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PREFACE

The pages that follow contain the material presented in my introductory
quantitative methods in economics class at the University of Toronto. They
are designed to be used along with any reasonable statistics textbook. The
most recent textbook for the course was James T. McClave, P. George Ben-
son and Terry Sincich, Statistics for Business and Economics, Eighth Edi-
tion, Prentice Hall, 2001. The material draws upon earlier editions of that
book as well as upon John Neter, William Wasserman and G. A. Whitmore,
Applied Statistics, Fourth Edition, Allyn and Bacon, 1993, which was used
previously and is now out of print. It is also consistent with Gerald Keller
and Brian Warrack, Statistics for Management and Economics, Fifth Edi-
tion, Duxbury, 2000, which is the textbook used recently on the St. George
Campus of the University of Toronto. The problems at the ends of the chap-
ters are questions from mid-term and final exams at both the St. George
and Mississauga campuses of the University of Toronto. They were set by
Gordon Anderson, Lee Bailey, Greg Jump, Victor Yu and others including
myself.

This manuscript should be useful for economics and business students en-
rolled in basic courses in statistics and, as well, for people who have studied
statistics some time ago and need a review of what they are supposed to have
learned. Indeed, one could learn statistics from scratch using this material
alone, although those trying to do so may find the presentation somewhat
compact, requiring slow and careful reading and thought as one goes along.

I would like to thank the above mentioned colleagues and, in addition, Ado-
nis Yatchew, for helpful discussions over the years, and John Maheu for
helping me clarify a number of points. I would especially like to thank Gor-
don Anderson, who I have bothered so frequently with questions that he
deserves the status of mentor.

After the original version of this manuscript was completed, I received some
detailed comments on Chapter 8 from Peter Westfall of Texas Tech Univer-
sity, enabling me to correct a number of errors. Such comments are much
appreciated.

J. E. Floyd
July 2, 2010

c⃝J. E. Floyd, University of Toronto
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Chapter 1

Introduction to Statistics,
Data and Statistical
Thinking

1.1 What is Statistics?

In common usage people think of statistics as numerical data—the unem-
ployment rate last month, total government expenditure last year, the num-
ber of impaired drivers charged during the recent holiday season, the crime-
rates of cities, and so forth. Although there is nothing wrong with viewing
statistics in this way, we are going to take a deeper approach. We will view
statistics the way professional statisticians view it—as a methodology for
collecting, classifying, summarizing, organizing, presenting, analyzing and
interpreting numerical information.

1.2 The Use of Statistics in Economics and Other
Social Sciences

Businesses use statistical methodology and thinking to make decisions about
which products to produce, how much to spend advertising them, how to
evaluate their employees, how often to service their machinery and equip-
ment, how large their inventories should be, and nearly every aspect of
running their operations. The motivation for using statistics in the study
of economics and other social sciences is somewhat different. The object
of the social sciences and of economics in particular is to understand how

1



2 INTRODUCTION

the social and economic system functions. While our approach to statistics
will concentrate on its uses in the study of economics, you will also learn
business uses of statistics because many of the exercises in your textbook,
and some of the ones used here, will focus on business problems.

Views and understandings of how things work are called theories. Eco-
nomic theories are descriptions and interpretations of how the economic sys-
tem functions. They are composed of two parts—a logical structure which
is tautological (that is, true by definition), and a set of parameters in that
logical structure which gives the theory empirical content (that is, an ability
to be consistent or inconsistent with facts or data). The logical structure,
being true by definition, is uninteresting except insofar as it enables us to
construct testable propositions about how the economic system works. If
the facts turn out to be consistent with the testable implications of the the-
ory, then we accept the theory as true until new evidence inconsistent with
it is uncovered. A theory is valuable if it is logically consistent both within
itself and with other theories established as “true” and is capable of being
rejected by but nevertheless consistent with available evidence. Its logical
structure is judged on two grounds—internal consistency and usefulness as
a framework for generating empirically testable propositions.

To illustrate this, consider the statement: “People maximize utility.”
This statement is true by definition—behaviour is defined as what people
do (including nothing) and utility is defined as what people maximize when
they choose to do one thing rather than something else. These definitions
and the associated utility maximizing approach form a useful logical struc-
ture for generating empirically testable propositions. One can choose the
parameters in this tautological utility maximization structure so that the
marginal utility of a good declines relative to the marginal utility of other
goods as the quantity of that good consumed increases relative to the quan-
tities of other goods consumed. Downward sloping demand curves emerge,
leading to the empirically testable statement: “Demand curves slope down-
ward.” This theory of demand (which consists of both the utility maxi-
mization structure and the proposition about how the individual’s marginal
utilities behave) can then be either supported or falsified by examining data
on prices and quantities and incomes for groups of individuals and commodi-
ties. The set of tautologies derived using the concept of utility maximization
are valuable because they are internally consistent and generate empirically
testable propositions such as those represented by the theory of demand. If it
didn’t yield testable propositions about the real world, the logical structure
of utility maximization would be of little interest.

Alternatively, consider the statement: “Canada is a wonderful country.”
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This is not a testable proposition unless we define what we mean by the
adjective “wonderful”. If we mean by wonderful that Canadians have more
flush toilets per capita than every country on the African Continent then
this is a testable proposition. But an analytical structure built around the
statement that Canada is a wonderful country is not very useful because
empirically testable propositions generated by redefining the word wonderful
can be more appropriately derived from some other logical structure, such
as one generated using a concept of real income.

Finally, consider the statement: “The rich are getting richer and the poor
poorer.” This is clearly an empirically testable proposition for reasonable
definitions of what we mean by “rich” and “poor”. It is really an interest-
ing proposition, however, only in conjunction with some theory of how the
economic system functions in generating income and distributing it among
people. Such a theory would usually carry with it some implications as to
how the institutions within the economic system could be changed to prevent
income inequalities from increasing. And thinking about these implications
forces us to analyse the consequences of reducing income inequality and to
form an opinion as to whether or not it should be reduced.

Statistics is the methodology that we use to confront theories like the
theory of demand and other testable propositions with the facts. It is the
set of procedures and intellectual processes by which we decide whether or
not to accept a theory as true—the process by which we decide what and
what not to believe. In this sense, statistics is at the root of all human
knowledge.

Unlike the logical propositions contained in them, theories are never
strictly true. They are merely accepted as true in the sense of being con-
sistent with the evidence available at a particular point in time and more
or less strongly accepted depending on how consistent they are with that
evidence. Given the degree of consistency of a theory with the evidence,
it may or may not be appropriate for governments and individuals to act
as though it were true. A crucial issue will be the costs of acting as if a
theory is true when it turns out to be false as opposed to the costs of acting
as though the theory were not true when it in fact is. As evidence against
a theory accumulates, it is eventually rejected in favour of other “better”
theories—that is, ones more consistent with available evidence.

Statistics, being the set of analytical tools used to test theories, is thus
an essential part of the scientific process. Theories are suggested either by
casual observation or as logical consequences of some analytical structure
that can be given empirical content. Statistics is the systematic investigation
of the correspondence of these theories with the real world. This leads either
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to a wider belief in the ‘truth’ of a particular theory or to its rejection as
inconsistent with the facts.

Designing public policy is a complicated exercise because it is almost
always the case that some members of the community gain and others lose
from any policy that can be adopted. Advocacy groups develop that have
special interests in demonstrating that particular policy actions in their in-
terest are also in the public interest. These special interest groups often
misuse statistical concepts in presenting their arguments. An understand-
ing of how to think about, evaluate and draw conclusions from data is thus
essential for sorting out the conflicting claims of farmers, consumers, envi-
ronmentalists, labour unions, and the other participants in debates on policy
issues.

Business problems differ from public policy problems in the important
respect that all participants in their solution can point to a particular mea-
surable goal—maximizing the profits of the enterprise. Though the indi-
viduals working in an enterprise maximize their own utility, and not the
objective of the enterprise, in the same way as individuals pursue their own
goals and not those of society, the ultimate decision maker in charge, whose
job depends on the profits of the firm, has every reason to be objective in
evaluating information relevant to maximizing those profits.

1.3 Descriptive and Inferential Statistics

The application of statistical thinking involves two sets of processes. First,
there is the description and presentation of data. Second, there is the process
of using the data to make some inference about features of the environment
from which the data were selected or about the underlying mechanism that
generated the data, such as the ongoing functioning of the economy or the
accounting system or production line in a business firm. The first is called
descriptive statistics and the second inferential statistics.

Descriptive statistics utilizes numerical and graphical methods to find
patterns in the data, to summarize the information it reveals and to present
that information in a meaningful way. Inferential statistics uses data to
make estimates, decisions, predictions, or other generalizations about the
environment from which the data were obtained.

Everything we will say about descriptive statistics is presented in the
remainder of this chapter. The rest of the book will concentrate entirely
on statistical inference. Before turning to the tools of descriptive statistics,
however, it is worth while to take a brief glimpse at the nature of statistical
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inference.

1.4 A Quick Glimpse at Statistical Inference

Statistical inference essentially involves the attempt to acquire information
about a population or process by analyzing a sample of elements from that
population or process.

A population includes the set of units—usually people, objects, trans-
actions, or events—that we are interested in learning about. For example,
we could be interested in the effects of schooling on earnings in later life,
in which case the relevant population would be all people working. Or we
could be interested in how people will vote in the next municipal election
in which case the relevant population will be all voters in the municipality.
Or a business might be interested in the nature of bad loans, in which case
the relevant population will be the entire set of bad loans on the books at a
particular date.

A process is a mechanism that produces output. For example, a business
would be interested in the items coming off a particular assembly line that
are defective, in which case the process is the flow of production off the
assembly line. An economist might be interested in how the unemployment
rate varies with changes in monetary and fiscal policy. Here, the process
is the flow of new hires and lay-offs as the economic system grinds along
from year to year. Or we might be interested in the effects of drinking on
driving, in which case the underlying process is the on-going generation of
car accidents as the society goes about its activities. Note that a process
is simply a mechanism which, if it remains intact, eventually produces an
infinite population. All voters, all workers and all bad loans on the books
can be counted and listed. But the totality of accidents being generated by
drinking and driving or of steel ingots being produced from a blast furnace
cannot be counted because these processes in their present form can be
thought of as going on forever. The fact that we can count the number of
accidents in a given year, and the number of steel ingots produced by a blast
furnace in a given week suggests that we can work with finite populations
resulting from processes. So whether we think of the items of interest in a
particular case as a finite population or the infinite population generated by
a perpetuation of the current state of a process depends on what we want to
find out. If we are interested in the proportion of accidents caused by drunk
driving in the past year, the population is the total number of accidents
that year. If we are interested in the effects of drinking on driving, it is the
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infinite population of accidents resulting from a perpetual continuance of
the current process of accident generation that concerns us.

A sample is a subset of the units comprising a finite or infinite population.
Because it is costly to examine most finite populations of interest, and im-
possible to examine the entire output of a process, statisticians use samples
from populations and processes to make inferences about their characteris-
tics. Obviously, our ability to make correct inferences about a finite or infi-
nite population based on a sample of elements from it depends on the sample
being representative of the population. So the manner in which a sample is
selected from a population is of extreme importance. A classic example of
the importance of representative sampling occurred in the 1948 presidential
election in the United States. The Democratic incumbent, Harry Truman,
was being challenged by Republican Governor Thomas Dewey of New York.
The polls predicted Dewey to be the winner but Truman in fact won. To
obtain their samples, the pollsters telephoned people at random, forgetting
to take into account that people too poor to own telephones also vote. Since
poor people tended to vote for the Democratic Party, a sufficient fraction
of Truman supporters were left out of the samples to make those samples
unrepresentative of the population. As a result, inferences about the propor-
tion of the population that would vote for Truman based on the proportion
of those sampled intending to vote for Truman were incorrect.

Finally, when we make inferences about the characteristics of a finite
or infinite population based on a sample, we need some measure of the
reliability of our method of inference. What are the odds that we could
be wrong. We need not only a prediction as to the characteristic of the
population of interest (for example, the proportion by which the salaries of
college graduates exceed the salaries of those that did not go to college) but
some quantitative measure of the degree of uncertainty associated with our
inference. The results of opinion polls predicting elections are frequently
stated as being reliable within three percentage points, nineteen times out
of twenty. In due course you will learn what that statement means. But
first we must examine the techniques of descriptive statistics.
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1.5 Data Sets

There are three general kinds of data sets—cross-sectional, time-series and
panel. And within data sets there are two kinds of data—quantitative and
qualitative. Quantitative data can be recorded on a natural numerical scale.
Examples are gross national product (measured in dollars) and the consumer
price index (measured as a percentage of a base level). Qualitative data
cannot be measured on a naturally occurring numerical scale but can only
be classified into one of a group of categories. An example is a series of
records of whether or not the automobile accidents occurring over a given
period resulted in criminal charges—the entries are simply yes or no.

Table 1.1: Highest College Degree of
Twenty Best-Paid Executives

Rank Degree Rank Degree

1 Bachelors 11 Masters
2 Bachelors 12 Bachelors
3 Doctorate 13 Masters
4 None 14 Masters
5 Bachelors 15 Bachelors
6 Doctorate 16 Doctorate
7 None 17 Masters
8 Bachelors 18 Doctorate
9 Bachelors 19 Bachelors

10 Bachelors 20 Masters

Source: Forbes, Vol. 155, No. 11, May
22, 1995.

Table 1.1 presents a purely qualitative data set. It gives the highest de-
gree obtained by the twenty highest-paid executives in the United States at
a particular time. Educational attainment is a qualitative, not quantitative,
variable. It falls into one of four categories: None, Bachelors, Masters, or
Doctorate. To organize this information in a meaningful fashion, we need
to construct a summary of the sort shown in Table 1.2. The entries in this
table were obtained by counting the elements in the various categories in
Table 1.1—for larger data sets you can use the spreadsheet program on your
computer to do the counting. A fancy bar or pie chart portraying the infor-
mation in Table 1.2 could also be made, but it adds little to what can be
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Table 1.2: Summary of Table 1.1

Class Frequency Relative Frequency
(Highest (Number of (Proportion
Degree) Executives) of Total)

None 2 0.1
Bachelors 9 0.45
Masters 5 0.25

Doctorate 4 0.2

Total 20 1.0

Source: See Table 1.1

gleaned by looking at the table itself. A bachelors degree was the most com-
monly held final degree, applying in forty-five percent of the cases, followed
in order by a masters degree, a doctorate and no degree at all.

The data set on wages in a particular firm in Table 1.3 contains both
quantitative and qualitative data. Data are presented for fifty employees,
numbered from 1 to 50. Each employee represents an element of the data
set. For each element there is an observation containing two data points, the
individual’s weekly wage in U.S. dollars and gender (male or female). Wage
and gender are variables, defined as characteristics of the elements of a data
set that vary from element to element. Wage is a quantitative variable and
gender is a qualitative variable.

As it stands, Table 1.3 is an organised jumble of numbers. To extract the
information these data contain we need to enter them into our spreadsheet
program and sort them by wage. We do this here without preserving the
identities of the individual elements, renumbering them starting at 1 for the
lowest wage and ending at 50 for the highest wage. The result appears in
Table 1.4. The lowest wage is $125 per week and the highest is $2033 per
week. The difference between these, $2033 − $125 = $1908, is referred to
as the variable’s range. The middle observation in the range is called the
median. When the middle of the range falls in between two observations,
as it does in Table 1.4, we represent the median by the average of the
two observations, in this case $521.50. Because half of the observations
on the variable are below the median and half are above, the median is
called the 50th percentile. Similarly, we can calculate other percentiles of
the variable—90 percent of the observations will be below the 90th percentile
and 80 percent will be below the 80th percentile, and so on. Of particular
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Table 1.3: Weekly Wages of Company Employees
in U.S. Dollars

No. Wage Gender No. Wage Gender

1 236 F 26 334 F
2 573 M 27 600 F
3 660 F 28 592 M
4 1005 M 29 728 M
5 513 M 30 125 F
6 188 F 31 401 F
7 252 F 32 759 F
8 200 F 33 1342 M
9 469 F 34 324 F
10 191 F 35 337 F
11 675 M 36 1406 M
12 392 F 37 530 M
13 346 F 38 644 M
14 264 F 39 776 F
15 363 F 40 440 F
16 344 F 41 548 F
17 949 M 42 751 F
18 490 M 43 618 F
19 745 F 44 822 M
20 2033 M 45 437 F
21 391 F 46 293 F
22 179 F 47 995 M
23 1629 M 48 446 F
24 552 F 49 1432 M
25 144 F 50 901 F
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Table 1.4: Weekly Wages of Company Employees
in U.S. Dollars: Sorted into Ascending Order

No. Wage Gender

1 125 F
2 144 F
3 179 F
4 188 F
5 ... ...
...
11 324 F
12 334 F
13 337 F

340.5 1st (Lower) Quartile
14 344 F (25th Percentile)
15 346 F
16 ... ...
...
23 469 F
24 490 M
25 513 M

521.50 Median
26 530 M (50th Percentile)
27 548 F
28 552 F
29 ... ...
...
35 675 M
36 728 M
37 745 F

748 3rd (Upper) Quartile
38 751 F (75th Percentile)
39 759 F
40 776 F
41 ... ...
...
48 1432 M
49 1629 M
50 2033 M
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interest are the 25th and 75th percentiles. These are called the first quartile
and third quartile respectively. The difference between the observations for
these quartiles, $748− $340.5 = $407.5, is called the interquartile range. So
the wage variable has a median (mid-point) of $521.50, a range of $1908 and
an interquartile range of $407.5, with highest and lowest values being $2033
and $125 respectively. A quick way of getting a general grasp of the “shape”
of this data set is to express it graphically as a histogram, as is done in the
bottom panel of Figure 1.1.

An obvious matter of interest is whether men are being paid higher wages
than women. We can address this by sorting the data in Table 1.3 into two
separate data sets, one for males and one for females. Then we can find
the range, the median, and the interquartile range for the wage variable
in each of the two data sets and compare them. Rather than present new
tables together with the relevant calculations at this point, we can construct
histograms for the wage variable in the two separate data sets. These are
shown in the top two panels of Figure 1.1. It is easy to see from comparing
horizontal scales of the top and middle histograms that the wages of women
tend to be lower than those paid to men.

A somewhat neater way of characterising these data graphically is to
use box plots. This is done in Figure 1.2. Different statistical computer
packages present box plots in different ways. In the one used here, the top
and bottom edges of the box give the upper and lower quartiles and the
horizontal line through the middle of the box gives the median. The vertical
lines, called whiskers, extend up to the maximum value of the variable and
down to the minimum value.1 It is again obvious from the two side-by-
side box plots that women are paid less than men in the firm to which the
data set applies. So you can now tell your friends that there is substantial
evidence that women get paid less than men. Right?2

The wage data can also be summarised in tabular form. This is done in
Table 1.5. The range of the data is divided into the classes used to draw

1The box plot in Figure 1.2 was drawn and the median, percentiles and interquartile
range above were calculated using XlispStat, a statistical program freely available on the
Internet for the Unix, Linux, MS Windows (3.1, 95, 98, NT, XP, Vista and 7) and Mac-
intosh operating systems. It is easy to learn to do the simple things we need to do for
this course using XlispStat but extensive use of it requires knowledge of object-oriented-
programming and a willingness to learn features of the Lisp programming language. Com-
mercial programs such as SAS, SPSS, and Minitab present more sophisticated box plots
than the one presented here but, of course, these programs are more costly to obtain.

2Wrong! First of all, this is data for only one firm, which need not be representative
of all firms in the economy. Second, there are no references as to where the data came
from—as a matter of fact, I made them up!
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Figure 1.1: Histogram of weekly wages for male (top), female
(middle) and all (bottom) employees. The horizontal scale is
thousands of U.S. dollars.
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Figure 1.2: Box plot of weekly wages for males (left) and females
(right). The vertical scale is thousands of U.S. dollars.

Table 1.5: Frequency Distributions From Table 1.3

Class Frequency Relative Frequency
M F Total M F Total

0.0 – 0.5 1 23 24 .06 .70 .48
0.5 – 1.0 10 10 20 .58 .30 .40
1.0 – 1.5 4 0 4 .24 .00 .08
1.5 – 2.0 1 0 1 .06 .00 .02
2.0 – 2.5 1 0 1 .06 .00 .02

Total 17 33 50 1.00 1.00 1.00
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the histogram for the full data set. Then the observations for the wage
variable in Table 1.3 that fall in each of the classes are counted and the
numbers entered into the appropriate cells in columns 2, 3 and 4 of the
table. The observations are thus ‘distributed’ among the classes with the
numbers in the cells indicating the ‘frequency’ with which observations fall
in the respective classes—hence, such tables present frequency distributions.
The totals along the bottom tell us that there were 17 men and 33 women,
with a total of 50 elements in the data set. The relative frequencies in which
observations fall in the classes are shown in columns 5, 6 and 7. Column 5
gives the proportions of men’s wages, column 6 the proportions of women’s
wages and column 7 the proportions of all wages falling in the classes. The
proportions in each column must add up to one.

All of the data sets considered thus far are cross-sectional. Tables 1.6 and
1.7 present time-series data sets. The first table gives the consumer price
indexes for four countries, Canada, the United States, the United Kingdom
and Japan, for the years 1975 to 1996.3 The second table presents the year-
over-year inflation rates for the same period for these same countries. The
inflation rates are calculated as

π = [100(Pt − Pt−1)/Pt−1]

where π denotes the inflation rate and P denotes the consumer price index.
It should now be obvious that in time-series data the elements are units of
time. This distinguishes time-series from cross-sectional data sets, where all
observations occur in the same time period.

A frequent feature of time-series data not present in cross-sectional data
is serial correlation or autocorrelation. The data in Tables 1.6 and 1.7
are plotted in Figures 1.3 and 1.4 respectively. You will notice from these
plots that one can make a pretty good guess as to what the price level or
inflation rate will be in a given year on the basis of the observed price level
and inflation rate in previous years. If prices or inflation are high this year,
they will most likely also be high next year. Successive observations in each
series are serially correlated or autocorrelated (i.e., correlated through time)
and hence not statistically independent of each other. Figure 1.5 shows a
time-series that has no autocorrelation—the successive observations were
generated completely independently of all preceding observations using a
computer. You will learn more about correlation and statistical indepen-
dence later in this chapter.

3Consumer price indexes are calculated by taking the value in each year of the bundle
of goods consumed by a typical person as a percentage of the monetary value of that same
bundle of goods in a base period. In Table 1.6 the base year is 1980.
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Table 1.6: Consumer Price Indexes for Selected
Countries, 1980 = 100

Canada U.S. U.K. Japan

1975 65.8 65.3 51.1 72.5
1976 70.7 69.0 59.6 79.4
1977 76.3 73.5 69.0 85.9
1978 83.1 79.1 74.7 89.4
1979 90.8 88.1 84.8 92.8
1980 100.0 100.0 100.0 100.0
1981 112.4 110.3 111.9 104.9
1982 124.6 117.1 121.5 107.8
1983 131.8 120.9 127.1 109.8
1984 137.6 126.0 133.4 112.3
1985 143.0 130.5 141.5 114.6
1986 149.0 133.0 146.3 115.3
1987 155.5 137.9 152.4 115.4
1988 161.8 143.5 159.9 116.2
1989 169.8 150.4 172.4 118.9
1990 177.9 158.5 188.7 122.5
1991 187.9 165.2 199.7 126.5
1992 190.7 170.2 207.2 128.7
1993 194.2 175.3 210.4 130.3
1994 194.6 179.9 215.7 131.2
1995 198.8 184.9 223.0 131.1
1996 201.9 190.3 228.4 131.3

Source: International Monetary Fund, In-
ternational Financial Statistics.
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Table 1.7: Year-over-year Inflation Rates for
Selected Countries, Percent Per Year

Canada U.S. U.K. Japan

1975 10.9 9.1 24.1 11.8
1976 7.5 5.7 16.6 9.4
1977 8.0 6.5 15.9 8.2
1978 8.9 7.6 8.2 4.1
1979 9.2 11.3 13.5 3.8
1980 10.2 13.6 17.9 7.8
1981 12.4 10.3 11.9 4.9
1982 10.8 6.2 8.6 2.7
1983 5.8 3.2 4.6 1.9
1984 4.3 4.3 5.0 2.2
1985 3.9 3.6 6.1 2.0
1986 4.2 1.9 3.4 0.6
1987 4.4 3.6 4.2 0.1
1988 4.0 4.1 4.9 0.7
1989 5.0 4.2 7.8 2.3
1990 4.8 5.4 9.5 3.1
1991 5.6 4.2 5.8 3.3
1992 1.5 3.0 3.7 1.7
1993 1.8 3.0 1.6 1.3
1994 0.2 2.6 2.4 0.7
1995 2.2 2.8 3.4 -0.1
1996 1.6 2.9 2.4 0.1

Source: International Monetary Fund, In-
ternational Financial Statistics.
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Figure 1.5: A time-series devoid of autocorrelation
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Some data sets are both time-series and cross-sectional. Imagine, for
example a data set containing wage and gender data of the sort in Table
1.3 for each of a series of years. These are called panel data. We will not be
working with panel data in this book.

1.6 Numerical Measures of Position

Although quite a bit of information about data sets can be obtained by
constructing tables and graphs, it would be nice to be able to describe
a data set using two or three numbers. The median, range, interquartile
range, maximum, and minimum, which were calculated for the wage data
in the previous section and portrayed graphically in Figure 1.2 using a box
plot, provide such a description. They tell us where the centre observation
is, the range in which half of the observations lie (interquartile range) and
the range in which the whole data set lies. We can see, for example, that
both male and female wages are concentrated more at the lower than at the
higher levels.

There are three types of numerical summary measures that can be used
to describe data sets. First, there are measures of position or central ten-
dency. Is the typical wage rate paid by the firm in question, for example,
around $500 per week, or $1500 per week, or $5000 per week? The median
provides one measure of position. Second, there are measures of variability
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or dispersion. Are all the weekly wages very close to each other or are they
spread out widely? The range and the interquartile range provide measures
of variability—the bigger these statistics, the more dispersed are the data.
Finally, there are measures of skewness. Are wages more concentrated, for
example, at the lower levels, or are they dispersed symmetrically around
their central value? In this section we will concentrate on numerical mea-
sures of position. Measures of variability and skewness will be considered in
the subsequent two sections.

The median is a measure of position. In the case of the wage data, for
example, it tells us that half the wages are below $521.50 and half are above
that amount. Another important measure of position is the mean (or, more
precisely, the arithmetic mean), commonly known as the average value. The
mean of a set of numbers X1, X2, X3, . . . , XN is defined as

X̄ =

∑N
i=1Xi

N
(1.1)

where X̄ is the arithmetic mean and

N∑
i=1

Xi = X1 +X2 +X3 + . . .+XN . (1.2)

The sum of the weekly wage data (including both males and females) is
$30364 and the mean is $607.28. The mean wages of males and females are,
respectively, $962.24 and $424.42. It follows from equation (1.1) that the
sum of the observations on a particular quantitative variable in a data set
is equal to the mean times the number of items,

N∑
i=1

Xi = NX̄, (1.3)

and that the sum of the deviations of the observations from their mean is
zero,

N∑
i=1

(Xi − X̄) =
N∑
i=1

Xi −NX̄ = NX̄ −NX̄ = 0. (1.4)

When a set of items is divided into classes, as must be done to create a
frequency distribution, the overall mean is a weighted average of the means
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of the observations in the classes, with the weights being the number (or
frequency) of items in the respective classes. When there are k classes,

X̄ =
f1X̄1 + f2X̄2 + f3X̄3 + . . .+ fkX̄k

N
=

∑k
i=1 fiX̄i

N
(1.5)

where X̄i is the mean of the observations in the ith class and fi is the
number (frequency) of observations in the ith class. If all that is known is
the frequency in each class with no measure of the mean of the observations
in the classes available, we can obtain a useful approximation to the mean
of the data set using the mid-points of the classes in the above formula in
place of the class means.

An alternative mean value is the geometric mean which is defined as
the anti-log of the arithmetic mean of the logarithms of the values. The
geometric mean can thus be obtained by taking the anti-log of

logX1 + logX2 + logX3 + . . .+ logXN

N

or the nth root of X1X2X3 . . . XN .4 Placing a bar on top of a variable
to denote its mean, as in X̄, is done only to represent means of samples.
The mean of a population is represented by the Greek symbol µ. When
the population is finite, µ can be obtained by making the calculation in
equation 1.1 using all elements in the population. The mean of an infinite
population generated by a process has to be derived from the mathematical
representation of that process. In most practical cases this mathematical
data generating process is unknown. The ease of obtaining the means of
finite as opposed to infinite populations is more apparent than real. The
cost of calculating the mean for large finite populations is usually prohibitive
because a census of the entire population is required.

The mean is strongly influenced by extreme values in the data set. For
example, suppose that the members of a small group of eight people have
the following annual incomes in dollars: 24000, 23800, 22950, 26000, 275000,
25500, 24500, 23650. We want to present a single number that characterises

4Note from the definition of logarithms that taking the logarithm of the nth root of
(X1X2X3 . . . XN ), which equals

(X1X2X3 . . . XN )
1
N ,

yields
logX1 + logX2 + logX3 + . . .+ logXN

N
.
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how ‘well off’ this group of people is. The (arithmetic) mean income of
the group is $55675.5 But a look at the actual numbers indicates that
all but one member of the group have incomes between $23000 and $26000.
The mean does not present a good picture because of the influence of the
enormous income of one member of the group.

When there are extreme values, a more accurate picture can often be
presented by using a trimmed mean. The 50 percent trimmed mean, for
example, is the (arithmetic) mean of the central 50 percent of the values—
essentially, the mean of the values lying in the interquartile range. This
would be $24450 in the example above. We could, instead, use an 80 (or
any other) percent trimmed mean. The median, which is $24250 is also a
better measure of the central tendency of the data than the mean. It should
always be kept in mind, however, that extreme values may provide important
information and it may be inappropriate to ignore them. Common sense is
necessary in presenting and interpreting data. In the example above, the
most accurate picture would be given by the following statement: Seven of
the eight members of the group have incomes between $22950 and $26000,
with mean $24342, while the eighth member has an income of $275000.

Another measure of position of the mode, which is defined as the most
frequently appearing value. When the variable is divided into equal-sized
classes and presented as a histogram or frequency distribution the class
containing the most observations is called the modal class. In the wage
data, using the classes defined in Table 1.5, the modal class for females and
for all workers is $0–$500, and the modal class for males is $500–$1000.
Using the classes defined in the middle panel of Figure 1.1 the modal class
for female wages is $300–$400.

Sometimes there will be two peaks in a histogram of the observations for a
variable. A frequent example is the performance of students on mathematics
(and sometimes statistics) tests where the students divide into two groups—
those who understand what is going on and those to do not. Given that there
is variability within each group there will typically be two humps in the
histogram—one at a high grade containing the students who understand
the material and one at a low grade containing the students who do not
understand the material. In such situations the data are referred to as
bimodal. Figure 1.6 gives examples of a bimodal and a unimodal or hump-
shaped distribution. We could imagine the horizontal scales as representing
the grade achieved on a mathematics test.

5The arithmetic mean is generally referred to as simply the mean with the geometric
mean, which is rarely used, denoted by its full name. The geometric mean of the eight
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Figure 1.6: Bimodal distribution (top) and unimodal
or humped-shaped distribution (bottom).

1.7 Numerical Measures of Variability

The range and interquartile range are measures of variability—the bigger
these are, the more dispersed are the data. More widely used measures,
however, are the variance and standard deviation. The variance is, broadly,
the mean or average of the squared deviations of the observations from their
mean. For data sets that constitute samples from populations or processes
the calculation is

s2 =

∑N
i=1(Xi − X̄)2

N − 1
, (1.6)

where s2 denotes the sample variance. An approximation can be calculated
from a frequency distribution of the sample using

s2 =

∑S
i=1 fi(X̄i − X̄)2

N − 1
, (1.7)

where S is the number of classes, fi is the frequency of the ith class, X̄i is
the mean of the ith class, X̄ is the mean of the whole sample and the total

observations above is $32936.
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number of elements in the sample equals

N =
S∑

i=1

fi.

The population variance is denoted by σ2. For a finite population it can be
calculated using (1.6) after replacing N −1 in the denominator by N . N −1
is used in the denominator in calculating the sample variance because the
variance is the mean of the sum of squared independent deviations from the
sample mean and only N − 1 of the N deviations from the sample mean
can be independently selected—once we know N − 1 of the deviations, the
remaining one can be calculated from those already known based on the
way the sample mean was calculated. Each sample from a given population
will have a different sample mean, depending upon the population elements
that appear in it. The population mean, on the other hand, is a fixed
number which does not change from sample to sample. The deviations of the
population elements from the population mean are therefore all independent
of each other. In the case of a process, the exact population variance can only
be obtained from knowledge of the mathematical data-generation process.

In the weekly wage data above, the variance of wages is 207161.5 for
males, 42898.7 for females and 161893.7 for the entire sample. Notice that
the units in which these variances are measured is dollars-squared—we are
taking the sum of the squared dollar-differences of each person’s wage from
the mean. To obtain a measure of variability measured in dollars rather than
dollars-squared we can take the square root of the variance—s in equation
(1.6). This is called the standard deviation. The standard deviation of wages
in the above sample is $455.15 for males, $207.12 for females, and $402.36
for the entire sample.

Another frequently used measure of variability is the coefficient of vari-
ation, defined as the standard deviation taken as a percentage of the mean,

C =
100s

X̄
, (1.8)

where C denotes the coefficient of variation. For the weekly wage data
above, the coefficient of variation is 47.30 for males, 48.8 for females and
66.28 for the entire sample.
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Figure 1.7: Left-skewed distribution (top—mean =
55.1 , median = 58, mode = 75) and right-skewed
distribution (bottom —mean = 46.4, median = 43.5,
mode = 35).

1.8 Numerical Measures of Skewness

Skewed quantitative data are data for which a frequency distribution based
on equal classes is not symmetrical. For example, the wage data presented
Figure 1.1 are not symmetrical—the right tail is longer than the left tail,
which is non-existent in the bottom panel. These data are described as
skewed right—the skew is in the direction of the longer tail. This skewness
appears in the box plots in Figure 1.2 as a longer upper whisker than lower
whisker. Notice that in the wage data the mean is always larger than the
median and the median larger than the mode. The means, medians and
modes (taken as the mid-points of the modal classes) are respectively $962,
$822.5 and $750 for males, $424, $391 and $350 for females and $607, $521
and $200 for all workers. The mean will always exceed the median and
the median will always exceed the mode when the data are skewed to the
right. When the skew is to the left the mean will be below the median and
the median below the mode. This is shown in Figure 1.7. The rightward
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(leftward) skew is due to the influence of the rather few unusually high
(low) values—the extreme values drag the mean in their direction. The
median tends to be above the mode when the data are skewed right because
low values are more frequent than high values and below the mode when
the data are skewed to the left because in that case high values are more
frequent than low values. When the data are symmetrically distributed, the
mean, median and mode are equal.

Skewness can be measured by the average cubed deviation of the values
from the sample mean,

m3 =

∑N
i=1(Xi − X̄)3

N − 1
. (1.9)

If the large deviations are predominately positive m3 will be positive and if
the large deviations are predominately negative m3 will be negative. This
happens because (Xi − X̄)3 has the same sign as (Xi − X̄). Since large
deviations are associated with the long tail of the frequency distribution, m3

will be positive or negative according to whether the direction of skewness is
positive (right) or negative (left). In the wage data m3 is positive for males,
females and all workers as we would expect from looking at figures 1.1 and
1.2.

1.9 Numerical Measures of Relative Position:
Standardised Values

In addition to measures of the central tendency of a set of values and their
dispersion around these central measures we are often interested in whether
a particular observation is high or low relative to others in the set. One
measure of this is the percentile in which the observation falls—if an ob-
servation is at the 90th percentile, only 10% of the values lie above it and
90% percent of the values lie below it. Another measure of relative position
is the standardised value. The standardised value of an observation is its
distance from the mean divided by the standard deviation of the sample or
population in which the observation is located. The standardised values of
the set of observations X1, X2, X3 . . . XN are given by

Zi =
Xi − µ

σ
(1.10)
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for members of a population whose mean µ and standard deviation σ are
known and

Zi =
Xi − X̄

s
(1.11)

for members of a sample with mean X̄ and sample standard deviation s. The
standardised value or z-value of an observation is the number of standard
deviations it is away from the mean.

