possible
period-length over which the trend is estimated. And the ‘best length’ for
any given period can only be known after the data for that period become
available.

364 CHAPTER 12. FORECASTING

 200

 205

 210

 215

 220

 225

 230

 2000 2001 2002 2003 2004 2005 2006

ACTUAL AND PREDICTED M1 AS PERCENTAGES OF JANUARY 1962 LEVELS

Actual
Predicted

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2000 2001 2002 2003 2004 2005 2006

UNANTICIPATED M1 SHOCKS AS PERCENTAGES OF PREDICTED LEVELS

Figure 25: Actual and predicted values of United States M1, and the
implied unanticipated M1 shocks, for the years 2000-2005, based on running
one-period trend projections of values for the previous four months.

A better method of estimating past anticipated M1 levels and forecasting
it, or any other variable, in future periods would undoubtedly be to use OLS
predictions based not only on past data for the variable in question but
past data for other variables that are related to it. Such methods will be
explored later after we have dealt with more sophisticated ways of forecasting
variables using only their own past values.

12.2. ARIMA FORECASTS 365

12.2 ARIMA Forecasts

Autoregressive-integrated-moving-average time-series processes are conven-
tionally expressed in the form ARIMA(p, d, q) where p is the number of
autoregressive lags, q is the number of moving average lags, and d is the
number of times the series has to be differenced to produce a stationary
ARMA(p, q) process.1

The first step in fitting an ARIMA process to our log U.S. M1 series
is therefore to determine how many times the series must be differenced
to make it stationary. Using the ppunit function, we obtain the following
results.

PHILLIPS-PERRON TEST --- log USM1
Lags Truncated at 1

Least Squares Estimates:

Constant 6.295173E-2 (0.250127)
Trend -1.872048E-3 (9.996069E-4)
Lagged Y 1.00298 (2.044931E-3)

R Squared: 0.999945
Sigma hat: 0.553965
Number of cases: 527
Degrees of freedom: 524

Standard t-ratios:

Constant 0.2516791340876413
Trend -1.8727836646422076
Lagged Y = 0 490.47205571099784
Lagged Y = 1 1.4579733047692311

1A useful discussion of the basics of this type of time-series modelling can be found in
Chapter 2 of the Enders book cited earlier.

366 CHAPTER 12. FORECASTING

Least Squares Estimates:

Constant 0.523269 (4.646994E-2)
Lagged Y 0.999200 (3.252681E-4)

R Squared: 0.999944
Sigma hat: 0.555286
Number of cases: 527
Degrees of freedom: 525

Standard t-ratios:

Constant 11.260379994808872
Lagged Y = 0 3071.927789348678
Lagged Y = 1 -2.4586942404249337

Least Squares Estimates:

Lagged Y 1.00233 (1.884707E-4)

R Squared: 0.999931
Sigma hat: 0.618130
Number of cases: 527
Degrees of freedom: 526

Standard t-ratios:

Lagged Y = 0 5318.214607984291
Lagged Y = 1 12.349961865121243

PP t-ratio for Coefficient of Lagged Y = 1:
1.1405659035390487

PP t-ratio for Constant = 0:
0.3605409345990346

PP t-ratio for Trend Coefficient = 0:
-1.3860482568827504

12.2. ARIMA FORECASTS 367

PP Statistic for Coefficients of Trend = 0 and Lagged Y = 1:
3.7300002111992048

PP t-ratio for Coefficient of Lagged Y = 1 in regression without trend:
-2.1749722067422996

PP t-ratio for Coefficient of Lagged Y = 1 in regression with
neither constant nor trend:

10.260606203027326

PHILLIPS-PERRON TEST --- log USM1
Lags Truncated at 5

Least Squares Estimates:

Constant 6.295173E-2 (0.250127)
Trend -1.872048E-3 (9.996069E-4)
Lagged Y 1.00298 (2.044931E-3)

R Squared: 0.999945
Sigma hat: 0.553965
Number of cases: 527
Degrees of freedom: 524

Standard t-ratios:

Constant 0.2516791340876413
Trend -1.8727836646422076
Lagged Y = 0 490.47205571099784
Lagged Y = 1 1.4579733047692311

Least Squares Estimates:

Constant 0.523269 (4.646994E-2)
Lagged Y 0.999200 (3.252681E-4)

R Squared: 0.999944
Sigma hat: 0.555286

368 CHAPTER 12. FORECASTING

Number of cases: 527
Degrees of freedom: 525

Standard t-ratios:

Constant 11.260379994808872
Lagged Y = 0 3071.927789348678
Lagged Y = 1 -2.4586942404249337

Least Squares Estimates:

Lagged Y 1.00233 (1.884707E-4)

R Squared: 0.999931
Sigma hat: 0.618130
Number of cases: 527
Degrees of freedom: 526

Standard t-ratios:

Lagged Y = 0 5318.214607984291
Lagged Y = 1 12.349961865121243

PP t-ratio for Coefficient of Lagged Y = 1:
0.4946610825315317

PP t-ratio for Constant = 0:
0.6279546047558897

PP t-ratio for Trend Coefficient = 0:
-0.3734143969187469

PP Statistic for Coefficients of Trend = 0 and Lagged Y = 1:
2.2729162454959426

PP t-ratio for Coefficient of Lagged Y = 1 in regression without trend:
-1.6794149985748867

12.2. ARIMA FORECASTS 369

PP t-ratio for Coefficient of Lagged Y = 1 in regression with
neither constant nor trend:

6.965254218198062

PHILLIPS-PERRON TEST --- 1st Diff log USM1
Lags Truncated at 1

Least Squares Estimates:

Constant 0.293864 (2.912671E-2)
Trend -3.087277E-4 (1.527266E-4)
Lagged Y 0.309200 (4.166748E-2)

R Squared: 0.108078
Sigma hat: 0.528428
Number of cases: 526
Degrees of freedom: 523

Standard t-ratios:

Constant 10.089148962701483
Trend -2.0214398420996815
Lagged Y = 0 7.420648629463743
Lagged Y = 1 -16.578882593019177

Least Squares Estimates:

Constant 0.289623 (2.913648E-2)
Lagged Y 0.318760 (4.151993E-2)

R Squared: 0.101109
Sigma hat: 0.529982
Number of cases: 526
Degrees of freedom: 524

370 CHAPTER 12. FORECASTING

Standard t-ratios:

Constant 9.940216334967369
Lagged Y = 0 7.677283110910276
Lagged Y = 1 -16.407538489571188

Least Squares Estimates:

Lagged Y 0.570139 (3.586619E-2)

R Squared: 0.000000
Sigma hat: 0.577243
Number of cases: 526
Degrees of freedom: 525

Standard t-ratios:

Lagged Y = 0 15.896288611793661
Lagged Y = 1 -11.985120756173018

PP t-ratio for Coefficient of Lagged Y = 1:
-16.420430011935018

PP t-ratio for Constant = 0:
9.990662040856604

PP t-ratio for Trend Coefficient = 0:
-3.0707337906872296

PP Statistic for Coefficients of Trend = 0 and Lagged Y = 1:
134.9307485061046

PP t-ratio for Coefficient of Lagged Y = 1 in regression without trend:
-16.24219008759896

PP t-ratio for Coefficient of Lagged Y = 1 in regression with
neither constant nor trend:

-10.866713564263971

12.2. ARIMA FORECASTS 371

PHILLIPS-PERRON TEST --- 1st Diff log USM1
Lags Truncated at 5

Least Squares Estimates:

Constant 0.293864 (2.912671E-2)
Trend -3.087277E-4 (1.527266E-4)
Lagged Y 0.309200 (4.166748E-2)

R Squared: 0.108078
Sigma hat: 0.528428
Number of cases: 526
Degrees of freedom: 523

Standard t-ratios:

Constant 10.089148962701483
Trend -2.0214398420996815
Lagged Y = 0 7.420648629463743
Lagged Y = 1 -16.578882593019177

Least Squares Estimates:

Constant 0.289623 (2.913648E-2)
Lagged Y 0.318760 (4.151993E-2)

R Squared: 0.101109
Sigma hat: 0.529982
Number of cases: 526
Degrees of freedom: 524

Standard t-ratios:

Constant 9.940216334967369
Lagged Y = 0 7.677283110910276
Lagged Y = 1 -16.407538489571188

372 CHAPTER 12. FORECASTING

Least Squares Estimates:

Lagged Y 0.570139 (3.586619E-2)

R Squared: 0.000000
Sigma hat: 0.577243
Number of cases: 526
Degrees of freedom: 525

Standard t-ratios:

Lagged Y = 0 15.896288611793661
Lagged Y = 1 -11.985120756173018

PP t-ratio for Coefficient of Lagged Y = 1:
-17.472082294840195

PP t-ratio for Constant = 0:
10.641817495663703

PP t-ratio for Trend Coefficient = 0:
2.5945726259447213

PP Statistic for Coefficients of Trend = 0 and Lagged Y = 1:
152.34439146210102

PP t-ratio for Coefficient of Lagged Y = 1 in regression without trend:
-17.328491466577574

PP t-ratio for Coefficient of Lagged Y = 1 in regression with
neither constant nor trend:

-12.836201904905057

From a comparison of the above statistics with the critical values in the
first table in our Statistical Tables, it is clear that the null-hypothesis of
non-stationarity cannot be rejected for the logarithm of U.S. M1 but the
first-difference of this series is unquestionably stationary.

12.2. ARIMA FORECASTS 373

ACF yt = 0.8yt−1 + 0.5et−1 + et PACF

ACF yt = 0.8yt−1 − 0.5et−1 + et PACF

ACF First-difference of log of USM1 PACF

Figure 26: Relevant autocorrelations and partial autocorrelations.

374 CHAPTER 12. FORECASTING

The question then is how to decide upon the values of p and q to use
in fitting an ARMA(p, q) process to the first-difference of the series. The
top two panels in Figure 26 give the autocorrelations and partial autocorre-
lations of specially constructed ARMA(1,1) series using a function I wrote
called create-ARMA-series which takes two arguments—first, the length
of the series and second, the number of lags of the autocorrelation and par-
tial autocorrelation functions to print. The function also requires that two
lists be in the workspace, a list of the AR coefficients called arlist and a
list of the MA coefficients called malist. An AR or MA process can be con-
structed by simply setting the coefficient of a single MA or AR lag to be zero.
As noted by Enders, the autocorrelation function begins declining at lag q
when p > 0 and the partial autocorrelation function begins declining at lag p
when q > 0. If q = 0 (there being no moving average terms) and p = 1 (one
autoregressive lag) the autocorrelation function will decline continuously
when the coefficient of autoregressive term is positive. If that coefficient is
negative, the autocorrelation function will decline in absolute value but the
autocorrelations will alternatively take negative and positive values. The
partial autocorrelation function will consist of a single spike at lag 1. Al-
ternatively, if p = 0 (no autoregressive lags) and q = 1 (one moving-average
lag) there will be a single spike at lag 1 in the autocorrelation function and
the partial autocorrelation function will decline continuously to thereafter
in absolute value, with the first partial-autocorrelation being negative and
the subsequent partial-autocorrelations alternating in sign if the coefficient
of the lagged error term is positive, and all partial-autocorrelations being
positive if that coefficient is negative. When p > 1 the damping of the
partial autocorrelation function will begin after p lags and when q > 1 the
autocorrelation function will begin to damp after q lags. As is clear from
the top two panels, when both the autocorrelations and partial autocorre-
lations are declining, p and q must both be greater than or equal to unity.
It would therefore appear from the bottom panel of Figure 26 that there is
perhaps one autoregressive lag and one or more moving-average lags with
the coefficient of the autoregressive lag being positive and that of the first
moving-average lag being negative.

I have written three functions to fit these processes to data. But first,
to set the exact time-period over which the process is to be fit to the se-
ries, we have to call my ARMA-set-data function which takes as its five
arguments, in order, the name of the series, the datelist to which it con-
forms, the maximum number of autoregressive lags, the beginning date for
the fitted process and the ending date. This function returns the series list
newy to be used in subsequent estimation and leaves both this list and a

12.2. ARIMA FORECASTS 375

new datelist called newdates in the workspace. To fit an AR process we use
my AR-estimate, which takes as its two arguments, the name of the series
to which the process is being fitted and then the number of AR lags.

The batch code for the calculations underlying Figure 26, together with
an AR(2) fit, is presented below along with the results.

(load "addfuncs")
(load "maximize")
(load "causdat")
;
(def arlist (list 0.8))
(def malist (list 0.5))
(create-ARMA-series 1100 20)
;
(def malist (list -0.5))
(create-ARMA-series 1100 20)
;
(def logm1 (* 100 (log usm1sa)))
(def m1 (- logm1 (select logm1 0)))
;
(ppunit m1 "log USM1" 1)
(ppunit m1 "log USM1" 5)
;
(def dm1 (difference m1))
;
(ppunit dm1 "1st Diff log USM1" 1)
(ppunit dm1 "1st Diff log USM1" 5)
;
(def datesmo (remove-first-element datesmo))
(ARMA-setdata dm1 dates 2 1974.0 2004.917)
(acf newy 20 "ACF")
(pacf newy 20 "PACF")
;
(AR-estimate newy 2)

376 CHAPTER 12. FORECASTING

Estimation of AR Process:

Coefficient Std. Error T-Statistic P-Value

Constant 0.242 0.040 6.031 0.000
AR(1) 0.259 0.051 5.069 0.000
AR(2) 0.194 0.051 3.794 0.000

Sum of Squared Residuals = 123.81360386796065

Degrees of Freedom = 369

AIC = 1798.5851333028083
SBC = 1810.3418148656278

Ljung-Box Q-statistics:
LAG Q DF Pval
4 6.703 1 0.010
5 10.366 2 0.006
6 14.699 3 0.002
7 16.936 4 0.002
8 21.492 5 0.001

.............................

.............................

.............................

89 104.945 86 0.081
90 104.948 87 0.092
91 105.315 88 0.101
92 106.770 89 0.097
93 108.298 90 0.092

It turns out that both lags are statistically significant, but the Ljung-Box Q-
statistics indicate very substantial serial correlation remaining in the resid-
uals.

For fitting MA processes, we use my MA-estimate function which takes
as its three arguments, in order, the series to which the process is being
fitted, a guess list giving values of the parameters at which the maximum-

12.2. ARIMA FORECASTS 377

likelihood estimation is to start, and an indicator argument taking a value of
0 if the newtonmax function is to be used and a value of 1 if the nelmeadmax
function is to be used. The parameter list is ordered as follows—constant,
MA coefficient 1, MA coefficient 2,, true variance of residuals. When the
nelmeadmax function is used there must be present in the workspace a list
called sizelist giving each dimension of the initial simplex. For this list,
I have gotten by using a list of 1’s or 0.5’s containing the same number of
elements as the number of parameters. One should always start by using the
newtonmax function, turning to the nelmeadmax function when a maximum
cannot be found using newtonmax. If nelmeadmax yields silly results, like
imaginary numbers for standard-errors, the coefficients it produces should
then be used as the guess-list for using newtonmax. The batch code for
fitting an MA(2) process to our series is as follows.

(def gueslist (list 0.5 0.5 0.5 1))
(MA-estimate newy gueslist 0)
(def sizelist (list .5 .5 .5 .5))
(MA-estimate newy gueslist 1)
(def gueslist (list 0.425 0.233 0.152 0.280))
(MA-estimate newy gueslist 0)

Estimation was started using newtonmax. Since the results contained non-
sense, sizelist was created and nelmeadmax was used. Given that the
latter function was unable to yield proper standard errors, the results it
produced were layed out in a new version of gueslist and the newtonmax
function was then successfully applied. I have written an additional function
called MA-residuals, that lurks in the background, to calculate the resid-
uals for each MA representation of the series list to which the MA process
is being fitted. The MA-estimate function calls this function repeatedly
in the course of attempting to find a maximum of the likelihood function.2

The results we end up with are

Estimation of MA Process:

maximizing...
Iteration 0.
Criterion value = -335.781
Iteration 1.
Criterion value = -331.659

2For background, see pages 127-134 of the textbook by Hamilton that was cited earlier.

378 CHAPTER 12. FORECASTING

Iteration 2.
Criterion value = -331.301
Iteration 3.
Criterion value = -331.296
Iteration 4.
Criterion value = -331.296
Reason for termination: gradient size is less than gradient tolerance.

Coefficient Std. Error T-stat
Constant 0.446 0.038 11.765
Lag 1 0.236 0.047 5.040
Lag 2 0.164 0.043 3.783
Variance 0.344 0.017

Sum of Squared Residuals = 128.76861148372393

Degrees of Freedom = 371

AIC = 1822.8983895319911
SBC = 1834.6711569242348

Ljung-Box Q-statistics:
LAG Q DF Pval
4 24.333 1 0.000
5 32.401 2 0.000
6 42.305 3 0.000
7 48.848 4 0.000
8 57.962 5 0.000

.............................

.............................

.............................

92 168.029 89 0.000
93 169.549 90 0.000
94 170.236 91 0.000

While both MA lags are statistically significant, the fitted residuals again
contain very high serial correlation.

12.2. ARIMA FORECASTS 379

Finally, we fit ARMA(1,1) and ARMA(1,2) processes to our series using
the ARMA-estimate function I wrote for the purpose. This function takes
six arguments in the following order—the series to which the process is being
fitted, the number of autoregressive lags, the number of moving average lags,
a list of initial guesses as to the magnitudes of the parameters, the integer
1 if a constant term is to be included or, alternatively, a 0 if no constant
is to be included, and finally, a zero if the newtonmax function is to be
used or the integer 1 if the nelmeadmax function is to be used. The initial-
guess parameter list, of length p + q + c + 1, where c = 1 if a constant is
to be included and c = 0 otherwise, must be ordered as follows—constant
(if c = 1), AR coefficient 1, AR coefficient 2,, MA coefficient 1, MA
coefficient 2,, true variance of residuals. Again, if nelmeadmax is used
there must be a list called sizelist already in the workspace containing one
element for each element in the initial-guess parameter list. As in the case
where MA processes are being fitted to a series, I have written a function that
remains in the background for the ARMA-estimate function to use. It is
called ARMA-residuals and calculates the residuals for a particular set of
ARMA parameters that the newtonmax or nelmeadmax will then calculate
the likelihood of during the maximisation process.3 The batch code for
fitting ARMA(1,1) and ARMA(2,2) processes to the first-difference of log
United States M1 is as follows.

(def gueslist (list 0.5 0.5 0.5 1))
(ARMA-estimate (remove-first-element newy) 1 1 gueslist 1 0)
(def sizelist (list 1 1 1 1))
(ARMA-estimate (remove-first-element newy) 1 1 gueslist 1 1)
(def gueslist (list 0.022 0.940 -0.780 0.253))
(ARMA-estimate (remove-first-element newy) 1 1 gueslist 1 0)
(def gueslist (list 0.022 0.940 -0.780 0 0.253))
(ARMA-estimate (remove-first-element newy) 1 2 gueslist 1 0)

We first attempt to fit an ARMA(1,1) process using the newtonmax function.
When that fails, we define sizelist and proceed to use the nelmeadmax
function. The results from that estimation are then fed as gueslist to
the newtonmax function. Then an ARMA(1,2) process is fit to the series
using the previous gueslist with a zero inserted as an initial guess for the
second MA coefficient. In all these estimates we remove the first element of
newy to make the series identical to the one to which the AR(2) process was
previously fit so that when we compare the AIC and SBC statistics they

3See again the pages from the Hamilton book cited in the previous footnote.

380 CHAPTER 12. FORECASTING

will all pertain to exactly the same time period—otherwise, the ARMA(1,1)
and ARMA(1,2) processes would be one observation longer than the AR(2)
process, there being one rather than two autoregressive lags. The final
results are as follows.

Estimation of ARMA Process:

maximizing...
Iteration 0.
Criterion value = -314.862
Iteration 1.
Criterion value = -310.706
Iteration 2.
Criterion value = -310.351
Iteration 3.
Criterion value = -310.347
Iteration 4.
Criterion value = -310.347
Reason for termination: gradient size is less than gradient tolerance.