It turns out that for a distribution that is hump-shaped—that is, not
bimodal—roughly 68% of the observations will lie within plus or minus one
standard deviation from the mean, about 95% of the values will lie within
plus or minus two standard deviations from the mean, and roughly 99.7%
of the observations will lie within plus or minus three standard deviations
from the mean. Thus, if you obtain a grade of 52% percent on a statistics
test for which the class average was 40% percent and the standard deviation
10% percent, and the distribution is hump-shaped rather than bimodal, you
are probably in the top 16 percent of the class. This calculation is made
by noting that about 68 percent of the class will score within one standard
deviation from 40—that is, between 30 and 50—and 32 percent will score
outside that range. If the two tails of the distribution are equally populated
then you must be in the top 16% percent of the class. Relatively speaking,
52% was a pretty good grade.

The above percentages hold almost exactly for normal distributions,
which you will learn about in due course, and only approximately for hump-
shaped distributions that do not satisfy the criteria for normality. They
do not hold for distributions that are bimodal. It turns out that there is
a rule developed by the Russian mathematician P. L. Chebyshev, called
Chebyshev’s Inequality, which states that a fraction no bigger than (1/k)2

(or 100 × (1/k)2 percent) of any set of observations, no matter what the
shape of their distribution, will lie beyond plus or minus k standard devia-
tions from the mean of those observations. So if the standard deviation is 2
at least 75% of the distribution must lie within plus or minus two standard
deviations from the mean and no more than 25% percent of the distribution
can lie outside that range in one or other of the tails. You should note espe-
cially that the rule does not imply here that no more than 12.5% percent of
a distribution will lie two standard deviations above the mean because the
distribution need not be symmetrical.
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1.10 Bivariate Data: Covariance and Correlation

A data set that contains only one variable of interest, as would be the case
with the wage data above if the gender of each wage earner was not recorded,
is called a univariate data set. Data sets that contain two variables, such
as wage and gender in the wage data above, are said to be bivariate. And
the consumer price index and inflation rate data presented in Table 1.6
and Table 1.7 above are multivariate, with each data set containing four
variables—consumer price indexes or inflation rates for four countries.

In the case of bivariate or multivariate data sets we are often interested
in whether elements that have high values of one of the variables also have
high values of other variables. For example, as students of economics we
might be interested in whether people with more years of schooling earn
higher incomes. From Canadian Government census data we might obtain
for the population of all Canadian households two quantitative variables,
household income (measured in $) and number of years of education of the
head of each household.6 Let Xi be the value of annual household income
for household i and Yi be the number of years of schooling of the head of
the ith household. Now consider a random sample of N households which
yields the paired observations (Xi, Yi) for i = 1, 2, 3, . . . , N .

You already know how to create summary statistical measures for single
variables. The sample mean value for household incomes, for example, can
be obtained by summing up all the Xi and dividing the resulting sum by
N . And the sample mean value for years of education per household can
similarly be obtained by summing all the Yi and dividing by N . We can also
calculate the sample variances of X and Y by applying equation (1.6).

Notice that the fact that the sample consists of paired observations
(Xi, Yi) is irrelevant when we calculate summary measures for the individual
variables X and/or Y . Nevertheless, we may also be interested in whether
the variables X and Y are related to one another in a systematic way. Since
education is a form of investment that yields its return in the form of higher
lifetime earnings, we might expect, for example, that household income will
tend to be higher the greater the number of years of education completed
by the head of household. That is, we might expect high values of X to
be paired with high values of Y—when Xi is high, the Yi associated with it
should also be high, and vice versa.

Another example is the consumer price indexes and inflation rates for

6This example and most of the prose in this section draws on the expositional efforts
of Prof. Greg Jump, my colleague at the University of Toronto.
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pairs of countries. We might ask whether high prices and high inflation rates
in the United States are associated with high prices and inflation rates in
Canada. One way to do this is to construct scatter plots with the Canadian
consumer price index and the Canadian inflation rate on the horizontal axes
and the U.S. consumer price index and the U.S. inflation rate on the respec-
tive vertical axes. This is done in Figure 1.8 for the consumer price indexes
and Figure 1.9 for the inflation rates. You can see from the figures that both
the price levels and inflation rates in the two countries are positively related
with the relationship being ‘tighter’ in the case of the price levels than in
the case of the inflation rates.

Figure 1.8: Scatterplot of the Canadian consumer price index (hori-
zontal axis) vs. the U.S. consumer price index (vertical axis).

We can also construct numerical measures of covariability. One such
measure is the covariance between the two variables, denoted in the case of
sample data as sx,y or sy,x and defined by

sx,y =

∑N
i=1(Xi − X̄)(Yi − Ȳ )

N − 1

=

∑N
i=1(Yi − Ȳ )(Xi − X̄)

N − 1
= sy,x. (1.12)

When X and Y represent a population we denote the covariance between
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Figure 1.9: Scatterplot of the Canadian year-over-year inflation rate
(horizontal axis) against the U.S. year-over-year inflation rate (ver-
tical axis).

them by σx,y or σy,x. It can be calculated using (1.12) with the N − 1 in
the denominator replaced by N in the case where an entire finite population
is used in the calculation. In an infinite population generated by a process,
the covariance can only be obtained from knowledge of the mathematics
of the data generation process. Notice that the value of the covariance is
independent of the order of the multiplicative terms within the summation
sign. Note also that sx,y is measured in units of X times units of Y—in our
annual household income and years of schooling of household head example,
sx,y would be expressed in terms of “dollar-years” (whatever those might
be).

For any sample of paired variables X and Y , sx,y has a single numerical
value that may be positive, negative or zero. A positive value indicates that
the observed values for X and Y are positively related—that is, they tend
to rise and fall together. To put it somewhat differently, a positive value for
sx,y indicates that Xi tends to be above (below) its mean value X̄ whenever
Yi is above (below) its mean value Ȳ . Similarly, the variables X and Y
are negatively related whenever sx,y is negative in sign. This means that Xi

tends to be below (above) its mean value X̄ whenever Yi is above (below)
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its mean value Ȳ . When there is no relationship between the variables X
and Y , sx,y is zero.

In our household income and education example we would expect that
a random sample would yield a positive value for sx,y and this is indeed
what is found in actual samples drawn from the population of all Canadian
households.

Note that equation (1.12) could be used to compute sx,x—the covariance
of the variable X with itself. It is easy to see from equations (1.12) and (1.6)
that this will yield the sample variance of X which we can denote by s2x. It
might be thus said that the concept of variance is just a special case of the
more general concept of covariance.

The concept of covariance is important in the study of financial eco-
nomics because it is critical to an understanding of ‘risk’ in securities and
other asset markets. Unfortunately, it is a concept that yields numbers that
are not very ‘intuitive’. For example, suppose we were to find that a sam-
ple of N Canadian households yields a covariance of +1, 000 dollar-years
between annual household income and years of education of head of house-
hold. The covariance is positive in sign, so we know that this implies that
households with highly educated heads tend to have high annual incomes.
But is there any intuitive interpretation of the magnitude 1000 dollar-years?
The answer is no, at least not without further information regarding the in-
dividual sample variances of household income and age of head.

A more intuitive concept, closely related to covariance, is the correlation
between two variables. The coefficient of correlation between two variables
X and Y , denoted by rx,y or, equivalently, ry,x is defined as

rx,y =
sx,y
sxsy

= ry,x (1.13)

where sx and sy are the sample standard deviations of X and Y calculated
by using equation (1.6) above and taking square roots.

It should be obvious from (1.13) that the sign of the correlation coeffi-
cient is the same as the sign of the covariance between the two variables since
standard deviations cannot be negative. Positive covariance implies positive
correlation, negative covariance implies negative correlation and zero covari-
ance implies that X and Y are uncorrelated. It is also apparent from (1.13)
that rx,y is independent of the units in which X and Y are measured—it is
a unit-free number. What is not apparent (and will not be proved at this
time) is that for any two variables X and Y ,

−1 ≤ rx,y ≤ +1.
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That is, the correlation coefficient between any two variables must lie in the
interval [−1,+1]. A value of plus unity means that the two variables are
perfectly positively correlated; a value of minus unity means that they are
perfectly negatively correlated. Perfect correlation can only happen when
the variables satisfy an exact linear relationship of the form

Y = a+ bX

where b is positive when they are perfectly positively correlated and negative
when they are perfectly negatively correlated. If rx,y is zero, X and Y
are said to be perfectly uncorrelated. Consider the relationships between
the Canadian and U.S. price levels and inflation rates. The coefficient of
correlation between the Canadian and U.S. consumer price indexes plotted
in Figure 1.8 is .99624, which is very close to +1 and consistent with the
fact that the points in the figure are almost in a straight line. There is less
correlation between the inflation rates of the two countries, as is evident
from the greater ‘scatter’ of the points in Figure 1.9 around an imaginary
straight line one might draw through them. Here the correlation coefficient
is .83924, considerably below the coefficient of correlation of the two price
levels.

1.11 Exercises

1. Write down a sentence or two explaining the difference between:

a) Populations and samples.

b) Populations and processes.

c) Elements and observations.

d) Observations and variables.

e) Covariance and correlation.

2. You are tabulating data that classifies a sample of 100 incidents of do-
mestic violence according to the Canadian Province in which each incident
occurs. You number the provinces from west to east with British Columbia
being number 1 and Newfoundland being number 10. The entire Northern
Territory is treated for purposes of your analysis as a province and denoted
by number 11. In your tabulation you write down next to each incident
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the assigned number of the province in which it occurred. Is the resulting
column of province numbers a quantitative or qualitative variable?

3. Calculate the variance and standard deviation for samples where

a) n = 10, ΣX2 = 84, and ΣX = 20. (4.89, 2.21)

b) n = 40, ΣX2 = 380, and ΣX = 100.

c) n = 20, ΣX2 = 18, and ΣX = 17.

Hint: Modify equation (1.6) by expanding the numerator to obtain an equiv-
alent formula for the sample variance that directly uses the numbers given
above.

4. Explain how the relationship between the mean and the median provides
information about the symmetry or skewness of the data’s distribution.

5. What is the primary disadvantage of using the range rather than the
variance to compare the variability of two data sets?

6. Can standard deviation of a variable be negative?

7. A sample is drawn from the population of all adult females in Canada
and the height in centimetres is observed. One of the observations has a
sample z-score of 6. Describe in one sentence what this implies about that
particular member of the sample.

8. In archery practice, the mean distance of the points of impact from the
target centre is 5 inches. The standard deviation of these distances is 2
inches. At most, what proportion of the arrows hit within 1 inch or beyond
9 inches from the target centre? Hint: Use 1/k2.

a) 1/4

b) 1/8

c) 1/10

d) cannot be determined from the data given.

e) none of the above.
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9. Chebyshev’s rule states that 68% of the observations on a variable will
lie within plus or minus two standard deviations from the mean value for
that variable. True or False. Explain your answer fully.

10. A manufacturer of automobile batteries claims that the average length
of life for its grade A battery is 60 months. But the guarantee on this brand
is for just 36 months. Suppose that the frequency distribution of the life-
length data is unimodal and symmetrical and that the standard deviation is
known to be 10 months. Suppose further that your battery lasts 37 months.
What could you infer, if anything, about the manufacturer’s claim?

11. At one university, the students are given z-scores at the end of each
semester rather than the traditional GPA’s. The mean and standard de-
viations of all students’ cumulative GPA’s on which the z-scores are based
are 2.7 and 0.5 respectively. Students with z-scores below -1.6 are put on
probation. What is the corresponding probationary level of the GPA?

12. Two variables have identical standard deviations and a covariance equal
to half that common standard deviation. If the standard deviation of the
two variables is 2, what is the correlation coefficient between them?

13. Application of Chebyshev’s rule to a data set that is roughly symmetri-
cally distributed implies that at least one-half of all the observations lie in
the interval from 3.6 to 8.8. What are the approximate values of the mean
and standard deviation of this data set?

14. The number of defective items in 15 recent production lots of 100 items
each were as follows:

3, 1, 0, 2, 24, 4, 1, 0, 5, 8, 6, 3, 10, 4, 2

a) Calculate the mean number of defectives per lot. (4.87)

b) Array the observations in ascending order. Obtain the median of this
data set. Why does the median differ substantially from the mean
here? Obtain the range and the interquartile range. (3, 24, 4)

c) Calculate the variance and the standard deviation of the data set.
Which observation makes the largest contribution to the magnitude of
the variance through the sum of squared deviations? Which observa-
tion makes the smallest contribution? What general conclusions are
implied by these findings? (36.12, 6.01)
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d) Calculate the coefficient of variation for the number of defectives per
lot. (81)

e) Calculate the standardised values of the fifteen numbers of defective
items. Verify that, except for rounding effects, the mean and variance
of these standardised observations are 0 and 1 respectively. How many
standard deviations away from the mean is the largest observation?
The smallest?

15. The variables X and Y below represent the number of sick days taken
by the males and females respectively of seven married couples working for
a given firm. All couples have small children.

X 8 5 4 6 2 5 3

Y 1 3 6 3 7 2 5

Calculate the covariance and the correlation coefficient between these vari-
ables and suggest a possible explanation of the association between them.
(-3.88, -0.895)



Chapter 2

Probability

2.1 Why Probability?

We have seen that statistical inference is a methodology through which we
learn about the characteristics of a population by analyzing samples of el-
ements drawn from that population. Suppose that a friend asks you to
invest $10000 in a joint business venture. Although your friend’s presenta-
tion of the potential for profit is convincing, you investigate and find that
he has initiated three previous business ventures, all of which failed. Would
you think that the current proposed venture would have more than a 50/50
chance of succeeding? In pondering this question you must wonder about
the likelihood of observing three failures in a sample of three elements from
the process by which your friend chooses and executes business ventures if,
in fact, more than half the population of ventures emanating from that pro-
cess will be successful. This line of thinking is an essential part of statistical
inference because we are constantly asking ourselves, in one way or other,
what the likelihood is of observing a particular sample if the population
characteristics are what they are purported to be. Much of statistical infer-
ence involves making an hypothesis about the characteristics of a population
(which we will later call the null hypothesis) and then seeing whether the
sample has a low or high chance of occurring if that hypothesis is true.

Let us begin our study of probability by starting with a population whose
characteristics are known to us and inquire about the likelihood or chances
of observing various samples from that population.

35
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2.2 Sample Spaces and Events

Suppose we toss a single coin and observe whether it comes up heads or
tails. The relevant population here is the infinite sequence of tosses of a
single coin. With each toss there is uncertainty about whether the result
will be a head or a tail. This coin toss is an example of a random trial or
experiment, which can be defined as an activity having two or more possible
outcomes with uncertainty in advance as to which outcome will prevail. The
different possible outcomes of the random trial are called the basic outcomes.
The set of all basic outcomes for a random trial is called the sample space
for the trial. The sample space for a single coin toss, which we denote by
S, contains two basic outcomes, denoted as H (head) and T (tail). This
represents a sample of one from the infinite population of single coin tosses.
The set of basic outcomes can be written

S = {H,T} (2.1)

These basic outcomes are also called sample points or simple events. They
are mutually exclusive—that is, only one can occur—and mutually exhaus-
tive—that is, at least one of them must occur.

Now suppose we toss two coins simultaneously and record whether they
come up heads or tails. One might think that there would be three basic
outcomes in this case—two heads, head and tail, and two tails. Actually,
there are four simple events or sample points because the combination head
and tail can occur in two ways—head first and then tail, and tail first fol-
lowed by head. Thus, the sample space for this random trial or experiment
will be

S = {HH,HT, TH, TT} (2.2)

A subset of the set of sample points is called an event. For example,
consider the event ‘at least one head’. This would consist of the subspace

E1 = {HH,HT, TH} (2.3)

containing three of the four sample points. Another event would be ‘both
faces same’. This event, which we can call E2, is the subset

E2 = {HH,TT}. (2.4)

The set of outcomes not contained in an event Ej is called the com-
plementary event to the event Ej which we will denote by Ec

j . Thus, the
complementary events to E1 and E2 are, respectively,

Ec
1 = {TT} (2.5)
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and

Ec
2 = {HT, TH}. (2.6)

The set of sample points that belongs to both event Ei and event Ej is
called the intersection of Ei and Ej . The intersection of E1 and Ec

2 turns
out to be the event Ec

2 because both sample points in Ec
2 are also in E1. We

can write this as

E1 ∩ Ec
2 = {HT, TH} = Ec

2. (2.7)

The intersection of Ec
1 and Ec

2 contains no elements, that is

Ec
1 ∩Ec

2 = ϕ (2.8)

where ϕ means nil or nothing. An event containing no elements is called the
null set or null event. When the intersection of two events is the null event,
those two events are said to be mutually exclusive. It should be obvious that
the intersection of an event and its complement is the null event.

The set of sample points that belong to at least one of the events Ei and
Ej is called the union of Ei and Ej . For example, the union of Ec

1 and Ec
2

is

E3 = Ec
1 ∪Ec

2 = {HT, TH, TT}, (2.9)

the event ‘no more than one head’. Each sample point is itself an event—one
of the elementary events—and the union of all these elementary events is
the sample space itself. An event that contains the entire sample space is
called the universal event.

We can express the intersection and union of several events as, respec-
tively,

E1 ∩ E2 ∩E3 ∩ E4 ∩ · · · · · ·
and

E1 ∪E2 ∪ E3 ∪ E4 ∪ · · · · · · .
The set of all possible events that can occur in any random trial or

experiment, including both the universal event and the null event, is called
the event space.

The above examples of random trials and sample spaces resulting there-
from represent perhaps the simplest cases one could imagine. More complex
situations arise in experiments such as the daily change in the Dow Jones In-
dustrial Average, the number of students of the College involved in accidents
in a given week, the year-over-year rate of inflation in the United Kingdom,
and so forth. Sample points, the sample space, events and the event space
in these more complicated random trials have the same meanings and are
defined in the same way as in the simple examples above.
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2.3 Univariate, Bivariate and Multivariate Sample
Spaces

The sample space resulting from a single coin toss is a univariate sample
space—there is only one dimension to the random trial. When we toss two
coins simultaneously, the sample space has two dimensions—the result of
the first toss and the result of the second toss. It is often useful to portray
bivariate sample spaces like this one in tabular form as follows:

One
Two H T

H HH TH

T HT TT

Each of the four cells of the table gives an outcome of the first toss followed
by an outcome of the second toss. This sample space can also be laid out in
tree form:

�
�

�
�
��

Q
Q

Q
Q
QQ

H

T

������

PPPPPP

������

PPPPPP

H

T

H

T

-

-

-

-

H H

H T

T H

T T

First
Toss

Second
Toss

Sample
Points

A more interesting example might be the parts delivery operation of a
firm supplying parts for oil drilling rigs operating world wide. The relevant
random trial is the delivery of a part. Two characteristics of the experiment
are of interest—first, whether the correct part was delivered and second, the
number of days it took to get the part to the drilling site. This is also a
bivariate random trial the essence of which can be captured in the following
table:
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Time of Delivery
S N M

Order C C S C N C M
Status I I S I N I M

The status of the order has two categories: ‘correct part’ (C) and ‘in-
correct part’ (I). The time of delivery has three categories: ‘same day’ (S),
‘next day’ (N) and ‘more than one day’ (M). There are six sample points or
basic outcomes. The top row in the table gives the event ‘correct part’ and
the bottom row gives the event ‘incorrect part’. Each of these events contain
three sample points. The first column on the left in the main body of the
table gives the event ‘same day delivery’, the middle column the event ‘next
day delivery’ and the third column the event ‘more than one day delivery’.
These three events each contain two sample points or basic outcomes. The
event ‘correct part delivered in less than two days’ would be the left-most
two sample points in the first row, (C S) and (C N). The complement of that
event, ‘wrong part or more than one day delivery’ would be the remaining
outcomes (C M), (I S), (I N) and (I M).

Notice also that the basic outcome in each cell of the above table is the
intersection of two events—(C S) is the intersection of the event C or ‘correct
part’ and the event S ‘same day delivery’ and (I N) is the intersection of
the event I, ‘incorrect part’, and the event N ‘next day delivery’. The event
‘correct part’ is the union of three simple events, (C S) ∪ (C N) ∪ (C M).
The parts delivery sample space can also be expressed in tree form as follows:
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2.4 The Meaning of Probability

Although probability is a term that most of us used before we began to study
statistics, a formal definition is essential. As we noted above, a random trial
is an experiment whose outcome must be one of a set of sample points
with uncertainty as to which one it will be. And events are collections
of sample points, with an event occurring when one of the sample points
or basic outcomes it contains occurs. Probability is a value attached to a
sample point or event denoting the likelihood that it will be realized. These
probability assignments to events in the sample space must follow certain
rules.

1. The probability of any basic outcome or event consisting of a set of basic
outcomes must be between zero and one. That is, for any outcome oi or
event Ei containing a set of outcomes we have

0 ≤ P (oi) ≤ 1

0 ≤ P (Ei) ≤ 1. (2.10)

If P (oi) = 1 or P (Ei) = 1 the respective outcome or event is certain to
occur; if P (oi) = 0 or P (Ei) = 0 the outcome or event is certain not to
occur. It follows that probability cannot be negative.

2. For any set of events of the sample space S (and of the event space E),

P (Ej) =
J∑

i=1

P (oi). (2.11)

where J is the number of basic events or sample points contained in the
event Ej . In other words, the probability that an event will occur is the
sum of the probabilities that the basic outcomes contained in that event
will occur. This follows from the fact that an event is said to occur when
one of the basic outcomes or sample points it contains occurs.

3. Since it is certain that at least one of the sample points or elementary
events in the sample space will occur, P (S) = 1. And the null event cannot
occur, so P (ϕ) = 0 where ϕ is the null event. These results follow from
the fact that P (S) is the sum of the probabilities of all the simple or basic
events.
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A number of results follow from these postulates

• P (Ei) ≤ P (Ej) when Ei is a subset of (contained in) Ej .

• If Ei and Ej are mutually exclusive events of a sample space, then
P (Ei ∩ Ej) = 0. That is, both events cannot occur at the same time.

Probability can be expressed as an odds ratio. If the probability of an
event Ej is a, then the odds of that event occurring are a to (1− a). If the
probability that you will get into an accident on your way home from work
tonight is .2, then the odds of you getting into an accident are .2 to .8 or 1
to 4. If the odds in favour of an event are a to b then the probability of the
event occurring is

a

a+ b

If the odds that your car will break down on the way home from work are 1
to 10, then the probability it will break down is 1/(10 + 1) = 1/11.

2.5 Probability Assignment

How are probabilities established in any particular case? The short answer
is that we have to assign them. The probability associated with a random
trial or experiment can be thought of as a mass or “gob” of unit weight.
We have to distribute that mass across the sample points or basic elements
in the sample space. In the case of a single coin toss, this is pretty easy
to do. Since a fair coin will come up heads half the time and tails half the
time we will assign half of the unit weight to H and half to T , so that the
probability of a head on any toss is .5 and the probability of a tail is .5. In
the case where we flip two coins simultaneously our intuition tells us that
each of the four sample points HH, HT , TH, and TT are equally likely, so
we would assign a quarter of the mass, a probability of .25, to each of them.
When it comes to determining the probability that I will be hit by a car on
my way home from work tonight, I have to make a wild guess on the basis
of information I might have on how frequently that type of accident occurs
between 5 o’clock and 6 o’clock on weekday afternoons in my neighbourhood
and how frequently I jay-walk. My subjective guess might be that there is
about one chance in a thousand that the elementary event ‘get hit by a car
on my way home from work’ will occur and nine-hundred and ninety-nine
chances in a thousand that the mutually exclusive elementary event ‘do not
get hit by a car on my way home from work’ will occur. So I assign a
probability of .001 to the event ‘get hit’ and a probability of .999 to the
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event ‘not get hit’. Note that the implied odds of me getting hit are 1 to
999.

As you might have guessed from the above discussion the procedures for
assigning probabilities fall into two categories—objective and subjective. In
the case of coin tosses we have what amounts to a mathematical model of
a fair coin that will come up heads fifty percent of the time. If the coin is
known to be fair this leads to a purely objective assignment of probabilities—
no personal judgement or guesswork is involved. Of course, the proposition
that the coin is fair is an assumption, albeit a seemingly reasonable one.
Before assigning the probabilities in a coin toss, we could toss the coin a
million times and record the number of times it comes up heads. If it is
a fair coin we would expect to count 500,000 heads. In fact, we will get
a few more or less than 500,000 heads because the one million tosses is
still only a sample, albeit a large one, of an infinite population. If we got
only 200,000 heads in the 1,000,000 tosses we would doubt that the coin
was a fair one. A theoretically correct assignment of probabilities would
be one based on the frequencies in which the basic outcomes occur in an
infinite sequence of experiments where the conditions of the experiment do
not change. This uses a basic axiom of probability theory called the law
of large numbers. The law states essentially that the relative frequency
of occurrence of a sample point approaches the theoretical probability of
the outcome as the experiment is repeated a larger and larger number of
times and the frequencies are cumulated over the repeated experiments. An
example is shown in Figure 2.1 where a computer generated single-coin toss
is performed 1500 times. The fraction of tosses turning up heads is plotted
against the cumulative number of tosses measured in hundreds.

In practice, the only purely objective method of assigning probabilities
occurs when we know the mathematics of the data generating process—
for example, the exact degree of ‘fairness’ of the coin in a coin toss. Any
non-objective method of assigning probabilities is a subjective method, but
subjective assignments can be based on greater or lesser amounts of infor-
mation, according to the sample sizes used to estimate the frequency of
occurrence of particular characteristics in a population. When relative fre-
quencies are used to assign probabilities the only subjective component is
the choice of the data set from which the relative frequencies are obtained.
For this reason, the assignment of probabilities based on relative frequencies
is often also regarded as objective. In fact, inferential statistics essentially
involves the use of sample data to try to infer, as objectively as possible, the
proximate probabilities of events in future repeated experiments or random
draws from a population. Purely subjective assignments of probabilities are
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those that use neither a model of the data-generating process nor data on
relative frequencies.

Figure 2.1: Illustration of the law of large numbers. Com-
puter generated plot of the cumulative fraction of 1500 single
coin-tosses turning up heads. The horizontal axis gives the
number of tosses in hundreds and the vertical axis the frac-
tion turning up heads.

Purely subjective probability measures tend to be useful in business situ-
ations where the person or organization that stands to lose from an incorrect
assignment of probabilities is the one making the assignment. If I attach
a probability of 0.1 that a recession will occur next year and govern my
investment plans accordingly, I am the one who stands to gain or lose if
the event ‘recession’ occurs and I will be the loser over the long run if my
probability assignments tend to be out of line with the frequency with which
the event occurs. Since I stand to gain or lose, my probability assessment
is ‘believable’ to an outside observer—there is no strategic gain to me from
‘rigging’ it. On the other hand, if the issue in question is the amount my in-
dustry will lose from free trade, then a probability assignment I might make
to the set of sample points comprising the whole range of losses that could
be incurred should not be taken seriously by policy makers in deciding how
much compensation, if any, to give to my industry. Moreover, outside ob-
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servers’ subjective probability assignments are also suspect because one does
not know what their connection might happen to be to firms and industries
affected by proposed policy actions.

2.6 Probability Assignment in Bivariate Sample
Spaces

Probability assignment in bivariate sample spaces can be easily visualized
using the following table, which further extends our previous example of
world-wide parts delivery to oil drilling sites.

Time of Delivery
S N M Sum

Order C .600 .24 .120 .96
Status I .025 .01 .005 .04

Sum .625 .25 .125 1.00

Probabilities have been assigned to the six elementary events either
purely subjectively or using frequency data. Those probabilities, represented
by the numbers in the central enclosed rectangle must sum to unity because
they cover the entire sample space—at least one of the sample points must
occur. They are called joint probabilities because each is an intersection of
two events—an ‘order status’ event ( C or I) and a ‘delivery time’ event
(S, N, or M). The probabilities in the right-most column and and along the
bottom row are called marginal probabilities. Those in the right margin
give the probabilities of the events ‘correct’ and ‘incorrect’. They are the
unions of the joint probabilities along the respective rows and they must
sum to unity because the order delivered must be either correct or incor-
rect. The marginal probabilities along the bottom row are the probabilities
of the events ‘same day delivery’ (S), ‘next day delivery’ (N) and ‘more than
one day to deliver’ (M). They are the intersections of the joint probabilities
in the respective columns and must also sum to unity because all orders are
delivered eventually. You can read from the table that the probability of the
correct order being delivered in less than two days is .60 + .24 = .84 and
the probability of unsatisfactory performance (either incorrect order or two
or more days to deliver) is (.12 + .025 + .01 + .005) = .16 = (1 - .84).



2.7. CONDITIONAL PROBABILITY 45

2.7 Conditional Probability

One might ask what the probability is of sending the correct order when
the delivery is made on the same day. Note that this is different than the
probability of both sending the correct order and delivering on the same day.
It is the probability of getting the order correct conditional upon delivering
on the same day and is thus called a conditional probability. There are two
things that can happen when delivery is on the same day—the order sent can
be correct, or the incorrect order can be sent. As you can see from the table
a probability weight of .600 + .025 = .625 is assigned to same-day delivery.
Of this probability weight, the fraction .600/.625 = .96 is assigned to the
event ‘correct order’ and the fraction .25/.625 = .04 is assigned to the event
‘incorrect order’. The probability of getting the order correct conditional
upon same day delivery is thus .96 and we define the conditional probability
as

P (C|S) =
P (C ∩ S)

P (S)
. (2.12)

where P (C|S) is the probability of C occurring conditional upon the occur-
rence of S, P (C ∩ S) is the joint probability of C and S (the probability
that both C and S will occur), and P (S) is the marginal or unconditional
probability of S (the probability that S will occur whether or not C occurs).
The definition of conditional probability also implies, from manipulation of
(2.12), that

P (C ∩ S) = P (C|S)P (S). (2.13)

Thus, if we know that the conditional probability of C given S is equal to
.96 and that the marginal probability of C is .625 but are not given the
joint probability of C and S, we can calculate that joint probability as the
product of .625 and .96 —namely .600.
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2.8 Statistical Independence

From application of (2.12) to the left-most column in the main body of the
table we see that the conditional probability distribution of the event ‘order
status’ given the event ‘same day delivery’ is

P (C|S) .96

P (I|S) .04

which is the same as the marginal probability distribution of the event ‘order
status’. Further calculations using (2.12) reveal that the probability distri-
butions of ‘order status’ conditional upon the events ‘next day delivery’ and
‘more than one day delivery’ are

P (C|N) .24/.25 = .96

P (I|N) .01/.25 = .04

and

P (C|M) .120/.125 = .96

P (I|M) .005/.125 = .04

which are the same as the marginal or unconditional probability distribu-
tion of ‘order status’. Moreover, the probability distributions of ‘time of
delivery’ conditional upon the events ‘correct order’ and ‘incorrect order’
are, respectively

P (S|C) .60/.96 = .625

P (N |C) .24/.96 = .25

P (M |C) .12/.96 = .125

and

P (S|I) .025/.04 = .625

P (N |I) .010/.04 = .25

P (M |I) .005/.04 = .125

which are the same as the marginal or unconditional probability distribu-
tion of ‘time of delivery’. Since the conditional probability distributions are
the same as the corresponding marginal probability distributions, the prob-
ability of getting the correct order is the same whether delivery is on the
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same day or on a subsequent day—that is, independent of the day of deliv-
ery. And the probability of delivery on a particular day is independent of
whether or not the order is correctly filled. Under these conditions the two
events ‘order status’ and ‘time of delivery’ are said to be statistically inde-
pendent. Statistical independence means that the marginal and conditional
probabilities are the same, so that

P (C|S) = P (C). (2.14)

The case where two events are not statistically independent can be illus-
trated using another example. Suppose that we are looking at the behaviour
of two stocks listed on the New York Stock Exchange—Stock A and Stock
B—to observe whether over a given interval the prices of the stocks in-
creased, decreased or stayed the same. The sample space, together with the
probabilities assigned to the sample points based on several years of data
on the price movements of the two stocks can be presented in tabular form
as follows:

Stock A
Stock B Increase No Change Decrease

A1 A2 A3 Sum

Increase B1 .20 .05 .05 .30
No Change B2 .15 .10 .15 .40
Decrease B3 .05 .05 .20 .30

Sum .40 .20 .40 1.00

The conditional probability that the price of stock A will increase, given
that the price of stock B increases is

P (A1|B1) =
P (A1 ∩B1)

P (B1)

=
.20

.30
= .666

which is greater than the unconditional probability of an increase in the
price of stock A, the total of the A1 column, equal to .4. This says that the
probability that the price of stock A will increase is greater if the price of
stock B also increases. Now consider the probability that the price of stock
A will fall, conditional on a fall in the price of stock B. This equals

P (A3|B3) =
P (A3 ∩B3)

P (B3)

=
.20

.30
= .666
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which is greater than the 0.4 unconditional probability of a decline in the
price of stock A given by the total at the bottom of the A3 column. The
probability that the price of stock A will decline conditional upon the price
of stock B not declining is

P (A3 ∩B1) + P (A3 ∩B2)

P (B1) + P (B2)
=

.05 + .15

.30 + .40

=
20

70
= .286

which is smaller than the 0.4 unconditional probability of the price of stock
A declining regardless of what happens to the price of stock B. The price
of stock A is more likely to decline if the price of stock B declines and less
likely to decline if the price of stock B does not decline. A comparison of
these conditional probabilities with the relevant unconditional ones make it
clear that the prices of stock A and stock B move together. They are not
statistically independent.

There is an easy way to determine if the two variables in a bivariate
sample space are statistically independent. From the definition of statis-
tical independence (2.14) and the definition of conditional probability as
portrayed in equation (2.13) we have

P (C ∩ S) = P (C|S)P (S) = P (C)P (S). (2.15)

This means that when there is statistical independence the joint probabil-
ities in the tables above can be obtained by multiplying together the two
relevant marginal probabilities. In the delivery case, for example, the joint
probability of ‘correct order’ and ‘next day’ is equal to the product of the
two marginal probabilities .96 and .25, which yields the entry .24. The
variables ‘order status’ and ‘time of delivery’ are statistically independent.
On the other hand, if we multiply the marginal probability of A1 and the
marginal probability of B1 in the stock price change example we obtain
.30 × .40 = .12 which is less than .20, the actual entry in the joint prob-
ability distribution table. This indicates that the price changes of the two
stocks are not statistically independent.
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2.9 Bayes Theorem

Many times when we face a problem of statistical inference about a popu-
lation from a sample, we already have some information prior to looking at
the sample. Suppose, for example, that we already know that the proba-
bilities that an offshore tract of a particular geological type contains no gas
(A1), a minor gas deposit (A2) or a major gas deposit (A3) are .7, .25 and
.05 respectively. Suppose further that we know that a test well drilled in a
tract like the one in question will yield no gas (B1) if none is present and
will yield gas (B2) with probability .3 if a minor deposit is present and with
probability .9 if a major deposit is present. A sensible way to proceed is to
begin with the information contained in the probability distribution of gas
being present in the tract and then upgrade that probability distribution on
the basis of the results obtained from drilling a test well. Our procedure can
be organized as follows:

Prior Joint Posterior
Probability Probability Probability

P (Ai) P (B2|Ai) P (Ai ∩B2) P (Ai|B2)

No Gas (A1) 0.70 0.00 0.000 0.000
Minor Deposit (A2) 0.25 0.30 0.075 0.625
Major Deposit (A3) 0.05 0.90 0.045 0.375

Total 1.00 0.120 1.000

Suppose that our test well yields gas (otherwise it’s game over!). We
begin with our prior probabilities P (Ai) and then use the fact that the joint
probability distribution P (B2 ∩Ai) equals the prior probabilities multiplied
by the conditional probabilities P (B2|Ai) that gas will be obtained, given
the respective Ai,

P (B2 ∩Ai) = P (B2|Ai)P (Ai).

These probabilities are entered in the second column from the right. Their
sum gives the probability of finding gas, which equals .12 (the probability of
finding gas and there being no gas (0.000) plus the probability of finding gas
and there being a minor deposit (0.075) plus the probability of finding gas
and there being a major deposit (0.045)). It then follows that the probability
of there being no gas conditional upon gas being found in the test well is
0.000/.12 = 0.000, the probability of there being a minor deposit conditional
upon the test well yielding gas is .075/.12 = .625 and the probability of there
being a major deposit conditional upon gas being found in the test well is
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.045/.12 = .375. Since the test well yielded gas, these latter probabilities
are the posterior (post-test or post-sample) probabilities of there being no
gas, a minor deposit and a major deposit. They are entered in the column
on the extreme right. When we are finished we can say that there is a .625
probability that the tract contains a minor gas deposit and a .375 probability
that it contains a major deposit.