Coefficient Std. Error T-stat
Constant 0.023 0.012 1.878
AR(1) 0.948 0.027 35.130
MA(1) -0.791 0.049 -16.068
Variance 0.311 0.015

Sum of Squared Residuals = 115.6677598908805

Degrees of Freedom = 369

AIC = 1773.2685626993753
SBC = 1785.0252442621947

Ljung-Box Q-statistics:
LAG Q DF Pval
4 0.788 1 0.375
5 0.859 2 0.651
6 1.334 3 0.721

.............................

12.2. ARIMA FORECASTS 381

.............................

.............................

91 81.699 88 0.669
92 83.292 89 0.651
93 85.245 90 0.622

Estimation of ARMA Process:

maximizing...
Iteration 0.
Criterion value = -345.363
Iteration 1.
Backtracking: lambda = 0.100000
Criterion value = -339.450
Iteration 2.
Backtracking: lambda = 0.386191
Criterion value = -332.790
Iteration 3.
Criterion value = -330.668
Iteration 4.
Criterion value = -330.594
Iteration 5.
Criterion value = -330.594
Iteration 6.
Criterion value = -330.594
Reason for termination: gradient size is less than gradient tolerance.

Coefficient Std. Error T-stat
Constant 0.039 0.021 1.853
AR(1) 0.912 0.042 21.584
MA(1) -0.983 0.142 -6.946
MA(2) 0.280 0.017 16.444
Variance 0.280 0.017

Sum of Squared Residuals = 126.42280491232606

Degrees of Freedom = 368

382 CHAPTER 12. FORECASTING

AIC = 1806.343060866396
SBC = 1818.0997424292154

Ljung-Box Q-statistics:
LAG Q DF Pval
4 36.610 1 0.000
5 37.240 2 0.000
6 37.487 3 0.000

.............................

.............................

.............................

91 164.182 88 0.000
92 166.179 89 0.000
93 170.849 90 0.000

The ARMA(1,1) process clearly gives the best fit because it produces resid-
uals that are not serially correlated and AIC and SBC statistics that are
smaller than the corresponding AIC and SBC statistics for the ARMA(1,2)
process. These AIC and SBC statistics are also lower than those for the
earlier fits of AR and MA processes. We should have also checked the fit of
an ARMA(2,2) process, but that is left as an exercise for the reader. All the
code for this section is contained in the file armach12.lsp and the important
results, including those below, are in armach12.lou.

To forecast a variable a specific number of periods beyond the last period
for which data are available I have written the function ARMA-forecast.
It takes the following seven arguments in order—the series to be forecast,
the number of autoregressive lags, the number of moving-average lags, a list
of initial guesses regarding the parameter values, the integer 1 if a constant
is to be included or 0 otherwise, the number of periods ahead to forecast
and, finally, a zero if the newtonmax function is to be used or the integer
1 if nelmeadmax is to be used. Again, the best procedure is to start with
the newtonmax function and, if that fails, use the nelmeadmax function to
obtain parameter values that can be included in the guess list for final use
of newtonmax. And again, a list called sizelist must be in the workspace
if nelmeadmax is used. The function returns a list of forecasted values called
predval and leaves in the workspace, along with that list, lists called actual,
fitted and resids giving the actual and fitted values and the residuals for
the data-period over which the ARMA process is fitted. The actual series

12.2. ARIMA FORECASTS 383

is simply the series used as the first argument when calling the function,
shortened at its beginning by the number of autoregressive lags. Using the
ARMA(1,1) process fitted above, we construct a one-year ahead forecast of
the log of U.S. M1 using the following code.

(def gueslist (list 0.023 0.948 -0.791 0.311))
(ARMA-forecast (remove-first-element newy) 1 1 gueslist 1 12 0)
(def dm1fut (remove-first (- (length dm1) 12) dm1))
(def datesfut (remove-first (- (length datesmo) 12) datesmo))
(def actual (combine actual dm1fut))
(def fitted (combine fitted predval))
(def dates (remove-first (- (length datesmo)(length actual)) datesmo))
(def actual (undifference actual 0))
(def actual (+ actual 59))
(def fitted (undifference fitted 0))
(def fitted (+ fitted 59))
(def resids (- actual fitted))
(def outmat (bind-columns dates actual fitted resids))
(write-matrix-to-file outmat "armares1.mat")

The integer 59 was added to the final actual and fitted series to raise their
initial values in 1974 from zero to the actual level in that year, taken as a
percentage of the level in January 1962. We could have accomplished the
same thing by replacing the zero argument in the above undifference func-
tion calls with the integer 59 or with the level of the series at 1974.0 on the
datelist, rounded to the nearest integer. My undifference function takes as
its two arguments the series to be undifferenced or integrated and the initial
starting level. The actual and fitted values from the beginning of the year
2000 to the end of 2005 are plotted in Figure 27. As can be clearly seen, the
forecast for 2005 is no improvement over our earlier trend projection. And
during the period 2000-2005 there are on occasion substantial differences
between actual and predicted.

I have also written an AR-forecast function to construct n-period ahead
forecasts using autoregressive processes. This function will be demonstrated
below in the section on OLS forecasting.

To obtain an unanticipated money shock series we need to be able to
make a series of one-period (pseudo) running-forecasts and subtract these
forecasted values from the actual values of each period. I have written the
function ARMA-running-forecast to do this. The function takes the fol-
lowing nine arguments, in order—the series being forecasted, the number
of autoregressive lags, the number of moving-average lags, the integer 1 if

384 CHAPTER 12. FORECASTING

200

205

210

215

220

225

230

2000 2001 2002 2003 2004 2005 2006

P
er

ce
nt

ag
e

In
cr

ea
se

 S
in

ce
 J

an
ua

ry
 1

96
2

Actual
Forecasted

Figure 27: Actual and predicted values of United States M1, for the years
2000-2005 based on an ARIMA model fitted to the period 1974-2004.

a constant is to be included, 0 otherwise, the datelist to which the variable
being forecasted conforms, the starting date of the running-forecast, the
ending date, the number of periods of data on which to base each period’s
forecast, and the list providing guesses as to the initial values of the param-
eters, organised in the same way as was done in the ARIMA-estimate
function. The newtonmax function is always used. The nelmeadmax func-
tion may have to be used initially in an application of ARIMA-estimate
to obtain appropriate guesses as to the initial values of the parameters for
the first-period forecast. These can then be incorporated in a guess list for
use with newtonmax in ARMA-running-forecast. The code used to make
a running forecast of the level of log U.S. M1 for the period 2000-2005 using
the previous twenty years’ data for each month’s forecast is as follows.

(ARMA-setdata dm1 dates 1 1980.0 1999.917)
(def sizelist (list .5 .5 .5 .5))
(def gueslist (list 0.5 0.5 0.5 1))
(ARMA-estimate newy 1 1 gueslist 1 0)
(def gueslist (list 0.081 0.818 -0.358 0.220))
(ARMA-estimate newy 1 1 gueslist 1 0)
(ARMA-running-forecast dm1 1 1 1 datesmo 2000.0 2005.917 240 gueslist)
(def predates (remove-first (- (length datesmo) 72) datesmo))
(def actdm1 (remove-first (- (length dm1) 72) dm1))
(def actm1 (undifference actdm1 0))
(def actm1 (+ actm1 204))
(def fitm1 (undifference predlist 0))

12.2. ARIMA FORECASTS 385

(def fitm1 (+ fitm1 204))
(def fitm1 (- fitm1 (-(select fitm1 0)(select actm1 0))))
(def resm1 (* 100 (/(- actm1 fitm1) fitm1)))
(def meanerr (mean resm1))
(def sqerr (inner-product resm1 resm1))
(def msqerr (/ sqerr (length resm1)))
(def rtmsqerr (sqrt msqerr))
(princ "Mean Forecast Error = ")(princ meanerr)(terpri)
(princ "Root Mean Square Error = ")(princ rtmsqerr)(terpri)
(princ "Standard Deviation = ")(princ (standard-deviation resm1))
(terpri)(terpri)
(def rforcmat (bind-columns predates actm1 fitm1 resm1))
(write-matrix-to-file rforcmat "armares2.mat")

The ARMA-running-forecast function calls repeatedly, for each period’s
forecast, the ARMA-estimate function. After adjusting the levels of the
fitted values to equal the actual in the first period, the integer 204 is added
to both the actual and fitted values to set their levels in January 2000 to
the percentage of the January 1962 level. The unanticipated money shock,
resm1, is expressed as a percentage of that period’s fitted value, and its mean
is calculated along with its standard deviation and the root-mean-square-
forecast error. These are printed out to the screen and the resulting actual,
fitted, and unanticipated log M1 shocks are written to the file armares2.mat.
These results are

RUNNING ARIMA(1,1,1) FORECAST FOR 2000:1 to 20005:12

Mean Forecast Error = -0.8828606843913559
Root Mean Square Error = 1.0287765908762225
Standard Deviation = 0.5318524176337962

The actual and predicted values are plotted in Figure 28. The forecasts
of log M1 are clearly worse than those obtained using a running 4-month-
trend projection. This does not rule out, of course, the possibility that
some alternative ARIMA process might have done better—not everything
has been tried.

We should be able to do much better forecasting log M1 on the basis of
lagged values not only of itself but of other variables that determine it. This
can be done with OLS forecasts.

386 CHAPTER 12. FORECASTING

200

205

210

215

220

225

230

2000 2001 2002 2003 2004 2005 2006P
er

ce
nt

ag
e

In
cr

ea
se

 S
in

ce
 J

an
ua

ry
 1

96
2

ACTUAL AND PREDICTED M1 AS PERCENTAGES OF 1962 LEVELS

Actual
Forecasted

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2000 2001 2002 2003 2004 2005 2006

UNANTICIPATED M1 SHOCKS AS PERCENTAGES OF PREDICTED LEVELS

Figure 28: Actual and predicted values of United States M1, for the years
2000-2005 in the top panel, based on running one-period ARIMA projections
of values for twenty-four months preceeding each forecasted value.

12.3 OLS Forecasts

We begin with OLS forecasts based solely on lagged values of the series being
forecasted. This procedure uses my AR-forecast function which takes as
its three arguments, in order, the series being forecasted, the number of
lags, and the number of periods ahead that are to be forecasted. After
experimenting with autoregressive processes running from AR(1) through
AR(5), a 12-month-ahead forecast beginning in January 2005 was made
using an AR(2) process. The batch code (which can be found along with
the code for the previous section in armach12.lsp) is as follows.

12.3. OLS FORECASTS 387

(def m1fut (remove-first (- (length m1) 12) m1))
(def datesfut (remove-first (- (length datesmo) 12) datesmo))

(ARMA-setdata m1 dates 5 1974.0 2004.917)
;
(AR-estimate (remove-first 4 newy) 1)
(AR-estimate (remove-first 3 newy) 2)
(AR-estimate (remove-first 2 newy) 3)
(AR-estimate (remove-first 1 newy) 4)
(AR-estimate newy 5)
;
(AR-forecast (remove-first 3 newy) 2 12)
;
(def actual (combine actual m1fut))
(def fitted (combine fitted xpred))
(def dates (remove-first (- (length datesmo)(length actual)) datesmo))
(def outmat (bind-columns dates actual fitted))
(write-matrix-to-file outmat "arres0.mat")

The results for the AR(2) case (the other results are in the file arres.lou)
are as follows.

Estimation of AR Process:

Coefficient Std. Error T-Statistic P-Value

Constant 0.589 0.105 5.627 0.000
AR(1) 1.293 0.050 25.986 0.000
AR(2) -0.295 0.050 -5.942 0.000

Sum of Squared Residuals = 125.67741393649648

Degrees of Freedom = 369

AIC = 1804.1432511850771
SBC = 1815.8999327478966

388 CHAPTER 12. FORECASTING

Ljung-Box Q-statistics:
LAG Q DF Pval
4 17.805 1 0.000
5 24.344 2 0.000
6 31.571 3 0.000
7 35.233 4 0.000

.............................

.............................

.............................

91 136.500 88 0.001
92 137.410 89 0.001
93 137.887 90 0.001

There is substantial serial correlation in the residuals. The plot of the actual
and fitted from 2000 through 2004 and the actual and forecasted for the
12 months in 2005 is shown in Figure 29. The fit is worse than with the
ARIMA(1,1) process shown in Figure 27, but the forecast is slightly better
than the previous ones. The fact that the lag is only two periods enabled
the model to capture some of the shift in trend that occurred toward the
end of 2005. Had the trend shift occurred a couple of periods earlier the
AR(2) model might well have entirely captured it. The ARMA(1,1) was a
bit worse than the AR(2) forecast because the influence of longer lags was
present via its moving-average terms.

200

205

210

215

220

225

230

2000 2001 2002 2003 2004 2005 2006

P
er

ce
nt

ag
e

In
cr

ea
se

 S
in

ce
 J

an
ua

ry
 1

96
2

Actual
Forecasted

Figure 29: Actual and predicted values of United States M1, for the years
2000-2005 based on an AR(2) model fitted to the period 1974-2004.

12.3. OLS FORECASTS 389

An advantage of OLS one-period-ahead forecasts is that they can be
based on lagged values of variables other than the one being forecasted. My
OLS-running-forecast function is designed to do these. It takes as its
arguments, in order—the series we want to forecast, the matrix of lagged
values of the variables used to forecast the series (including its own past
values), the datelist to which these variables conform, the integer 1 if a
constant is to be included or 0 otherwise, the number of observations to
include in the regression or, alternatively, the date in the datelist at which
all forecasting regressions are to begin (the date must contain a decimal
point so as to not be interpreted as an integer), the starting date for the list
of forecasted values, and finally, the ending date for the list of forecasted
values. A list of forecasted values, called predlist, and a list giving the
actual values for the forecast period, called actlist are left in the workspace
along with a corresponding datelist, called predates.

To illustrate we conduct an OLS-running forecast of the log of U.S. M1
for the period 2000 through 20005 using data 25 years of data for each
forecast. One and three lags of the M1 variable are included along with
three lags of the logarithm of the product of the U.S. CPI and U.S. indus-
trial production, to simulate a nominal GDP measure. The code for these
calculations, which can be found in the file olsch12.lsp is as follows.

(load "addfuncs")
(load "causdat")
(load "maximize")
;
(def logm1 (* 100 (log usm1sa)))
(def m1 (- logm1 (select logm1 0)))
(def logip (* 100 (log usindpro)))
(def ip (- logip (select logip 0)))
(def logcpi (* 100 (log uscpi)))
(def cpi (- logcpi (select logcpi 0)))
(def nip (+ ip cpi))
;
(def usm1 (set-time-series m1 datesmo 1974.0 2005.917 0))
(def m1lags (set-time-series m1 datesmo 1974.0 2005.917 3))
(def m1lags (bind-columns (select laglist 1)(select laglist 3)))
(def niplags (set-time-series nip datesmo 1974.0 2005.917 3))

390 CHAPTER 12. FORECASTING

(def regressand "Log U.S. M1")
(def regressors (list "Constant" "LogUSM1-1" "LogUSM1-3"
"Log NIP-1" "Log NIP-2" "Log NIP-3"))
(OLS-basic usm1 (bind-columns m1lags niplags) 1 5)
;
(OLS-running-forecast usm1 (bind-columns m1lags niplags) adjdates 1 312
2000.0 2005.917)
;
(def uanm1shk (* 100 (/ (- actlist predlist) predlist)))
;
(write-matrix-to-file (bind-columns predates actlist predlist uanm1shk)
"olspred.mat")

(def initobs (date2obs predates 2000.0))
(def forcerr (- (remove-first initobs actlist)
(remove-first initobs predlist)))
(def forcerr (* 100 (/ forcerr predlist)))
(def msqfe (mean (/ (inner-product forcerr forcerr)(length forcerr))))
(terpri)
(princ "Mean Forecast Error = ")(princ (mean forcerr))(terpri)
(princ "Standard Deviation = ")(princ (standard-deviation forcerr))
(terpri)
(princ "Root-Mean-Square-Error = ")(princ (sqrt msqfe))(terpri)
(terpri)

The results regarding the accuracy of the forecast are as the following.

Mean Forecast Error = 0.032717267355255535
Standard Deviation = 0.43378993180873976
Root-Mean-Square-Error = 0.43200763979601475

The actual and predicted levels and the forecast errors as percentages of the
corresponding predicted values are plotted in Figure 30. Apart from the
few months in late 2001, the forecast is rather good, clearly better than the
ARIMA(1,1) running-forecast plotted in Figure 28, and compares favourably
with the running forecast based on four-month trend-projections plotted in
Figure 25.

12.4. NEAR-VAR FORECASTS 391

200

205

210

215

220

225

230

2000 2001 2002 2003 2004 2005 2006

P
er

ce
nt

ag
e

In
cr

ea
se

 S
in

ce
 J

an
ua

ry
 1

96
2

Actual
Forecasted

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2000 2001 2002 2003 2004 2005 2006

UNANTICIPATED M1 SHOCKS AS PERCENTAGES OF PREDICTED LEVELS

Figure 30: Actual and predicted values of United States log M1, for the
years 2000-2005 in the top panel, based on running OLS one-period ahead
forecasts based on one and three lags of log M1 and three lags of the log of
the product of the U.S. consumer price index and U.S. industrial production.
The forecasts are based on the preceeding twenty-five years of data.

12.4 Near-VAR Forecasts

In order to forecast ahead more than one period on the basis of currently
available information using lags of variables other than the one being fore-
casted, one must use a VAR in all variables—their predicted levels in each
period are added to that period’s data and new predicted levels are calcu-
lated. Repeated calculations of this sort yield forecasts for as many periods
ahead that one might choose. The problem is, however, that insignificant
lagged variables in the VAR equations create excess random variability of
the predicted results. A more appropriate procedure, therefore, is to use a

392 CHAPTER 12. FORECASTING

Near-VAR—that is a VAR in which insignificant lags of variables are omit-
ted. This requires that seemingly-unrelated-regression techniques be used
instead of OLS to obtain efficient coefficient estimates and, hence, forecasted
values. To illustrate, we modify the basic U.S. VAR that we used in Chap-
ter 10, involving the log real GDP, the log of the implicit GDP deflator, the
1-month commercial paper rate and the log of M1. The estimation period
there ran from 1965 through 2005. Here we will estimate for the period 1965
through 2004 and forecast the values for the year 2005. Since the data are
quarterly, this will involve forecasting one through four periods ahead.

First we must set up the data and determine which lags in the VAR
equations are statistically significant. Because this is an illustration and not
an attempt at actual economic analysis, we will simply pick out the lags that
were significant in the original VAR, re-estimate the four equations by OLS
and then routinely drop any lags that are insignificant on re-estimation.
It is important to note here that we require only that the model predict
efficiently, not that it necessarily reflect channels of causation. The final
regression results for the period 1965 through 2004 are as follows (the batch
code from which these results were produced will be shown later).