Notice what we have done here. We have taken advantage of the fact
that the joint probability distribution P (Ai ∩ Bj) can be obtained in two
ways:

P (Ai ∩Bj) = P (Ai|Bj)P (Bj)

and
P (Ai ∩Bj) = P (Bj |Ai)P (Ai).

Subtracting the second of these from the first, we obtain

P (Ai|Bj)P (Bj) = P (Bj |Ai)P (Ai)

which implies

P (Ai|Bj) = P (Bj |Ai)
P (Ai)

P (Bj)
(2.16)

We can then use the fact that

P (Bj) =
∑
i

P (Bj ∩Ai) =
∑
i

[P (Bj |Ai)P (Ai)] (2.17)

to express (2.16) as

P (Ai|Bj) =
P (Bj |Ai)P (Ai)∑
i [P (Bj |Ai)P (Ai)]

(2.18)

This latter equation is called Bayes Theorem. Given the prior probability
distribution P (Ai) (the marginal or unconditional probabilities of gas being
present) plus the conditional probability distribution P (Bj |Ai) (the prob-
abilities of finding gas conditional upon it being not present, present in a
minor deposit or present in a major deposit), we can calculate the posterior
probability distribution (probabilities of no deposit or a minor or major de-
posit being present conditional upon the information obtained from drilling
a test hole).

The operation of Bayes Theorem can perhaps best be understood with
reference to a tabular delineation of the sample space of the sort used in the
parts delivery case.
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Test Drill Prior
Type of Deposit No Gas Gas Probability

(B1) (B2) Distribution

(A1) 0.000 0.70
(A2) 0.075 0.25
(A3) 0.045 0.05

Total 0.120 1.00

On the basis of our previous calculations we are able to fill in the right-most
two columns. The column on the extreme right gives the prior probabilities
and the second column from the right gives the joint probabilities obtained
by multiplying together the prior probabilities and the probabilities of find-
ing gas in a test well conditional upon its absence or minor or major presence
in the tract. We can fill in the missing column by subtracting the second
column from the right from the right-most column. This yields

Test Well Prior
Type of Deposit No Gas Gas Probability

(B1) (B2) Distribution

(A1) 0.700 0.000 0.70
(A2) 0.175 0.075 0.25
(A3) 0.005 0.045 0.05

Total 0.880 0.120 1.00

We can now see from the bottom row that the probability of not finding gas
in a test well drilled in this type of tract is .88. The posterior probabilities
conditional upon finding no gas or gas, respectively, in the test well can be
calculated directly from the table by taking the ratios of the numbers in
the two columns to the unconditional probabilities at the bottoms of those
columns. The posterior probabilities are therefore

Posterior Probabilities Prior
Type of Deposit No Gas Gas Probability

(Ai|B1) (Ai|B2) Distribution

(A1) 0.795 0.000 0.70
(A2) 0.199 0.625 0.25
(A3) 0.006 0.375 0.05

Total 1.000 1.000 1.00

Notice how the prior probabilities are revised as a consequence of the test
results. The prior probability of no gas being present is .70. If the test well
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yields no gas, that probability is adjusted upward to .795 and if the test well
yields gas it is adjusted downward to zero. The prior probability that there
is a minor deposit in the tract is .25. If the test well yields no gas this is
adjusted downward to less than .2 while if gas is found in the test well this
probability is adjusted upward to .625. Note that it is possible for gas to be
present even if the test well yields no gas (gas could be present in another
part of the tract) while if there is no gas present the test well will not find
any. Finally, the prior probability of there being a major deposit present is
adjusted upward from .05 to .375 if the test well yields gas and downward
to .006 if the test well finds no gas.

2.10 The AIDS Test

Now consider another application of Bayes Theorem. You go to your doctor
for a routine checkup and he tells you that you have just tested positive for
HIV. He informs you that the test you have been given will correctly identify
an AIDS carrier 90 percent of the time and will give a positive reading for
a non-carrier of the virus only 1 percent of the time. He books you for a
second more time consuming and costly but absolutely definitive test for
Wednesday of next week.

The first question anyone would ask under these circumstances is “Does
this mean that I have a 90 percent chance of being a carrier of HIV.” On
the way home from the doctor’s office you stop at the library and rummage
through some medical books. In one of them you find that only one per-
son per thousand of the population in your age group is a carrier of aids.1

You think “Am I so unfortunate to be one of these?” Then you remember
about Bayes Theorem from your statistics class and decide to do a thorough
analysis. You arrange the sample space as follows

Test Result Prior
An HIV Positive Negative Probability
Carrier? (T1) (T0) Distribution

No (A0) 0.0099 0.999
Yes (A1) 0.0009 0.001

Total 0.0108 1.000

and make special note that the test results give you some conditional prob-
abilities. In particular, the probability of a positive result conditional upon

1These numbers, indeed the entire scenario, should not be taken seriously—I ammaking
everything up as I go along!
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you being a carrier is P (T1|A1) = .90 and the probability of a positive result
conditional upon you not being a carrier is P (T1|A0) = .01. You obtain
the joint probability of being a carrier and testing positive by multiplying
P (T1|A1) by P (A1) to obtain .90 × .001 = .0009 and enter it into the ap-
propriate cell of the above table. You then obtain the joint probability of
testing positive and not being a carrier by multiplying P (T1|A0) by P (A0).
This yields .01 × .999 = .0099 which you enter appropriately in the above
table. You then sum the numbers in that column to obtain the uncondi-
tional probability of testing positive, which turns out to be .0108. You can
now calculate the posterior probability—that is, the probability of being a
carrier conditional on testing positive. This equals .0009/.0108 = .08333.
The information from the test the doctor gave you has caused you to revise
your prior probability of .001 upward to .0833. You can now fill in the rest
of the table by subtracting the joint probabilities already there from the
prior probabilities in the right margin.

Test Result Prior
An HIV Positive Negative Probability
Carrier? (T1) (T0) Distribution

No (A0) 0.0099 .9891 0.999
Yes (A1) 0.0009 .0001 0.001

Total 0.0108 .9892 1.000

Notice the importance to this problem of the 1% conditional probability of
testing positive when you don’t carry HIV. If that conditional probability
were zero then the fact that the test will come up positive for a carrier 90%
of the time is irrelevant. The joint probability of testing positive and not
being a carrier is zero. A carrier of HIV will sometimes test negative but a
non-carrier will never test positive. The above tabular representation of the
bivariate sample space then becomes

Test Result Prior
An HIV Positive Negative Probability
Carrier? (T1) (T0) Distribution

No (A0) 0.0000 .999 0.999
Yes (A1) 0.0009 .0001 0.001

Total 0.0009 .9991 1.000

The probability that you carry HIV conditional upon testing positive is now
.0009/.0009 = 1.000. You are a carrier.
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2.11 Basic Probability Theorems

This chapter concludes with a statement of some basic probability theorems,
most of which have already been motivated and developed and all of which
will be used extensively in the chapters that follow. These theorems are best
understood with reference to the Venn diagram presented in Figure 2.2. The
area inside the square denotes the sample space with each point representing
a sample point. The circular areas E1, E2 and E3 represent events—the
points inside these areas are those points belonging to the sample space
contained in the respective events. The letters A, B, C and D denote
collections of sample points inside the respective events. For example the
event E1 consists of A + B, event E2 consists of B + C. And the area
D represents event E3. The probability theorems below apply to any two
events of a sample space.

E
E

E

1
2

3

A
B C

D

Figure 2.2: Venn diagram to illustrate basic probability the-
orems. The rectangle contains the sample space and the cir-
cular areas denote events E1, E2 and E3.

1. Addition

P (E1 ∪E2) = P (E1) + P (E2)− P (E1 ∩E2) (2.19)

The probabilities of the two events are added together and then the joint
probability of the two events, given by the probability mass associated with
the area B in Figure 2.2 is subtracted out to avoid double counting. If
the events are mutually exclusive, as in the case of E1 and E3 the joint
probability term will be zero,

P (E1 ∪E3) = P (E1) + P (E3). (2.20)
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2. Complementation

P (E1) = 1− P (Ec
1) (2.21)

where Ec
1 is the complementary event to E1.

3. Multiplication

P (E1 ∩E2) = P (E1)P (E2|E1). (2.22)

This follows from the definition of conditional probability. In Figure 2.2,
P (E2|E1) = P (B)/(P (A)+P (B)) (the proportion of the total weight in E1

that also falls in E2). And P (E1) = P (A)+P (B). So P (E1∩E2) = [P (A)+
P (B)][P (B)/(P (A) + P (B))] = P (B). If we know the joint probability and
the marginal probability we can find the conditional probability. Similarly,
if we know the conditional probability and the marginal probability we can
find the joint probability.

2.12 Exercises

1. Suppose a random trial has three basic outcomes: o1, o2 and o3. The
probabilities of o2 and o3 are .5 and .4 respectively. Let E be the event con-
sisting of basic outcomes o2 and o3. The probability of the complementary
event to E is

a) .1

b) .9

c) .8

d) .2

e) none of the above.

2. Two marbles are drawn at random and without replacement from a
box containing two blue marbles and three red marbles. Determine the
probability of observing the following events.

a) Two blue marbles are drawn.
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b) A red and a blue marble are drawn.

c) Two red marbles are drawn.

Hint: Organize the sample space according to a tree-diagram and then at-
tach probabilities to the respective draws. Alternatively, you can organize
the sample space in rectangular fashion with one draw represented as rows
and the other as columns.

3. Three events, A, B, and C are defined over some sample space S. Events
A and B are independent. Events A and C are mutually exclusive. Some
relevant probabilities are P (A) = .04, P (B) = .25, P (C) = .2 and P (B|C) =
.15. Compute the values of P (A∪B), P (A∪C), P (A∪B∪C) and P (C|B).

4. An experiment results in a sample space S containing five sample points
and their associated probabilities of occurrence:

s1 s2 s3 s4 s5
.22 .31 .15 .22 .10

The following events have been defined

• E1 = {s1, s3}.

• E2 = {s2, s3, s4}.

• E3 = {s1, s5}.

Find each of the following probabilities:

a) P (E1).

b) P (E2).

c) P (E1 ∩ E2).

d) P (E1|E2).

e) P (E2 ∩ E3).

f) P (E3|E2).



2.12. EXERCISES 57

Consider each pair of events E1 and E2, E1 and E3 and E2 and E3. Are any
of these events statistically independent? Why or why not? Hint: Are the
joint probabilities equal to the products of the unconditional probabilities?

5. Roulette is a very popular game in Las Vegas. A ball spins on a circular
wheel that is divided into 38 arcs of equal length, bearing the numbers 00,
0, 1, 2, . . . , 35, 36. The number of the arc on which the ball stops after
each spin of the wheel is the outcome of one play of the game. The numbers
are also coloured as follows:

Red: 1,3,5,7,9,12,14,16,18,19,21,23,25,27,30,32,34,36
Black: 2,4,6,8,10,11,13,15,17,20,22,24,26,28,29,31,33,35
Green: 00,0

Players may place bets on the table in a variety of ways including bets on
odd, even, red, black, high, low, etc. Define the following events:

• A: Outcome is an odd number (00 and 0 are considered neither even
nor odd).

• B: Outcome is a black number.

• C: Outcome is a low number, defined as one of numbers 1–18 inclusive.

a) What is the sample space here?

b) Define the event A ∩B as a specific set of sample points.

c) Define the event A ∪B as a specific set of sample points.

d) Find P (A), P (B), P (A ∪B), P (A ∩B) and P (C).

e) Define the event A ∩B ∩ C as a specific set of sample points.

f) Find P (A ∪B).

g) Find P (A ∩B ∩ C).

h) Define the event A ∪B ∪ C as a specific set of sample points.

6. A bright young economics student at Moscow University in 1950 criticized
the economic policies of the great leader Joseph Stalin. He was arrested and
sentenced to banishment for life to a work camp in the east. In those days
70 percent of those banished were sent to Siberia and 30 percent were sent
to Mongolia. It was widely known that a major difference between Siberia
and Mongolia was that fifty percent of the men in Siberia wore fur hats,
while only 10 percent of the people in Mongolia wore fur hats. The student
was loaded on a railroad box car without windows and shipped east. After
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many days the train stopped and he was let out at an unknown location.
As the train pulled away he found himself alone on the prairie with a single
man who would guide him to the work camp where he would spend the rest
of his life. The man was wearing a fur hat. What is the probability he
was in Siberia? In presenting your answer, calculate all joint and marginal
probabilities. Hint: Portray the sample space in rectangular fashion with
location represented along one dimension and whether or not a fur hat is
worn along the other.

7. On the basis of a physical examination and symptoms, a physician as-
sesses the probabilities that the patient has no tumour, a benign tumour, or
a malignant tumour as 0.70, 0.20, and 0.10, respectively. A thermographic
test is subsequently given to the patient. This test gives a negative result
with probability 0.90 if there is no tumour, with probability 0.80 if there is
a benign tumour, and with probability 0.20 if there is a malignant tumour.

a) What is the probability that a thermographic test will give a negative
result for this patient?

b) Obtain the posterior probability distribution for the patient when the
test result is negative?

c) Obtain the posterior probability distribution for the patient when the
test result is positive?

d) How does the information provided by the test in the two cases change
the physician’s view as to whether the patient has a malignant tumour?

8. A small college has a five member economics department. There are two
microeconomists, two macroeconomists and one econometrician. The World
Economics Association is holding two conferences this year, one in Istanbul
and one in Paris. The college will pay the expenses of one person from the
department for each conference. The five faculty members have agreed to
draw two names out of a hat containing all five names to determine who
gets to go to the conferences. It is agreed that the person winning the trip
to the first conference will not be eligible for the draw for the second one.

a) What is the probability that the econometrician will get to go to a
conference?

b) What is the probability that macroeconomists will be the attendees at
both conferences?
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c) What is the probability that the attendees of the two conferences will
be from different fields of economics?

d) The econometrician argued that a rule should be imposed specifying
that both attendees could not be from the same field. She was out-
voted. Would the provision have increased the probability that the
econometrician would get to attend a conference?

Hint: Use a rectangular portrayal of the sample space with persons who can
be chosen in the first draw along one axis and persons who can be chosen
in the second draw along the other. Then blot out the diagonal on grounds
that the same person cannot be chosen twice.

9. There is a 0.8 probability that the temperature will be below freezing on
any winter’s day in Toronto. Given that the temperature is below freezing
my car fails to start 15 percent of the time. Given that the temperature is
above freezing my car fails to start 5 percent of the time. Given that my
car starts, what is the probability that the temperature is below freezing?

10. If a baseball player is hitting .250 (i.e., if averages one hit per four times
at bat), how many times will he have to come up to bat to have a 90%
chance of getting a hit? Hint: Ask yourself what the probability is of not
getting a hit in n times at bat. Then take advantage of the fact that the
event ‘getting at least one hit in n times at bat’ is the complementary event
to the event of ‘not getting a hit in n times at bat’.

11. A particular automatic sprinkler system for high-rise apartment build-
ings, office buildings, and hotels has two different types of activation devices
on each sprinkler head. One type has a reliability of .91 (i.e., the proba-
bility that it will activate the sprinkler when it should is .91). The other
type, which operates independently of the first type, has a reliability of .87.
Suppose a serious fire starts near a particular sprinkler head.

a) What is the probability that the sprinkler head will be activated?

b) What is the probability that the sprinkler head will not be activated?

c) What is the probability that both activation devices will work prop-
erly?

d) What is the probability that only the device with reliability .91 will
work properly?
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Hint: Again use a rectangular portrayal of the sample space with the events
‘type 1 activation (yes, no)’ on one axis and ‘type 2 activation (yes, no)’ on
the other.

12. At every one of the Toronto BlueJay’s home games, little Johnny is there
with his baseball mit. He wants to catch a ball hit into the stands. Years
of study have suggested that the probability is .0001 that a person sitting
in the type of seats Johnny and his dad sit in will have the opportunity to
catch a ball during any game. Johnny is just turned six years old before the
season started. If he goes to every one of the 81 home games from the start
of the current season until he is 15 years old, what is the probability that
he will have the opportunity to catch a ball.

13. A club has 100 members, 30 of whom are lawyers. Within the club,
25 members are liars and 55 members are neither lawyers nor liars. What
proportion of the lawyers are liars?

14. The following is the probability distribution for an exam where students
have to choose one of two questions. The pass mark is 3 points or more.

5 4 3 2 1

Q1 .1 .1 .1 .2 0.0

Q2 0.0 .2 .1 .1 .1

a) Derive the marginal marks probability distribution.

b) What is the probability that a randomly selected student will pass?
(.6)

c) Given that a randomly selected student got 4 marks, what is the prob-
ability that she did question 2?

15. Suppose you are on a game show and you are given the opportunity to
open one of three doors and receive what ever is behind it. You are told
that behind one of the doors is a brand new Rolls Royce automobile and
behind the other two doors are goats. You pick a particular door—say door
number 1—and before the host of the show, who knows what is behind each
door, opens that door he opens one of the other doors—say door number
3—behind which is a goat. He then gives you the opportunity to stay with
door number 1, which you originally chose, or switch your choice to door 2.
Should you switch?
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Answer:

This is a classic puzzle in statistics having a level of difficulty much greater
than questions usually asked at the beginning level. Accordingly an effort
is made here to present a detailed answer. One approach to answering this
question is to examine the expected returns to “holding” (staying with the
door originally picked) and “switching” to the other unopened door. Let us
call the door you initially pick, which ever one it is, door A. Two mutually
exclusive events are possible:

1) The car is behind door A —call this event AY.

2) The car is not behind door A —call this event AN.

If your initial guess is right (which it will be 1/3 of the time) you win the car
by holding and lose it by switching. If your initial guess is wrong (which it
will be 2/3 of the time) the host, by opening the door with the goat behind,
reveals to you the door the car will be behind. You win by switching and
lose by holding. If contestants in this game always switch they will win the
car 2/3 of the time because their initial pick will be wrong 2/3 of the time.
The expected payoff can be shown in tabular form. Let winning the car
have a payoff of 1 and not winning it have a payoff of zero.

Hold Switch Probability

AY 1 0 1/3

AN 0 1 2/3

Expected 1/3× 1 1/3× 0
Payoff +1/3× 0 = 1/3 +2/3× 1 = 2/3

An alternative way to view the question is as a problem in Bayesian up-
dating. Call the door you initially pick door A, the door the host opens
door B, and the door you could switch to door C. On each play of the game
the particular doors assigned the names A, B, and C will change as the
doors picked by the contestant and opened by the host are revealed. The
probabilities below are the probabilities that the car is behind the door in
question.
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AY AN
Door

A B C

Prior
Probability 1/3 1/3 1/3

Information
From Host P (B|AN) = 0 P (C|AN) = 1

Joint P (B ∩AN) = P (C ∩AN) =
Probability P (B|AN)(P (AN)) = 0 P (C|AN)(P (AN)) = 2/3

Posterior
Probability 1/3 0 2/3

Keep in mind in looking at the above table that P (AN) = P (B) + P (C) =
2/3. The posterior probability of the car being behind the door the host
leaves closed (i.e. the probability that it is behind door C conditional upon
it not being behind door B) is 2/3. The posterior probability of the car being
behind door A (i.e., the probability of it being behind door A conditional
upon it not being behind door B) is 1/3, the same as the prior probability
that it was behind door A. You should always switch!



Chapter 3

Some Common Probability
Distributions

3.1 Random Variables

Most of the basic outcomes we have considered thus far have been non-
numerical characteristics. A coin comes up either heads or tails; a delivery
is on the same day with the correct order, the next day with the incorrect
order, etc. We now explicitly consider random trials or experiments that
relate to a quantitative characteristic, with a numerical value associated
with each outcome. For example, patients admitted to a hospital for, say,
X days where X = 1, 2, 3, 4, . . .. Canada’s GNP this year will be a specific
number on the scale of numbers ranging upwards from zero. When the
outcomes of an experiment are particular values on a natural numerical
scale we refer to these values as a random variable. More specifically, a
random variable is a variable whose numerical value is determined by the
outcome of a random trial or experiment where a unique numerical value is
assigned to each sample point.

Random variables may be discrete as in the length of hospital stay in days
or continuous as in the case of next month’s consumer price index or tomor-
row’s Dow Jones Industrial Average, the calculated values of which, though
rounded to discrete units for reporting, fall along a continuum. The essen-
tial distinction between discrete and continuous random variables is that the
sample points can be enumerated (or listed in quantitative order) in the case
of a discrete random variable—for example, we can list the number of po-
tential days of a hospital stay.1 In the case of continuous random variables it

1Hospital stays could also be treated as a continuous variable if measured in fractions
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is not possible to list the sample points in quantitative order—next month’s
consumer price index, for example, could be 120.38947 or 120.38948 or it
could take any one of an infinity of values between 120.38947 and 120.38948.
The number of sample points for a continuous random variable is always in-
finite. For a discrete random variable the number of sample points may or
may not be infinite, but even an infinity of sample points could be listed or
enumerated in quantitative order although it would take an infinite length of
time to list them all. In the case of a continuous random variable any sample
points we might put in a list cannot possibly be next to each other—between
any two points we might choose there will be an infinity of additional points.

3.2 Probability Distributions of Random Variables

The probability distribution for a discrete random variable X associates with
each of the distinct outcomes xi, (i = 1, 2, 3, . . . , k) a probability P (X = xi).
It is also called the probability mass function or the probability function.
The probability distribution for the hospital stay example is shown in the top
panel of Figure 3.1. The cumulative probability distribution or cumulative
probability function for a discrete random variableX provides the probability
that X will be at or below any given value—that is, P (X ≤ xi) for all xi.
This is shown in the bottom panel of Figure 3.1. Note that X takes discrete
values in both panels so that the lengths of the bars in the top panel give the
probabilities that it will take the discrete values associated with those bars.
In the bottom panel the length of each bar equals the sum of the lengths
of all the bars in the top panel associated with values of X equal to or less
than the value of X for that bar.

A continuous random variable assumes values on a continuum. Since
there are an infinity of values between any two points on a continuum it is not
meaningful to associate a probability value with a point on that continuum.
Instead, we associate probability values with intervals on the continuum.
The probability density function of a continuous random variable X is a
mathematical function for which the area under the curve corresponding to
any interval is equal to the probability that X will take on a value in that
interval. The probability density function is denoted by f(x), which gives
the probability density at x. An example is given in the top panel of Figure
3.2 with the shaded area being the probability that X will take a value
between 6 and 7. Note that f(x) is always positive.

of hours or days. They are normally measure discretely in days, however, with patients
being in hospital ‘for the day’ if not released during a given period in the morning.
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Figure 3.1: Probability mass function (top) and cumulative
probability function (bottom) for the discrete random vari-
able ‘number of days of hospitalization’.
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Figure 3.2: Probability density and cumulative probability functions
for a continuouts random variable. The shaded area in the top panel
equals the distance between the two vertical lines in the bottom
panel.

The cumulative probability function of a continuous random variable X
is denoted by F (x) and is defined

F (x) = P (X ≤ x) (3.1)

where −∞ ≤ x ≤ +∞. The cumulative probability function F (x) gives the
probability that the outcome of X in a random trial will be less than or
equal to any specified value x. Thus, F (x) corresponds to the area under
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the probability density function to the left of x. This is shown in the bottom
panel of Figure 3.2. In that panel, the distance between the two horizontal
lines associated with the cumulative probabilities at X ≤ 6 and X ≤ 7 is
equal to the shaded area in the top panel, and the distance of the lower of
those two horizontal lines from the horizontal axis is equal to the area under
the curve in the top panel to the left of X = 6. In mathematical terms we
can express the probability function as

P (a ≤ x ≤ b) =

∫ b

a
f(x) dx (3.2)

and the cumulative probability function as

P (X ≤ x) = F (x) =

∫ x

−∞
f(u) du (3.3)

where u represents the variable of integration.

3.3 Expected Value and Variance

The mean value of a random variable in many trials is also known as its ex-
pected value. The expected value of a discrete random variable X is denoted
by E{X} and defined

E{X} =
k∑

i=1

xiP (xi) (3.4)

where P (xi) = P (X = xi). Since the process of obtaining the expected value
involves the calculation denoted by E{} above, E{ } is called the expectation
operator.

Suppose that the probability distribution in the hospital stay example
in Figure 3.1 above is

x: 1 2 3 4 5 6

P (x): .2 .3 .2 .1 .1 .1

The expected value of X is

E{X} = (1)(.2) + (2)(.3) + (3)(.2) + (4)(.1) + (5)(.1) + (6)(.1)

= .2 + .6 + .6 + .4 + .5 + .6 = 2.9.

Note that this result is the same as would result from taking the mean in
the fashion outlined in Chapter 1. Let the probabilities be frequencies where
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the total hospital visits is, say, 100. Then the total number of person-days
spent in the hospital is

(1)(20) + (2)(30) + (3)(20) + (4)(10) + (5)(10) + (6)(10)

= 20 + 60 + 60 + 40 + 50 + 60 = 290

and the common mean is 290/100 = 2.9. E{X} is simply a weighted average
of the possible outcomes with the probability values as weights. For this
reason it is called the mean of the probability distribution of X. Note that
the mean or expected value is a number that does not correspond to any
particular outcome.

The variance of a discrete random variable X is denoted by σ2{X} and
defined as

σ2{X} =
k∑

i=1

(xi − E{X})2P (xi) (3.5)

where σ2{ } is called the variance operator. The calculation of the variance
of the length of hospital stay can be organized in the table below:

x: 1 2 3 4 5 6

P (x): .20 .30 .20 .10 .10 .10
x− E{X}: -1.90 -.90 .10 1.10 2.10 3.10

(x− E{X})2: 3.61 .81 .01 1.21 4.41 9.61

from which

σ2{X} = (3.61)(.2) + (.81)(.3) + (.01)(.2) + (1.21)(.1) + (4.41)(.1)

+(9.61)(.1)

= .722 + .243 + .002 + .121 + .441 + .961 = 2.49.

The variance is a weighted average of the squared deviations of the out-
comes of X from their expected value where the weights are the respective
probabilities of occurrence. Thus σ2{X} measures the extent to which the
outcomes of X depart from their expected value in the same way that the
variance of the quantitative variables in the data sets examined in Chap-
ter 1 measured the variability of the values about their mean. There is an
important distinction, however, between what we are doing here and what
we did in Chapter 1. In Chapter 1 we took an observed variable X and
measured its observed variance. Here we are taking a random variable X
and exploring the nature of its probability distribution.



3.3. EXPECTED VALUE AND VARIANCE 69

Consider a random variable V for which vi = (xi − E{X})2 in (3.5).
Since each vi has a corresponding xi associated with it,

P (vi) = P ((xi − E{X})2) = P (xi),

and (3.5) yields

σ2{X} =
k∑

i=1

viP (vi)

= E{V } = E{(xi − E{X})2}. (3.6)

The variance is simply the expectation of, or expected value of, the squared
deviations of the values from their mean. The standard deviation, denoted
by σ, is defined as the square root of the variance.

The discrete random variable X can be standardised or put in standard-
ised form by applying the relationship

Zi =
Xi − E{X}

σ{X}
(3.7)

where the discrete random variable Z is the standardised form of the vari-
able X. The variable Z is simply the variable X expressed in numbers of
standard deviations from its mean. In the hospital stay example above the
standardised values of the numbers of days of hospitalization are calculated
as follows:

x: 1 2 3 4 5 6

P (x): .2 .3 .2 .1 .1 .1
x− E{X}: -1.9 -.9 .1 1.1 2.1 3.1

(x− E{X})2: 3.61 .81 .01 1.21 4.41 9.61
(x− E{X})/σ{X}: -1.20 -.56 .06 .70 1.32 1.96

where σ =
√
2.49 = 1.58.

The expected value of a continuous random variable is defined as

E{X} =

∫ ∞

−∞
xf(x) dx. (3.8)

This is not as different from the definition of the expected value of a discrete
random variable in (3.4) as it might appear. The integral performs the same
role for a continuous variable as the summation does for a discrete one.
Equation (3.8) sums from minus infinity to plus infinity the variable x with
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each little increment of x, given by dx, weighted by the probability f(x) that
the outcome of x will fall within that increment.2 Similarly, the variance of
a continuous random variable is defined as

σ2{X} = E{(x− E{X})2}

=

∫ ∞

−∞
(x− E{X})2f(x) dx. (3.9)

In this equation the integral is taken over the probability weighted incre-
ments to (x − E{X}2) as compared to (3.8) where the integration is over
the probability weighted increments to x.

Continuous random variables can be standardised in the same fashion as
discrete random variables. The standardised form of the continuous random
variable X is thus

Z =
X − E{X}

σ{X}
. (3.10)

3.4 Covariance and Correlation

We noted in Chapter 1 that covariance and correlation are measures of the
association between two variables. The variables in that case were sim-
ply quantitative data. Here we turn to an analysis of the covariance and
correlation of two random variables as properties of their joint probabil-
ity distribution. The covariation of the outcomes xi and yj of the discrete
random variables X and Y is defined as

(xi − E{X})(yj − E{Y }).

The covariance of two random variables is the expected value of their co-
variation (i.e., their mean covariation after repeated trials). For two discrete
random variables X and Y we thus have

σ{X,Y } = E{(xi − E{X})(yj − E{Y })}
=

∑
i

∑
j

(xi − E{X})(yj − E{Y })P (xi, yj) (3.11)

where P (xi, yj) denotes P (X = xi ∩ Y = yj). We call σ{ , } the covariance
operator. Consider the following example:

2Notice that the definition of probability requires that∫ ∞

−∞
f(x) dx = 1.
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Y
X 5 10

2 .1 .4 .5
3 .3 .2 .5

.4 .6 1.0

The two discrete random variables X and Y each take two values, 2 and 3
and 5 and 10 respectively. The four numbers in the enclosed square give the
joint probability distribution of X and Y —that is, the probabilities

P (X = xi ∩ Y = yj).

The numbers along the right and bottom margins are the marginal probabil-
ities, which sum in each case to unity. On the basis of the earlier discussion
it follows that

E{X} = (2)(.5) + (3)(.5) = 2.5

E{Y } = (5)(.4) + (10)(.6) = 8.0

σ2{X} = (−.52)(.5) + (.52)(.5) = .25

and

σ2{Y } = (−32)(.4) + (22)(.6) = 6.0

which renders σ{X} =
√
0.25 = .5 and σ{Y } =

√
8 = 2.83. The calculation

of the covariance can be organized using the following table:

(X = 2 (X = 2 (X = 3 (X = 3
∩ ∩ ∩ ∩

Y = 5) Y = 10) Y = 5) Y = 10)

P (xi, yj) .1 .4 .3 .2
(xi − E{X}) - .5 -.5 .5 .5
(yj −E{Y }) - 3 2 - 3 2

(xi − E{X})(yj −E{Y }) 1.5 -1 -1.5 1
(xi − E{X})(yj −E{Y })P (xi, yj) .15 -.4 -.45 .2

The sum of the numbers in the bottom row gives

σ{X,Y } =
∑
i

∑
j

(xi − E{X})(yj − E{Y })P (xi, yj) = −.5.
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The coefficient of correlation of two random variables X and Y , denoted
by ρ{X,Y } is defined as

ρ{X,Y } =
σ{X,Y }

σ{X}σ{Y }
. (3.12)

In the example above

ρ{X,Y } = −.5/((.5)(2.83)) = −.5/1.415 = −.35

which signifies a negative relationship between the two random variables.
It is easy to show that the coefficient of correlation between X and Y is
equivalent to the covariance between the standardised forms of those vari-
ables because the covariance of the standardised forms is the same as the
covariance of the unstandardised variables and the standard deviations of
the standardised forms are both unity. Thus, when the variables are stan-
dardised both the covariance and the correlation coefficient are unit free.

The covariance of continuous random variables X and Y is written

σ{X,Y } = E{(x− E{X})(y − E{Y })}

=

∫ ∫
(x− E{X})(y − E{Y })f(x, y) dx dy (3.13)

where f(x, y) is the joint probability density function of X and Y . The
shape of a typical joint probability density function is portrayed graphically
in Figure 3.3 (both variables are in standardised form). The coefficient
of correlation between continuous random variables is defined by equation
(3.12) with the numerator being (3.13) and the denominator the product of
the standard deviations of X and Y obtained by taking the square roots of
successive applications of (3.9).

When two variables are statistically independent both the covariance
and correlation between them is zero. The opposite, however, does not
follow. Zero covariance and correlation do not necessarily imply statistical
independence because there may be a non-linear statistical relationship be-
tween two variables. An example is shown in Figure 3.4. The covariance
and correlation between the two variables is zero, but they are obviously
systematically related.
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Figure 3.3: The joint probability density function of two con-
tinuous standardized random variables.

3.5 Linear Functions of Random Variables

Consider a linear function of the random variable X,

W = a+ bX. (3.14)

A number of relationships hold. First,

E{W} = E{a+ bX} = E{a}+ bE{X}, (3.15)

which implies that

E{a} = a (3.16)

and

E{bX} = bE{X}. (3.17)

We can pass the expectation operator through a linear equation with the
result that E{W} is the same function of E{X} as W is of X. Second,

σ2{W} = σ2{a+ bX} = b2 σ2{X} (3.18)

which implies

σ2{a+X} = σ2{X}, (3.19)

and

σ2{bX} = b2 σ2{X}. (3.20)

This leads to the further result that

σ{a+ bX} = |b|σ{X}. (3.21)
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Figure 3.4: An example of two uncorrelated random variables
that are not statistically independent.

3.6 Sums and Differences of Random Variables

If Z is the sum of two random variables X and Y , then the following two
conditions hold:

E{Z} = E{X + Y } = E{X}+ E{Y } (3.22)

and

σ2{Z} = σ2{X}+ σ2{Y }+ 2σ{X,Y }. (3.23)

When Z is the difference between X and Y , these become

E{Z} = E{X − Y } = E{X} − E{Y } (3.24)

and

σ2{Z} = σ2{X}+ σ2{Y } − 2σ{X,Y }. (3.25)

To prove (3.23) and (3.25) we expand σ2{Z} using the definition of
variance and the rules above:
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σ2{Z} = E{(Z − E{Z})2}
= E{(X + Y − E{X + Y })2}
= E{((X − E{X}) + (Y −E{Y }))2}
= E{((X − E{X})2 + 2 (X − E{X})(Y − E{Y })

+(Y − E{Y })2)}
= E{(X − E{X})2}+ 2E{(X −E{X})(Y −E{Y })}

+E{(Y − E{Y })2}
= σ2{X}+ 2σ{X,Y }+ σ2{Y }. (3.26)

In the case where Z = X−Y the sign of the covariance term changes but the
variance of both terms remains positive because squaring a negative number
yields a positive number.

When X and Y are statistically independent (and thus uncorrelated),
σ{X,Y } = 0 and (3.23) and (3.25) both become

σ2{Z} = σ2{X}+ σ2{Y }.

More generally, if T is the sum of S independent random variables,

T = X1 +X2 +X3 + · · ·+XS ,

where the Xi can take positive or negative values, then

E{T} =
S∑
s

E{Xi} (3.27)

and

σ2{T} =
S∑
s

σ2{Xi}. (3.28)

In concluding this section we can use the rules above to prove that the
mean of a standardised variable is zero and its variance and standard devi-
ation are unity. Let Z be the standardised value of X, that is

Z =
X − E{X}

σ{X}
.
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Then

E{Z} = E

{
X − E{X}

σ{X}

}
=

1

σ{X}
E {X − E{X}}

=
1

σ{X}
(E{X} − E{X}) = 0

and

σ2{Z} = E

{(
X − E{X}

σ{X}
− 0

)2
}

= E

{(
X − E{X}

σ{X}

)2
}

=
1

σ2{X}
E
{
(X − E{X})2

}
=

σ2{X}
σ2{X}

= 1.

It immediately follows that σ{Z} also is unity.
Finally, the correlation coefficient between two standardised random

variables U and V will equal

ρ{U, V } =
σ{U, V }

σ{U}σ{V }
= σ{U, V }

since σ{U} and σ{V } are both unity.

3.7 Binomial Probability Distributions

We can think of many examples of random trials or experiments in which
there are two basic outcomes of a qualitative nature—the coin comes up
either heads or tails, the part coming off the assembly line is either defective
or not defective, it either rains today or it doesn’t, and so forth. These
experiments are called Bernoulli random trials. To quantify these outcomes
we arbitrarily assign one outcome the value 0 and the other the value 1.
This random variable, Xi = {0, 1} is called a Bernoulli random variable.