LINEAR REGRESSION

Dependent Variable: Log Real GDP

Coefficient Std. Error T-stat P-Val

Constant 0.186 0.055 3.399 0.001
LogRGDP-L1 0.972 0.010 100.977 0.000
Intrate-L2 -0.258 0.056 -4.640 0.000
Intrate-L3 0.138 0.056 2.469 0.015
LogM1-L3 0.011 0.005 2.377 0.019

Number of Observations: 160
Degrees of Freedom: 155
R-Squared: 0.999557455376693
Adjusted R-Squared: 0.9995460348702851
Sum of Squared Errors: 0.008789311293886626
LMSC -- Chi-Square: 5.829305158209041
P-Value: 0.0157613476752545
Breusch-Pagan -- Chi-Square: 9.326330323771614
P-Value: 0.05344072356438134
Regression F-Statistic: 87523.04141989283
P-Value: 0.0

12.4. NEAR-VAR FORECASTS 393

LINEAR REGRESSION

Dependent Variable: Log Implicit GDP Deflator

Coefficient Std. Error T-stat P-Val

Constant 0.006 0.002 2.590 0.011
LogPlev-L1 1.568 0.077 20.291 0.000
LogPlev-L2 -0.417 0.112 -3.712 0.000
LogPlev-L4 -0.153 0.039 -3.901 0.000

Number of Observations: 160
Degrees of Freedom: 156
R-Squared: 0.9999707950999939
Adjusted R-Squared: 0.9999702334673015
Sum of Squared Errors: 0.0012320831106580948
LMSC -- Chi-Square: 1.0738481497725598
P-Value: 0.3000778548158437

Breusch-Pagan -- Chi-Square: 25.034837433874806
P-Value: 1.5183684072717085E-5

Regression F-Statistic: 1780471.131021227
P-Value: 0.0

LINEAR REGRESSION

Dependent Variable: Interest Rate

Coefficient Std. Error T-stat P-Val

Constant 0.017 0.021 0.797 0.427
LogRGDP-L1 0.225 0.068 3.307 0.001
LogRGDP-L3 -0.227 0.068 -3.360 0.001
Intrate-L1 1.120 0.076 14.723 0.000
Intrate-L2 -0.506 0.110 -4.614 0.000
Intrate-L3 0.651 0.113 5.772 0.000
Intrate-L4 -0.308 0.074 -4.152 0.000

394 CHAPTER 12. FORECASTING

Number of Observations: 160
Degrees of Freedom: 153
R-Squared: 0.9065564884000686
Adjusted R-Squared: 0.9028920369647773
Sum of Squared Errors: 0.014366766923784245
LMSC -- Chi-Square: 0.6341008864671108
P-Value: 0.42585505980579075
Breusch-Pagan -- Chi-Square: 36.03414748415517
P-Value: 2.714819091087506E-6
Regression F-Statistic: 247.3921416093136
P-Value: 0.0

LINEAR REGRESSION

Dependent Variable: Log M1

Coefficient Std. Error T-stat P-Val

Constant 0.013 0.007 1.978 0.050
Intrate-L1 -0.398 0.058 -6.915 0.000
Intrate-L2 0.508 0.088 5.790 0.000
Intrate-L3 -0.105 0.061 -1.709 0.089
LogM1-L1 1.684 0.057 29.284 0.000
LogM1-L2 -0.685 0.057 -11.954 0.000

Number of Observations: 160
Degrees of Freedom: 154
R-Squared: 0.9998803132804434
Adjusted R-Squared: 0.9998764273479902
Sum of Squared Errors: 0.009087992417913001
LMSC -- Chi-Square: 6.865609076962485
P-Value: 0.008787029300850069
Breusch-Pagan -- Chi-Square: 12.84909623887291
P-Value: 0.024834693104760386
Regression F-Statistic: 257307.69264219378
P-Value: 0.0

12.4. NEAR-VAR FORECASTS 395

The estimation of Near-VAR’s is a bit tricky so the code used will be
rather carefully exposited. First, we set up our data to run from 1965
through 2005. The batch file containing all the code illustrated below is
nvarch12.lsp and the results from processing this code are in nvarch12.lou.

(def uscpapr (m2q-avg uscpapr 0 1962.0 2005.75))
(def usm1 (m2q-avg usm1sa 0 1962.0 2005.75))
;
(def usipd (remove-first 16 usipd)) ; remove observations
(def usrgdp (remove-first 16 usrgdp)) ; for 1959, 1960, 1961
(def datesq (remove-first 16 datesq)) ; and 1962
;
(def logrgdp (log usrgdp)) ; take logarithms
(def logipd (log usipd))
(def logm1 (remove-first 4 (log usm1))) ; remove 1962 observation
(def intrate (/ (remove-first 4 (copy-list uscpapr)) 100))

; convert interest rate from % to fraction

We then set aside the actual levels of the variables for the period 2000-2005
which we will later plot along with our predicted values. After doing this,
we eliminate the 2005 observations from the series that will be used in initial
estimation and from the datelist that will be used.

(def actrgdp (remove-first (- (length logrgdp) 24)(copy-list logrgdp)))
(def rgdp (copy-list (remove-last 4 logrgdp)))
(def actplev (remove-first (- (length logipd) 24)(copy-list logipd)))
(def plev (copy-list (remove-last 4 logipd)))
(def actintr (remove-first (- (length intrate) 24)(copy-list intrate)))
(def intr (copy-list (remove-last 4 intrate)))
(def actmon1 (remove-first (- (length logm1) 24)(copy-list logm1)))
(def mon1 (copy-list (remove-last 4 logm1)))
(def dates (copy-list (remove-last 4 dates)))

Each time we set up the data for estimation using the set-time-series func-
tion, the first eight observations of the current values of the four variables
we are using will be lopped off. We need to set these aside so that they can
be added after each of the four passes we will need to forecast four periods
ahead. Then we can begin our dotimes loop.

(def begrgdp (remove-last (- (length logrgdp) 8) logrgdp))
(def begplev (remove-last (- (length logipd) 8) logipd))
(def begintr (remove-last (- (length intrate) 8) intrate))

396 CHAPTER 12. FORECASTING

(def begmon1 (remove-last (- (length logm1) 8) logm1))
;
(dotimes (i 4)

After setting the code to print the run number at the beginning of each
run, we instruct the interpreter to prepare four lagged values of each of the
variables along with its current value. Recall that the laglist object left
in the workspace by the set-time-series function gives a list of the current
and four lagged values of the series. We set the fourth argument in the
set-time-series function to augment the ending date of estimation by one
quarter after each run. Recall also that the four values of i will be 0, 1, 2
and 3.

(terpri)(princ "RUN NUMBER= ")(princ i)(terpri)(terpri)
(def rgdplags (set-time-series rgdp dates 1965.0 (+ 2004.75 (* .25 i)) 4))
(def rgdp (select laglist 0))
(def rgdp-1 (select laglist 1))
(def rgdp-2 (select laglist 2))
(def rgdp-3 (select laglist 3))
(def rgdp-4 (select laglist 4))
(def ipdlags (set-time-series plev dates 1965.0 (+ 2004.75 (* .25 i)) 4))
(def plev (select laglist 0))
(def plev-1 (select laglist 1))
(def plev-2 (select laglist 2))
(def plev-3 (select laglist 3))
(def plev-4 (select laglist 4))
(def intlags (set-time-series intr dates 1965.0 (+ 2004.75 (* .25 i)) 4))
(def intr (select laglist 0))
(def intr-1 (select laglist 1))
(def intr-2 (select laglist 2))
(def intr-3 (select laglist 3))
(def intr-4 (select laglist 4))
(def m1lags (set-time-series mon1 dates 1965.0 (+ 2004.75 (* .25 i)) 4))
(def mon1 (select laglist 0))
(def mon1-1 (select laglist 1))
(def mon1-2 (select laglist 2))
(def mon1-3 (select laglist 3))
(def mon1-4 (select laglist 4))

We then run the four regressions and extract the residuals.

12.4. NEAR-VAR FORECASTS 397

(def regressand "Log Real GDP")
(def regressors (list "Constant" "LogRGDP-L1" "Intrate-L2" "Intrate-L3"
"LogM1-L3"))
(def rgdpmat (bind-columns rgdp-1 intr-2 intr-3 mon1-3))
(def rgdpreg (OLS-basic rgdp rgdpmat 1 -1))
;
(def regressand "Log Implicit GDP Deflator")
(def regressors (list "Constant" "LogPlev-L1" "LogPlev-L2" "LogPlev-L4"))
(def plevmat (bind-columns plev-1 plev-2 plev-4))
(def plevreg (OLS-basic plev plevmat 1 -1))
;
(def regressand "Interest Rate")
(def regressors (list "Constant" "LogRGDP-L1" "LogRGDP-L3"
"Intrate-L1" "Intrate-L2" "Intrate-L3" "Intrate-L4"))
(def intrmat (bind-columns rgdp-1 rgdp-3 intlags))
(def intrreg (OLS-basic intr intrmat 1 -1))
;
(def regressand "Log M1")
(def regressors (list "Constant" "Intrate-L1" "Intrate-L2" "Intrate-L3"
"LogM1-L1" "LogM1-L2"))
(def mon1mat (bind-columns intr-1 intr-2 intr-3 mon1-1 mon1-2))
(def mon1reg (OLS-basic mon1 mon1mat 1 -1))
;
(def resrgdp (send rgdpreg :residuals))
(def resplev (send plevreg :residuals))
(def resintr (send intrreg :residuals))
(def resmon1 (send mon1reg :residuals))
(def reslist (list resrgdp resplev resintr resmon1))

Next we must construct the composite Y-vector and X-matrix for seemingly-
unrelated-regression analysis. The system has the form




y1

y2

y3

y4


 =




X1 0 0 0
0 X2 0 0
0 0 X3 0
0 0 0 X4







β̂1

β̂2

β̂3

β̂4


 +




ε1

ε2

ε3

ε4


 (12.1)

where the subscripts 1, 2, 3, and 4 refer respectively to the variables rgdp,
plev, intr and mon1. The code that does this is as follows, beginning with
the addition of constants to the individual X-matrices.

398 CHAPTER 12. FORECASTING

(def consterm (repeat 1 nobs))
(def rgdpmat (bind-columns consterm rgdpmat))
(def plevmat (bind-columns consterm plevmat))
(def intrmat (bind-columns consterm intrmat))
(def mon1mat (bind-columns consterm mon1mat))
;
(def zeromat (make-array (array-dimensions rgdpmat) :initial-element 0))
(def rgdpseg (bind-rows rgdpmat zeromat zeromat zeromat))
(def zeromat (make-array (array-dimensions plevmat) :initial-element 0))
(def plevseg (bind-rows zeromat plevmat zeromat zeromat))
(def zeromat (make-array (array-dimensions intrmat) :initial-element 0))
(def intrseg (bind-rows zeromat zeromat intrmat zeromat))
(def zeromat (make-array (array-dimensions mon1mat) :initial-element 0))
(def mon1seg (bind-rows zeromat zeromat zeromat mon1mat))
(def SURXmat (bind-columns rgdpseg plevseg intrseg mon1seg))
;
(def SURYvar (append rgdp plev intr mon1))

Then we have to create the matrix of system residuals, which takes the
following form.