Usually we are interested in a whole sequence of random trials. In the
process of checking the effectiveness of a process of manufacturing com-
puter monitors, for example, we can let Xi = 1 if the ith monitor off the
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line is defective and Xi = 0 if the ith monitor is not defective. The Xi,
(i = 1, 2, 3, . . . , n) can then be viewed as a sequence of Bernoulli random vari-
ables. Such a sequence is called a Bernoulli process. Let X1, X2, X3, . . . , Xn

be a sequence of random variables associated with a Bernoulli process. The
process is said to be independent if the Xi are statistically independent and
stationary if every Xi = {0 , 1} has the same probability distribution. The
first of these conditions means that whether or not, say, the 5th monitor off
the assembly line is defective will have nothing to do with whether the 6th,
7th, 100th, 200th, or any other monitor is defective. The second condition
means that the probability of, say, the 10th monitor off the line being de-
fective is exactly the same as the probability that any other monitor will be
defective—the Xi are identically distributed. The random variables in the
sequence are thus independently and identically distributed.

In a sequence of Bernoulli random trials we are typically interested in the
number of trials that have the outcome 1. The sum X1+X2+X3+. . .+X300

would give the number of defective monitors in a sample of 300 off the line.
The sum of n independent and identically distributed Bernoulli random
variables, denoted by X,

X = X1 +X2 +X3 + . . .+Xn,

is called a binomial random variable. It can take n+1 values ranging from
zero (when Xi = 0 for all i) to n (when Xi = 1 for all i). This random
variable is distributed according to the binomial probability distribution.

The binomial probability function, which gives the probabilities that X
will take values (0, . . . , n), is

P (x) =

(
n
x

)
px(1− p)n−x (3.29)

where P (x) = P (X = x), x = 0, 1, 2, . . . , n, and 0 ≤ p ≤1. The parameter p
is the probability that Xi = 1. It is the same for all i because the Bernoulli
random variables Xi are identically distributed. The term(

n
x

)

represents a binomial coefficient which is defined as(
n
x

)
=

n!

x!(n− x)!



78 PROBABILITY DISTRIBUTIONS

Figure 3.5: Binomial probability distributions with n = 10
and p = .2 (top), p = .5 (middle) and p = .8 (bottom.
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where a! = (a)(a− 1)(a− 2)(a− 3) . . . (1) and 0! = 1.
The binomial probability distribution is a discrete probability distribu-

tion since X can only take the discrete values 0, 1, . . . , n. The parameters
in the binomial probability distribution are p and n. Accordingly, there
is a whole family of such distributions, one for each (p, n) combination.
Figure 3.5 plots three examples—the distribution is skewed right if p < .5,
skewed left if p > .5 and symmetrical if p = .5. The mean of the binomial
distribution is

E{X} = np (3.30)

and the variance is

σ2{X} = np (1− p). (3.31)

If we have two independent binomial random variables V and W with com-
mon probability parameter p and based on nv and nw trials, the sum V +W
is a binomial random variable with parameters p and n = nv + nw.

To more fully understand the workings of the binomial distribution con-
sider the following problem. Four gauges are tested for accuracy. This
involves four Bernoulli random trials Xi = {0, 1} where 0 signifies that the
gauge is accurate and 1 signifies that it is inaccurate. Whether or not any
one of the four gauges is inaccurate has nothing to do with the accuracy of
the remaining three so the Xi are statistically independent. The probability
that each gauge is inaccurate is assumed to be .25. We thus have a binomial
random variable X with n = 4 and p = .25. The sample space of X is

S = {0, 1, 2, 3, 4}.

Taking into account the fact that n! = (4)(3)(2)(1) = 24, the probability
distribution can be calculated by applying equation (3.29) as follows:

x n!/(x!(n− x)!) px (1− p)n−x P (x)

0 24/(0!4!) = 1 .250 = 1.0000 .754 = .3164 .3164

1 24/(1!3!) = 4 .251 = .2500 .753 = .4219 .4219

2 24/(2!2!) = 6 .252 = .0625 .752 = .5625 .2109

3 24/(3!3!) = 4 .253 = .0156 .751 = .7500 .0469

4 24/(4!1!) = 1 .254 = .0039 .750 = 1.0000 .0039
1.0000



80 PROBABILITY DISTRIBUTIONS

This probability distribution can be derived in a longer but more informative
way by looking at the elementary events in the sample space and building up
the probabilities from them. The four gauges are tested one after the other.
There are 16 basic outcomes or sequences with probabilities attached to each
sequence. The sequences are shown in Table 3.1. To see how the probabilities
are attached to each sequence, consider sequence S12. It consists of four
outcomes of four independent and identically distributed Bernoulli random
trials—0,1,0,0. The probability that 0 will occur on any trial is .75 and the
probability that 1 will occur is .25. The probability of the four outcomes in
the sequence observed is the product of the four probabilities. That is, the
probability that first a 0 and then a 1 will occur is the probability of getting
a 0 on the first trial times the probability of getting a 1 on the next trial.
To obtain the probability that a sequence of 0,1,0 will occur we multiply the
previously obtained figure by the probability of getting a zero. Then to get
the probability of the sequence 0,1,0,0 we again multiply the previous figure
by the probability of getting a zero. Thus the probability of the sequence
S12 is

(.75)(.25)(.75)(.75) = (.25)1(.75)3 = .4219

which, it turns out, is the same as the probability of obtaining sequences S8,
S14 and S15. Clearly, all sequences involving three zeros and a single one
have the same probability regardless of the order in which the zeros and the
one occur.

A frequency distribution of these sequences is presented in Table 3.2.
There is one occurrence of no ones and four zeros, four occurrences of one
and three zeros, six occurrences of two ones and two zeros, four occurrences
of three ones and one zero, and one occurrence of four ones and no zeros.
Thus, to find the probability that two ones and two zeros will occur we
want the probability that any of the six sequences having that collection of
ones and zeros will occur. That will be the probability of the union of the
six elementary events, which will be the sum of the probabilities of the six
sequences. Since all six sequences have the same probability of occurring the
probability of two ones and two zeros is six times the probability associated
with a single sequence containing two ones and two zeros.

Notice something else. Expand the expression (x+ y)4.

(x+ y)4 = (x+ y)(x+ y)(x+ y)(x+ y)

= (x+ y)(x+ y)(x2 + 2x y + y2)

= (x+ y)(x3 + 3x2 y + 3x y2 + y3)

= x4 + 4x3 y + 6x2 y2 + 4x y3 + y4.
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Table 3.1: Sequence of Outcomes in an Accuracy Test of Four Guages

X1 X2 X3 X4 Sequence X =
∑

xi Probability

1 S1 4 (.25)4(.75)0

1
0 S2 3 (.25)3(.75)1

1
1 S3 3 (.25)3(.75)1

0
0 S4 2 (.25)2(.75)2

1

1 S5 3 (.25)3(.75)1

1
0 S6 2 (.25)2(.75)2

0
1 S7 2 (.25)2(.75)2

0
0 S8 1 (.25)1(.75)3

1 S9 3 (.25)3(.75)1

1
0 S10 2 (.25)2(.75)2

1
1 S11 2 (.25)2(.75)2

0
0 S12 1 (.25)1(.75)3

0

1 S13 2 (.25)2(.75)2

1
0 S14 1 (.25)1(.75)3

0
1 S15 1 (.25)1(.75)3

0
0 S16 0 (.25)0(.75)4
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Table 3.2: Frequency Distribution of Sequences in Table 3.1

x Frequency Probability of Sequence P (x)

0 1 (.25)0(.75)4 ×1 = .3164

1 4 (.25)1(.75)3 ×4 = .4219

2 6 (.25)2(.75)2 ×6 = .2109

3 4 (.25)3(.75)1 ×4 = .0469

4 1 (.25)4(.75)0 ×1 = .0039

It turns out that the coefficients of the four terms are exactly the frequencies
of the occurrences in the frequency distribution above and the x y terms
become the sequence probabilities in the table when x is replaced by the
probability of a one and y is replaced the probability of a zero and n = 4.
The above expansion of (x + y)4 is called the binomial expansion, whence
the term binomial distribution. The easiest way to calculate the binomial
coefficients for the simplest cases (where n is small) is through the use of
Pascal’s Triangle.

Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

etc.. . . . . .

Additional rows can be added to the base by noting that each number that
is not unity is the sum of the two numbers above it. The relevant binomial
coefficients appear in the row with n+ 1 entries.
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Fortunately, all these complicated calculations need not be made every
time we want to find a binomial probability. Probability tables have been
calculated for all necessary values of n and p and appear at the end of every
statistics textbook.3

3.8 Poisson Probability Distributions

The Poisson probability distribution applies to many random phenomena
occurring during a period of time—for example, the number of inaccurate
gauges coming off an assembly line in a day or week. It also applies to spatial
phenomena such as, for example, the number of typographical errors on a
page.

A Poisson random variable is a discrete variable that can take on any
integer value from zero to infinity. The value gives the number of occur-
rences of the circumstance of interest during a particular period of time or
within a particular spatial area. A unit probability mass is assigned to this
sample space. Our concern is then with the probability that there will be,
for example, zero, one, two, three, etc., calls to the police during a particular
time period on a typical day, or that in typing this manuscript I will make
zero, one, two, etc. errors on a particular page.

The Poisson probability function is

P (x) =
λx e−λ

x!
(3.32)

where

P (x) = P (X = x)

with

x = 0, 1, 2, 3, 4, . . . ,∞

and 0 < λ < ∞. The parameter e = 2.71828 is a constant equal to the base
of natural logarithms.4 Note that, whereas the binomial distribution had
two parameters, n and p, the Poisson distribution has only one parameter,
λ, which is the average number of calls over the period.

3These probabilities can also be calculated, and the various distributions plotted, using
XlispStat and other statistical software.

4The number e is equal to

e = lim
n→∞

(
1 +

1

n

)n

.
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Consider an example. Suppose that the number of calls to the 911 emer-
gency number between 8:00 and 8:30 PM on Fridays is a Poisson random
variable X with λ = 3.5. We can calculate a portion of the probability
distribution as follows:

x P (X = x) P (X ≤ x)

0 [3.50e−3.5]/0! = [(1)(.03019738)]/1 = .0302 .0302

1 [3.51e−3.5]/1! = [(3.5)(.03019738)]/1 = .1057 .1359

2 [3.52e−3.5]/2! = [(12/250)(.03019738)]/2 = .1850 .3208

3 [3.53e−3.5]/3! = [(42.875)(.03019738)]/6 = .2158 .5366

4 [3.54e−3.5]/4! = [(150.0625)(.03019738)]/24 = .1888 .7254

5 [3.55e−3.5]/5! = [(525.2188)(.03019738)]/120 = .1322 .8576

6 [3.56e−3.5]/6! = [(1838.266)(.03019738)]/720 = .0771 .9347

7 [3.57e−3.5]/7! = [(6433.903)(.03019738)]/5040 = .0385 .9732

The figures in the right-most column are the cumulative probabilities. The
probably of receiving 3 calls is slightly over .2 and the probability of receiving
3 or less calls is just under .54. Note that over 97 percent of the probability
mass is already accounted for by x ≤ 7 even though x ranges to infinity.

As in the case of the binomial distribution, it is unnecessary to calculate
these probabilities by hand—Poisson tables can be found at the back of any
textbook in statistics.5 The mean and variance of a Poisson probability
distribution are

E{X} = λ

and
σ2{X} = λ.

Plots of Poisson distributions are shown in Figure 3.6. The top panel shows
a Poisson distribution with λ = .5, the middle panel shows one with λ = 3

5And, as in the case of other distributions, probabilities can be calculated using statis-
tical software such as XlispStat.
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Figure 3.6: Poisson probability distributions with λ = .5
(top), λ = 3 (middle) and λ = 5 (bottom).
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and the distribution plotted in the bottom panel has λ = 5. All Poisson
probability distributions are skewed to the right although they become more
symmetrical as λ gets larger.

Just as binomial distributions result from a Bernoulli process, Poisson
distributions are the result of a Poisson process. A Poisson process is any
process that generates occurrences randomly over a time or space continuum
according to the following rules:

• The numbers of occurrences in non-overlapping time (space) intervals
are statistically independent.

• The number of occurrences in a time (space) interval has the same
probability distribution for all time (space) intervals.

• The probability of two or more occurrences in any interval (t + ∆t)
is negligibly small relative to the probability of one occurrence in the
interval.

When these postulates hold, the number of occurrences in a unit time (space)
interval follows a Poisson probability distribution with parameter λ.

If V and W are two independent Poisson random variables with param-
eters λv and λw, respectively, the sum V +W is a Poisson random variable
with λ = λv + λw.

3.9 Uniform Probability Distributions

Uniform probability distributions result when the probability of all occur-
rences in the sample space are the same. These probability distributions
may be either discrete or continuous.

Consider a computer random number generator that cranks out random
numbers between 0 and 9. By construction of the computer program, the
probability that any one of the 10 numbers will be turned up is 1/10 or 0.1.
The probability distribution for this process is therefore

x: 0 1 2 3 4 5 6 7 8 9

P (x): .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

This random variable is called a discrete uniform random variable and its
probability distribution is a discrete uniform probability distribution. The
discrete probability function is

P (x) =
1

s
(3.33)
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where
P (x) = P (X = x),

x = a, a+ 1, a+ 2, . . . , a+ (s− 1).

The parameters a and s are integers with s > 0. Parameter a denotes the
smallest outcome and parameter s denotes the number of distinct outcomes.
In the above example, a = 0 and s = 10.

The mean and variance of a discrete uniform probability distribution are

E{X} = a+
s− 1

2

and

σ2 =
s2 − 1

12
.

In the example above, E{X} = 0 + 9/2 = 4.5 and σ2 = 99/12 = 8.25.
A graph of a discrete probability distribution is shown in the top panel of
Figure 3.7.

The continuous uniform or rectangular probability distribution is the
continuous analog to the discrete uniform probability distribution. A con-
tinuous uniform random variable has uniform probability density over an
interval. The continuous uniform probability density function is

f(x) =
1

b− a
(3.34)

where the interval is a ≤ x ≤ b. Its mean and variance are

E{X} =
b+ a

2

and

σ2{X} =
(b− a)2

12

and the cumulative probability function is

F (x) = P (X ≤ x) =
x− a

b− a
. (3.35)

Suppose, for example, that a team preparing a bid on an excavation
project assesses that the lowest competitive bid is a continuous uniform
random variable X with a =$250.000 and b =$300.000. With X measured
in units of one thousand, the density function will be

f(x) = 1/50 = .02
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Figure 3.7: Discrete uniform probability distribution (top) and con-
tinuous uniform probability distribution (bottom).

where 250 ≤ x ≤ 300. The graph of this distribution is shown in the
bottom panel of Figure 3.7. The mean is 275 thousand and the variance is
502/12 = 2500/12 = 208.33. The cumulative probability is the area to the
left of x in the bottom panel of Figure 3.7. It is easy to eyeball the mean
and the various percentiles of the distribution from the graph. The mean
(and median) is the value of x that divides the rectangle in half, the lower
quartile is the left-most quarter of the rectangle, and so forth. Keep in mind
that, X being a continuous random variable, the probability that X = x is
zero.
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3.10 Normal Probability Distributions

The family of normal probability distributions is the most important of all
for our purposes. It is an excellent model for a wide variety of phenomena—
for example, the heights of 10 year olds, the temperature in New York City
at 12:01 on January 1, the IQs of individuals in standard IQ tests, etc. The
normal random variable is a continuous one that may take any value from
−∞ to +∞. Even though the normal random variable is not bounded, its
probability distribution yields an excellent approximation to many phenom-
ena.

The normal probability density function is

f(x) =
1

σ
√
2π

e−(1/2)[(x−µ)/σ]2 (3.36)

where −∞ ≤ x ≤ +∞, −∞ ≤ µ ≤ +∞, σ > 0, π = 3.14159 and
e = 2.71828.

The mean and variance of a normal probability distribution are

E{X} = µ

and

σ2{X} = σ2.

The distribution’s two parameters, µ and σ, are its mean and standard
deviation. Each parameter pair (µ, σ) corresponds to a different member of
the family of normal probability distributions. Every normal distribution is
bell shaped and symmetrical, each is centred at the value of µ and spread
out according to the value of σ. Normal distributions are often referred to
using the compact notation N(µ, σ2). Three different members of the family
of normal distributions are shown in Figure 3.8. In the top panel µ = 56
and σ = 2.7 [N(56, 7.29)] and in the middle panel µ = 66.5 and σ = 2.7
[N(66.5, 7.29)]. In the bottom panel µ = 66.5 and σ = 4.1 [N(66.5, 16.81)].

The standardised normal distribution is the most important member of
the family of normal probability distributions—the one with µ = 0 and
σ = 1. The normal random variable distributed according to the standard
normal distribution is called the standard normal variable and is denoted
by Z. It is expressed as

Z =
X − µ

σ
(3.37)
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µ = 56 , σ = 2.7

µ = 66.5 , σ = 2.7

µ = 66.5 , σ = 4.1

Figure 3.8: Three different members of the family of normal
probability distributions.
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A basic feature of normal distributions is that any linear function of a normal
random variable is also a normal random variable. Thus

Z = − µ

σ
+

1

σ
X (3.38)

and

X = µ+ σ Z (3.39)

Figure 3.9 plots a normally distributed random variable in both its regular
and standard form. It can be shown using (3.38) and (3.39) that X = 67.715
(i.e, 67.715 on the X scale) is equivalent to Z = .45 (i.e., .45 on the Z scale).
This means that 67.715 is .45 standard deviations away from µ, which is 66.5.
The probability that X ≥ 67.715 is found by finding the corresponding value
on the Z scale using (3.38) and looking up the relevant area to the left of
that value in the table of standard normal values that can be found in the
back of any textbook in statistics. To find the value of X corresponding to
any cumulative probability value, we find the corresponding value of Z in
the table of standard normal values and then convert that value of Z into
X using (3.39). All calculations involving normal distributions, regardless
of the values of µ and σ can thus be made using a single table of standard
normal values.

If V and W are two independent normal random variables with means
µv and µw and variances σ2

v and σ2
w respectively, the sum V +W is a normal

random variable with mean µ = µv + µw and variance σ2 = σ2
v + σ2

w. This
extends, of course, to the sum of more than two random variables.

It is often useful to use the normal distribution as an approximation to
the binomial distribution when the binomial sample space is large. This
is appropriate when both np and n(1 − p) are greater than 5. To make a
normal approximation we calculate the standard variate

Z =
X − µ

σ
=

X − np√
n p (1− p)

. (3.40)

We can then look up a value of Z so obtained in the normal distribution
table. Alternatively, if we are given a probability of X being, say, less than
a particular value we can find the value of Z from the table consistent with
that probability and then use (3.39) to find the corresponding value of X.

For example, suppose we were to flip a coin 1000 times and want to know
the probability of getting more than 525 heads. That is, we want to find the
probability that X ≥ 525. It turns out that

n p = n (1− p) = 500 > 5
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Figure 3.9: A normal distribution (top) and its standardized form
(bottom). As marked by the vertical lines, 67.715 on the X scale in
the top panel corresponds to .45 on the Z scale in the bottom panel.

so a normal approximation is appropriate. From (3.40) we have

Z = (525− 500)/
√
(1000)(.5)(.5) = 25/

√
250 = 1.58.

It can be seen from the probability tables for the normal distribution that

P (Z ≤ 1.58) = .9429

which implies that

P (X ≥ 525) = P (Z ≥ 1.58) = 1− .9429 = .0571.
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There is almost a 6% chance of getting more than 525 heads.

Figure 3.10: A normal approximation to a binomial distribution
requiring correction for continuity.

Consider a second example of using a normal distribution to approximate
a binomial one. Suppose the probability that a machine is in an unproduc-
tive state is p = .2. Let X denote the number of times the machine is in an
unproductive state when it is observed at 50 random moments in time. It is
permissible to use a normal approximation here because (.2)(50) = 10 and
(1−.2)(50) = 40 and both these numbers exceed 5. The mean of distribution
of X is n p = 10 and the standard deviation is

σ{X} =
√
n p (1− p) =

√
(50)(.2)(.8) = 2.83.

Now suppose we want to obtain the probability that X = 15. Since n =
50, X can be located at only 51 of the infinitely many points along the
continuous line from 0 to 50. The probability that X = 15 on the continuum
is zero. Since the underlying distribution is discrete, the probability that
X = 15 is the area of the vertical strip under the probability density function
between X = 14.5 and X = 15.5. This can be seen in Figure 3.10. So the
probability that X = 15 becomes

P (X ≤ 15.5)− P (X ≤ 14.5) = P (Z ≤ (15.5− 10)/2.83)

− P (Z ≤ (14.5− 10)/2.83)

= P (Z ≤ 1.94)− P (Z ≤ 1.59)

= .9738− .9441 = .0297.
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Similarly, if we want to calculate the probability that X > 15 we must
calculate

P (X ≥ 15.5) = (P (Z ≥ 1.59) = 1− P (Z ≤ 1.59) = 1− .9739 = .0262.

We base the calculation on X ≥ 15.5 rather than X ≥ 15 to correct for the
fact that we are using a continuous distribution to approximate a discrete
one. This is called a correction for continuity. It can be seen from Figure
3.10 that if we were to base our calculation on X ≥ 15 the number obtained
would be too large.

3.11 Exponential Probability Distributions

The Poisson probability distribution applies to the number of occurrences
in a time interval. The exponential probability distribution applies to the
amount of time between occurrences. For this reason it is often called
the waiting-time distribution. It is a continuous distribution because time is
measured along a continuum. An exponential random variable X is the time
between occurrences of a random event. The probability density function is

f(x) = λe−λx, (x > 0). (3.41)

It turns out that the probability that X ≥ x is

P (X ≥ x) = e−λx. (3.42)

The mean and variance of an exponential distribution are

E{X} =
1

λ

and

σ2{X} =
1

λ2
.

The shape of the exponential distribution is governed by the single parameter
λ. As indicated in the plots of some exponential distributions in Figure
3.11, the exponential probability density function declines as x increases
from zero, with the decline being sharper the greater the value of λ. The
probability density function intersects the y-axis at λ.

The area to the right of any value of x—that is, P (X ≥ x)—can be
looked up in the exponential distribution table at the back of any statistics
textbook.
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λ = 2

λ = 1

λ = 0.5

Figure 3.11: Three different members of the family of expo-
nential probability distributions.
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Consider an example. Suppose that the manufacturer of an electronic
component has good reason to believe that its length of life in years follows
an exponential probability distribution with λ = 16. He is considering
giving a guarantee on the component and wants to know what fraction of
the components he will have to replace if he makes the guarantee a five-year
one. The mean time until the component breaks will be 1/λ = 1/16 = 6.25
years. To find the fraction of components that will have to be replaced
within 5 years we need P (X ≤ 5)—that is, the area under the distribution
to the left of x = 5. That area is equal to (1−P (X ≥ 5)) which can be found
by using either equation (3.42) or the exponential distribution table. The
value obtained is .550671. This means that about 55% of the components
will have to be replaced within five years.

There is a close relationship between the exponential and Poisson distri-
butions. If occurrences are generated by a Poisson process with parameter
λ then the number of occurrences in equal non-overlapping units are inde-
pendent random variables having a Poisson distribution with parameter λ
and the durations between successive occurrences are independent random
variables having the exponential distribution with parameter λ.

3.12 Exercises

1. The random variableX has a normal probability distribution with µ = 12
and σ = 16. Estimate the following probabilities:

a) P (X ≤ 14.4)

b) P (7.2 ≤ X ≤ 12.8) (.35)

c) P ((X − µ) ≤ 5.6)

d) P (X ≥ 8.0)

2. The number of coating blemishes in 10-square-meter rolls of customized
wallpaper is a Poisson random variable X1 with λ1 = 0.3. The number of
printing blemishes in these 10-square-meter rolls of customized wallpaper is
a Poisson random variable X2 with λ2 = 0.1. Assume that X1 and X2 are
independent and let T = X1 +X2.

a) According to what distribution is the random variable T distributed?

b) What is the most probable total number of blemishes in a roll? (0)
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c) If rolls with a total of two or more blemishes are scrapped, what is the
probability that a roll will be scrapped? (.062)

d) What are the mean and standard deviation of the probability distri-
bution of T?

3. There are three surviving members of the Jones family: John, Sarah, and
Beatrice. All live in different locations. The probability that each of these
three family members will have a stay of some length in the hospital next
year is 0.2.

a) What is the probability that none of the three of them will have a
hospital stay next year? (.512)

b) What is the probability that all of them will have a hospital stay next
year?

c) What is the probability that two members of the family will spend
time in hospital next year? (.096)

d) What is the probability that either John or Sarah, but not both, will
spend time in the hospital next year?

Hint: Portray the sample space as a tree.

4. Based on years of accumulated evidence, the distribution of hits per
team per nine-innings in Major League Baseball has been found to be ap-
proximately normal with mean 8.72 and standard deviation 1.10. What
percentage of 9-inning Major League Baseball games will result in fewer
than 5 hits?

5. The Statistical Abstract of the United States, 1995 reports that that
24% of households are composed of one person. If 1,000 randomly selected
homes are to participate in a Nielson survey to determine television ratings,
find the approximate probability that no more than 240 of these homes are
one-person households.

6. Suppose the f-word is heard in the main hall in a Toronto high school
every 3 minutes on average. Find the probability that as many as 5 minutes
could elapse without us having to listen to that profanity. (.188)

7. A manufacturer produces electric toasters and can openers. Weekly sales
of these two items are random variables which are shown to have positive
covariance. Therefore, higher sales volumes of toasters:



98 PROBABILITY DISTRIBUTIONS

a) are less likely to occur than smaller sales volumes of toasters.

b) tend to be associated with higher sales volumes of can openers.

c) tend to be associated with smaller sales volumes of can openers.

d) are unrelated to sales of can openers.

8. Which of the following could be quantified as a Bernoulli random variable?

a) number of persons in a hospital ward with terminal diagnoses.

b) weights of deliveries at a supermarket.

c) square foot areas of houses being built in a suburban tract develop-
ment.

d) whether or not employees wear glasses.

e) none of the above.

9. Fifteen percent of the patients seen in a pediatric clinic have a respiratory
complaint. In a Bernoulli process of 10 patients, what is the probability that
at least three have a respiratory complaint?

a) .1298

b) .1798

c) .1960

d) .9453

e) none of the above.

10. Two random variables X and Y have the following properties: µx = 10,
σx = 4, µy = 8, σy = 5, σx,y = −12.

a) Find the expected value and variance of (3X − 4Y ).

b) Find the expected value of X2. (Hint: work from the definition of the
variance of X.)

c) Find the correlation between X and (X + Y ).
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d) Find the covariance between the standardised values of X and Y .

11. John Daly is among the best putters on the PGA golf tour. He sinks 10
percent of all puts that are of length 20 feet or more. In a typical round of
golf, John will face puts of 20 feet or longer 9 times. What is the probability
that John will sink 2 or more of these 9 puts? What is the probability that
he will sink 2 or more, given that he sinks one? Hint: If we know he is going
to sink at least one then the only remaining possibilities are that he will sink
only that one or two or more. What fraction of the remaining probability
weight (excluding the now impossible event that he sinks zero) falls on the
event ‘two or more’.

12. Let X and Y be two random variables. Derive formulae for E{X + Y },
E{X − Y }, σ2{X + Y }, and σ2{X − Y }. Under what conditions does
σ2{X + Y } = σ2{X − Y }?

13. According to the Internal Revenue Service (IRS), the chances of your
tax return being audited are about 6 in 1000 if your income is less than
$50,000, 10 in 1000 if your income is between $50,000 and $99,999, and 49
in 1000 if your income is $100,000 or more (Statistical Abstract of the United
States: 1995.

a) What is the probability that a taxpayer with income less than $50,000
will be audited by the IRS?With income between $50,000 and $99,999?
With income of $100,000 or more?

b) If we randomly pick five taxpayers with incomes under $50,000, what
is the probability that one of them will be audited? That more than
one will be audited? Hint: What are n and p here?

14. Let Xi = 1 with probability p and 0 with probability 1− p where Xi is
an independent sequence. For

X =
n∑

i=1

Xi

show that
E{X} = np

and
σ2{X} = np(1− p).
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15. The number of goals scored during a game by the Toronto Maple Leafs
is a normally distributed random variable X with µx = 3 and σx = 1.2.
The number of goals given up during a game when Curtis Joseph is the
goaltender for the Maple Leafs is a normally distributed random variable Y
with µy = 2.85 and σy = 0.9. Assume that X and Y are independent.

a) What is the probability that the Maple Leafs will win a game in which
Curtis Joseph is the goaltender? (The probability of a game ending in
a tie is zero here.)

b) What is the probability that the Maple Leafs will lose a game by 2 or
more goals when Curtis Joseph is the goaltender?

c) Let T denote the total number of goals scored by both the Maple Leafs
and their opponent during a game in which Curtis Joseph is the Leafs’
goaltender. What is the expected value and variance of T?

d) Given your answer to a) and assuming that the outcomes of consecutive
games are independent, what is the expected number of wins for the
Maple Leafs over 50 games in which Curtis Joseph is the goaltender?
Hint: What kind of process is occurring here?

16. The elapsed time (in minutes) between the arrival of west-bound trains
at the St. George subway station is an exponential random variable with a
value of λ = .2.

a) What are the expected value and variance of X?

b) What is the probability that 10 or more minutes will elapse between
consecutive west-bound trains?

c) What is the probability that 10 or more minutes will elapse between
trains, given that at least 8 minutes have already passed since the pre-
vious train arrived? Hint: What proportion of the probability weight
that remains, given that a waiting time of less than 8 minutes is no
longer possible, lies in the interval 8 minutes to 10 minutes?

17. The number of houses sold each month by a top real estate agent is a
Poisson random variable X with λ = 4.

a) What are the expected value and standard deviation of X?
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b) What is the probability that the agent will sell more than 6 houses in
a given month?

c) Given that the agent sells at least 2 houses in a month, what is the
probability that she will sell 5 or more?

18. In the National Hockey League (NHL), games that are tied at the end of
three periods are sent to “sudden death” overtime. In overtime, the team to
score the first goal wins. An analysis of NHL overtime games played between
1970 and 1993 showed that the length of time elapsed before the winning goal
is scored has an exponential distribution with mean 9.15 minutes (Chance,
Winter 1995).

a) For a randomly selected overtime NHL game, find the probability that
the winning goal is scored in three minutes or less.

b) In the NHL, each period (including overtime) lasts 20 minutes. If
neither team scores a goal in one period of overtime, the game is
considered a tie. What is the probability of an NHL game ending in a
tie?

19. A taxi service based at an airport can be characterized as a transporta-
tion system with one source terminal and a fleet of vehicles. Each vehicle
takes passengers from the terminal to different destinations and then returns
after some random trip time to the terminal and makes another trip. To
improve the vehicle-dispatching decisions involved in such a system, a study
was conducted and published in the European Journal of Operational Re-
search (Vol. 21, 1985). In modelling the system, the authors assumed travel
times of successive trips to be independent exponential random variables
with λ = .05.

a) What is the mean trip time for the taxi service?

b) What is the probability that a particular trip will take more than 30
minutes?

c) Two taxis have just been dispatched. What is the probability that
both will be gone more than 30 minutes? That at least one of the
taxis will return within 30 minutes?
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20. The probability that an airplane engine will fail is denoted by π. Failures
of engines on multi-engine planes are independent events. A two engine
plane will crash only if both of its engines fail. A four engine plane can
remain airborne with two or more engines in operation. If π = 0 or π = 1, a
traveller will clearly be indifferent between planes with two or four engines.
What are the values of π that make a two engine plane safer than a four
engine plane? Hint: Set the sample space up in tree form.



Chapter 4

Statistical Sampling: Point
and Interval Estimation

In the previous chapter we assumed that the probability distribution of a
random variable in question was known to us and from this knowledge we
were able to compute the mean and variance and the probabilities that the
random variable would take various values (in the case of discrete distribu-
tions) or fall within a particular range (in the case of uniform distributions).
In most practical applications of statistics we may have some reason to be-
lieve that a random variable is distributed according to a binomial, Poisson,
normal, etc., distribution but have little knowledge of the relevant parame-
ter values. For example, we might know what n is in the case of a binomial
distribution but know nothing about the magnitude of p. Or we may suspect
that a variable is normally distributed by have no idea of the values of the
parameters µ and σ. The practical procedure for finding information about
these parameters is to take a sample and try to infer their values from the
characteristics of the sample.

4.1 Populations and Samples

Let us first review what we learned about populations and samples in Chap-
ter 1. A population is the set of elements of interest. It may be finite or
infinite. Processes, mechanisms that produce data, are infinite populations.
In terms of the analysis of the previous chapter, populations are the complete
set of outcomes of a random variable. And a process is a mechanism by which
outcomes of a random variable are generated. The population of outcomes
of a particular random variable is distributed according to some probability
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distribution—possibly but not necessarily binomial, Poisson, normal, uni-
form, or exponential. The parameters of the population are the parameters
of its probability distribution. As such, they are numerical descriptive mea-
sures of the population. A census is a listing of the characteristics of interest
of every element in a population. A sample is a subset of the population
chosen according to some set of rules. Sample statistics are numerical de-
scriptive measures of the characteristics of the sample calculated from the
observations in the sample. We use these sample statistics to make infer-
ences about the unobserved population parameters. You should keep in
mind that a statistic refers to a sample quantity while a parameter refers to
a population quantity. The sample mean is an example of a sample statistic,
while the population mean is an example of a population parameter.

A sample is thus a part of the population under study selected so that
inferences can be drawn from it about the population. It is cheaper and
quicker to use samples to obtain information about a population than to
take a census. Furthermore, testing items sampled may destroy them so
that tests cannot be conducted on the whole population.

A probability sample is one where the selection of the elements from the
population that appear in the sample is made according to known proba-
bilities. A judgment sample is one where judgment is used to select “rep-
resentative” elements or to infer that a sample is “representative” of the
population. In probability samples, no discretion is allowed about which
population elements enter the sample.

The most common sampling procedure is to select a simple random sam-
ple. A simple random sample is one for which each possible sample combi-
nation in the population has an equal probability of being selected. Every
element of the population has the same probability of occupying each posi-
tion in the sample. The sampling is without replacement, so that no element
of the population can appear in the sample twice.

Note that simple random sampling requires more than each element of
the population having the same probability of being selected. Suppose that
we select a sample of 10 students to interview about their career plans. It
is not enough that every student in the population have an equal chance
of being among the 10 selected. Each student must have the same chance
of being the first selected, the second selected, the third selected, etc. For
example, we could divide the population into males and females (suppose
the population contains an equal number of each) and select 5 males and
5 females at random for the sample. Each student would have an equal
chance of being in the sample, but the sample combinations that contain an
unequal number of males and females would be ruled out. One might wish
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to rule these combinations out, but then the sample would not be a simple
random sample.

One way to ensure that each possible sample combination has an equal
chance of being in the sample is to select the sample elements one at a time
in such a way that each element of the population not already in the sample
has an equal chance of being chosen. In the case of a finite population,
select the first element by giving each of the N population elements an
equal chance of being picked. Then select the second sample element by
giving the remaining N − 1 elements of the population an equal chance of
being chosen. Repeat this process until all n sample elements have been
selected.

Suppose we have a population of 5000 students that we wish to sample.
We could assign each student in the population a number between 0 and
4999 and chose 100 numbers at random from the set of integers in this
interval, using the numbers so selected to pick the students to appear in
the sample. To choose the numbers randomly we could get a computer to
spit out 100 numbers between 0 and 4999 in such a way that each of the
5000 numbers had an equal chance of being selected first and each of the
5000 numbers not yet selected had an equal chance of being selected second,
third, etc. Alternatively, we could use a table of random numbers. Such a
table might list five-digit numbers in the following fashion:

13284 21244 99052 00199 40578 . . . . . . . . . etc.

The table is constructed so each digit between 0 and 9 has an equal chance
of appearing in each of the five positions for each number. We could select
our sample as follows from these numbers:

1328, 2122, skip, 0019, 4057, skip, . . . . . . etc.

Numbers for which the four digits on the left side yield a number larger than
4999 are simply skipped—they can be treated as not being in the table, so
that numbers between 0 and 4999 have an equal chance of being selected and
numbers over 4999 have a zero chance of being selected. Any number already
selected would also be discarded because we want the probability that an
element of the population will be selected more than once to be zero. If the
size of the population is, say, 500000, requiring that we select the elements
in the sample from 6 digit numbers, we merely take each succession of 6
digits in the table of random numbers as a separate number, so that the
above line in the table of random numbers would yield

132842 124499 052001 994057 . . . . . . . . . etc.
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The first three numbers would be used to select the corresponding population
elements, the fourth number would be skipped, and so on. Random numbers
can also be obtained from the table by reading down the columns rather than
across the rows, and the selection process can begin anywhere in the table.

When the population is generated by a process, the process itself fur-
nishes the sample observations. Take the case of pairs of shoes coming off
an assembly line. To test the quality of the production process we could
select a sample of 10 pairs by simply taking the next (or any) 10 pairs off
the line. This will give us a simple random sample if two conditions are
met: First, each item must have the same probability of being defective
as any other item. Second, the probability that any one item is defective
must be independent of whether any particular other item is defective. More
formally, the n random variables X1, X2, X3, . . . Xn generated by a process
constitute a simple random sample from an infinite population if they are
independently and identically distributed.

Once a sample has been selected and observations on the sample ele-
ments have been made, the observations constitute a data set and the usual
summary measures can be made. If X1, X2, X3, . . . Xn represent the values
of the n sample observations, we have

X̄ =

∑n
i=1Xi

n
(4.1)

and

s2 =

∑n
i=1(Xi − X̄)2

n− 1
(4.2)

where X̄ and s2 are the sample mean and variance, and s is the sample
standard deviation. These magnitudes are called sample statistics. The
population mean, variance and standard deviation—that is, the population
parameters—are denoted by µ, σ2 and σ.

4.2 The Sampling Distribution of the Sample
Mean

Consider an example of pairs of newly produced shoes coming off an as-
sembly line. We want to verify their quality. The sample space consists of
three sample points—neither shoe defective, one shoe defective, both shoes
defective. Suppose that the process by which the shoes are manufactured
generates the following population probability distribution for the three val-
ues that the random variable X can take:
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x: 0 1 2

P (x): .81 .18 .01

Note that the population distribution is skewed to the right. Its mean is

E{X} = µ = (0)(.81) + (1)(.18) + (2)(.01) = .2

and its variance is

σ2{X} = (−.2)2(.81) + (.8)2(.18) + (1.8)2(.01) = .18.

Now suppose that we do not observe the probability distribution for the
population and do not know its parameters. We can attempt to make an
inference about these parameters, and hence about the probability distribu-
tion of the population, by taking a sample. Suppose we take a sample of two
and use the sample mean as an estimate of E{X}. There are nine potential
samples of two that can be taken from the population. These potential sam-
ples and the corresponding sample means together with the probabilities of
picking each sample are listed below:

Sample X̄ P (X̄)

0 0 0.0 (.81)2 = .6561
0 1 0.5 (.81)(.18) = .1458
0 2 1.0 (.81)(.01) = .0081
1 0 0.5 (.18)(.81) = .1458
1 1 1.0 (.18)2 = .0324
1 2 1.5 (.18)(.01) = .0018
2 0 1.0 (.01)(.81) = .0081
2 1 1.5 (.01)(.18) = .0018
2 2 2.0 (.01)2 = .0001

1.0000

The sum of the probabilities is unity because all possible samples of two that
can be drawn from the population are listed. It turns out that the sample
mean can take five values— 0, .5, 1, 1.5 and 2. The probabilities that it
will take each of these values can be obtained by adding the probabilities
associated with the occurrence of each possible sample value in the table
above. For example, the probability that the sample mean will be .5 equals
.1458 + .1458 = .2916. We thus have

X̄: 0 .5 1 1.5 2

P (X̄): .6561 .2916 .0486 .0036 .0001
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for which the probabilities sum to unity. This is the exact sampling distri-
bution of X̄. It says that there is a probability of .6561 that a sample of
two will have mean 0, a probability of .2916 that it will have mean 0.5, and
so forth. The mean of the sampling distribution of X̄ is

E{X̄} = (0)(.6561)+(.5)(.2916)+(1)(.0486)+(1.5)(.0036)+(2)(.0001) = .2

which is equal to the population mean. The variance of the sample mean is

σ2{X̄} = (−.2)2(.6561) + (.3)2(.2916) + (.8)2(.0486)

+(1.3)2(.0036) + (1.8)2(.0001) = .09

which turns out to be half the population variance.
Now consider all possible samples of three that we could take. These are

presented in Table 4.1. The sample mean can now take seven values— 0,
1/3, 2/3, 1, 4/3, 5/3, and 2. The exact sampling distribution of the sample
mean (which is obtained by adding up in turn the probabilities associated
with all samples that yield each possible mean) is now

X̄: 0 1/3 2/3 1 4/3 5/3 2
P (X̄): .531441 .354294 .098415 .014580 .001215 .000054 .000001

The usual calculations yield a mean of the sample mean of E{X̄} = .2
and a sample variance of σ2{X̄} = .06. The mean sample mean is again the
same as the population mean and the variance of the sample mean is now
one-third the population variance.

On the basis of an analysis of the exact sampling distributions of the
sample mean for sample sizes of 2 and 3, we might conjecture that the
expected value of the sample mean always equals the population mean and
the variance of the sample mean always equals the variance of the population
divided by the sample size. This conjecture is correct. For a sample of size
n consisting of X1, X2, X3, . . . , Xn, the expectation of the sample mean will
be

E{X̄} = E

{
1

n
(X1 +X2 +X3 + . . .+Xn)

}
=

1

n
(E{X1}+ E{X2}+ E{X3}+ . . .+ E{Xn})

=
1

n
(nµ) = µ (4.3)
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Table 4.1: All possible samples of three for the shoe-testing problem.

X̄ P (X̄)

0 0 0 0 (.81)3 = .531441
0 0 1 1/3 (.81)(.81)(.18) = .118098
0 0 2 2/3 (.81)(.81)(.01) = .006561
0 1 0 1/3 (.81)(.18)(.81) = .118098
0 1 1 2/3 (.81)(.18)(.18) = .026244
0 1 2 1 (.81)(.18)(.01) = .001458
0 2 0 2/3 (.81)(.01)(.81) = .006561
0 2 1 1 (.81)(.18)(.01) = .001458
0 2 2 4/3 (.81)(.01)(.01) = .000081
1 0 0 1/3 (.18)(.81)(.81) = .118098
1 0 1 2/3 (.18)(.81)(.18) = .026244
1 0 2 1 (.18)(.81)(.01) = .001458
1 1 0 2/3 (.18)(.18)(.81) = .026244
1 1 1 1 (.18)3 = .005832
1 1 2 4/3 (.18)(.18)(.01) = .000324
1 2 0 1 (.18)(.01)(.81) = .001458
1 2 1 4/3 (.18)(.01)(.18) = .000324
1 2 2 5/3 (.18)(.01)(.01) = .000018
2 0 0 2/3 (.01)(.81)(.81) = .006561
2 0 1 1 (.01)(.81)(.18) = .001458
2 0 2 4/3 (.01)(.81)(.01) = .000081
2 1 0 1 (.01)(.18)(.81) = .001458
2 1 1 4/3 (.01)(.18)(.18) = .000324
2 1 2 5/3 (.01)(.18)(.01) = .000018
2 2 0 4/3 (.01)(.01)(.81) = .000081
2 2 1 5/3 (.01)(.01)(.18) = .000018
2 2 2 2 (.01)3 = .000001

1.000000
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and the variance of the sample mean will be

σ2{X̄} = E

{[
1

n
(X1 +X2 +X3 + . . .+Xn)− E{X̄}

]2}

= E

{[
1

n
(X1 +X2 +X3 + . . .+Xn)− µ

]2}

= E

{[
1

n
(X1 +X2 +X3 + . . .+Xn)−

nµ

n

]2}

=
1

n2
E
{
[(X1 +X2 +X3 + . . .+Xn)− nµ]2

}
=

1

n2
E
{
[((X1 − µ) + (X2 − µ) + (X3 − µ) + . . .+ (Xn − µ)]2

}
=

1

n2

[
σ2{X1}+ σ2{X2}+ σ2{X3}+ . . .+ σ2{(Xn}

]
=

1

n2

[
nσ2

]
=

σ2

n
. (4.4)

Note that in the second last line we took advantage of the fact that the
sample items were chosen independently to rule out any covariance between
Xi and Xj .

It should be emphasized that the above calculations of the mean and
variance of the sampling distribution are the same regardless of the distri-
bution of the population. For the population above, increasing the sample
size from two to three reduced the probability weight at the right tail of the
distribution and also at X̄ = 0.

The question immediately arises as to what the distribution of the sample
mean will look like if we increase the sample size further. It is not practical
to obtain the exact distribution of the sample mean from the above popu-
lation for sample sizes bigger than three. We have to infer the probability
distribution of the sample mean by taking many samples of each size and
plotting histograms of the resulting sample means.

4.3 The Central Limit Theorem

Figure 4.1 shows the distribution of the sample means obtained for the shoe-
testing problem by taking 1000 samples of n = 2 (top), n = 3 (middle) and
n = 10 (bottom). Notice how the range of the sample mean narrows as the
sample size increases. Also, with a sample size as large as 10 the modal
value ceases to be zero. Figure 4.2 is a continuation of Figure 4.1, showing
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Figure 4.1: Distribution of the Sample Mean for 1000 samples
of n = 2 (top), n = 3 (middle) and n = 10 (bottom).
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Figure 4.2: Distribution of the Sample Mean for 1000 samples
of n = 30 (top), n = 50 (middle) and n = 100 (bottom).
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the distribution of the sample means for 1000 samples when n = 30 (top),
n = 50 (middle) and n = 100 (bottom). The range of the sample mean again
narrows as the sample size increases and the distribution of the sample mean
becomes more symmetrical around the population mean, µ = .2.

Figure 4.3 is obtained by superimposing the relative frequencies of the
sample means obtained from the 1000 samples of n = 50 in the middle
panel of Figure 4.2 on a normal probability density function with µ = .2
and σ2 = 1.8/50 = .0036. Notice that the sampling distribution of the
sample mean does not differ much from the normal distribution when we
take account of the fact that the points representing the histogram are the
center-points of the tops of its respective bars.

Figure 4.3: Relative frequencies of sample mean from 1000
samples of 50 plotted on normal density function with µ = .2
and σ2

X̄
= .0036.

It turns out that the similarity of the histograms to normal distributions
as the sample size increases is not accidental. We have here a demonstration
of the Central Limit Theorem. The Central Limit Theorem says that when
the sample size is sufficiently large the sample mean X̄ will become approx-
imately normally distributed with mean equal to the population mean and
variance equal to the population variance divided by the sample size. And
the larger the sample size, the closer the approximation of the sampling dis-
tribution of X̄ to a normal distribution. This holds true regardless of the
distribution of the population provided it has a finite standard deviation.

The fact that the sample mean is normally distributed for large sample
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sizes tells us that if the sample size is large enough the sample mean should
lie within one standard deviation of the population mean 68% of the time
and within two standard deviations of the population mean 95% of the time.
The standard deviation referred to here is, of course, the standard deviation
of the sample mean, not the standard deviation of the population.

The true standard deviation of the sample mean is σx̄ = σ/
√
n. Since

the population standard deviation is usually not known, we use

s =

√∑n
i=1(Xi − X̄)2

n− 1

to provide an estimate of σ. The standard deviation of the sample mean is
thus estimated as

sx̄ =
s√
n
.

The Central Limit Theorem tells us the approximate nature of the sam-
pling distribution of the sample mean when the sample is large and the
distribution of the population is either unknown or the population is not
normally distributed. If the population happens to be normally distributed
the sampling distribution of the sample mean will turn out to be exactly
normally distributed regardless of the sample size. This follows from two
facts—first, that the mean of a sample from a normally distributed popu-
lation is a linear function of the population elements in that sample, and
second, that any linear function of normally distributed variables is normally
distributed.

4.4 Point Estimation

The central purpose of statistical inference is to acquire information about
characteristics of populations. An obvious source of information about a
population mean is the mean of a random sample drawn from that popula-
tion. When we use the sample mean to estimate the population mean the
sample mean we obtain is called a point estimate of the population mean.

In general, suppose there is an unknown population characteristic or
parameter that we will denote by θ. To estimate this parameter we select a
simple random sampleX1, X2, X3, . . . , Xn, from the population and then use
some statistic S which is a function of these sample values as a point estimate
of θ. For each possible sample we could take we will get a different set of
sample values, X1, X2, X3, . . . , Xn, and hence a different S. The statistic
S is thus a random variable that has a probability distribution which we
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call the sampling distribution of S. We call S an estimator of θ. When we
take our sample and calculate the value of S for that sample we obtain an
estimate of θ.

Notice the difference between an estimate and an estimator. An estima-
tor is a random variable used to estimate a population characteristic. An
actual numerical value obtained for an estimator is an estimate.

Consider, for example, a trade association that needs to know the mean
number of hourly paid employees per member firm, denoted by µ. To esti-
mate this the association takes a random sample of n = 225 member firms
(a tiny fraction of the total number of firms belonging to the association).
The sample mean X̄ is used as an estimator of µ. The estimate of µ is the
particular value of X̄ obtained from the sample, say, 8.31.

Note that the sample mean is only one possible estimator of the pop-
ulation mean. We could instead use the sample median or, perhaps, the
average of largest and smallest values of X in the sample.

It should be evident from the discussion above that we are using

s =

√∑n
i=1(Xi − X̄)2

n− 1

as an estimator of the population standard deviation σ. As an alternative
we might think of using

ŝ =

√∑n
i=1(Xi − X̄)2

n
.

Why should we use X̄ rather than, say, the sample median, as an es-
timator of µ? And why should we use s rather than ŝ as an estimator of
σ?

4.5 Properties of Good Point Estimators

There are essentially three criteria which we use to select good estimators.
The problem that arises, of course, is that a particular estimators may be
better than another under one criterion but worse than that other estimator
under another criterion.

4.5.1 Unbiasedness

An estimator is unbiased if the mean of its sampling distribution is equal
to the population characteristic to be estimated. That is, S is an unbiased
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estimator of θ if

E{S} = θ.

If the estimate is biased, the bias equals

B = E{S} − θ.

The median, for example, is a biased estimator of the population mean when
the probability distribution of the population being sampled is skewed. The
estimator

ŝ2 =

∑n
i=1(Xi − X̄)2

n

turns out to be a biased estimator of σ2 while the estimator

s2 =

∑n
i=1(Xi − X̄)2

n− 1

is unbiased. This explains why we have been using s2 rather than ŝ2.
Unbiasedness in point estimators refers to the tendency of sampling er-

rors to balance out over all possible samples. For any one sample, the sample
estimate will almost surely differ from the population parameter. An esti-
mator may still be desirable even if it is biased when the bias is not large
because it may have other desirable properties.

4.5.2 Consistency

An estimator is a consistent estimator of a population characteristic θ if the
larger the sample size the more likely it is that the estimate will be close to
θ. For example in the shoe-pair testing example above, X̄ is a consistent
estimator of µ because its sampling distribution tightens around µ = .2
as n increases. More formally, S is a consistent estimator of population
characteristic θ if for any small positive value ϵ,

lim
n→∞

(P (|S − θ| < ϵ) = 1.

4.5.3 Efficiency

The efficiency of an unbiased estimator is measured by the variance of its
sampling distribution. If two estimators based on the same sample size are
both unbiased, the one with the smaller variance is said to have greater
relative efficiency than the other. Thus, S1 is relatively more efficient than
S2 in estimating θ if
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σ2{S1} < σ2{S2} and E{S1} = E{S2} = θ

For example, the sample mean and sample median are both unbiased es-
timators of the mean of a normally distributed population but the mean
is a relatively more efficient estimator because at any given sample size its
variance is smaller.

4.6 Confidence Intervals

Point estimates have the limitation that they do not provide information
about the precision of the estimate—that is, about the error due to sampling.
For example, a point estimate of 5 miles per gallon of fuel consumption
obtained from a sample of 10 trucks out of a fleet of 400 would be of little
value if the range of sampling error of the estimate is 4 miles per gallon—
this would imply that the fuel consumption of the fleet could be anywhere
between 1 and 9 miles per gallon. To provide an indication of the precision
of a point estimate we combine it with an interval estimate. An interval
estimate of the population mean µ would consist of two bounds within which
µ is estimated to lie:

L ≤ µ ≤ U

where L is the lower bound and U is the upper bound. This interval gives
an indication of the degree of precision of the estimation process.

To obtain an estimate of how far the sample mean is likely to deviate
from the population mean—i.e., how tightly it is distributed around the
population mean—we use our estimate of the variance of the sample mean,

s2x̄ =
s2

n
.

This enables us to say that if the sample is large enough, X̄ will lie within
a distance of ±2s of µ with probability .95.

Take, for example, the above-mentioned trade-association problem where
a random sample of 225 firms was selected to estimate the mean number
of hourly paid employees in member firms. Suppose the estimators X̄ of µ
and s of σ yield point estimates X̄ = 8.31 and s = 4.80. Since the sample
size is quite large we can reasonably expect that in roughly 95 percent of
such samples the sample mean will fall within 2s/

√
n = 9.60/15 = .64

paid employees of µ in either direction. It would thus seem reasonable that
by starting with the sample mean 8.31 and adding and subtracting .64 we
should obtain an interval [7.67 — 8.95] which is likely to include µ.
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If we take many large samples and calculate intervals extending two
standard deviations of the sample mean on either side of that sample mean
for each sample using the estimates of X̄ and sx̄ obtained, about 95% of
these intervals will bracket µ. The probability that any interval so obtained
will bracket µ is roughly .95 (actually .9548).

More formally, consider an interval estimate L ≤ µ ≤ U with a specific
probability (1− α) of bracketing µ. The probability that a correct interval
estimate (i.e., one that actually brackets µ) will be obtained is called a
confidence coefficient and is denoted by (1− α). The interval L ≤ µ ≤ U is
called a confidence interval and the limits L and U are called the lower and
upper confidence limits, respectively. The numerical confidence coefficient is
often expressed as a percent, yielding the 100 (1−α)% confidence interval.

The confidence limits U and L for the population mean µ with approx-
imate confidence coefficient (1− α) when the random sample is reasonably
large are

X̄ ± z
s√
n

where z = z (1−α/2) is the 100 (1−α/2) percentile of the standard normal
distribution. The 100 (1− α) percent confidence interval for µ is

X̄ − z
s√
n
≤ µ ≤ X̄ + z

s√
n

Note that the confidence interval does not imply that there is a probability
(1− α) that µ will take a value between the upper and lower bounds. The
parameter µ is not a variable—it is fixed where it is. Rather, there is a
probability (1 − α) that the interval will bracket the fixed value of µ. The
limits −z (1− α/2) and z (1− α/2) are given by the innermost edges of the
shaded areas on the left and right sides of Figure 4.4. The shaded areas each
contain a probability weight equal to α/2. So for a 95% confidence interval
these areas each represent the probability weight (1 − .95)/2 = .05/2 =
.025 and the sum of these areas represents the probability weight .05. The
area under the probability density function between the two shaded areas
represents the probability weight .95. Note also that the probability (1−α)
is chosen in advance of taking the sample. The actual confidence interval
calculated once the sample is taken may or may not bracket µ. If it does,
the confidence interval is said to be correct.

What confidence coefficient should be chosen? This question hinges on
how much risk of obtaining an incorrect interval one wishes to bear. In
the trade-association problem above the 90, 95, and 99 percent confidence
intervals are
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Figure 4.4: The areas (1−α) and α/2 (shaded) for a standard
normal probability distribution with α = .05.

1− α (1− α/2) z sx̄ zsx̄ X̄ X̄ + zsx̄ X̄ − zsx̄
.90 .950 1.645 .32 .5264 8.31 8.84 7.78
.95 .975 1.960 .32 .6272 8.31 8.94 7.68
.99 .995 2.576 .32 .8243 8.31 9.13 7.48

Note that greater confidence in our results requires that the confidence inter-
val be larger—as (1− α) gets bigger, α/2 gets smaller and z must increase.
We could, of course, narrow the confidence interval at every given level of
confidence by increasing the sample size and thereby reducing s/

√
n.

4.7 Confidence Intervals With Small Samples

In making all the above calculations we standardised the sampling distribu-
tion of X̄, obtaining

z =
(X̄ − µ)

s/
√
n

and then calculated limits for µ based on values for z in the table of standard
normal probabilities. We used s as an estimator of σ. Had we known σ the
standardised value would have been

z =
(X̄ − µ)

σ/
√
n

= − µ

σ/
√
n
+

1

σ/
√
n
X̄.
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Statistical theory tells us that when the population is normally distributed
X̄ is normally distributed because it is a linear function of the normally
distributed Xi. Then the standardised value z is also normally distributed
because it is a linear function of the normally distributed variable X̄. But
when we use s as an estimator of σ the above expression for z becomes

z = − µ

s/
√
n
+

1

s/
√
n
X̄.

Whereas the divisor σ/
√
n is a constant, s/

√
n is a random variable. This

immediately raises the question of the normality of z.
It turns out that the variable

(X̄ − µ)

s/
√
n

is distributed according to the t-distribution, which approximates the normal
distribution when the sample size is large. The t-distribution is symmetrical
about zero like the standardised normal distribution but is flatter, being
less peaked in the middle and extending out beyond the standard normal
distribution in the tails. An example is presented in Figure 4.5. The t-
distribution has one parameter, v, equal to the degrees of freedom, which
equals the sample size minus unity in the case at hand. It has mean zero
and variance v/(v − 2) with v > 2.

Because the t-distribution approximates the normal distribution when
the sample size is large and because the Central Limit Theorem implies
that X̄ is approximately normally distributed for large samples, we could use
z = (X̄−µ)/sx̄ to calculate our confidence intervals in the previous examples.
When the sample size is small, however, we must recognize that (X̄−µ)/sx̄ is
actually distributed according to the t-distribution with parameter v = n−1
for samples of size n drawn from a normal population. We calculate the
confidence interval using the same procedure as in the large sample case
except that we now set

t =
(X̄ − µ)

s/
√
n

and use the appropriate percentile from the t-distribution instead of from
the normal distribution.

More formally, we can state that the confidence limits for µ with con-
fidence coefficient (1 − α), when the sample is small and the population is
normally distributed or the departure from normality is not too marked, are

X̄ ± t sx̄
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Figure 4.5: A t-distribution compared to the standard nor-
mal. The t-distribution is the flatter one with the longer
tails.

where t = t(1− α/2;n− 1). Expressing t in this way means that the value
of t chosen will be the one with degrees of freedom n − 1 and percentile of
the distribution 100(1− α/2).

Now consider an example. Suppose that the mean operating costs in
cents per mile from a random sample of 9 vehicles (in a large fleet) turns
out to be 26.8 and a value of s equal to 2.5966 is obtained. The standard
deviation of the mean is thus s/3 = .8655. We want to estimate µ, the mean
operating costs of the fleet. For a 90% confidence interval, t(0.95; 8) = 1.860.
This implies a confidence interval of

26.80± (1.8860)(.8655)

or
25.19 ≤ µ ≤ 28.41.

Had the normal distribution been used, z would have been 1.645, yielding a
confidence interval of

26.80± 1.4237

or
25.38 ≤ µ ≤ 28.22.

Inappropriate use of the normal distribution would give us a narrower in-
terval and a degree of ‘false confidence’.
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Notice that the use of the t-distribution requires that the population be
normal or nearly so. If the population is non-normal and n is large we can use
z and the standard normal distribution. What do we do if the population is
non-normal and the sample size is small? In this case we “cross our fingers”
and use the t-distribution and allow that the confidence coefficient is now
only approximately 1− α. This assumes that the t-distribution is robust—
i.e., applies approximately for many other populations besides normal ones.
Essentially we are arguing, and there is disagreement among statisticians
about this, that the distribution of (X̄ − µ)/sx̄ is better approximated by
the t-distribution than the normal distribution when the population is non-
normal and the sample size is small.

4.8 One-Sided Confidence Intervals

Sometimes we are interested in an upper or lower bound to some popula-
tion parameter. For example, we might be interested in the upper limit
of fuel consumption of trucks in a fleet. One-sided confidence intervals are
constructed the same as two-sided intervals except that all the risk that the
interval will not bracket µ, given by α, is placed on one side. We would
thus set a single lower confidence interval at X̄ − z(1 − α)sx̄ instead of
X̄ − z(1− α/2)sx̄. A single upper-confidence interval is set in similar fash-
ion. Of course, for small samples we would use t instead of z.

4.9 Estimates of a Population Proportion

When the sample size is large the above methods apply directly to point
and interval estimation of a population proportion. Suppose that we want to
estimate the proportion of voters who will vote yes in the next referendum on
whether Quebec should become independent from the rest of Canada. It is
natural to take a large sample of voters to determine the sample proportion
p̄ that are in favour of independence. The Central Limit Theorem tells
us that this sample proportion should be normally distributed around the
population proportion p if the sample size is large enough. To construct a
confidence interval we then need an estimate of the standard deviation of p̄.
Since the total number of people in the sample voting for independence, X,
is distributed according to the binomial distribution with parameters n and
p, its variance is np (1 − p). The variance of the sample proportion p̄ then
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equals

Var{p̄} = Var{X
n
} =

1

n2
Var{X}

=
1

n2
np(1− p) =

p (1− p)

n
. (4.5)

It is natural to estimate the standard deviation of p̄ as the square root of
the above expression with p̄ substituted for p. When we do so we divide by
n− 1 rather than n. This recognizes the fact that

sp̄ =

√
p̄(1− p̄)

n− 1

turns out to be an unbiased estimator of σ2
p̄ whereas

s̃p̄ =

√
p̄(1− p̄)

n

is a biased estimator. The 100 (1 − α) confidence interval for p therefore
becomes

p̄± z

√
p̄(1− p̄)

n
.

where z is the value from the standard normal table that will produce
the appropriate percentile 100 (1 − α/2) for a two-sided confidence inter-
val or 100 (1 − α) for a one-sided confidence interval. Suppose that we
took a random sample of 1000 voters and found that 350 of them would
vote for making Quebec into a separate country. This yields p̄ = .35 as
a point estimate of p. The standard deviation of p̄ is estimated to be√
(.35)(.65)/999 = .015083. A two-sided 95% confidence interval for p, for

which z = z(1− α/2) = z(.975) = 1.96, thus becomes

[.35− (1.96)(.015083)] ≤ p ≤ [.35 + (1.96)(.025083)]

.3204 ≤ p ≤ .3796.
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4.10 The Planning of Sample Size

If we know the confidence we require in our results we can choose the sample
size that will yield that confidence. Resources need not be wasted selecting
an excessively large sample while at the same time the risk of choosing an
uninformative sample can be avoided. We assume that the sample selected
will be reasonably large in absolute value but a small fraction of the popu-
lation. Let us call the distance between the sample mean and the upper (or
lower) confidence limit the half-width (which is half the distance between
the upper and lower limits) and denote it by h. The upper limit will then
be

X̄ + h = X̄ + z
σ√
n

where σ is a value of the population standard deviation picked for planning
purposes, so that

h = z
σ√
n
.

Squaring both sides and then multiplying them by n yields

nh2 = z2σ2

so that

n =
z2σ2

h2
.

In formal terms we can thus state that the necessary random sample size
to achieve the desired half-width h for the specified confidence coefficient
(1−α) for a given planning value of the population standard deviation σ is

n =
z2σ2

h2
(4.6)

where z = z(1− α/2) and the half-width h represents the deviation of each
interval from the sample mean. In the case of a one-sided confidence interval,
h would equal the entire interval.

Consider an example. Suppose that a nationwide survey of physicians is
to be undertaken to estimate µ, the mean number of prescriptions written
per day. The desired margin of error is ±.75 prescriptions, with a 99%
confidence coefficient. A pilot study indicated that a reasonable value for
the population standard deviation is 5. We therefore have z = z(1−.01/2) =
z(.995) = 2.575, h = .75 and σ = 5. The proper sample size then equals

n = [(2.575)(5)]2/(.75)2 = (12.88)2/.5625 = 165.89/.5625 = 295.
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The same general principles apply to choosing the sample size required to
estimate a population proportion to the desired degree of accuracy. Consider
a poll to estimate the results of the next Quebec referendum. How big
a sample will we need to estimate the proportion of the voters that will
vote for separation to an accuracy of ±2 percentage points, 19 times out
of 20? The ratio 19/20 = .95 provides us with (1 − α). We can obtain
a planning value of σp̄ by noting that

√
p(1− p)/n will be a maximum

when p = .5 and using this value of p to obtain the standard deviation
of p̄ for planning purposes.1 Thus, a deviation of 2 percentage points or
.02 from p must equal z(1 − α/2) = z(1 − .05/2) = z(.975), multiplied
by σp̄ =

√
p(1− p)/n =

√
(.5)(.5)/

√
n = .5/

√
n. Letting U be the upper

confidence limit, we thus have

U − p̄ = .02 = z

√
p(1− p)

n
=

(1.96)(.5)√
n

=
.98√
n
,

which implies that
√
n =

.98

.02
= 49.

The appropriate sample size is therefore (49)2 = 2401.

4.11 Prediction Intervals

Sometimes we want to use sample data to construct an interval estimate
for a new observation. Consider the earlier problem of determining the
operating costs for a vehicle fleet. Having established a confidence interval
regarding the operating costs of vehicles in the fleet, we can use the same
evidence to help determine whether a particular vehicle not in the sample
meets standards.

Suppose that the vehicle in question is selected independently of our
earlier random sample of 9 vehicles. Let the operating costs of this vehicle
be Xnew. And suppose that the population (i.e., the operating costs in cents
per mile of all vehicles in the fleet) follows a normal distribution.

Now if we knew the values of µ and σ for the population the calculation
of a prediction interval would be very simple. We simply obtain a value of
z equal to the number of standard deviations from the mean of a normal
distribution that would meet our desired level of confidence—that is,

1It can be easily seen that (.4)(.6) = (.6)(.4) = .24 < (.5)(.5) = .25 and that values of
p less than .4 or greater than .6 yield even smaller values for p(1− p).
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z = z(1 − α/2), where 100 (1 − α) is our desired level of confidence—and
calculate µ ± z σ. We would predict that 100 (1 − α)% of the time Xnew

will fall in this interval. If Xnew does not fall in this interval we can send
the vehicle in for service on the grounds that the chance is no more than
100α/2 percent (looking at the upper tail) that its cost per mile is equal to
or less than the mean for the fleet.

The problem is that we do not know µ and σ and have to use the sample
statistics X̄ and s as estimators. To calculate the prediction interval we
have to know the standard deviation of Xnew. The estimated variance of
Xnew is

s2{Xnew} = E{(Xnew − µ)2} = E{[(Xnew − X̄) + (X̄ − µ)]2}
= E{(Xnew − X̄)2}+ E{(X̄ − µ)2}

= s2 +
s2

n
= [1 +

1

n
] s2.

The prediction interval for Xnew then becomes

X̄ ± t s{Xnew}

where t = t(1− α/2;n− 1) is the ‘number of standard deviations’ obtained
from the t-distribution table for the probability weight (1−α/2) and degrees
of freedom (n− 1). In the case of a vehicle selected from the fleet,

X̄ ± t(.975; 8) s{Xnew} = 26.80± (2.306)
√
(1 + 1/9) (2.5966)

= 26.80± (2.306)(1.05409)(2.5966) = 26.80± 6.31

which yields
20.49 ≤ µ ≤ 33.11.

Notice that the prediction interval is much wider than the 95% confidence
interval for X̄ which would be

26.80± (2.306)
s√
n
= 26.80± (2.306)(.8655) = 26.80± 3.1715

or
23.63 ≤ 26.80 ≤ 29.97.

This is the case because there are two sources of deviation of Xnew from
µ—the deviation from the sample mean, taken as a point estimate of µ, and
the deviation of that sample mean from µ. The confidence interval for the
sample mean only includes the second source of deviation.
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4.12 Exercises

1. Find the following probabilities for the standard normal random variable
z:

a) P (−1 ≤ z ≤ 1)

b) P (−2 ≤ z ≤ 2)

c) P (−2.16 ≤ z ≤ .55)

d) P (−.42 < z < 1.96)

e) P (z ≥ −2.33)

f) P (z > 2.33)

2. Suppose that a random sample of n measurements is selected from a
population with mean µ = 100 and variance σ2 = 100. For each of the
following values of n, give the mean and standard deviation of the sampling
distribution of the sample mean X̄.

a) n = 4.

b) n = 25.

c) n = 100.

d) n = 50.

e) n = 50.

f) n = 500.

g) n = 1000.

3. A particular experiment generates a random variable X that has only
two outcomes: X = 1 (success) with probability p = 0.6 and X = 0 (failure)
with probability (1 − p) = .4. Consider a random sample consisting of
n = 3 independent replications of this experiment. Find the exact sampling
distribution of the sample mean.

4. Write down the Central Limit Theorem and explain what it means.
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5. The mean and standard deviation of a random sample of n measurements
are equal to 33.9 and 3.3 respectively.

a) Find a 95% confidence interval for µ if n = 100. (33.2532, 34.5468)

b) Find a 95% confidence interval for µ if n = 400.

c) What is the effect on the width of the confidence interval of quadru-
pling the sample size while holding the confidence coefficient fixed?

6. Health insurers and the federal government are both putting pressure on
hospitals to shorten the average length of stay of their patients. In 1993 the
average length of stay for men in the United States was 6.5 days and the
average for women was 5.6 days (Statistical Abstract of the United States:
1995 ). A random sample of 20 hospitals in one state had a mean length of
stay for women in 1996 of 3.6 days and a standard deviation of 1.2 days.

a) Use a 90% confidence interval to estimate the population mean length
of stay for women in the state’s hospitals in 1996.

b) Interpret the interval in terms of this application.

c) What is meant by the phrase ‘90% confidence interval’?

7. The population mean for a random variable X is µ = 40. The population
variance is σ2 = 81. For a (large) random sample of size n drawn from this
population, find the following:

a) The expected value and the variance of the sample mean X̄ when
n = 36.

b) The probability that P (X̄ ≥ 41) in the above case.

c) The probability P (38.5 ≤ X̄ ≤ 40.5) when n = 64.

8. A number of years ago, Lucien Bouchard and John Charest were in a
tough fight for the premiership of Quebec. How big a simple random sample
would have been needed to estimate the proportion of voters that would vote
for Bouchard to an accuracy of ±1 percentage points, 19 times out of 20?

9. One of the continuing concerns of U.S. industry is the increasing cost of
health insurance for its workers. In 1993 the average cost of health premiums



4.12. EXERCISES 129

per employee was $2,851, up 10.5% from 1992 (Nation’s Business, Feb. 1995).
In 1997, a random sample of 23 U.S. companies had a mean health insurance
premium per employee of $3,321 and a standard deviation of $255.

a) Use a 95% confidence interval to estimate the mean health insurance
premium per employee for all U.S. companies.

b) What assumption is necessary to ensure the validity of the confidence
interval?

c) Make an inference about whether the true mean health insurance pre-
mium per employee in 1997 exceeds $2,851, the 1993 mean.

10. The mean and the standard deviation of the annual snowfalls in a north-
ern city for the past 20 years are 2.03 meters and 0.45 meters, respectively.
Assume that annual snowfalls for this city are random observations from
a normal population. Construct a 95 percent prediction interval for next
year’s snowfall. Interpret the prediction interval.

11. Accidental spillage and misguided disposal of petroleum wastes have
resulted in extensive contamination of soils across the country. A com-
mon hazardous compound found in the contaminated soil is benzo(a)pyrene
[B(a)p]. An experiment was conducted to determine the effectiveness of a
treatment designed to remove B(a)p from the soil (Journal of Hazardous
Materials, June 1995). Three soil specimens contaminated with a known
amount of B(a)p were treated with a toxin that inhibits microbial growth.
After 95 days of incubation, the percentage of B(a)p removed from each soil
specimen was measured. The experiment produced the following summary
statistics: X̄ = 49.3 and s = 1.5.

a) Use a 99% confidence interval to estimate the mean percentage of
B(a)p removed from a soil specimen in which toxin was used.

b) Interpret the interval in terms of this application.

c) What assumption is necessary to ensure the validity of this confidence
interval?
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4.13 Appendix: Maximum Likelihood
Estimators

The Maximum Likelihood Method is a general method of finding point esti-
mators with desirable qualities.