Ω̂ =




s 2
1 I s12 I s13 I s14 I

s12 I s 2
2 I s23 I s24 I

s13 I s23 I s 2
3 I s34 I

s14 I s24 I s34 I s 2
4 I




This is done as follows.

(def rgdprgdp (/ (inner-product resrgdp resrgdp) nobs))
(def rgdpplev (/ (inner-product resrgdp resplev) nobs))
(def rgdpintr (/ (inner-product resrgdp resintr) nobs))
(def rgdpmon1 (/ (inner-product resrgdp resmon1) nobs))
;
(def plevrgdp (/ (inner-product resplev resrgdp) nobs))
(def plevplev (/ (inner-product resplev resplev) nobs))
(def plevintr (/ (inner-product resplev resintr) nobs))
(def plevmon1 (/ (inner-product resplev resmon1) nobs))
;
(def intrrgdp (/ (inner-product resintr resrgdp) nobs))
(def intrplev (/ (inner-product resintr resplev) nobs))
(def intrintr (/ (inner-product resintr resintr) nobs))
(def intrmon1 (/ (inner-product resintr resmon1) nobs))

12.4. NEAR-VAR FORECASTS 399

;
(def mon1rgdp (/ (inner-product resmon1 resrgdp) nobs))
(def mon1plev (/ (inner-product resmon1 resplev) nobs))
(def mon1intr (/ (inner-product resmon1 resintr) nobs))
(def mon1mon1 (/ (inner-product resmon1 resmon1) nobs))
;
(def identmat (identity-matrix nobs))
;
(def rgdpseg
(bind-rows (* rgdprgdp identmat)(* rgdpplev identmat)
(* rgdpintr identmat)(* rgdpmon1 identmat)))
(def plevseg
(bind-rows (* plevrgdp identmat)(* plevplev identmat)
(* plevintr identmat)(* plevmon1 identmat)))
(def intrseg
(bind-rows (* intrrgdp identmat)(* intrplev identmat)
(* intrintr identmat)(* intrmon1 identmat)))
(def mon1seg
(bind-rows (* mon1rgdp identmat)(* mon1plev identmat)
(* mon1intr identmat)(* mon1mon1 identmat)))
;
(def SURomega (bind-columns rgdpseg plevseg intrseg mon1seg))

We are now ready to estimate the system using GLS.

(def regressand "SUR: RGDP PLEV INTR MON1")
(def regressors (list "Constant" "RGDP-L1" "INTR-L2" "INTR-L3" "MON1-L3"
"Constant" "PLEV-L1" "PLEV-L2" "PLEV-L4"
"Constant" "RGDP-L1" "RGDP-L3" "INTR-L1" "INTR-L2" "INTR-L3" "INTR-L4"
"Constant" "Intrate-L1" "Intrate-L2" "Intrate-L3" "LogM1-L1" "LogM1-L2"))
(GLS SURYvar SURXmat SURomega)

Next we extract from GLScoefs, the list of coefficients left in the workspace
by the GLS function, the coefficients that relate to each of the four variables.

(def rgdpcoef (remove-last 17 GLScoefs)) ; leaves 5 rgdp coefs
(def plevcoef (remove-first 5 GLScoefs)) ; removes 5 rgdp coefs
(def plevcoef (remove-last 13 plevcoef)) ; removes intr and mon1 coefs
(def intrcoef (remove-last 6 GLScoefs)) ; removes mon1 coefs
(def intrcoef (remove-first 9 intrcoef)) ; removes rgdp and plev coefs
(def mon1coef (remove-first 16 GLScoefs)) ; removes all but mon1 coefs

400 CHAPTER 12. FORECASTING

Then we construct lists of the relevant lagged values of the four variables that
determine the current value of each variable in turn, and then multiply these
by the relevant coefficients to obtain the predicted values of each variable
for the first quarter of 2005 and add it to the list of observations for that
variable.

(def rgdplist (list 1.0
(select rgdp (- (length rgdp) 1))
(select intr (- (length intr) 2))
(select intr (- (length intr) 3))
(select mon1 (- (length mon1) 3))))
(def rgdppred (inner-product rgdpcoef rgdplist))
(def rgdp (append rgdp (list rgdppred)))
;
(def plevlist (list 1.0
(select plev (- (length plev) 1))
(select plev (- (length plev) 2))
(select plev (- (length plev) 4))))
(def plevpred (inner-product plevcoef plevlist))
(def plev (append plev (list plevpred)))
;
(def intrlist (list 1.0
(select rgdp (- (length rgdp) 1))
(select rgdp (- (length rgdp) 3))
(select intr (- (length intr) 1))
(select intr (- (length intr) 2))
(select intr (- (length intr) 3))
(select intr (- (length intr) 4))))
(def intrpred (inner-product intrcoef intrlist))
(def intr (append intr (list intrpred)))
;
(def mon1list (list 1.0
(select intr (- (length intr) 1))
(select intr (- (length intr) 2))
(select intr (- (length intr) 3))
(select mon1 (- (length mon1) 1))
(select mon1 (- (length mon1) 2))))
(def mon1pred (inner-product mon1coef mon1list))
(def mon1 (append mon1 (list mon1pred)))

In order to check our results we print out the predicted level of each variable

12.4. NEAR-VAR FORECASTS 401

and then the last five values of the new list of observations for that variable
to make sure that the last observation on the list is in fact the predicted
value.

(terpri)
(princ "Predicted RGDP = ")(princ rgdppred)(terpri)
(princ "Last five RGDP = ")(terpri)(princ (last-five rgdp))(terpri)
;
(terpri)
(princ "Predicted PLEV = ")(princ plevpred)(terpri)
(princ "Last five PLEV = ")(terpri)(princ (last-five plev))(terpri)
;
(terpri)
(princ "Predicted INTR = ")(princ intrpred)(terpri)
(princ "Last five INTR = ")(terpri)(princ (last-five intr))(terpri)
;
(terpri)
(princ "Predicted MON1 = ")(princ mon1pred)(terpri)
(princ "Last five MON1 = ")(terpri)(princ (last-five mon1))(terpri)

Finally, we add the first-quarter of 2005 to the datelist to be used as an
argument in the set-time-series function in the next round and add the
pre-1965 values back onto the lists representing the respective variables to
be used in establishing the relevant lags for estimating their 1965 levels.
That then brings us to the end of our dotimes loop.

(def dates (append dates (list (+ (select dates (- (length dates) 1)) .25))))
(def rgdp (append begrgdp rgdp))
(def plev (append begplev plev))
(def intr (append begintr intr))
(def mon1 (append begmon1 mon1))
) ; end dotimes i

The interpreter will now run through the loop three more times, calcu-
lating the predicted values for the second, third and fourth quarters of 2005
and adding them to the ends of the series for each variable.

The last step is to plot the results in XLispStat and write them to file
so that we can plot them using Gnuplot. We first remove all pre-2000
observations from the actual levels of our variables saved above and from
the series to which the predicted levels were added, and we then adjust both
to express all observations as percentages of their levels in the first quarter
of 2000.

402 CHAPTER 12. FORECASTING

(def predrgdp (remove-first (- (length rgdp) 24) rgdp))
(def predplev (remove-first (- (length plev) 24) plev))
(def predintr (remove-first (- (length intr) 24) intr))
(def predmon1 (remove-first (- (length mon1) 24) mon1))
(def plotdates (remove-first (- (length datesq) 24) datesq))
;
(def actrgdp (* 100 actrgdp))
(def actrgdp (+ 100 (- actrgdp (select actrgdp 0))))
(def predrgdp (* 100 predrgdp))
(def predrgdp (+ 100 (- predrgdp (select predrgdp 0))))
(def actplev (* 100 actplev))
(def actplev (+ 100 (- actplev (select actplev 0))))
(def predplev (* 100 predplev))
(def predplev (+ 100 (- predplev (select predplev 0))))
(def actmon1 (* 100 actmon1))
(def actmon1 (+ 100 (- actmon1 (select actmon1 0))))
(def predmon1 (* 100 predmon1))
(def predmon1 (+ 100 (- predmon1 (select predmon1 0))))
(def actintr (* 100 actintr))
(def predintr (* 100 predintr))
;
(write-matrix-to-file (bind-columns plotdates actrgdp predrgdp
actplev predplev actintr predintr actmon1 predmon1) "stmlspf31.mat")
;
(def plot1 (plot-lines (- plotdates 1900) actrgdp :title "RGDP"))
(send plot1 :add-points (- plotdates 1900) actrgdp)
(send plot1 :add-lines (- plotdates 1900) predrgdp)
(def plot2 (plot-lines (- plotdates 1900) actplev :title "PLEV"))
(send plot2 :add-points (- plotdates 1900) actplev)
(send plot2 :add-lines (- plotdates 1900) predplev)
(def plot3 (plot-lines (- plotdates 1900) actintr :title "INTR"))
(send plot3 :add-points (- plotdates 1900) actintr)
(send plot3 :add-lines (- plotdates 1900) predintr)
(def plot4 (plot-lines (- plotdates 1900) actmon1 :title "MON1"))
(send plot4 :add-points (- plotdates 1900) actmon1)
(send plot4 :add-lines (- plotdates 1900) predmon1)

12.4. NEAR-VAR FORECASTS 403

 100

 102

 104

 106

 108

 110

 112

 114

 116

 2000 2001 2002 2003 2004 2005 2006

U.S. REAL GDP AS A PERCENTAGE OF ITS LEVEL IN 2002:Q1

Actual
Forecasted

 98

 100

 102

 104

 106

 108

 110

 112

 114

 2000 2001 2002 2003 2004 2005 2006

U.S. IMPLICIT GDP DEFLATOR AS A PERCENTAGE OF ITS LEVEL IN 2002:Q1

Actual
Forecasted

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2000 2001 2002 2003 2004 2005 2006

P
er

ce
nt

 P
er

 Y
ea

r

U.S. INTEREST RATE ON 1-MONTH COMMERCIAL PAPER

Actual
Forecasted

 95

 100

 105

 110

 115

 120

 125

 130

 2000 2001 2002 2003 2004 2005 2006

U.S. M1 AS A PERCENTAGE OF ITS LEVEL IN 2002:Q1

Actual
Forecasted

Figure 31: Actual values for the years 2000-2005 and predicted levels for
2005 using near-VAR forecasts with estimation beginning in the first quarter
of 1965.

404 CHAPTER 12. FORECASTING

The resulting forecasts for the year 2005, together with the actual values
are presented in Figure 31. The forecasts of real GDP and the price level
are quite good but, as with all previous forecasts, the trend-shift in M1 was
missed. And a shift in trend that did not in fact occur was forecasted in the
case of the interest rate on commercial paper.

12.4. NEAR-VAR FORECASTS 405

References

Bernanke, Ben (1986), “Alternative Explanations of Money-Income Corre-
lation,” Carnegie-Rochester Conference Series on Public Policy 25, 49–100.

Blanchard, Olivier Jean and Danny Quah (1989), “The Dynamic Effects of
Aggregate Demand and Supply Disturbances,” American Economic Review,
Vol. 79, 655-673.

Breusch, T. S. (1978), “Testing for Autocorrelation in Dynamic Linear
Models,” Australian Economic Papers, Vol. 17, 334-355.

Breusch, T. S. and A. R. Pagan (1979), “A Simple Test for Heteroskedastic-
ity and Random Coefficient Variation,” Econometrica, Vol. 47, 1287-1294.

Carr, Jack (1972), “A Suggestion for the Treatment of Serial Correlation:
A Case in Point,” Canadian Journal of Economics, Vol. 2, 301-306.

Carr, Jack and Michael Darby (1981), “The Role of Money Supply Shocks
in the Short-run Demand for Money,” 183-199.

Chiang, Alpha C. (1984) Fundamental Methods of Mathematical Economics,
Third Edition, McGraw-Hill.

Christiano, Lawrence J., Martin Eichenbaum and Charles L. Evans (1999),
“Monetary Policy Shocks: What Have We Learned and to What End?”, in
John B. Taylor and Michael Woodford, eds., Handbook of Macroeconomics,
Volume 1A, Elsevier Press, Chapter 2, 65-148.

Cochrane, D. and Guy H. Orcutt (1949), “Application of Least-Squares Re-
gression to Relationships Containing Auto-correlated Error Terms,” Journal
of the American Statistical Association, Vol. 44, 32-61.

Dickey, David A. and Wayne A. Fuller (1981), “Likelihood Ratio Statistics
for Autoregressive time Series with a Unit Root,” Econometrica, Vol. 49,
P. 1063.

Enders, Walter (1995), Applied Econometric Time Series, Wiley Series in
Probability and Mathematical Statistics, John Wiley & Sons.

Engle, Robert F. and C. W. J. Granger (1983), “Co-Integration and Er-
ror Correction: Representation, Estimation, and Testing,” Econometrica,
Vol. 55, 251-276.

406 CHAPTER 12. FORECASTING

Engle, Robert F. and Byung Sam Yoo (1987), “Forecasting and Testing in
Co-Integrated Systems,” Journal of Econometrics, Vol. 35, 143-159.

Fuller, Wayne A. (1976), Introduction to Statistical Time Series, Wiley.

Godfrey, L. G. (1978), “Testing for Higher Order Serial Correlation in
Regression Equations When the Regressors Include Lagged Dependent
Variables,” Econometrica, Vol. 46, 1303-1310.

Hamilton, James D. (1994), Time Series Analysis, Princeton University
Press.

Hildreth, Clifford and John Y. Lu (1960), Demand Relations with Autocorre-
lated Disturbances, Agriculture Experiment Station Technical Bulletin 276,
Michigan State University, East-Lansing, Michigan.

Johansen, Soren (1988), “Statistical Analysis of Cointegration Vectors,”
Journal of Economic Dynamics and Control, Vol. 12, 221-254.

Johnston, Jack and John DiNardo (1997), Econometric Methods, McGraw-
Hill.

Maddala, G. S. (1988), Introduction to Econometrics, Macmillan.

McFadden, D. (1974), “The Measurement of Urban Travel Demand,”
Journal of Political Economy, Vol. 93, 417-425.

Munnell, Alicia H. and Geoffrey M. B. Tootell, Lynne E. Browne and James
McEneaney (1996), “Mortgage Lending in Boston: Interpreting the HMDA
Data,” American Economic Review, Vol. 66, 25-53.

Newey, Whitney and Kenneth West (1987), “A Simple Positive Semi-Definite,
Heteroskedastic and Autocorrelation Consistent Covariance Matrix,”
Econometrica, Vol. 55, 703-708.

Phillips, P. C. B. (1987), “Understanding Spurious Regression in
Econometrics,” Journal of Econometrics, Vol. 33, 311-340.

Phillips, P. C. B. and Pierre Perron (1988), “Testing for a Unit Root in
Time Series Regression,” Econometrica, Vol. 75, 335-346.

Phillips, P. C. B. and S. Ouliaris (1990), “Asymptotic Properties of Residual
Based Tests for Cointegration,” Econometrica, Vol. 58, 189-190.

Said, S. and David A. Dickey (1984), “Testing for Unit Roots in Autoregressive-
Moving-Average Models of Unknown Order,”Biometrika,
Vol. 71, 599-607.

12.4. NEAR-VAR FORECASTS 407

Sims, Christopher (1986), “Are Forecasting Models Usable for Policy Analy-
sis?” Federal Reserve Bank of Minneapolis Quarterly Review, Winter, 3–16.

Stock, James H. and Mark W. Watson (2003), Introduction to Econometrics,
Addison-Wesley.

Tierney, Luke (1990), LISP-STAT: An Object-Oriented Environment for
Statistical Computing, Wiley Series in Probability and Mathematical Statis-
tics, John Wiley & Sons.

White, Halbert (1980), “A Heteroskedasticity-Consistent Covariance Matrix
Estimator and a Direct Test for Heteroskedasticity,” Econometrica, Vol. 48,
827-838.

Index

*, 6
+, 6
-, 6
/, 6
:add-lines, 55, 78
:add-points, 55, 78
:coef-estimates, 92
:fit-values, 147
:help, 91
:help :coef-estimates, 92
:intercept nil, 91
:plot-residuals, 93
:print nil, 91
:residuals, 252
:variable-label, 55

abs, 7, 9
acf, 59, 61, 187, 375
aicsbc, 183
append, 11, 267, 401
AR-estimate, 375
AR-forecast, 383, 386
AR-set-data, 375
aref, 19, 29, 259
ARMA-estimate, 379, 384
ARMA-forecast, 382
ARMA-residuals, 379
ARMA-running-forecast, 383–385
ARMA-set-data, 374
array-dimensions, 22, 29, 43, 88

base, 39, 96

bin-sort, 82
bind-columns, 19, 35, 47, 87, 118,

267, 399
bind-rows, 19, 267, 399
binomial-cdf, 65
block-lag, 42
block-lead, 42
boxplot, 52
bq-exch-rate-history, 341
Breusch-Pagan, 95, 114

Chi-Square tests, 83
chisq-cdf, 67
chisq-dens, 83
chisq-quant, 66
chisq-rand, 72
chosen-five, 17, 80
close, 31
coerce, 21, 87
combine, 12
copy-list, 13
copy-matrix-column, 22, 37
copy-matrix-row, 22
correlation, 52, 79
covariance, 52, 267
CPE-test, 243
create-ARMA-series, 374

date2obs, 41, 55, 97
def, 8, 52, 91
detrend, 41
dfunit, 183, 187, 193, 195

408

INDEX 409

diagonal, 20, 334
difference, 41, 56, 339
dotimes, 13, 29, 35, 37, 89, 395
dribble, 5
Durbin-Watson, 112

error, 17
exp, 7, 9
exponential, 67

f-cdf, 66
f-quant, 66
f-rand, 72
F-restriction, 105, 106
find-NA-in-matrix, 35
first-five, 16, 17, 39–41, 43, 44, 51
format, 29, 30

GLS, 259, 264, 267, 399
GLS-joint-hypothesis-test, 269

HAC-stderrs, 108
help, 17
histogram, 52

identity-matrix, 21, 259, 267
if, 14, 131
inner-product, 25, 87, 398
interquartile-range, 50
inverse, 25
iseq, 13–15, 17, 30, 71

Johansen-coint, 205, 209
Johansen-cointvector-test, 214
joint-hypothesis-test, 221, 227

kernel density, 53
kernel-dens, 53, 68, 71

last-five, 17, 39–41, 43, 44, 51
LBQ, 102
length, 11, 35, 37, 40, 43, 131

LMSC-test, 100, 106, 112, 117
load, 16, 26, 28, 35
log, 7, 9
logit, 173, 178
LogProb-LRtest, 178

m2a-avg, 40
m2q-avg, 40, 47, 102, 276
MA-estimate, 376, 377
MA-residuals, 377
make-array, 19, 23, 267
matmult, 24, 87
max, 10, 50
mean, 49, 73, 76, 363
median, 49, 50
min, 10, 50
multicollinearity, 106

nelmeadmax, 169, 325, 329, 354, 355,
377, 380

newtonmax, 169, 173, 325, 328, 329,
354, 355, 377, 380

NLLS, 165
nllsreg, 164
normal-cdf, 63
normal-quant, 64, 80
normal-rand, 72
nreg-model, 163

OLS-basic, 108, 112, 117, 142, 144,
155, 159, 240, 246, 252, 265,
278

OLS-cross-section, 113, 114, 120, 138
OLS-panel, 127
OLS-running-forecast, 389
OLS-time-series, 113, 115, 117, 118,

219
OLS-trend-projection, 362
open, 31
outer-product, 25, 87

410 INDEX

pacf, 59, 61, 187, 375
panel-collect-obsnums, 122
panel-entity-demean, 125
panel-set-fixed-effects, 126
panel-switch-stack-order, 137, 139
plot-binomial, 69
plot-chisq, 70
plot-F, 70
plot-lines, 42, 53, 54, 78, 99
plot-normal-on-t, 70
plot-points, 54, 55
plot-poisson, 70
plot-standard-normal, 70
plot-t, 70
plot-t-on-normal, 70
poisson-cdf, 66
ppunit, 187, 193, 195, 228, 248, 254,