Let us proceed by using an example. Suppose we know that the number
of annual visits to a dentist by a child is a Poisson random variable X with
unknown parameter λ. In a random sample of two children the numbers of
visits to the dentist last year were X1 = 0 and X2 = 3.

The idea of maximum likelihood is to choose the value for λ for which
it is most likely that we would observe the sample {X1, X2}. We do this
by calculating the probability of observing the sample for various values of
λ—say, 0, 1, 1.5, 2, 3, etc.—and picking the value of λ that maximizes this
probability. The Poisson probability function, defined in equation (3.32), is

P (x) =
λx e−λ

x!
.

Since the observations are independent of each other, the probability of
observing the sample {X1, X2} is P (x = X1) times P (x = X2). From the
table of Poisson probabilities we obtain the following probabilities for various
values of λ:

λ P (x = 0) P (x = 3) P (x = 0)P (x = 3)

0.0 .0000 .0000 .0000
1.0 .3679 .0613 .0225
1.5 .2231 .1255 .0280
2.0 .1353 .1804 .0244
3.0 .0498 .2240 .0112

The value of λ that maximizes the likelihood of observing the sample in the
above table is λ = 1.5.

We could calculate P (x = 0)P (x = 3) for values of λ between the ones
in the table above and plot them to obtain the smooth curve in Figure 4.6.
This curve maps the probability density as a function of λ which is called the
likelihood function. It confirms that 1.5 is the maximum likelihood estimate
of λ.

Let us now approach the problem more formally and suppose that we
have a set of sample observations Xi from which we want to estimate a
parameter θ. There is some probability

P (X1, X2, X3, . . . , Xn; θ)
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Figure 4.6: The likelihood function for the children-to-the
dentist example.

of drawing a particular sample of observations, given the magnitude of the
unknown parameter θ. Because the sample observations X1, X2, X3, . . . , Xn

are independent, this probability function equals

P (X1, X2, X3, . . . , Xn; θ) = P (X1; θ)P (X2; θ)P (X3; θ) . . . P (Xn; θ).

This product of probabilities, when viewed as a function of θ for given
X1, X2, X3, . . . , Xn is called the likelihood function

L(θ) = P (X1; θ)P (X2; θ)P (X3; θ) . . . P (Xn; θ). (4.7)

We find the value of θ that maximizes L(θ) either by analytic methods or,
when that approach is not feasible, by efficient numerical search procedures.

Consider a Poisson process with unknown parameter λ and select a ran-
dom sample X1, X2, X3, . . . , Xn. Using the formula for the Poisson proba-
bility distribution, the likelihood function can be expressed

L(θ) =

[
λX1 e−λ

X1!

] [
λX2 e−λ

X2!

]
. . . . . .

[
λXn e−λ

Xn!

]

=

[
λ
∑

Xi e−nλ

X1!X2! . . . Xn!

]
=

[
λnX̄ e−nλ

X1!X2! . . . Xn!

]
. (4.8)

To maximize L(λ) we differentiate it with respect to λ and find the value
for λ for which this differential is zero. Differentiating (using the chain rule
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whereby dxy = xdy + ydx) we have

dL(θ)

dθ
=

1

X1!X2! . . . Xn!

[
d

dλ

(
λnX̄ e−nλ

)]
=

1

X1!X2! . . . Xn!

[
λnX̄ d

dλ

(
e−nλ

)
+ e−nλ d

dλ

(
λnX̄

)]
=

1

X1!X2! . . . Xn!

[
−λnX̄ e−nλ n + e−nλ nX̄ λnX̄−1

]
=

1

X1!X2! . . . Xn!

[
n

(
X̄

λ
− 1

)(
λnX̄ e−nλ

)]
(4.9)

This expression equals zero—i.e., L(λ) is a maximum—when[
X̄

λ
− 1

]
= 0,

which occurs when λ = X̄. Thus, the sample mean is a maximum likelihood
estimator of λ for a random sample from a Poisson distribution. In the
children-to-dentist example above, the sample mean is (0 + 3)/2 = 1.5, the
value of λ that produced the largest value for L(λ) in Figure 4.6.



Chapter 5

Tests of Hypotheses

In the previous chapter we used sample statistics to make point and interval
estimates of population parameters. Often, however, we already have some
theory or hypothesis about what the population parameters are and we need
to use our sample statistics to determine whether or not it is reasonable to
conclude that the theory or hypothesis is correct. Statistical procedures
used to do this are called statistical tests.

Consider, for example, the case of a firm that has developed a diagnostic
product for use by physicians in private practice and has to decide whether
or not to mount a promotional campaign for the product. Suppose that
the firm knows that such a campaign would lead to higher profits only if
the mean number of units ordered per physician is greater than 5. Office
demonstrations are conducted with a random sample of physicians in the
target market in order to decide whether or not to undertake the campaign.
The campaign is very costly and the firm will incur substantial losses if it
undertakes it only to find that the mean number of orders after the campaign
is less than or equal to 5.

5.1 The Null and Alternative Hypotheses

We can think of two possibilities. The mean number of orders in the popu-
lation of all physicians will exceed 5 or the mean will not exceed 5. Suppose
the firm accepts the hypothesis that the mean number of orders in the pop-
ulation will be greater than 5 when it turns out to be less. A promotional
campaign will be conducted at great loss. Had the guess that the mean
number of orders will be greater than 5 been correct the firm would have
earned a substantial profit. Alternatively, if the firm accepts the hypothesis

133
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that the mean number of orders in the population will be less than 5 when it
turns out to be greater, some profit will be foregone. Had the guess that the
mean number of orders in the population will be less than 5 been correct,
however, huge losses from the promotional campaign will have been avoided.
It turns out that the cost of guessing that the mean number of orders will
be greater than 5, mounting the promotional campaign, and being wrong is
much greater than the cost of guessing that the mean number of orders will
be less than or equal to 5, not mounting the promotional campaign, and
being wrong.

We call the more serious of the two possible errors a Type I error and the
least serious error a Type II error. We call the hypothesis which if wrongly
rejected would lead to the more serious (Type I) error the null hypothesis
and denote it by the symbol H0. The other hypothesis, which if wrongly
rejected would lead to the less serious (Type II) error, we call the alternative
hypothesis and denote it by the symbol H1.

In the problem we have been discussing, the most serious error will occur
if the mean number of orders in the population of physicians will be less than
5 and the firm erroneously concludes that it will be greater than 5. Hence,
the null hypothesis is

H0 : µ ≤ 5

and the alternative hypothesis is

H1 : µ > 5.

Acceptance of either hypothesis on the basis of sample evidence involves a
risk, since the hypothesis chosen might be the incorrect one. We denote the
probability of making a Type I error (incorrectly rejecting the null hypoth-
esis) an α-risk and the probability of making a Type II error (incorrectly
rejecting the alternative hypothesis) a β-risk. It turns out that if the
sample size is predetermined (i.e., beyond the firm’s control) the firm has
to choose which risk to control. Control of the α-risk at a lower level will
imply a greater degree of β-risk and vice versa. Since by construction Type
I errors are the most damaging, the firm will obviously want to control the
α-risk.

Of course, the situation could have been different. The market for the
type of diagnostic product that the firm has developed may be such that
the first firm providing it could achieve quite an advantage. An erroneous
conclusion by the firm that the mean number of orders will be less than 5,
and the resulting decision not to promote the product, could lead to the
loss of substantial future market opportunities. On the other hand, if the
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cost of the promotion is small, an erroneous conclusion that the number of
orders per physician in the population will equal or exceed 5 would perhaps
lead to a minor loss. In this case we would define the null and alternative
hypotheses as

H0 : µ ≥ 5

and

H1 : µ < 5.

A Type I error will then result when the null hypothesis is incorrectly
rejected—i.e., when we erroneously conclude that the mean order per physi-
cian in the population will be less than 5 when it turns out to be equal
to or greater than 5. The probability of this happening will be the α-risk.
A Type II error will result when the alternative hypothesis is incorrectly
rejected—i.e., when the firm erroneously concludes that the mean order per
physician will be greater than or equal to 5 when it turns out not to be.
The probability of this happening will be the β-risk.

The hypotheses in the above problem were one-sided alternatives. The
crucial question was whether the population parameter µ was above a par-
ticular value µ0 (= 5) or below it. We can also have two sided alternatives.

Suppose it is found that the mean duration of failed marriages was 8.1
years before the divorce law was changed and we want to determine whether
the new legislation has affected the length of time unsuccessful marriages
drag on. A sociologist has a random sample of divorce records accumulated
since the law was changed upon which to make a decision. Erroneously
concluding that the new legislation has changed people’s behaviour when it
has not is judged to be a more serious error than incorrectly concluding that
behaviour has not changed as a result of the new law when it in fact has.
Accordingly, the sociologist chooses the null hypothesis as

H0 : µ = 0

and the alternative hypothesis as

H1 : µ ̸= 0.

A Type I error will arise if the sociologist concludes that behaviour has
changed when it has not—i.e., incorrectly rejects the null hypothesis—and
a Type II error will arise if she erroneously concludes that behaviour has not
changed when it in fact has. The probability of a Type I error will again be
the α-risk and the probability of a Type II error the β-risk.
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5.2 Statistical Decision Rules

Take the case of the diagnostic product discussed above where H0 is µ ≤ 5
and H1 is µ > 5. If upon conducting the office demonstrations the mean
number of orders of physicians in the sample is less than 5, it would be
reasonable to accept the null hypothesis that µ ≤ 5. If the sample mean is
greater than 5, however, should we reject the null hypothesis? Clearly, the
costs of a Type I error are greater than the costs of a Type II error, so we
would not want to reject the null hypothesis if the sample mean is just a
little bit above 5 because the sample mean could be greater than 5 entirely
as a result of sampling error. On the other hand, if the sample mean is 20,
it might seem reasonable to reject the null hypothesis. The question is: At
what value of the sample mean should we reject the null hypothesis that
µ ≤ 5. That value of the mean (or test statistic) at which we decide (ahead
of time, before the sample is taken) to reject the null hypothesis is called
the action limit or critical value. The choice of this critical value is called a
statistical decision rule.

The general form of the statistical decision rule for one-sided and two-
sided alternatives is given in Figure 5.1. Possible values of the sample mean
are divided into two groups along the continuum of values the sample mean
can take. The groups are separated by the critical value A in the case of
one-sided tests shown in the top two panels, or by the critical values A1 and
A2 in the case of a two-sided test shown in the bottom panel. The region
between the critical value or values and µ0, the level of µ at which the test
is being conducted, is called the acceptance region. The region on the other
side(s) of the critical value(s) from µ0 is called the critical region or rejection
region. If the sample mean falls in the rejection region, we reject the null
hypothesis and accept the alternative hypothesis. If it falls in the acceptance
region we accept the null hypothesis and reject the alternative hypothesis.
Note that acceptance of the null hypothesis means only that we will act as
if it were true—it does not mean that the null hypothesis is in fact true.
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two-sided (bottom) alternatives concerning the population
mean µ.
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5.3 Application of Statistical Decision Rules

In order to actually perform the statistical test we must establish the degree
of α-risk (risk of erroneously rejecting the null hypothesis) we are willing to
bear. We must also make sure we are satisfied with the level of µ at which
the α-risk is to be controlled—that is, with the level at which we set µ0. In
the example of the diagnostic product, we need not have set the level of µ at
which the α-risk is to be controlled at 5. We could have been safer (in the
case where the most costly error is to incorrectly conclude that the mean
number of orders from the population of physicians is greater than 5 when
it is in fact less than or equal to 5) to control the α-risk at µ0 = 5.5. At
any given level of α-risk chosen this would have been a more stringent test
than setting µ0 at 5. We also have to establish the probability distribution
of the standardised random variable (X̄ − µ)/sx̄. If the sample size is large,
the Central Limit Theorem tells us that it will be approximately normally
distributed. If the sample size is small and the probability distribution of
the population values Xi around µ is not too different from the normal
distribution, (X̄ − µ)/sx̄ will follow a t-distribution.

Suppose an airline takes a random sample of 100 days’ reservation records
which yields a mean number of no-shows on the daily flight to New York
City of 1.5 and a value of s equal to 1.185. The resulting value of sx̄ is
1.185/

√
100 = 1.185/10 = .1185. The airline knows from extensive experi-

ence that the mean number of no-shows on other commuter flights is 1.32.
The airline wants to test whether the mean number of no-shows on the 4 PM
flight exceeds 1.32. We let H0 be the null hypothesis that the mean number
of no-shows is less than or equal to 1.320 and the alternative hypothesis
H1 be that the mean number of no shows exceeds 1.320. Notice that the
hypothesis is about the number of no-shows in the whole population of reser-
vations for the 4 PM flight to New York City. The airline wants to control
the α-risk at .05 when µ = 1.320. Since the sample is large

z =
X̄ − µ0

sx̄

is approximately standard normal. The sample results in a value of z equal
to

z∗ =
1.500− 1.320

.1185
= 1.519.

At an α-risk of .05 the critical value for z is 1.645 in a one-sided test. Thus,
since z∗ is less than the critical value we cannot reject the null hypothesis.
We accept H0 and reject H1 since the standardised value of the sample mean
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does not fall in the critical region. The probability of observing a sample
mean of 1.50 when the population mean is 1.320 is more than .05. This is an
example of a one-sided upper-tail test because the critical region lies in the
upper tail of the distribution. For an example of a one-sided lower-tail test
consider a situation where a customs department asks travellers returning
from abroad to declare the value of the goods they are bringing into the
country.

The authorities want to test whether the mean reporting error is negative—
that is, whether travellers cheat by underreporting. They set the null hy-
pothesis as H0: µ ≥ 0 and the alternative hypothesis as H1: µ < 0. A
random sample of 300 travellers yields X̄ = −$35.41 and s = $45.94. This
implies sx̄ = 45.94/17.32 = 2.652. The α-risk is to be controlled at µ0 = 0.
The sample size is again so large that the test statistic is distributed ap-
proximately as the standardised normal distribution. The sample yields a
value equal to

z∗ =
−35.41− 0

2.652
= −13.35.

The authorities want to control the α-risk at .001 so the critical value for
z is -3.090. Since z∗ is well within the critical region we can reject the null
hypothesis H0 that the mean reporting error is non-negative and accept the
alternative hypothesis that it is negative. In fact, the observed sample mean
is 13.35 standard deviations below the hypothesized population mean of zero
while the critical value is only 3.090 standard deviations below zero. Note
that the α-risk is only approximately .001 because z is only approximately
normally distributed.

Now let us take an example of a two-sided test. Suppose that a random
sample of 11 children out of a large group attending a particular camp are
given a standard intelligence test. It is known that children of that age
have mean scores of 100 on this particular test. The camp organizers want
to know whether or not the children attending the camp are on average
equal in intelligence to those in the population as a whole. Note that the
relevant population here from which the sample is drawn is the entire group
of children attending the camp. The sample mean score was X̄ = 110 and
s was equal to 8.8, resulting in a value for sx̄ of 8.8/3.62 = 2.65. Since the
concern is about possible differences in intelligence in either direction the
appropriate test is a two-tailed test of the null hypothesis H0: µ = µ0 = 100
against the alternative hypothesis H1: µ ̸= µ0 = 100. With a small sample
size, under the assumption that the distribution of the population is not too
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far from normal,
X̄ − µ

sx̄

will be distributed according to the t-distribution with 10 degrees of freedom.
Suppose that the organizers of the camp want to control the α-risk at .05 at
a value of µ0 = 100. Since the test is a two-tailed test the critical region has
two parts, one at each end of the distribution, each containing probability
weight α/2 = .025 (the two together must have probability weight .05). This
two-part region will contain those t-values greater than 2.228 and less than
-2.228. The value of t that arises from the sample,

t∗ =
110− 100

2.65
= 3.77

clearly lies in the upper part of the critical region so that the null hypothesis
that the intelligence level of the children in the camp is the same as that of
those in the population as a whole must be rejected.

The decision rules for tests of µ can be shown in Figure 5.2. In the upper
panel, which illustrates a one-sided upper-tail test, α is the probability that
X̄ will fall in the critical region if µ ≤ µ0. The area 1− α is the probability
that X̄ will fall in the acceptance region. If X̄ in fact falls in the rejection
region, the probability will be less than α of observing that value, given the
sample size, if µ is really less than or equal to µ0. The center panel does the
same thing for a one-sided lower-tail test. Here, X̄ must fall below A for the
null hypothesis to be rejected. The bottom panel presents an illustration of
a two-sided test. The null hypothesis is rejected if X̄ falls either below A1

or above A2. The probability of rejecting the null hypothesis if µ = µ0 is
equal to α/2 + α/2 = α. We reject the null hypothesis if the probability of
observing a sample mean as extreme as the one we obtain conditional upon
µ = µ0 is less than α.

5.4 P–Values

In the statistical test involving the average intelligence of children at the
camp the value of z that resulted from the sample was 3.77 whereas the
critical value was ±2.228. The probability of obtaining this sample from a
population of children having mean intelligence of 100 is less than .05. An
appropriate question is: What is the probability of observing a sample mean
as extreme as the one observed if the mean intelligence of the population
of children at the camp is 100? Or, to put it another way, what level of
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α-risk would have had to be selected for a borderline rejection of the null
hypothesis? This probability is called the P–value. Formally, the P–value of
a statistical test for µ is the probability that, if µ = µ0, the standardised test
statistic z might have been more extreme in the direction of the rejection
region than was actually observed.

In the case of the children’s intelligence, α/2 would have had to be about
.00275 for t = 3.77 to pass into the right rejection region of the t-distribution.
Since the test is a two-sided one, the α-risk will be two times .00275 or .0055.
The P–value is thus .0055 or somewhat more than half of one percent.

In the case of the customs department example, the value of z of roughly
-13 is so far beyond the critical value of -2.28 that the α-risk required to get
us to borderline reject the null hypothesis would be miniscule. Note that
in this case there is only one critical region because the test is a one-tailed
test, so we do not double the probability weight in that region to obtain the
P–value.

The case of the no-shows on the commuter flight to New York City is
more interesting because the value of z obtained from the sample is slightly
less than the critical value of 1.645 when the α-risk is set at .05. The
associated P–value equals

P (X̄ > 1.50|µ = 1.32) = P (z > 1.519) = .0643.

There is a bit better than a 6 percent chance that we could have as many
no-shows in a sample of 100 if the true mean number of no-shows on the 4
PM flight is 1.32, the mean number of no-shows on all flights.

In Figure 5.2 the P–Value would be the area to the right of our actual
sample mean in the upper panel, the area to the left of our actual sample
mean in the middle panel, and twice the smaller of the areas to the right or
left of the actual sample mean in the lower panel.

5.5 Tests of Hypotheses about Population
Proportions

When the population parameter of interest is a proportion p and the sample
size is large enough to permit a normal approximation to the relevant bino-
mial distribution, the above results go through with little modification apart
from the calculation of the standard deviation of the sample proportion p̄. It
was shown in equation (4.5) of the previous chapter that the p̄ has variance

Var{p̄} =
p (1− p)

n
,



5.6. POWER OF TEST 143

and standard deviation

sp̄ =

√
p (1− p)

n
.

For example, consider a situation where the proportion of workers who are
chronically ill in a particular region is known to be .11, and a random sam-
ple of 1000 workers in one of the many industries in that region yields a
sample proportion of chronically ill equal to .153. We want to test whether
the population of workers in that particular industry contains a higher pro-
portion of chronically ill than the proportion of chronically ill in the entire
region. Since the worst possible error would be to erroneously conclude that
the proportion of chronically ill workers in the industry is bigger than the
proportion in the region, we let the null hypothesis be H0: p ≤ .11 and
the alternative hypothesis be H1: p > .11. If the null hypothesis is true
the standard deviation of p̄ will equal

√
(.11)(1− .11)/1000 = .009894. The

value of the test statistic then becomes

z∗ =
p̄− p

sp̄
=

.153− .110

.009894
= 4.35.

If we are willing to assume an α-risk of .01 in this one-sided upper-tail test
the critical value of z would be 2.326. Since the sample statistic exceeds the
critical value we reject the null hypothesis that the proportion of chronically
ill workers in the industry is the same as or less than the proportion of
chronically ill workers in the entire region.

5.6 Power of Test

Our decision rules for tests of µ have been set up to control the α-risk of the
test when µ = µ0. But we should not be indifferent about the β-risk—i.e.,
the risk of rejecting the alternative hypothesis when it is true. Tests that
have a high risk of failing to accept the alternative hypothesis when it is
true are said to have low power. So we now pose the question: How big is
the β-risk?

Let us consider this question with in the framework of a practical prob-
lem. Suppose that the country-wide mean salary of members of a profes-
sional association is known to be $55.5 thousand. A survey of 100 members
of one of the provincial branches of the association found a mean salary in
that province of X̄ = $62.1 thousand with s = $24.9 thousand, yielding
sx̄ = 24.9/10 = $2.49 thousand. We want to determine whether the mean
salary of members in the province in question exceeds the known mean
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salary of members country-wide. Let us set the α-risk at .05, controlled at
µ0 = 55.5. The critical value of z is 1.645, yielding a value for A of

A = µ+ z(1− α)sx̄ = µ+ z(.95)(2.49) = 55.5 + (1.645)(2.49) = 59.5965.

The sample statistic is 62.1, well above the critical value. The standardised
sample statistic is

z∗ =
62.1− 55.5

2.49
=

6.6

2.49
= 2.65

which is, of course, well above 1.645. The P–Value of the sample statistic is

P (X̄ ≥ 62.1) = P (z∗ ≥ 2.65) = (1− P (z∗ < 2.65)) = 1− .996 = .004.

While the α-risk is .05 controlled at µ0 = 55.5, the β-risk will depend on
where µ actually is. Suppose that µ is actually an infinitesimal amount above
55. The null hypothesis is then false and the alternative hypothesis is true.
Given our critical value A, however, there is almost a .05 probability that we
will reject the null hypothesis and accept the alternative hypothesis. This
means that the probability we will reject the alternative hypothesis when it
is in fact true—the β-risk—is very close to .95.

Now suppose that µ is actually 57.1. The true distribution of X̄ is then
centered on µ = 57.1 in the second panel from the top in Figure 5.3. About
16.1% of the distribution will now lie above the critical value A, so the
probability that we will reject the null hypothesis is .16. This probability is
called the rejection probability or the power of test. The probability that we
will reject the alternative hypothesis is now 1 - .16 = .84. This probability—
the probability of rejecting the alternative hypothesis when it is true—is the
β-risk.

Suppose, instead, that µ is actually 59.6. As can be seen from the second
panel from the bottom of Figure 5.3 this implies that the distribution of the
test statistic is centered around the critical value A. The probability that
we will reject the null hypothesis and accept the alternative hypothesis (i.e.,
the rejection probability or the power of test) is now .5. And the β-risk is
also .5 (unity minus the rejection probability).

Finally, suppose that µ is actually 64.5. The distribution of the test
statistic will now be centered around this value and, as can be seen from the
bottom panel of Figure 5.3, .975 of that distribution now lies in the rejection
region. The power of test is now .975 and the β-risk equals (1 - .975) = .025.

So the higher the actual value of µ the greater is the power of test and
the lower is the β-risk. This can be seen from Figure 5.4. The curve in
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that figure is called the power curve. The distance of that curve from the
horizontal axis gives for each true value of µ the rejection probability or
power of test. And the distance of the curve at each value of µ from the
horizontal line at the top of the figure associated with a rejection probability
of unity gives the β-risk.

The problem is, of course, that we do not know the actual value of µ (if
we did, the test would be unnecessary). We thus have to choose the value
of µ that we want to use to control for the β-risk. If we choose µ = 64.5 as
that value we can say that the power of test is .975 at µ equal to 64.5.

It can easily be seen from Figure 5.3 that the higher the value we set
for the α-risk, the lower will be the β-risk at every value of µ we could set
to control for the β-risk. A higher level of α will result in a critical value A
closer to µ0. The further to the left is the vertical line A, the bigger will be
the power of test and the smaller will be the β-risk at every control value
for µ.

The above illustration of the power of test is for one-sided upper-tail
tests. For one-sided lower-tail tests the analysis is essentially the same except
that A is now on the opposite side of µ0. To portray the results graphically,



5.6. POWER OF TEST 147

0

0.2

0.4

0.6

0.8

1

µ
µ

0
a

A A1 2

Figure 5.5: Two-sided Rejection probabilities.

simply use the mirror images of the panels in figures 5.3 and 5.4. In the
case of two-sided tests the situation is a bit more complicated. The power
curve now has two branches as can be seen in Figure 5.5. For any given
level of µ selected to control for the β-risk the power of test will be the sum
of the areas of the distribution of the sample statistic, now centered around
that value of µ, to the left and right of the fixed critical levels A1 and A2

respectively. As the control value of µ deviates significantly from µ0 in either
direction, however, only the tail of the distribution in that direction remains
relevant because the critical area on the other tail becomes miniscule. The
power of test for hypotheses about population proportions is determined in
exactly the same manner as above, except that the controls for the α-risk
and β-risk are values of p instead of values of µ.
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5.7 Planning the Sample Size to Control Both the
α and β Risks

We have shown above that the lower the α-risk, the higher will be the β-risk
at every level of µ at which the β-risk can be controlled. And the higher
that control value of µ the greater will be the power of test.

To simultaneously control both the α-risk and the β-risk we have to
choose an appropriate sample size. To choose the appropriate sample size
(which must in any case be reasonably large and a small fraction of the size
of the population) we must specify three things. We must specify the value
µ0 at which the α-risk is to be controlled, the value of µ, call it µa, at which
the β-risk is to be controlled, and the planning value of σ.

A = 25µ 0aµ

βα

= 24.9

A

αβ

pp = .03 = .070 a

= .05

.

= .01

Figure 5.6: Selection of optimal sample size in butter purchase agreement
problem (top) and tile shipment problem (bottom).

As a practical example, consider a purchase agreement between an aid
agency and a group of producers of agricultural products. The agreement
stipulates a price per 25-kilogram box of butter, but it is in the shipping
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company’s interest to make the boxes light. A sample is to be taken from
each shipment by an independent inspection group to test whether the mean
weight of butter per box is 25 kilograms. The seller does not want shipments
rejected if the mean weight of butter per box is equal to or above 25 kilo-
grams. The agreement thus specifies that null-hypothesis be H0: µ ≥ 25,
making the alternative hypothesis H1: µ < 25. The α-risk of rejecting a
shipment when mean weight of the shipment is at least 25 kilograms is set
at .05. At the same time, the company purchasing the butter is interested in
the boxes not being too underweight. So the agreement also stipulates that
there be no more than a five percent chance that a shipment will be accepted
if it contains less than 24.9 kilograms per box of butter. This controls the
β-risk of erroneously rejecting the alternative hypothesis at .05 for a value
of µ = µa = 24.9. The problem then is to choose a sample size such that
the examination process will control the α-risk at .05 when µ = 25 and the
β-risk at .05 when µ = 24.9. The buyer and seller agree to adopt a planning
value of σ equal to .2. The analysis can be illustrated with reference to the
upper panel of Figure 5.6. Let the as yet to be determined critical value for
rejection of a shipment be A. The standardised difference between µ0 and
A must equal

z0 =
µ0 −A

σ/
√
n

=
25−A

.2/
√
n

= 1.645

and the standardised difference between A and µa must equal

z1 =
A− µa

σ/
√
n

=
A− 24.9

.2/
√
n

= 1.645.

These expressions can be rewritten as

25−A = (1.645)(.2/
√
n)

and

A− 24.9 = (1.645)(.2/
√
n).

Adding them together yields

25− 24.9 = .1 = (2)(1.645)(.2/
√
n) = (3.29)(.2)/

√
n)

which implies that

n = (
√
n)2 =

(
(.2)(3.29)

.1

)2

= 43.3.
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A sample size of 44 will do the trick. The critical value A will equal

25− 1.645
.2√
44

= 25− (1.645)(.0301) = 25− .05 = 24.95.

Consider another example where a purchaser of a large shipment of tiles
wishes to control the β-risk of accepting the shipment at .01 when the pro-
portion of tiles that are damaged is p = .07 while the vendor wishes to
control the α-risk of having the shipment rejected at .025 when the pro-
portion of damaged tiles is .03. A random sample of tiles will be selected
from the shipment by the purchaser on the basis of which a decision will be
made to accept (H0: p ≤ .03) or reject (H1: p > .03) the shipment. We
need to find the sample size sufficient to meet the requirements of both the
purchaser and vendor. The analysis can be conducted with reference to the
bottom panel of Figure 5.6. The standardised distance between the as yet
to be determined critical value A and p = .03 must be

z0 =
A− .03

σp̄0
=

A− .03√
(.03)(.97)/n

= 1.96

and the standardised difference between .07 and A must be

z1 =
.07−A

σp̄1
=

.07−A√
(.07)(.93)/n

= 2.326.

Note that we use the values of p at which the α-risk and β-risk are being
controlled to obtain the relevant values of σp̄ for standardizing their differ-
ences from the critical value A. Multiplying both of the above equations by√
n and then adding them, we obtain

(.04)
√
n = (1.96)

√
(.03)(.97) + (2.326)

√
(.07)(.93)

which yields

n =

(
(1.96)

√
(.03)(.97) + (2.326)

√
(.07)(.93)

.04

)2

= 538.

The critical value A will then equal

A = .03 + z0 σp̄0 = .03 + 1.96
√
(.03)(.97)/538 = .0444.
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5.8 Exercises

1. It is desired to test H0: µ ≥ 50 against H1: µ < 50 with a significance
level α = .05. The population in question is normally distributed with
known standard deviation σ = 12. A random sample of n = 16 is drawn
from the population.

a) Describe the sampling distribution of X̄, given that µ = 50.

b) If µ is actually equal to 47, what is the probability that the hypothesis
test will lead to a Type II error. (.74059)

c) What is the power of this test for detecting the alternative hypothesis
Ha: µ = 44? (.5213)

2. A sales analyst in a firm producing auto parts laboriously determined,
from a study of all sales invoices for the previous fiscal year, that the mean
profit contribution per invoice was $16.50. For the current fiscal year, the
analyst selected a random sample of 25 sales invoices to test whether the
mean profit contribution this year had changed from $16.50 (H1) or not
(H0). The sample of 25 invoices yielded the following results for the invoice
profit contributions: X̄ = $17.14, s = $18.80. The α risk is to be controlled
at 0.05 when µ = 16.50.

a) Conduct the test. State the alternatives, the decision rule, the value
of the standardised test statistic, and the conclusion.

b) What constitute Type I and Type II errors here? Given the conclusion
above, is it possible that a Type I error has been made in this test? Is
a Type II error possible here? Explain.

3. In a tasting session, a random sample of 100 subjects from a target
consumer population tasted a food item, and each subject individually gave
it a rating from 1 (very poor) to 10 (very good). It is desired to test H0:
µ ≤ 6.0 vs. H1: µ > 6.0, where µ denotes the mean rating for the food item
in the target population. A computer analysis of the sample results showed
that the one-sided P–value of the test is .0068.

a) Does the sample mean lie above or below µ0 = 6.0?

b) What must be the value of value of z generated by the sample? (2.47)
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c) The sample standard deviation is s = 2.16. What must be the sample
mean X̄? (6.5332)

d) Does the magnitude of the P–value indicate that the sample results
are inconsistent with conclusion H0? Explain.

4. The developer of a decision-support software package wishes to test
whether users consider a colour graphics enhancement to be beneficial, on
balance, given its list price of $800. A random sample of 100 users of the
package will be invited to try out the enhancement and rate it on a scale
ranging from -5 (completely useless) to 5 (very beneficial). The test alterna-
tives are H0: µ ≤ 0, H1: µ > 0, where µ denotes the mean rating of users.
The α risk of the test is to be controlled at 0.01 when µ = 0. The standard
deviation of users’ ratings is σ = 1.3.

a) Show the decision rule for X̄ relevant for this test.

b) Calculate the rejection probabilities at µ = 0, 0.5, 1.0 and 1.5 for the
decision rule above.

c) Sketch the rejection probability curve for the decision rule you selected
above.

d) What is the incorrect conclusion when µ = 0.60? What is the proba-
bility that the above decision rule will lead to the incorrect conclusion
when µ = .60? Is the probability an α or β risk?

5. “Take the Pepsi Challenge” was a marketing campaign used by the Pepsi-
Cola Company. Coca Cola drinkers participated in a blind taste test where
they were asked to taste unmarked cups of Pepsi and Coke and were asked
to select their favourite. In one Pepsi television commercial the announcer
states that “in recent blind taste tests more than half the Diet Coke drinkers
surveyed said they preferred the taste of Pepsi.” (Consumer’s Research,
May 1993). Suppose that 100 Coke drinkers took the Pepsi challenge and
56 preferred the taste of Diet Pepsi. Does this indicate that more than half
of all Coke drinkers prefer the taste of Pepsi?

6. A salary survey conducted on behalf of the Institute of Management
Accountants and the publication Management Accounting revealed that the
average salary for all members of the Institute was $56,391. A random
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sample of 122 members from New York were questioned and found to have a
mean salary of $62,770 and a standard deviation of s = $28972 (Management
Accounting, June 1995).

a) Assume that the national mean is known with certainty. Do the sample
data provide sufficient evidence to conclude that the true mean salary
of Institute members in New York is higher than the National Average?

b) Suppose the true mean salary for all New York members is $66,391.
What is the power of your test above to detect this $10,000 difference?

7. One of the most pressing problems in high-technology industries is
computer-security. Computer security is typically achieved by a password—
a collection of symbols (usually letters and numbers) that must be supplied
by the user before the computer system permits access to the account. The
problem is that persistent hackers can create programs that enter millions
of combinations of symbols into a target system until the correct password
is found. The newest systems solve this problem by requiring authorized
users to identify themselves by unique body characteristics. For example,
system developed by Palmguard, Inc. tests the hypothesis

H0: The proposed user is authorized

versus

H1: The proposed user is unauthorized.

by checking characteristics of the proposed user’s palm against those stored
in the authorized users’ data bank (Omni, 1984 ).

a) Define a Type I error and a Type II error for this test. Which is the
more serious error? Why?

b) Palmguard reports that the Type I error rate for its system is less than
1% where as the Type II error rate is .00025%. Interpret these error
rates.

c) Another successful security system, the EyeDentifyer, “spots autho-
rized computer users by reading the one-of-a-kind patterns formed by
the network of minute blood vessels across the retina at the back of
the eye.” The EyeDentifier reports Type I and Type II error rates of
.01% (1 in 10,000) and .005% (5 in 100,000), respectively. Interpret
these rates.
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8. Under what circumstances should one use the t-distribution in testing
an hypothesis about a population mean? For each of the following rejection
regions, sketch the sampling distribution of t, and indicate the location of
the rejection region on your sketch:

a) t > 1.440 where v = 6.

b) t < −1.782 where v = 12.

c) t < −2.060 or t > 2.060 where v = 25.

9. Periodic assessment of stress in paved highways is important to maintain-
ing safe roads. The Mississippi Department of Transportation recently col-
lected data on number of cracks (called crack intensity) in an undivided two-
lane highway using van-mounted state-of-the-art video technology (Journal
of Infrastructure Systems, March 1995). The mean number of cracks found
in a sample of eight 5-meter sections of the highway was X̄ = .210, with
a variance of s2 = .011. Suppose that the American Association of State
Highway and Transportation Officials (AASHTO) recommends a maximum
mean crack intensity of .100 for safety purposes. Test the hypothesis that the
true mean crack intensity of the Mississippi highway exceeds the AASHTO
recommended maximum. Use α = .01.

10. Organochlorine pesticides (OCP’s) and polychlorinated biphenyls, the
familiar PCB’s, are highly toxic organic compounds that are often found in
fish. By law, the levels of OCP’s and PCB’s in fish are constantly moni-
tored, so it is important to be able to accurately measure the amounts of
these compounds in fish specimens. A new technique called matrix solid-
phase dispersion (MSPD) has been developed for chemically extracting trace
organic compounds from solids (Chromatographia, March 1995). The MSPD
method was tested as follows. Uncontaminated fish fillets were injected with
a known amount of OCP or PCB. The MSPD method was then used to ex-
tract the contaminant and the percentage of the toxic compound uncovered
was measured. The recovery percentages for n = 5 fish fillets injected with
the OCP Aldrin are listed below:

99 102 94 99 95

Do the data provide sufficient evidence to indicate that the mean recovery
percentage of Aldrin exceeds 85% using the new MSPD method? Set the
α-risk at .05.