365, 372
princ, 28
print-matrix, 19, 23, 29, 89, 288, 315
print-time-series, 115
print-time-series-regression, 117
probit, 170, 178
prod, 10

q2a-avg, 40, 102
quantile, 50

range, 50
read-data-columns, 27, 32, 39
read-data-file, 46, 73, 80
regression-model, 90, 117
remove-first, 18, 44, 46, 97, 276, 339
remove-first-columns, 22
remove-first-element, 18
remove-first-rows, 22
remove-last, 18, 44
remove-last-columns, 22
remove-last-element, 18
remove-last-rows, 22

remove-selected element, 18
remove-selected-column, 22
remove-selected-row, 22, 37
repeat, 12, 13, 87
reverse, 12, 37
running-trend-projection, 363

sample, 71
savevar, 27, 34, 35, 37, 38
seasdums-M, 45, 98
seasdums-Q, 45, 98
select, 11, 15, 27, 29, 35, 37, 43, 68,

88, 89, 122, 131, 137
set-time-series, 43, 44, 118, 339, 389,

395
setdates, 39, 40, 55
setf, 12, 31, 89
sort-data, 51
sqrt, 7, 73
standard-deviation, 49, 50, 73, 363
stats, 50, 124
sum, 10

t-cdf, 64
t-quant, 64
t-rand, 72
terpri, 28, 31
transpose, 25, 87, 259
TSLS-OIR, 149, 152
TSLS-panel, 148
TSLS-SS-basic, 148
TSLS-SS-cross-section, 148, 156
TSLS-SS-time-series, 149
TSLS-time-series, 148

undef, 14
undifference, 383
uniform-rand, 71

VAR-add-results-vectors, 343
VAR-BlanQuah-decomp, 340, 341

INDEX 411

VAR-blanquah-history, 341, 358
VAR-block-lag-significance, 278, 285
VAR-bootstrap-values, 343
VAR-calc-conf-limits, 344
VAR-calc-Gmat-just-identified, 312, 314,

315, 355
VAR-calc-thetlist, 327, 328
VAR-check-struct-decomp, 315
VAR-Choleski-decomp, 292, 294
VAR-estimate-blanquah, 356, 358
VAR-estimate-choleski, 344, 346, 347,

349
VAR-estimate-structural, 354
VAR-extend-struct-decomp, 317, 334
VAR-lag-length, 204, 211, 248, 274,

276, 339
VAR-MA-representation, 287, 288, 292,

314, 325, 334, 340
VAR-maxlike-calc-Gmat, 327–329, 332
VAR-plot-impulse-responses-of, 294,

340
VAR-plot-impulse-responses-to, 294,

340
VAR-print-forecast-error-variance-decompositions,

294, 340
VAR-print-impulse-responses, 294, 340
VAR-results-vectors, 343
VAR-run-standard-form, 277, 278, 334
VAR-setup, 277, 278, 285, 287, 314,

334, 340
VAR-standard-form, 343
VAR-write-fev-decomps-to-LaTeX-file,

294, 302
variables, 8, 27, 46
variance, 49, 75, 267
varstd, 325, 327, 331, 355
vector, 21

write-graphs-to-TeXfile, 346, 347, 349
write-matrix, 29–31, 288, 315

write-matrix-to-file, 31, 389, 404

Statistical Tables

While the simplest way to calculate P-Values is to use the XLispStat cu-
mulative density functions, the test-statistics for unit root and cointegration
tests do not follow standard distributions. Accordingly, the next three pages
contain the relevant statistical tables for Dickey-Fuller and Phillips-Perron
unit root tests, for cointegration tests based on unit root tests of regression
residuals, and for Johansen cointegration tests.

The critical values for the unit root tests in the table that follows were
calculated using Monte Carlo methods by David Dickey and Wayne A. Fuller
and were obtained from their paper “Likelihood Ratio Statistics for Autore-
gressive Time Series with a Unit Root,” Econometrica, Vol. 49, July 1981,
pages 1062 and 1063, and from Walter Enders, Applied Econometric Time
Series, Wiley Series in Probability and Mathematical Statistics, John Wi-
ley & Sons, 1995, pages 223, 419 and 421, and from James D. Hamilton,
Time Series Analysis, Princeton University Press, 1994, page 763. These
critical values are based on sample sizes of 100 and remain unchanged when
the Dickey-Fuller estimating equations are augmented by inclusion of lagged
values of ∆yt to improve the fit as indicated by the AIC and SBC. Larger
sample sizes will result in critical values that are slightly smaller in absolute
value and smaller sample sizes will result in somewhat larger critical values.

STATISTICAL TABLES FOR UNIT ROOT TESTS

True Model Used to Generate the Data: yt = yt−1 + εt

1. Model Estimated: Dickey-Fuller ∆yt = a0 + a1yt−1 + a2t + εt

Phillips-Perron yt = ã0 + ã1yt−1 + ã2(t− n/2) + ε̃t

Hypothesis Test Statistic Critical Values
10% 5% 1%

a1 = 0 , ã1 = 1 t-based -3.15 -3.45 -4.04
a0 = 0 , ã0 = 0 t-based 2.73 3.11 3.78
a2 = 0 , ã2 = 0 t-based 2.38 2.79 3.53
a1 = a2 = 0 , ã1 = 1 & ã2 = 0 F-based 5.47 6.49 8.73
a0 = a1 = a2 = 0 , ã0 = ã2 = 0 & ã1 = 1 F-based 4.16 4.88 6.50

2. Model Estimated: Dickey-Fuller ∆yt = a0 + a1yt−1 + εt

Phillips-Perron yt = ã0 + ã1yt−1 + ε̃t

Hypothesis Test Statistic Critical Values
10% 5% 1%

a1 = 0 , ã1 = 1 t-based -2.58 -2.89 -3.51
a0 = 0 , ã0 = 0 t-based 2.17 2.54 3.22
a0 = a1 = 0 , ã0 = 0 & ã1 = 1 F-based 3.86 4.71 6.70

3. Model Estimated: Dickey-Fuller ∆yt = a1yt−1 + εt

Phillips-Perron yt = ã1yt−1 + ε̃t

Hypothesis Test Statistic Critical Values
10% 5% 1%

a1 = 0 , ã1 = 1 t-based -1.61 -1.95 -2.60

CRITICAL VALUES FOR REGRESSION-RESIDUAL BASED
COINTEGRATION TESTS

Estimated Cointegrating Regression Residual:

zt = yt − β0 − β1 x1t − β2 x2t − β3 x3t −− βN xNt

Number of Variables Sample Critical Values
N + 1 Size 10% 5% 1%

2 50 3.28 3.67 4.32
100 3.03 3.37 4.07
200 3.02 3.37 4.00

3 50 3.73 4.11 4.84
100 3.59 3.93 4.45
200 3.47 3.78 4.35

4 50 4.02 4.35 4.94
100 3.89 4.22 4.75
200 3.89 4.18 4.70

5 50 4.42 4.76 5.41
100 4.26 4.58 5.18
200 4.18 4.48 5.02

6 500 4.43 4.71 5.28

Notes and Sources: Standard Dickey-Fuller and Phillips Perron unit-root tests are ap-
plied to the regression residuals using the critical values above instead of those on the
previous page, focussing entirely on the coefficients of the lagged residual. Except for
the case of 6 variables, these critical values were calculated using Monte Carlo methods
by Robert F. Engle and Byung Sam Yoo and obtained from their paper “Forecasting
and Testing in Co-Integrated Systems,” Journal of Econometrics, Vol. 35, 1987, page
157. The critical values for the case of 6 variables using 500 observations were calculated
by Peter C. B. Phillips and S. Ouliaris, “Asymptotic Properties of Residual Based Tests
for Cointegration,” Econometrica, Vol. 58, 1990, 165-93, and were obtained from James
D. Hamilton, Time Series Analysis, Princeton University Press, 1994, page 766, Case
2. The complete set of Phillips-Ouliaris critical values distinguish between whether or
not a constant and trend are included in the cointegrating regression. These values are
so similar in the three cases to the ones calculated by Engle and Yoo, based on the
inclusion of a constant but not trend, that the complexities of including them here are
avoided.

CRITICAL VALUES FOR JOHANSEN COINTEGRATION TESTS

Probability that Statistic Exceeds Entry

n− h 0.10 0.05 0.01 0.10 0.05 0.01

Unrestricted Estimation: Trend Drift in Data

L-max Trace

1 2.816 3.962 6.936 2.816 3.962 6.936
2 12.099 14.036 17.936 13.338 15.197 19.310
3 18.697 20.778 25.521 26.791 29.509 35.397
4 24.712 27.169 31.943 43.964 47.181 53.792
5 30.774 33.178 38.341 65.063 68.905 76.955

Unrestricted Estimation: No Trend Drift in Data

L-max Trace

1 6.691 8.083 11.576 6.691 8.083 11.576
2 12.783 14.595 18.782 15.583 17.844 21.962
3 18.959 21.279 26.154 28.436 31.256 37.291
4 24.917 27.341 32.616 45.245 48.419 55.551
5 30.818 33.262 38.858 69.956 69.977 77.911

Estimation and Data: No Trend Drift &
Constant in Cointegrating Vector

L-max Trace

1 7.563 9.094 12.740 7.563 9.094 12.741
2 13.781 15.752 19.834 17.957 20.168 24.988
3 19.796 21.894 26.409 32.093 35.068 40.198
4 25.611 28.167 33.121 49.925 53.347 60.054
5 31.592 34.397 39.672 71.471 75.328 82.969

Notes and Sources: n is the number of variables and h is the number of cointegrating
vectors under the null hypothesis. The critical values in the table are copied from Walter
Enders, Applied Economic Time Series, Wiley Series in Probability and Statistics, 1995,
page 420. The top two sections are identical to those found in James D. Hamilton, Time
Series Analysis, Princeton University Press, 1994, pages 767 and 768, Cases 2 and 3.