Chapter 6

Inferences Based on Two
Samples

Frequently we want to use statistical techniques to compare two popula-
tions. For example, one might wish to compare the proportions of families
with incomes below the poverty line in two regions of the country. Or we
might want to determine whether electrical consumption in a community
has increased during the past decade.

6.1 Comparison of Two Population Means

Take two populations with means µ1 and µ2. The central limit theorem
tells us that sample means from these populations will be approximately
normally distributed for large samples.

Suppose we select independent random samples of n1 and n2, both rea-
sonably large, from the respective populations. We want to make inferences
about the difference µ2 − µ1 on the basis of the two samples.

From the statistical theory developed in Chapter 3 (section 3.6) we know
that

E{Ȳ − X̄} = E{Ȳ } − E{X̄} = µ2 − µ1

and, since the samples are independent,

σ2{Ȳ − X̄} = σ2{Ȳ }+ σ2{X̄}.

And it is natural to use

s2{Ȳ − X̄} = s2{Ȳ }+ s2{X̄}

155
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as an unbiased point estimator of σ2{Ȳ − X̄}.
We can proceed in the usual fashion to construct confidence intervals

and statistical tests. Suppose, for example, that a random sample of 200
households from a large community was selected to estimate the mean elec-
tricity use per household during February of last year and another simple
random sample of 250 households was selected, independently of the first,
to estimate mean electricity use during February of this year. The sample
results, expressed in kilowatt hours, were

Last Year This Year

n1 = 200 n2 = 250
X̄ = 1252 Ȳ = 1320
s1 = 157 s2 = 151

We want to construct a 99 percent confidence interval for µ2 − µ1.
An unbiased point estimate of µ2 − µ1 is

Ȳ − X̄ = 1320− 1252 = 68.

The standard error of the difference between the sample means is

s{Ȳ − X̄} =

√
s21
n1

+
s22
n2

=

√
1572

200
+

1512

250

=
√
123.45 + 91.20 = 14.64.

The 99 percent confidence interval will thus be

68± z(1− .01/2)(14.64) = 68± (2.576)(14.64)

or
30.29 ≤ µ2 − µ1 ≤ 105.71.

The fact that the above confidence interval does not include zero makes
it evident that a statistical test of the null hypothesis that µ2 − µ1 ≤ 0 is
likely to result in rejection of that null. To test whether the mean household
use of electricity increased from February of last year to February of this
year, controlling the α-risk at .005 when µ2 = µ1, we set

H0 : µ2 − µ1 ≤ 0

and
H1 : µ2 − µ1 > 0.
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The critical value of z is z(.995) = 2.576. From the sample,

z∗ =
68

14.64
= 4.645,

which is substantially above the critical value. The P -value is

P (z > 4.645) = 0000017004.

We conclude that per-household electricity consumption has increased over
the year.

6.2 Small Samples: Normal Populations With the
Same Variance

The above approach is appropriate only for large samples. In some cases
where samples are small (and also where they are large) it is reasonable to
assume that the two populations are normally distributed with the same
variance. In this case

E{Ȳ − X̄} = E{Ȳ } − E{X̄} = µ2 − µ1

as before but now

σ2{Ȳ − X̄} = σ2{Ȳ }+ σ2{X̄}.

=
σ2

n1
+

σ2

n2
= σ2

[
1

n1
+

1

n2

]
.

To calculate confidence intervals we need an estimator for σ2. It turns
out that the pooled or combined estimator

s2c =
(n1 − 1)s21 + (n2 − 1)s22
(n1 − 1) + (n2 − 1)

=
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(6.1)

is an unbiased estimator of σ2. We can thus use

s2{Ȳ − X̄} = s2c

[
1

n1
+

1

n2

]
as an unbiased estimator of σ2{Ȳ − X̄}.
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We proceed as usual in setting the confidence intervals except that, given
the small samples, the test statistic

(Ȳ − X̄)− (µ2 − µ1)

s{Ȳ − X̄}

is distributed as t(n1+n2−2)—that is, as a t-distribution with v = n1+n2−2
degrees of freedom.

By making the assumptions of normality and equal variance we can use
small samples whereas in the general case of the previous section the sample
sizes had to be large enough to justify approximate normality according to
the Central Limit Theorem.

Now consider an example. Suppose we wish to estimate the difference
in mean tread life for a certain make of automobile tire when it is inflated
to the standard pressure as compared to a higher-than-standard pressure
to improve gas mileage. Two independent random samples of 15 tires were
selected from the production line. The tires in sample 1 were inflated to
the standard pressure and the tires in sample 2 were inflated to the higher
pressure. Tread-life tests were conducted for all tires with the following
results, expressed in thousands of miles of tread life.

Standard Pressure Higher Pressure

n1 = 14 n2 = 15
X̄ = 43 Ȳ = 40.7
s1 = 1.1 s2 = 1.3

Because one tire in sample 1 turned out to be defective it was dropped from
that sample, reducing the sample size to 14.

Note that the respective populations here are the infinite populations
of tread lives of non-defective tires of the make tested when inflated to the
standard and higher pressures respectively. We suppose that on the basis of
other evidence it is reasonable to assume that both populations are normal
with the same variance.

So we have
Ȳ − X̄ = 40.7− 43.0 = −2.3

as an unbiased point estimate of µ2 − µ1. In addition, we have

s2c =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
=

(13)(1.1)2 + (14)(1.3)2

14 + 15− 2
= 1.45899,

so that

s2{Ȳ − X̄} = 1.45899

[
1

14
+

1

15

]
= (1.45899)(.0714 + .0667) = .2015,
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which implies that s{Ȳ − X̄} = .4488. The 95 percent confidence interval is
thus

−2.3± t(1− .05/2; 14 + 15− 2)(.4488) = −2.3± t(.975; 27)(.4488)

= −2.3± (2.052)(.4488) = −2.3± .9245.

Hence,

−3.2245 ≤ µ2 − µ1 ≤ −1.3755.

The mean life of non-defective tires inflated to the higher pressure is between
1.38 and 3.22 thousand miles less than that of non-defective tires inflated to
the standard pressure, with 95 percent confidence.

The result of a test of the null hypothesis that µ2 − µ1 > 0 is obvious
from the confidence interval above if we control the α-risk at .025 when
µ2 = µ1. The critical value for t is -2.060 while

t∗ =
−2.3

.4488
= −5.125.

The P -value is

P (t(27) < −5.125) = 0.00000050119.

We conclude that the tread life of tires inflated to the higher pressure is less
than that for tires inflated to the standard pressure.

6.3 Paired Difference Experiments

Suppose that we want to find the weight loss in a shipment of bananas during
transit. The procedures used above would suggest that we select and weigh a
random sample of banana bunches before loading and then select and weigh
another independent random sample of banana bunches after shipment and
unloading. The differences in the mean weights before and after could then
be used to make inferences about the weight loss during shipment. But there
is a better way of handling this problem.

The better way would be to select and weigh a random sample of banana
bunches before loading and then weigh the same bunch again after shipment
and unloading. We could use the mean difference between the ‘before’ and
‘after’ weights of the sample of banana bunches to make inferences about
the weight loss during shipping. It is important here that the sample of
banana bunches be treated in the same way during transit as the rest of
the shipment. To ensure that this is the case we would have to mark the
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selected bunches of bananas in a way that would identify them to us after
shipment but not to the people handling the shipping process. The shipping
company would therefore not be able to cover up weaknesses in its handling
of the shipment by giving the sample of banana bunches special treatment.
In this case we are using matched samples and making the inference on the
basis of paired differences.

By using paired differences we can take advantage of the fact that the
‘before’ and ‘after’ means are positively correlated—banana bunches which
were heavier than average before shipment will also tend to be heavier than
average after shipment. The covariance between the ‘before’ and ‘after’
weights is therefore positive so that the variance of the difference between
the ‘before’ and ‘after’ mean weights will be less than the variance of the dif-
ference between the mean weights of independently selected random samples
before and after shipment. That is,

σ2{Ȳ − X̄} = σ2{Ȳ }+ σ2{X̄} − 2σ{Ȳ X̄} < σ2{Ȳ }+ σ2{X̄}.

It is thus more efficient to work directly with the paired differences in
weights than with differences of mean weights. Indeed, if we select matched
samples it is inappropriate to use the procedures of the previous sections
because the matched samples are not independent of each other as required
by those procedures.

So we can set

Di = Yi −Xi

where Yi is the weight of the ith bunch before shipment and Xi is the weight
of that same bunch after shipment. We can then calculate

D̄ =

∑n
i=1Di

n

and

s2D =
n∑

i=1

(Di − D̄)2

n− 1

from whence

sD̄ =

√
s2D
n
.

Consider another example. Suppose that a municipality requires that
each residential property seized for non-payment of taxes be appraised in-
dependently by two licensed appraisers before it is sold. In the past 24
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months, appraisers Smith and Jones independently appraised 50 such prop-
erties. The difference in appraised values Di = Yi − Xi was calculated for
each sample property, where Xi and Yi denote Smith’s and Jones’ respec-
tive appraised values. The mean and standard deviation of the 50 differences
were (in thousands of dollars)

D̄ = 1.21

and
sD = 2.61

respectively. It thus follows that

sD̄ =
2.61√
50

=
2.61

7.07
= .3692.

The 95 percent confidence interval for the mean difference in appraised val-
ues for these two appraisers is

1.21± z(.975)(.3692) = 1.21± (1.96)(.3692) = 1.21± .724

which implies
.486 ≤ µD ≤ 1.934.

The confidence interval applies to the hypothetical population of differences
in appraised values given independently by Jones and Smith to properties
of a type represented by those in the sample, namely, properties seized for
non-payment of taxes.

Suppose that an observer who has not seen the sample suspects that
Jones’ appraised values tend to be higher on average than Smith’s. To test
whether this suspicion is true, setting the α-risk at .025 when µD = 0, we
set the null hypothesis

H0 : µD ≤ 0

and the alternative hypothesis

H1 : µD > 0.

The critical value of z is 1.96. The value of z given by the sample is

z∗ =
1.21

.3692
= 3.277.

We conclude that Jones’ appraised values are on average higher than Smith’s.
The result of this hypothesis test is obvious from the fact that the confidence
interval calculated above did not embrace zero.
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Note that in the above example we used the normal approximation be-
cause the sample size of 50 was quite large. Had the sample size been small,
say 8, we would have used the t-distribution, setting the critical value and
confidence limits according to t(.975; 7).

6.4 Comparison of Two Population Proportions

Inferences about two population proportions based on large samples can be
made in straight-forward fashion using the relationships

E{p̄2 − p̄1} = p2 − p1

and
σ2{p̄2 − p̄1} = σ2{p̄2}+ σ2{p̄1}

and approximating the latter using

s2{p̄2 − p̄1} = s2{p̄2}+ s2{p̄1},

where

s2{p̄i} =
p̄i(1− p̄i)

ni − 1
.

We use (ni − 1) in the denominator of the above expression for the same
reason that (n− 1) appears in the denominator of

s2 =
n∑

i=1

(Xi − X̄)2

n− 1
.

Now consider an example. A manufacturer of consumer products ob-
tains data on breakdowns of two makes of microwave ovens. In a sample of
n1 = 197 ovens of make 1 it is found that 53 broke down within 5 years of
manufacture, whereas in a sample of n2 = 290 ovens of make 2, only 38 ovens
broke down within 5 years of manufacture. Assume that the samples are
independent random samples from their respective populations. We want a
99 percent confidence interval for p2 − p1. We have

p̄2 − p̄1 =
38

290
− 53

197
= .13103− .26904 = −.1380

s2{p̄1} =
(.26904)(.73096)

196
= .00100335

s2{p̄2} =
(.13103)(.86897)

289
= .00039439
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s{p̄2 − p̄1} =
√
.00100335 + .00039439 = .0374.

The 99 percent confidence interval is

−.1380± z(.995)(.0374) = −.1380± (2.576)(.0374) = −.1380± .096

or
−.234 ≤ p2 − p1 ≤ −.042.

The percentage of units of make 1 that break down within 5 years of man-
ufacture is between 4.2 and 23.4 percentage points more than that of make
2, with 99 percent confidence.

Now we want to test whether the proportion breaking down within one
year for make 1 is larger than the proportion for make 2, controlling the
α-risk at .005 when p2 = p1. We set

H0 : p2 − p1 ≥ 0

and
H1 : p2 − p1 < 0.

The critical value of z is -2.576. To calculate z∗ we need an estimate of
σ{p̄2 − p̄1} when p2 = p1 = p. The appropriate procedure is to use a pooled
estimator of p to calculate an estimate of p̄. We simply take a weighted
average of p̄1 and p̄2 using the sample sizes as weights:

p̄ ′ =
n1p̄1 + n2p̄2
n1 + n2

.

We thus have

p̄ ′ =
(197)(.26904) + (290)(.13103)

197 + 290
= .185.

An appropriate estimator of σ2{p̄2 − p̄1} is thus

s2{p̄2 − p̄1} = p̄ ′(1− p̄ ′)

[
1

n1
+

1

n2

]
which yields

s{p̄2 − p̄1} =

√
(.185)(.815)

[
1

197
+

1

290

]
= .0378.

The resulting value of z∗ is thus

z∗ =
−.1380− 0

.0378
= −3.65.
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We conclude that the proportion of microwave ovens of make 1 breaking
down within 5 years of manufacture is greater than the proportion of mi-
crowave ovens of make 2 breaking down within 5 years of manufacture. The
P -value is

P (z < −3.65) = .00013112.

6.5 Exercises

1. Two random samples are independently drawn from two populations. A
two-tailed test is used to evaluate H0: µx = µy.

X Y

Sample size (n) 3 5
Mean 7.0 3.0
Variance 1.0 2.5

Find the lowest value of α at which the researcher will reject the null hy-
pothesis. (.015) What assumptions did the researcher have to make about
the populations to do this test?

2. The following describe the results of independent samples drawn from
different populations.

Sample 1 Sample 2

n1 = 159 n2 = 138
X̄1 = 7.4 X̄2 = 9.3
s1 = 6.3 s2 = 7.1

a) Conduct a test of the hypothesis H0: µ1 − µ2 ≥ 0 against the alterna-
tive H1: µ1 − µ2 < 0 with a significance level α = 0.10.

b) Determine the P -value for the test statistic of a) above.

3. A pharmaceutical company wishes to test whether a new drug that it
is developing is an effective treatment for acne (a facial skin disorder that
is particularly prevalent among teenagers). The company randomly selects
100 teenagers who are suffering from acne and randomly divides them into
two groups of 50 each. Members of Group 1 receive the drug each day while
members of Group 2 receive no medication. At the end of three months,
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members of both groups are examined and it is found that 27 of the teenagers
in Group 1 no longer have acne as compared with 19 of the teenagers in
Group 2 who no longer have acne. Using a significance level of α = 0.01,
set up and conduct a test of whether the drug is effective or not. Determine
the P -value for your test statistic. (.40675)

4. A public opinion research institute took independent samples of 500 males
and 500 females in a particular U.S. state, asking whether the respondents
favoured a particular constitutional amendment. It was found that 335 of
the males and 384 of the females were in favour of the amendment. Con-
struct a 90% confidence interval for difference between the proportions of
males and females favouring the amendment and test the hypothesis that
the proportions are the same.

5. A manufacturer of automobile shock absorbers was interested in com-
paring the durability of his shocks with that of the shocks of his biggest
competitor. To make the comparison, one of the manufacturer’s and one
of the competitor’s shocks were randomly selected and installed on the rear
wheels of each of six cars. After the cars had been driven 20,000 miles, the
strength of each test shock was measured, coded and recorded. The results
were as follows

Car Manufacturer’s Shock Competitor’s Shock

1 8.8 8.4
2 10.5 10.1
3 12.5 12.0
4 9.7 9.3
5 9.6 9.0
6 13.2 13.0

a) Do the data present sufficient evidence to conclude that there is a
difference in the mean strength of the two types of shocks after 20,000
miles of use?

b) Find the approximate observed significance level for the test and in-
terpret its value?

c) What assumptions did you make in reaching these conclusions.
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6. A sociologist is researching male attitudes toward women. For her study,
random samples of male students from the City of Toronto are interviewed
and their results are tabulated. Sample One was conducted in 1988 and
consisted of n1 = 100 boys aged 6 to 8. From this group, x1 = 90 subjects
indicated in their responses that “girls are ugly, girls have cooties, girls eat
worms and that all girls should just go away.” The researcher concluded
that a large proportion of young boys just don’t like girls. A second sample
conducted in 1998 consisting of n2 = 225 boys also aged 6 to 8. From this
group x2 = 180 subjects exhibited beliefs similar to those 90 boys in the first
sample. Using both samples, develop an hypothesis test to evaluate whether
the proportion of boys who don’t like girls has changed significantly over the
10 year period. When required, manage the α-risk at 5%. Provide a P -value
for the test. What does it say regarding attitudes?

7. You know from earlier studies that about 7% of all persons are left-
handed. You suspect that left-handedness is more prevalent among men
than among women and wish to use independent random samples to measure
the difference between the proportions of men and women who are left-
handed. You would like an 80% confidence interval for this difference to be
accurate within ±0.01.

a) How many persons should be included in your sample? (91)

b) Will the sample size determined in a) above be large enough to per-
mit a 95% confidence interval for the proportion of men who are left-
handed to be accurate to within ±0.01?

8. In an economics class of 100 students the term mark, T , for each student
is compared with his/her marks on two term texts, X1 and X2, with T =
X1 +X2. The summary statistics for the entire class were:

Mean Mark Standard Deviation

First Term Test 32.0 8.0
Second Term Test 36.0 6.0
Term Mark 68.0 12.0

a) Determine the values for the covariance and the correlation between
X1 and X2.
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b) Calculate the mean and standard deviation of the paired difference in
the marks between the first and second term tests.

c) Conduct a test as to whether students performed better on the first
term test than the second.
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Chapter 7

Inferences About Population
Variances and Tests of
Goodness of Fit and
Independence

In the last chapter we made inferences about whether two population means
or proportions differed based on samples from those populations. Integral in
all those tests and in the inferences in the previous chapters about population
means and population proportions was our use of the statistic

s2 =
n∑

i=1

(Xi − X̄)2

n− 1
(7.1)

as an unbiased point estimate of the population variance σ2. A natural next
step is to make inferences—set confidence intervals and test hypotheses—
about σ2 on the basis of the sample statistic s2.

7.1 Inferences About a Population Variance

To proceed we must know the sampling distribution of s2. This involves
the chi-square (χ2) distribution, the basis of which must now be explained.
Suppose we have a set of independent random draws from a variable

X1, X2, X3, . . . . . .

169
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which is normally distributed with population mean µ and variance σ2.
Consider this sequence in standardised form

Z1, Z2, Z3, . . . . . .

where, of course,

Zi =
Xi − µ

σ
.

Now square the Zi to obtain

Z2
i =

(Xi − µ)2

σ2
.

It turns out that the sum of n of these squared standardised independent
normal variates,

Z2
1 + Z2

2 + Z3
3 + . . .+ Z2

n,

is distributed as a chi-square distribution. We can thus write

n∑
i=1

Z2
i =

n∑
i=1

(Xi − µ)2

σ2
= χ2(n) (7.2)

where χ2(n) is a chi-square random variable—that is, a random variable dis-
tributed according to the chi-square distribution—with parameter n, which
equals the number of independent normal variates summed. This parameter
is typically referred to as the degrees of freedom. Notice now that

n∑
i=1

(Xi − X̄)2

σ2

differs from the expression above in that X̄ replaces µ in the numerator.
This expression is also distributed as χ2—indeed

n∑
i=1

Z2
i =

n∑
i=1

(Xi − X̄)2

σ2
= χ2(n− 1) (7.3)

where the parameter, the degrees of freedom, is now n− 1.
At this point is worth while to pay further attention to what we mean

by degrees of freedom. The degrees of freedom is the number of independent
pieces of information used in calculating a statistic. In the expression im-
mediately above, the n deviations of the Xi from their sample mean contain
only n − 1 independent pieces of information. The sample mean is con-
structed from the n sample values of Xi by summing the Xi and dividing by
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n. Accordingly, the sum of the deviations around this mean must be zero.
Hence, if we know any n − 1 of the n deviations around the mean we can
calculate the remaining deviation as simply the negative of the sum of the
n− 1 deviations. Hence, only n− 1 of the deviations are freely determined
in the sample. This is the basis of the term ‘degrees of freedom’. Even
though there are n deviations, only n− 1 of them produce independent sum
of squared deviations from the sample mean. This is in contrast to the sum
of squared deviations about the true mean µ, which contains n independent
pieces of information because µ is independent of all the sample observa-
tions. Information is not used up in calculating the population mean as it
is in calculating X̄. This is why the standardised sum of squared deviations
of the sample values about the true mean is distributed as χ2(n) whereas
the sum of squared deviations of the sample values from the sample mean,
standardised by the true variance σ2, is distributed as χ2(n− 1).

Figure 7.1: A chi-square distribution with 24 degrees of free-
dom. The thick vertical line shows the mean and the thin
vertical lines the critical values for α = .99.

Notice now that the expression for s2, given in equation (7.1) above, can
be rewritten

n∑
i=1

(Xi − X̄)2 = (n− 1) s2. (7.4)
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Substituting this into (7.3), we obtain

(n− 1) s2

σ2
= χ2(n− 1). (7.5)

The sampling distribution for this statistic is skewed to the right, with
the skew being smaller the greater the degrees of freedom. Figure 7.1 shows
a χ2 distribution with 24 degrees of freedom. The thick vertical line gives the
mean and the thin vertical lines the critical values for α = .99. The mean of
the χ2 distribution is the number of degrees of freedom, usually denoted by v
which in the above examples equals either n or n−1 or in Figure 7.1, 24. Its
variance is 2 v or twice the number of degrees of freedom. The percentiles of
the χ2 distribution (i.e., the fractions of the probability weight below given
values of χ2) for the family of chi-square distributions can be obtained from
the chi-square tables at the back of any standard textbook in statistics.1

Now let us look at an example. Suppose a sample of 25 mature trout
whose lengths have a standard deviation of 4.35 is taken from a commercial
fish hatchery. We want a confidence interval for the true population variance
σ2, based on the two statistics s2 = 18.9225 and n = 25. From a standard
chi-square table we obtain the values of the χ2 distribution with 24 degrees
of freedom below which and above which the probability weight is .005,

χ2(α/2;n− 1) = χ2(.005; 24) = 9.89

and

χ2(1− α/2;n− 1) = χ2(.995; 24) = 45.56.

These are indicated by the thin vertical lines in Figure 7.1. Substituting
these values into (7.5) after rearranging that expression to put σ2 on the
right-hand-side, we obtain

L =
24s2

χ2(.995; 24)
=

(24)(18.9225)

45.56
= 9.968

and

U =
24s2

χ2(.005; 24)
=

(24)(18.9225)

9.89
= 45.919

so that

9.968 ≤ σ2 ≤ 45.919.

1Or calculated using XlispStat or another statistical computer program.
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Now suppose we want to test whether the population variance of the
lengths of trout in this hatchery differs from σ2

0 = 16.32, an industry stan-
dard, controlling the α-risk at .01 when σ = 16.32. The null and alternative
hypothesis then are

H0 : σ
2 = 16.32

and

H1 : σ
2 ̸= 16.32.

From (7.5) the test statistic is

X =
(n− 1)s2

σ2
0

which we have shown to be distributed as χ2(n− 1). Its value is

X =
(24)(18.9225)

16.32
= 27.82

which can be compared the critical values 9.89 and 45.56 beyond which we
would reject the null hypothesis of no difference between the variance of the
lengths of trout in this hatchery and the industry standard. Clearly, the
test statistic falls in the acceptance region so that we cannot reject the null
hypothesis.

7.2 Comparisons of Two Population Variances

We are often interested in comparing the variability of two populations. For
example, consider a situation where two technicians have made measure-
ments of impurity levels in specimens from a standard solution. One tech-
nician measured 11 specimens and the other measured 9 specimens. Our
problem is to test whether or not the measurements of impurity levels have
the same variance for both technicians.

Suppose that we can assume that the technicians’ sets of measurements
are independent random samples from normal populations. The sample
results are s1 = 38.6 on the basis of the sample n1 = 11 for technician
number 1, and s2 = 21.7 on the basis of the sample n2 = 9 for technician
number 2.

To proceed further we need a statistic based on the two values of si and
ni that is distributed according to an analytically tractable distribution. It
turns out that the ratio of two chi-square variables, each divided by their
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Figure 7.2: An F -distribution with 10 degrees of freedom in
the numerator and 8 degrees of freedom in the denominator.
The thick vertical line shows the mean and the thin vertical
lines the critical values for α = .90.

respective degrees of freedom, is distributed according to the F-distribution.
In particular

χ2(v1)/v1
χ2(v2)/v2

= F (v1, v2) (7.6)

is distributed according to the F -distribution with parameters v1 and v2,
which are the degrees of freedom of the respective chi-square distributions—
v1 is referred to as the degrees of freedom in the numerator and v2 is the
degrees of freedom in the denominator. The mean and variance of the
F -distribution are

E{F (v1, v2)} =
v2

(v2 − 2)

when v2 > 2, and

σ2{F (v1, v2)} =
2 v22 (v1 + v2 − 2)

v1 (v2 − 2)2 (v2 − 4)

when v2 > 4. The probability density function for an F -distribution with
10 degrees of freedom in the numerator and 8 degrees of freedom in the
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denominator is plotted in Figure 7.2. The thick vertical line gives the
mean and the two thin vertical lines give the critical values for α = .90. The
percentiles for this distribution can be found in the F -tables at the back of
any textbook in statistics.2 These tables give only the percentiles above 50
percent. To obtain the percentiles below 50 percent we must utilize the fact
that the lower tail for the F -value

χ2(v1)/v1
χ2(v2)/v2

= F (v1, v2)

is the same as the upper tail for the F -value

χ2(v2)/v2
χ2(v1)/v1

= F (v2, v1).

This implies that

F (α/2; v1, v2) =
1

F (1− α/2; v2, v1)
.

Equation (7.5) can be written more generally as

v s2

σ2
= χ2(v) (7.7)

which implies that
s2

σ2
=

χ2(v)

v
.

This expression can be substituted appropriately into the numerator and
denominator of equation (7.6) to yield

s21/σ
2
1

s22/σ
2
2

= F (v1, v2) = F (n1 − 1, n2 − 1). (7.8)

To establish confidence intervals for the technician problem, we can manip-
ulate (7.8) to yield

σ2
2

σ2
1

= F (n1 − 1, n2 − 1)
s22
s21

= F (10, 8)
s22
s21

=
21.72

38.62
F (10, 8) =

470.89

1489.96
F (10, 8) = .31604F (10, 8). (7.9)

2Or calculated using XlispStat or another statistical computer program.
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To calculate a 90 percent confidence interval we find the values of F (10, 8)
at α/2 = .05 and 1− α/2 = .95. These are

F (.95; 10, 8) = 3.35

and

F (.05; 10, 8) =
1

F (.95; 8, 10)
=

1

3.07
= .3257

and are indicated by the thin vertical lines in Figure 7.2. The confidence
intervals are thus

L = (.3257)(.31604) = .1029

and

U − (3.35)(.31604) = 1.057

so that

.1029 ≤ σ2
2

σ2
1

≤ 1.057.

Note that this confidence interval is based on the assumption that the two
populations of measurements from which the sample variances are obtained
are normally distributed or approximately so.

Since the above confidence interval straddles 1.0, it is clear that there is
no indication that the variance of the measurements made by one technician
exceeds the variance of the measurements made by the other. Nevertheless,
we can test the hypothesis that the variances of the measurements of the
two technicians are the same. The null and alternative hypotheses are

H0 : σ
2
1 = σ2

2

and

H1 : σ
2
1 ̸= σ2

2.

We want to control the α-risk at 0.1 when σ2
1 = σ2

2. Imposing the equal
variance assumption on (7.8) we can extract the relationship

s21
s22

= F (n1 − 1, n2 − 1).

The statistic on the left of the equality,

s21
s22

=
38.62

21.72
=

1489.96

470.29
= 3.168
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is thus distributed as F (10, 8) and is greater than unity. We therefore need
only look at the upper critical value F (.95; 10, 8) = 3.35 to see that the
statistic falls in the acceptance region. We cannot reject the null hypothesis
that the variances of the measurements of the two technicians are the same.
When performing this test it is always easiest to manipulate the expression
to put the largest variance in the numerator and thereby ensure that the
sample statistic is bigger than unity. The decision to accept or reject the null
hypothesis can then be made on the basis of the easy-to-calculate rejection
region in the upper tail of the F -distribution.

7.3 Chi-Square Tests of Goodness of Fit

Statistical tests frequently require that the underlying populations be dis-
tributed in accordance with a particular distribution. Our tests of the equal-
ity of variances above required, for example, that both the populations in-
volved be normally distributed. Indeed, any tests involving the chi-square
or F -distributions require normally distributed populations. A rough way
to determine whether a particular population is normally distributed is to
examine the frequency distribution of a large sample from the population
to see if it has the characteristic shape of a normal distribution. A more
precise determination can be made by using a chi-square test on a sample
from the population.

Consider, for example, the reported average daily per patient costs for a
random sample of 50 hospitals in a particular jurisdiction. These costs were

257 274 319 282 253
315 313 368 306 230
327 267 318 326 255
392 312 265 249 276
318 272 235 241 309
305 254 271 287 258
342 257 252 282 267
308 245 252 318 331
384 276 341 289 249
309 286 268 335 278

with sample statistics X̄ = 290.46 and s = 38.21. We want to test whether
the reported average daily costs are normally distributed, controlling the
α-risk at .01. The null hypothesis is that they are normally distributed.
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The chi-square test is based on a comparison of the sample data with
the expected outcome if H0 is really true. If the hypothesized distribution
of the population was a discrete one, we could calculate the probability that
each population value Xi will occur and compare that probability with the
relative frequency of the population value in the sample. Since the normal
distribution is a continuous one, however, the probability that any particular
value Xi will occur is zero. So we must compare the probabilities that the
Xi could lie in particular intervals with the frequency with which the sample
values fall in those intervals.

The standard procedure is to select the intervals or classes to have equal
probabilities so that the expected frequencies in all classes will be equal.
Also, it is considered desirable to have as many classes as possible consistent
with the expected frequencies in the classes being no less than 5. In the above
example we therefore need 50/5 = 10 classes.

To obtain the class intervals we find the values of z in the table of
standardised normal values which divide the unit probability weight into
10 equal portions. These will be the z-values for which the cumulative
probability density is respectively .1, .2, .3, .4, .5, .6, .7, .8, and .9. The
values of X that fall on these dividing lines are thus obtained from the
relationship

z =
X − X̄

s

which can be rearranged as

X = s z + X̄ = 38.21 z + 290.46.

This gives us the intervals of z and X in the second and third columns of
the table below.

i z X fi Fi (fi − Fi)
2 (fi − Fi)

2/Fi

1 −∞ to -1.28 < 242 3 5 4 0.80
2 -1.28 to -0.84 242 to 258 11 5 36 7.20
3 -0.84 to -0.52 259 to 270 4 5 1 0.20
4 -0.52 to -0.25 271 to 280 6 5 1 0.20
5 -0.25 to -0.00 281 to 290 5 5 0 0.00
6 -0.00 to 0.25 291 to 300 0 5 25 5.00
7 0.25 to 0.52 301 to 310 5 5 0 0.00
8 0.52 to 0.84 311 to 322 7 5 4 0.80
9 0.84 to 1.28 323 to 339 4 5 1 0.20

10 1.28 to ∞ > 339 5 5 0 0.00

Total 50 50 14.40
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Column four gives the actual frequencies with which the sample observations
fall in the ith category and column five gives the theoretically expected fre-
quencies. The remaining two columns give the squared differences between
the actual and expected frequencies and those squared differences as propor-
tions of the expected frequencies. It turns out that the sum of the right-most
column is distributed as χ2 with 7 degrees of freedom. In general, when there
are k classes with equal expected frequencies Fi in all classes and observed
frequencies fi in the ith class,

k∑
k=1

(fi − Fi)
2

Fi

is distributed as χ2(k−m−1) wherem is the number of parameters estimated
from the sample data. As noted earlier in the definition of the chi-square
distribution, the expression (k−m−1) is the number of degrees of freedom.
The 10 squared relative deviations give us potentially 10 degrees of freedom,
but we have to subtract m = 2 because two parameters, X̄ and s were
estimated from the data, and a further degree of freedom because once we
know the frequencies in nine of the ten classes above we can calculate the
tenth frequency so only nine of the classes are independent. This leaves us
with 7 degrees of freedom.

If the fit were perfect—i.e., the average daily per patient hospital costs
were normally distributed—the total at the bottom of the right-most col-
umn in the table above would be zero. All the observed frequencies would
equal their expected values—i.e., five of the sample elements would fall in
each of the 10 classes. Clearly, the greater the deviations of the actual fre-
quencies from expected, the bigger will be the test statistic. The question
is then whether the value of the test statistic, 14.4, is large enough to have
probability of less than 1% of occurring on the basis of sampling error if
the true relative frequencies in the population equal the expected relative
frequencies when the population is normally distributed. The critical value
for χ2(.99; 7) is 18.48, which is substantially above 14.4, so we cannot reject
the null hypothesis that the population from which the sample was chosen
is normally distributed.

It is interesting to note that the residuals indicate very substantial devi-
ations from normality in two of the classes, 242–258 and 291–300 with the
squared deviations from expected frequencies being 36 in the first of these
classes and 25 in the second. We might be wise to examine more detailed
data for certain of the hospitals to determine whether any reasons for devi-
ations of these two specific magnitudes can be uncovered before we dismiss
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these observations as the result of sampling error. Finally, we should keep in
mind that in the above test there is only a 1 percent chance that we would
reject normality on the basis of sampling error alone if the population is in
fact normal. This means that there is up to a 99 percent probability that
we will accept normality if the population deviates from it—the β-risk is
very high and the power of test is low for small departures from normality.
Since it is usually crucial to our research conclusions that the population
be normal, the more serious risk would appear to be the risk of accepting
normality when it is not true rather than the risk of rejecting normality
when it is true. One would like to make H0 the hypothesis of non-normality
and see if the data will lead us to reject it. Unfortunately, this is not pos-
sible because there are infinitely many ways to characterize a situation of
non-normality. This suggests the importance of using large samples to make
these inferences.

7.4 One-Dimensional Count Data: The Multino-
mial Distribution

Consider a manufacturer of toothpaste who wants to compare the mar-
ketability of its own brand as compared to the two leading competitors, A
and B. The firm does a survey of the brand preferences of a random sample
of 150 consumers, asking them which of the three brands they prefer. The
results are presented in the table below.

Brand A Brand B Firm’s Own Brand

61 53 36

The firm wants to know whether these data indicate that the population of
all consumers have a preference for a particular brand.

Notice that the binomial distribution would provide the proper basis
for the statistical analysis required here had the question stated “Do you
prefer the firm’s own brand to its competitors? Yes or No?” Each person’s
answer—i.e., each random trial—will yield an outcome Xi = 1 if the answer
is ‘yes’ and Xi = 0 if it is ‘no’. If the answer of each consumer in the survey
is independent of the answer of all others, and if the probability that the
answer of a random person picked will be ‘yes’ is the same for any person
picked at random, then the total number of ‘yes’ answers,

X =
n∑

i=1

Xi
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will be distributed as a binomial distribution with parameters p and n. The
parameter p is the unknown probability that a person picked at random
from the population will say ‘yes’.

In the actual example above, the consumer surveyed has to choose be-
tween not two options (which would be a simple yes/no comparison) but
three—she can prefer either brand A, brand B, or the firm’s brand. Each
random trial has 3 outcomes instead of 2. There are now three probabilities,
p1, p2 and p3, the probabilities of selecting A, B, or the firm’s own brand,
which must sum to unity. And the firm is interested in the counts n1, n2

and n3 of consumers preferring the respective brands. This experiment is
a multinomial experiment with k, the number of possible outcomes of each
trial, equal to 3. The probabilities of observing various counts n1, n2 and
n3, given p1, p2 and p3, is a multinomial probability distribution. In the case
at hand, p1, p2 and p3 are unknown and we want to make an inference about
them on the basis of a sample n. The observed counts will be

n1 + n2 + n3 = n.

To decide whether the population of consumers prefers a particular
brand, we set up the null hypothesis of no preference and see if the data will
prompt us to reject it. The null hypothesis is thus

H0 : p1 = p2 = p3.

If the null-hypothesis is true we would expect an equal number of the sam-
pled consumers to choose each brand—that is

E{n1} = E{n2} = E{n3} =
n

3
= 50.

Notice the similarity of the problem here to the test of normality above.
We have three classes each with an expected frequency of 50 and an actual
frequency that differs from 50.

i fi Fi (fi − Fi)
2 (fi − Fi)

2/Fi

A 61 50 121 2.42
B 53 50 9 .18

Own Brand 36 50 196 3.92

Total 150 150 6.52

As in the normality test would expect

k∑
k=1

(fi − Fi)
2

Fi
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to be distributed as χ2(k−m−1). The number of classes here is k = 3, and
no parameters were estimated from the sample data so m = 0. The statistic
is thus distributed as χ2(3 − 1) = χ2(2). From the chi-square table at the
back of any textbook in statistics the critical value for χ2(2) for (α = .05)
will be found to be 5.99147. Since the total in the right-most column in the
table above is 6.52, we can reject the null hypothesis of no brand preference
when the α-risk is controlled at .05. The P -value of the statistic is .038.
Does this imply a positive or negative preference for the firm’s brand of
toothpaste as compared to brands A and B? We want now to test whether
consumers’ preferences for the firm’s own brand are greater or less than their
preferences for brands A and B. This problem is a binomial one—consumers
either prefer the firm’s brand or they don’t.

We can now use the techniques presented earlier—using a normal ap-
proximation to the binomial distribution—to set up a confidence interval
for the proportion of the population of consumers choosing the firm’s brand
of toothpaste. Our sample estimate of p, now the proportion preferring the
firm’s brand, is

p̄ =
36

150
= .24.

Using the results in section 9 of Chapter 4, the standard deviation of p̄ is

sp̄ =

√
p̄ (1− p̄)

n− 1
=

√
(.24)(.76)

149
=

√
.00122316 = .03497.

The 95 percent confidence interval for p is thus (using the critical value
z = 1.96 from the normal distribution table)

.24± (1.96)(.03497) = .24± .0685412,

or
.17 ≤ p ≤ .30984.

It is clear from this confidence interval that less than 1/3 of consumers prefer
the firm’s own brand of toothpaste, contrary to what one would expect
under the null hypothesis of no differences in consumer preference. Indeed,
we can test the hypothesis of no difference in preference between the firm’s
brand of toothpaste and other brands by setting up the null and alternative
hypotheses

H0 : p =
1

3

and

H1 : p ̸= 1

3
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and calculating

z∗ =
p̄− p

sp

where

sp =

√
p (1− p)

n
=

√
(13)(

2
3

150
=

√
.00148148148 = .03849.

Notice that we use the value of p under the null hypothesis here instead of
p̄. Thus we have

z∗ =
p̄− p

sp
=

.24− .333

.03849
=

.09333

.03849
= 2.42.

The critical value of z for a two-tailed test with α = .05 is 1.96. Clearly, we
are led to reject the null hypothesis of no difference in preference. Indeed
we could reject the null hypotheses that the population of consumers prefers
the firm’s brand to other brands with an α-risk of less than .01 because the
P -value for a one-tailed test is .00776.

7.5 Contingency Tables: Tests of Independence

In the multinomial distribution above the data were classified according
to a single criterion—the preferences of consumers for the three brands of
toothpaste. Now we turn to multinomial distributions involving data that
are classified according to more than one criterion.

Consider, for example, an economist who wants to determine if there is
a relationship between occupations of fathers and the occupations of their
sons. She interviewed 500 males selected at random to determine their
occupation and the occupation of their fathers. Occupations were divided
into four classes: professional/business, skilled, unskilled, and farmer. The
data are tabulated as follows:
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Occupation of Son
Prof/Bus Skilled Unskilled Farmer Total

Prof/Bus 55 38 7 0 100

Occupation Skilled 79 71 25 0 175
of

Father Unskilled 22 75 38 10 145

Farmer 15 23 10 32 80

Total 171 207 80 42 500

The problem the economist faces is to determine if this evidence supports
the hypothesis that sons’ occupations are related to their fathers’. We
can visualize there being a joint probability density function over all father-
occupation, son-occupation pairs giving the probability that each combina-
tion of father and son occupations will occur. Treated as a table of proba-
bilities, the above table would appear as

Occupation of Son
Prof/Bus Skilled Unskilled Farmer Total

Prof/Bus p11 p12 p13 p14 pr1

Occupation Skilled p21 p22 p23 p24 pr2
of

Father Unskilled p31 p32 p33 p34 pr3

Farmer p41 p42 p43 p44 pr4

Total pc1 pc2 pc3 pc4 1.00

where the probabilities along the right-most column pri are the marginal
probabilities of fathers’ occupations—i.e., the sum of the joint probabilities
pij in the ith row and jth column over the j columns—and the proba-
bilities along the bottom row pcj are the marginal probabilities of sons’
occupations—i.e., the sum of the joint probabilities pij over the i rows.

The count data, since they indicate the frequencies for each cell, can be
thought of as providing point estimates of these probabilities. The marginal
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probabilities along the bottom row and the right-most column are the cell
entries divided by 500 as shown in the table below. We know from the
definition of statistical independence that if events A and B are independent,

P (A|B) = P (A)

which implies that

P (A ∩B) = P (A|B)P (B) = P (A)P (B).

Hence the joint probabilities in each cell of the table below should equal the
product of the marginal probabilities for that particular row and column.
The joint probabilities under the null hypothesis that fathers’ occupations
and sons’ occupations are independent are as given below.

Occupation of Son
Prof/Bus Skilled Unskilled Farmer Total

Prof/Bus .0684 .0828 .0320 .0168 .20

Occupation Skilled .1197 .1449 .0560 .0294 .35
of

Father Unskilled .0992 .1201 .0464 .0244 .29

Farmer .0547 .0662 .0256 .0134 .16

Total .342 .414 .16 .084 1.00

This means that if the occupations of sons were independent of the occupa-
tions of their fathers the number or frequency of fathers and sons who were
both in the professional or business category would be the joint probability
of this outcome (.0684) times the number of sons sampled (500). Accord-
ingly, we can calculate the expected number or expected count in each cell
by multiplying the joint probability for that cell by 500. This yields the fol-
lowing table of actual and expected outcomes, with the expected outcomes
in brackets below the actual outcomes.
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Occupation of Son
Prof/Bus Skilled Unskilled Farmer Total

Prof/Bus 55 38 7 0 100
(34.2) (41.4) (16.0) (8.4)

Occupation Skilled 79 71 25 0 175
of (59.85) (72.45) (28.0) (14.7)

Father Unskilled 22 75 38 10 145
(49.6) (60.05) (23.2) (12.2)

Farmer 15 23 10 32 80
(27.34) (33.10) (12.8) (6.7)

Total 171 207 80 42 500

From this point the procedure is the same as in the test of normality.
The tabulation, working from left to right, row by row, is as follows:

Father–Son fi Fi (fi − Fi)
2 (fi − Fi)

2/Fi

Prof/Bus–Prof/Bus 55 34.20 432.64 12.65
Prof/Bus–Skilled 38 41.40 11.56 0.28

Prof/Bus–Unskilled 7 16.00 81.00 5.06
Prof/Bus–Farmer 0 8.40 70.56 8.40
Skilled–Prof/Bus 79 59.85 366.72 6.13

Skilled–Skilled 71 72.45 2.10 0.03
Skilled–Unskilled 25 28.00 9.00 0.32
Skilled–Farmer 0 14.70 216.09 14.70

Unskilled–Prof/Bus 22 49.60 761.76 15.35
Unskilled–Skilled 75 60.05 223.50 3.72

Unskilled–Unskilled 38 23.20 219.04 9.44
Unskilled–Farmer 10 12.20 4.84 0.40
Farmer–Prof/Bus 15 27.34 152.28 5.57

Farmer–Skilled 23 33.10 102.01 3.08
Farmer–Unskilled 10 12.80 7.84 0.61
Farmer–Farmer 32 6.70 640.09 95.54

Total 500 500.00 181.28

It turns out that the total sum of squared relative deviations from expected
values, represented by the number 181.28 at the bottom of the right-most
column,

k∑
k=1

(fi − Fi)
2

Fi
,
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Table 7.1: Percentage of Sons’ Occupations by Father’s Occupation

Father’s Occupation
Prof/Bus Skilled Unskilled Farmer Total

Prof/Bus 55 45 15 19 34

Son’s Skilled 38 41 52 29 42
Occupation

Unskilled 7 14 26 12 16

Farmer 0 0 7 40 8

Total 100 100 100 100 100

is distributed according to a chi-square distribution with degrees of freedom
equal to the product of the number of rows minus one and the number
of columns minus one—i.e., χ2((nr − 1)(nc − 1)), where nr and nc are,
respectively, the number of rows and columns in the contingency table. In
the case at hand, the total is distributed as χ2(9). The critical value for
α-risk = .01 from the chi-square table for 9 degrees of freedom is 21.6660.
Since the total in the right-most column of the table vastly exceeds that
critical value, we must reject the hypothesis of independence and conclude
that sons’ occupations depend on the occupations of their fathers.

The pattern of dependence can be seen more clearly when we take the
percentage of sons in each category of father’s occupation and compare them
with the overall percentage of sons in each occupation. This is done in the
table immediately above. Each column of the table gives the percentage
of sons of fathers in the occupation indicated at the top of that column
who are in the various occupations listed along the left margin of the table.
The right-most column gives the percentage of all sons in the respective
occupations.

If sons’ occupations were independent of their fathers’, 34 percent of the
sons in each father’s-occupation category would be in professional/business
occupations. As can be seen from the table, 55 percent of the sons of profes-
sional/business fathers and 45 percent of the sons of fathers in skilled trades
are in professional/business occupations. Yet only 15 and 19 percent, respec-
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tively, of sons of unskilled and farmer fathers work in the professions and
business. If sons’ occupations were unrelated to their fathers’ occupations,
42 percent would be in skilled occupations, regardless of the occupation of
the father. It turns out from the table that 52 percent of sons of unskilled
fathers are in skilled trades and less than 42 percent of the sons of fathers in
each of the other categories are skilled workers. Judging from this and from
the 45 percent of sons of skilled fathers who are in professional/business oc-
cupations, it would seem that the sons of skilled fathers tend either to move
up into the business/professional category or fall back into the unskilled cat-
egory, although the percentage of sons of skilled fathers who are also skilled
is only slightly below the percentage of all sons who are skilled. If there
were no occupational dependence between fathers and sons, 16 percent of
sons of unskilled fathers would also be in unskilled work. As we can see
from the table, 26 percent of the sons of unskilled workers are themselves
unskilled and less than 16 percent of the sons of unskilled fathers are in each
of the other three occupational categories. Finally, if the occupations of fa-
thers and their sons were statistically independent we would expect that 8
percent of the sons of farmers would be in each occupational category. In
fact, 40 percent of the sons of farmers are farmers, 7 percent of the sons of
unskilled fathers are farmers, and none of the sons of fathers in the skilled
and professional/business occupations are farmers.

The dependence of son’s occupation on father’s occupation can also be
seen from the table by drawing a wide diagonal band across the table from
top left to bottom right. The frequencies tend to be higher in this diagonal
band than outside it, although there are exceptions. This indicates that
sons’ occupations tend to be the same or similar to their fathers’. Sons’
occupations and the occupations of their fathers are statistically dependent.

7.6 Exercises

1. Independent random samples were selected from each of two normally
distributed populations. The sample results are summarized as follows:

Sample 1 Sample 2

n1 = 10 n2 = 23
X̄1 = 31.7 X̄2 = 37.4
s21 = 3.06 s22 = 7.60

Setting the α-risk at 0.05, test the null hypothesis H0: σ
2
1 = σ2

2 against the
alternative hypothesis H1: σ

2
1 ̸= σ2

2,
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2. A financial analyst is exploring the relationship between the return earned
by stocks and the return earned by bonds. For a period of n = 25 months,
the analyst records the return on a particular stock, denoted X, and the
return on a particular bond, denoted Y . The relevant sample statistics are
recorded below:

Monthly Returns Stock (X) Bond (Y )

Mean 1.5 1.2
Standard Deviation 1.0 0.8

Assume that X and Y are uncorrelated and perform hypotheses tests to
determine whether the two population variances are equal. Then perform a
test to determine whether the two population means are equal. How would
your answer change if it turned out that the sample correlation between X
and Y was rxy = −0.20.

3. A labour economist studied the durations of the most recent strikes in
the vehicles and construction industries to see whether strikes in the two
industries are equally difficult to settle. To achieve approximate normality
and equal variances, the economist worked with the logarithms (to the base
10) of the duration data (expressed in days). In the vehicle industry there
were 13 strikes having a mean log-duration of 0.593 and a standard deviation
of log-duration of 0.294. In the construction industry there were 15 strikes
with a mean log-duration was 0.973 and a standard deviation of log-duration
of 0.349. The economist believes that it is reasonable to treat the data as
constituting independent random samples.

a) Construct and interpret a 90 percent confidence interval for the differ-
ence in the mean log-durations of strikes in the two industries.

b) Test whether the strikes in the two industries have the same log-
durations, controlling the α risk at 0.10. State the alternatives, the
decision rule, the value of the test statistic and the conclusion.

c) Test the economist’s assumption that the log-durations of strikes in
the two industries have the same variance controlling the α risk at
0.10. State the alternatives, the decision rule, the value of the test
statistic and the conclusion.
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4. An industrial machine has a 1.5-meter hydraulic hose that ruptures occa-
sionally. The manufacturer has recorded the location of these ruptures for
25 ruptured hoses. These locations, measured in meters from the pump end
of the hose, are as follows:

1.32 1.07 1.37 1.19 0.13
1.14 1.21 1.16 1.43 0.97
0.33 1.36 0.64 1.42 1.12
1.46 1.27 0.27 0.80 0.08
1.46 1.37 0.75 0.38 1.22

Using the chi-square procedure, test whether the probability distribution of
the rupture locations is uniform with lowest value a = 0 and highest value
b = 1.5.

5. A city expressway utilizing four lanes in each direction was studied to
see whether drivers prefer to drive on the inside lanes. A total of 1000
automobiles was observed during the heavy early-morning traffic and their
respective lanes recorded. The results were as follows:

Lane Observed Count

1 294
2 276
3 238
4 192

Do these data present sufficient evidence to indicate that some lanes are
preferred over others? Use α = .05 in your test.

6. It has been estimated that employee absenteeism costs North American
companies more than $100 billion per year. As a first step in addressing the
rising cost of absenteeism, the personnel department of a large corporation
recorded the weekdays during which individuals in a sample of 362 absentees
were away from work over the past several months:

Number Absent

Monday 87
Tuesday 62
Wednesday 71
Thursday 68
Friday 74
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Do these data suggest that absenteeism is higher on some days of the week
than others?

7. The trustee of a company’s pension plan has solicited the opinions of a
sample of the company’s employees about a proposed revision of the plan.
A breakdown of the responses is shown in the accompanying table. Is there
evidence at the 10% level to infer that the responses differ among the three
groups of employees?

Blue-Collar White Collar Managers
Responses Workers Workers

For 67 32 11
Against 63 18 9

8. A study of the amount of violence viewed on television as it relates to
the age of the viewer showed the accompanying results for 81 people. Each
person in the study could be classified according to viewing habits as a
low-violence or high-violence viewer.

16–34 yrs. old 35–54 yrs. old 55 yrs. and over

Low Violence 8 12 21
High Violence 18 15 7

Do the data indicate that viewing of violence is not independent of age of
viewer at the 5% significance level?

9. To see if there was any dependency between the type of professional
job held and one’s religious affiliation, a random sample of 638 individuals
belonging to a national organization of doctors, lawyers and engineers were
chosen in a 1968 study. The results were as follows:

Doctors Lawyers Engineers

Protestant 64 110 152
Catholic 60 86 78
Jewish 57 21 10

Test at the 5 percent level of significance the hypothesis that the profession
of individuals in this organization and their religious affiliation are indepen-
dent. Repeat at the 1 percent level.



192 TESTS OF GOODNESS OF FIT AND INDEPENDENCE

10. To study the effect of fluoridated water supplies on tooth decay, two
communities of roughly the same socio-economic status were chosen. One
of these communities had fluoridated water while the other did not. Ran-
dom samples of 200 teenagers from both communities were chosen and the
numbers of cavities they had were determined. The results were as follows:

Cavities Fluoridated Town Nonfluoridated Town

0 154 133
1 20 18
2 14 21

3 or more 12 28

Do these data establish, at the 5 percent level of significance, that the num-
ber of dental cavities a person has is not independent of whether that per-
son’s water supply is fluoridated? What about at the 1% level?



Chapter 8

Simple Linear Regression

We now turn to the area of statistics that is most relevant to what economists
usually do—the analysis of relationships between variables. Here we will
concentrate entirely on linear relationships. For example, we might be in-
terested in the relationship between the quantity of money demanded and
the volume of transactions that people make as represented by the level
of money income. Or we might be interested in the relationship between
family expenditures on food and family income and family size. Regression
analysis is used to analyse and predict the relationship between the response
or dependent variable (money holdings and family expenditure on food in
the above examples) and one or more independent, explanatory, or predictor
variables. In the demand for money example the single independent variable
was the level of income; in the family food expenditure example, there were
two independent variables, family income and family size.

We must distinguish two types of relationships between variables. A
deterministic relationship exists if the value of Y is uniquely determined
when the value of X is specified—the relationship between the two variables
is exact. For example, we might have

Y = βX

where β is some constant such as 10. On the other hand, there may be a
relationship between two variables that involves some random component
or random error. This relationship is called a probabilistic or statistical
relationship. In this case we might have

Y = βX + ϵ

which can be viewed as a probabilistic model containing two components—a
deterministic component βX plus a random error ϵ. Figure 8.1 presents

193
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an example of a deterministic straight-line relationship between X and Y
along which all observed combinations of the two variables lie. An example
of a probabilistic relationship is given in Figure 8.2. There is a scatter
of observed combinations of X and Y around a straight-line functional or
deterministic relationship indicating errors in the fit that result from the
influence on Y of unknown factors in addition to X. For each level of X
there is a probability distribution of Y . And the means of these probability
distributions of Y vary in a systematic way with the level of X.

Figure 8.1: A functional or deterministic relationship
between two variables X and Y .

8.1 The Simple Linear Regression Model

When the statistical relationship is linear the regression model for the ob-
servation Yi takes the form

Yi = β0 + β1Xi + ϵi (8.1)

where the functional or deterministic relationship between the variables is
given by β0 + β1Xi and ϵi is the random scatter component. Yi is the
dependent variable for the ith observation, Xi is the independent variable
for the ith observation, assumed to be non-random, β0 and β1 are parameters
and the ϵi are the deviations of the Yi from their predicted levels based on
Xi, β0 and β1.
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Figure 8.2: An probabilistic or statistical relationship
between two variables X and Y .

The error term is assumed to have the following properties:

a) The ϵi are normally distributed.

b) The expected value of the error term, denoted by E{ϵi}, equals zero.

c) The variance of the ϵi is a constant, σ2.

d) The ϵi are statistically independent—that is, the covariance between
ϵi and ϵj is zero.

In other words,

ϵi = N(0, σ2).

This normality assumption for the ϵi is quite appropriate in many cases.
There are often many factors influencing Y other than the independent
variable (or, as we shall see later, variables) in the regression model. Insofar
as the effects of these variables are additive and tend to vary with a degree
of mutual independence, their mean (and their sum) will tend to normality
according to the central limit theorem when the number of these ‘missing’
factors is large. The distribution of the error term and the resulting levels
of Y at various levels of X is given in Figure 8.3.
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Figure 8.3: Simple regression of Y on X: The probability
distribution of Y given X.

Since the error term ϵi is a random variable, so is the dependent variable
Yi. The expected value of Yi equals

E{Yi} = E{β0 + β1Xi + ϵi}
= E{β0}+ E{β1Xi}+ E{ϵi}
= β0 + β1E{Xi}+ 0

= β0 + β1Xi (8.2)

where E{Xi} = Xi because these Xi are a series of pre-determined non-
random numbers. Equation (8.2), the underlying deterministic relationship
is called the regression function. It the line of means that relates the mean
of Y to the value of the independent variable X. The parameter β1 is the
slope of this line and β0 is its intercept.

The variance of Yi given Xi equals

Var{Yi|Xi} = Var{β0 + β1Xi + ϵi}
= Var{β0 + β1Xi}+ Var{ϵi}
= 0 + Var{ϵi} = σ2 (8.3)

where the regression function β0 + β1Xi is deterministic and therefore does
not vary. Thus the Yi have the same variability around their means at all
Xi.

Finally, since the ϵi are assumed to be independent for the various ob-
servations, so are the Yi conditional upon the Xi. Hence it follows that
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Yi = N(β0 + β1Xi, σ
2).

8.2 Point Estimation of the Regression
Parameters

Point estimates of β0 and β1 can be obtained using a number of alternative
estimators. The most common estimation method is the method of least
squares. This method involves choosing the estimated regression line so
that the sum of the squared deviations of Yi from the value predicted by
the line is minimized. Let us denote the deviations of Yi from the fitted
regression line by ei and our least-squares estimates of β0 and β1 by b0 and
b1 respectively. Then we have

Q =
n∑

i=1

e2i =
n∑

i=1

(Yi − b0 − b1Xi)
2 (8.4)

where Q is the sum of squared deviations of the Yi from the values predicted
by the line.

Figure 8.4: A least-squares fit minimizes the sum of the
squared vertical distances of the data-points from the least-
squares line.

The least-squares estimation procedure involves choosing b0 and b1, the
intercept and slope of the line, so as to minimize Q. This minimizes the sum
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of the squared lengths of the vertical lines in Figure 8.4. Expanding equaton
(8.4), we have

Q =
n∑

i=1

(Yi − b0 − b1Xi)
2

=
n∑

i=1

Y 2
i + n b 20 +

n∑
i=1

b 21X
2
i − 2 b0

n∑
i=1

Yi

−2 b1

n∑
i=1

YiXi + 2 b0b1

n∑
i=1

Xi (8.5)

To find the least squares minimizing values of b0 and b1 we differentiate Q
with respect to each of these parameters and set the resulting derivatives
equal to zero. This yields

∂Q

∂b0
= 2n b0 − 2

n∑
i=1

Yi + 2 b1

n∑
i=1

Xi = 0 (8.6)

∂Q

∂b1
= 2 b1

n∑
i=1

X2
i − 2

n∑
i=1

XiYi + 2 b0

n∑
i=1

Xi = 0 (8.7)

which simplify to
n∑

i=1

Yi = n b0 + b1

n∑
i=1

Xi (8.8)

n∑
i=1

XiYi = b0

n∑
i=1

Xi + b1

n∑
i=1

X2
i (8.9)

These two equations can now be solved simultaneously for b0 and b1. Di-
viding (8.8) by n, rearranging to put b0 on the left side and noting that∑

Xi = nX̄ and
∑

Yi = nȲ we obtain

b0 = Ȳ − b1X̄ (8.10)

Substituting this into (8.9), we obtain

n∑
i=1

XiYi = Ȳ
n∑

i=1

Xi − b1X̄
n∑

i=1

Xi + b1

n∑
i=1

X2
i , (8.11)

which can be rearranged to yield

n∑
i=1

XiYi − Ȳ
n∑

i=1

Xi = b1

[
n∑

i=1

X2
i − X̄

n∑
i=1

Xi

]
n∑

i=1

XiYi − n Ȳ X̄ = b1

[
n∑

i=1

X2
i − n X̄2

]
(8.12)
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By expansion it can be shown that

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) =
n∑

i=1

XiYi − n Ȳ X̄

and
n∑

i=1

(Xi − X̄)2 =
n∑

i=1

X2
i − n X̄2

so that by substitution into (8.12) we obtain

b1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
. (8.13)

This expression can be alternatively written as

b1 =

∑
xy

x2
(8.14)

where x = (Xi − X̄) and y = (Yi − Ȳ ) are the deviations of the variables
from their respective means and the summation is over i = 1 . . . n.

The least-squares estimators b0 and b1 are unbiased and, as can be seen
from (8.10) and (8.13), linearly dependent on the n sample values Yi. It
can be shown that least-squares estimators are more efficient—that is, have
lower variance—than all other possible unbiased estimators of β0 and β1 that
are linearly dependent on the Yi. It can also be shown that these desirable
properties do not depend upon the assumption that the ϵi are normally
distributed.

Estimators of β0 and β1 can also be developed using the method of maxi-
mum likelihood (under the assumption that the ϵi are normally distributed).
These estimators turn out to be identical with the least-squares estimators.

Calculation of the regression line is straight forward using (8.10) and
(8.14). The procedure is to

a) calculate the deviations of Xi and Yi from their respective means.

b) square the deviations of the Xi and sum them.

c) multiply the Xi deviations with the corresponding Yi deviations and
sum them.

d) plug these sums of squares and cross products into (8.14) to obtain b1,
and
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e) plug this value of b1 into (8.10) along with the means of the Xi and Yi
to obtain b0.

The regression function E{Y } = β0 + β1X is estimated as

Ŷ = b0 + b1X (8.15)

where Ŷ is referred to as the predicted value of Y . The mean response or
predicted value of Y when X takes some value Xh is

Ŷh = b0 + b1Xh.

The point estimate of E{Yh} is thus Ŷh, the value of the estimated regression
function when X = Xh.

8.3 The Properties of the Residuals

To make inferences (i.e., construct confidence intervals and do statistical
tests) in regression analysis we need to estimate the magnitude of the ran-
dom variation in Y . We measure the scatter of the observations around
the regression line by comparing the observed values Yi with the predicted
values associated with the corresponding Xi. The difference between the
observed and predicted values for the ith observation is the residual for that
observation. The residual for the ith observation is thus

ei = Yi − b0 − b1Xi.

Note that ei is the estimated residual while ϵi is the true residual or error
term which measures the deviations of Yi from its true mean E{Y }.

The least-squares residuals have the following properties.

a) They sum to zero —
∑

ei = 0.

b) The sum of the squared residuals
∑

e 2
i is a minimum—this follows

because the method of least squares minimizes Q.

c) The sum of the weighted residuals is zero when each residual is weighted
by the corresponding level of the independent variable —

∑
Xi ei = 0.

d) The sum of the weighted residuals is zero when each residual is weighted
by the corresponding fitted value —

∑
Ŷi ei = 0.
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8.4 The Variance of the Error Term

To conduct statistical inferences about the parameters of the regression we
are going to need an estimate of the variance of the error term. An obvious
way to proceed is to work with the sum of squared deviations of the observed
levels of Y from the predicted levels—i.e.,

n∑
i=1

(Yi − Ŷ )2 =
n∑

i=1

e2i .

It turns out that the mean or average of these squared deviations is the
appropriate estimator of σ2, provided we recognize that all n of of these
deviations are not independent. Since we used the sample data to estimate
two parameters, b0 and b1, we used up two of the n pieces of information
contained in the sample. Hence, there are only n − 2 independent squared
deviations—i.e., n− 2 degrees of freedom. Hence, in taking the average we
divide by n− 2 instead of n. An unbiased estimator of σ2 is

MSE =

∑n
i=1 e

2
i

n− 2
(8.16)

where MSE stands for mean square error. In general, a mean square is a
sum of squares divided by the degrees of freedom with which it is calculated.

8.5 The Coefficient of Determination

Consider the sum of the squared deviations of the Yi from their mean Ȳ ,
otherwise known as the total sum of squares and denoted by SSTO,

SSTO =
n∑

i=1

(Yi − Ȳ )2.

This total sum of squares can be broken down into components by adding
and subtracting Ŷ as follows:

SSTO =
n∑

i=1

(Yi − Ȳ )2

=
n∑

i=1

(Yi − Ŷi + Ŷi − Ȳ )2
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=
n∑

i=1

[
(Yi − Ŷi) + (Ŷi − Ȳ )

]2
=

n∑
i=1

[
(Yi − Ŷi)

2 + (Ŷi − Ȳ )2 + 2(Yi − Ŷi)(Ŷi − Ȳ )
]

=
n∑

i=1

(Yi − Ŷi)
2 +

n∑
i=1

(Ŷi − Ȳ )2 + 2
n∑

i=1

(Yi − Ŷi)(Ŷi − Ȳ ). (8.17)

The term
n∑

i=1

(Yi − Ŷi)(Ŷi − Ȳ )

equals zero, since

n∑
i=1

(Yi − Ŷi)(Ŷi − Ȳ ) =
n∑

i=1

[
(Yi − Ŷi)Ŷi − (Yi − Ŷi)Ȳ

]
=

n∑
i=1

(Yi − Ŷi)Ŷi −
n∑

i=1

(Yi − Ŷi)Ȳ

=
n∑

i=1

eiŶi − Ȳ
n∑

i=1

ei. (8.18)

From the properties a) and d) of the least-squares residuals listed on page 200
above, Ŷ

∑
ei and

∑
eiYi are both zero. We can thus partition the total sum

of squares into the two components,

SSTO =
n∑

i=1

(Ŷi − Ȳ )2 +
n∑

i=1

(Yi − Ŷi)
2

= SSR + SSE. (8.19)

The term

SSE =
n∑

i=1

(Yi − Ŷi)
2

is the sum of squares of the deviations of the observed values Yi from the
values predicted by the regression. It is the portion of the total variability of
Y that remains as a residual or error after the influence of X is considered,
and is referred to as the sum of squared errors. The term

SSR =
n∑

i=1

(Ŷi − Ȳ )2
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is the sum of the squared deviations of the predicted values Yi from the
mean of Y . It is the portion of the total variability of Y that is explained
by the regression—that is, by variations in the independent variable X. It
follows that the sum of squared errors is the total sum of squares minus the
portion explained by X—i.e., SSE = SSTO − SSR.

The coefficient of determination, usually referred to as the R2, is the
fraction of the total variability of the Yi that is explained by the variability
of the Xi. That is,

R2 =
SSR

SSTO
=

SSTO − SSE

SSTO
= 1− SSE

SSTO
. (8.20)

8.6 The Correlation Coefficient Between X and Y

The correlation coefficient between two random variables, X and Y has
previously been defined as

ρ =
Cov{XY }√

Var{X}Var{Y }
. (8.21)

An appropriate estimator of ρ is

r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑
(Yi − Ȳ )2

. (8.22)

As in the case of the true correlation coefficient ρ, r can vary between minus
unity and plus unity. In the present situation, however, the Xi are assumed
fixed—i.e., do not vary from sample to sample—so that X is not a random
variable. Nevertheless, r is still a suitable measure of the degree of associa-
tion between the variable Y and the fixed levels of X. Moreover, when we
square r we obtain

r2 =
(
∑
(Xi − X̄)(Yi − Ȳ ))2∑

(Xi − X̄)2
∑
(Yi − Ȳ )2

(8.23)

which, it turns out, can be shown to equal R2 as defined above.
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8.7 Confidence Interval for the Predicted
Value of Y

Suppose we want to estimate the mean level of Y for a given level of X
and establish confidence intervals for that mean level of Y . For example, an
admissions officer of a U.S. college might wish to estimate the mean grade
point average (GPA) of freshmen students who score 550 on the Scholastic
Aptitude Test (SAT).

We have already established that the predicted value Yh is a good point
estimator of E{Yh}. In order to obtain confidence intervals for E{Yh},
however, we need a measure of the variance of Ŷh. It turns out that

σ2{Ŷh} = σ2

[
1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]
(8.24)

for which an appropriate estimator is

s2{Ŷh} = MSE

[
1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]
(8.25)

where MSE is the mean square error, previously defined as

MSE =
SSE

n− 2
=

∑
e2i

n− 2
.

The magnitude of the estimated variance s2{Ŷh} is affected by a number of
factors:

a) It is larger the greater the variability of the residuals ei.

b) It is larger the further the specified level of X is from the mean of X
in either direction—i.e., the bigger is (Xh − X̄)2.

c) It is smaller the greater the variability of the Xi about the mean of X.

d) It is smaller the greater the sample size n. There are two reasons for
this. The greater is n, the smaller are both 1/n and MSE and, in
addition, when n is larger the sum of the squared deviations of the Xi

from their mean will tend to be larger.

The above points can be seen with reference to Figure 8.5. The true
functional relationship is given by the thick solid line and has slope β1 and
intercept β0. Alternative fitted regression lines are given by the upward
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Figure 8.5: The true linear functional relationship (thick line)
between Scholastic Aptitude Test (SAT) score and subse-
quent Grade Point Average (GPA) measured on a 5 point
scale in freshman college courses, together with some possi-
ble fitted regression lines based on differing samples.

sloping thin lines. Each regression line always passes through the point
(X̄Ȳ ) for the sample in question. Different samples of Yi’s drawn for the
same set of Xi’s yield different regression lines having different slopes since
b1 is a random variable. Also, different samples will yield different mean
values of Y , though X̄ will be the same because the Xi are fixed from
sample to sample. This means that the level of the regression line is also a
random variable as shown by the thin lines parallel to the true functional
relationship—its variance at X̄ is the variance of the error term σ2 which is
estimated by MSE.

The estimated variance of the predicted values of Y at X̄, associated in
the above example with a SAT score of 500, will be equal to MSE divided
by n and will be determined entirely by the variance of the level of the line.
At levels of X above the mean, say for a SAT score of 600, the variance
of the predicted value of Y will be larger because there is both variance in
the level of the regression line and variance of the slope of the line pivoting
on (X̄Ȳ ). The further away one gets from the mean value of X, the bigger
is the effect on the variance of the predicted Y of the variation of b1 from
sample to sample. Also, notice that the variance of the predicted Y at a SAT
score of 400 will be the same as the variance of the predicted Y at a SAT
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score of 600 because the effect of the sampling variation of b1 is the same
at both points (which are equidistant from X̄) and the effect of sampling
variation on the level of the regression line is the same at all Xi since it
depends on X̄ which is constant from sample to sample. We can now form
the standardised statistic

Ŷh − E{Ŷh}
s{Ŷh}

which is distributed according to the t-distribution with n − 2 degrees of
freedom. There are two less degrees of freedom than the number of obser-
vations because we used the sample to estimate two parameters, β0 and β1.
The confidence limits for E{Yh} with confidence coefficient α are thus

Ŷh ± t(1− α/2;n− 2) s{Ŷh}.

This confidence interval is interpreted for repeated samples when the Xi are
the same from sample to sample. Of many confidence intervals so established
based on repeated samples, 100α percent will bracket E{Yh}.

8.8 Predictions About the Level of Y

Suppose that we want to predict the grade point average of a student with
a SAT score Xh equal to 600. It is important to distinguish this prediction,
and the confidence interval associated with it, from predictions about the
mean level of Yh, the point estimator of which was Ŷh. That is, we want to
predict the level of Y associated with a new observation at some Xh, not
the mean value of Y associated with a whole sample drawn at a value of
X equal to Xh. Predicting the grade point average of a randomly selected
student who scored 600 on the SAT is very different from predicting what
the mean grade point average of students who score 600 on the SAT will be.

If we knew the true values of the regression parameters, β0, β1 and σ,
the procedure would be quite simple. We could simply calculate

E{Yh} = β0 + β1Xh

which might equal, say, 3.7. This would be the point estimate of Yh(new),
the newly selected student’s grade point average. We could then use the
known value of σ to establish a confidence interval for an appropriate value
of α.

But we don’t know the true regression parameters and so must estimate
them. The statistic Ŷh is an appropriate point estimator of Yh(new). To get a
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confidence interval we must estimate the variance of Yh(new). This variance

is based on the variance of the difference between Yh and Ŷh together with
the assumption that the new observation is selected independently of the
original sample observation. This yields

σ2{Ŷh(new)} = σ2{Yh − Ŷh}
= σ2{Yh}+ σ2{Ŷh}
= σ2 + σ2{Ŷh} (8.26)

which is composed of two parts. It is the sum of

a) the variance of the mean predicted level of Y associated with the
particular level of X.

b) the variance of the actual level of Y around its predicted mean level,
denoted by σ2.

In the situation above where we knew the true parameters of the regression
model we could calculate Ŷh exactly so that its variance was zero and the
grade point average of the new student then varied only because of σ2.

The variance of Ŷh(new) can be estimated by

s2{Ŷh(new)} = MSE + σ2{Ŷh}

= MSE +MSE

[
1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]

= MSE

[
1 +

1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]
. (8.27)

The calculation of the confidence interval is now a routine matter, using the
fact that

Ŷh(new) − Ŷh

s2{Ŷh(new)}

is distributed according the t-distribution with degrees of freedom equal to
n − 2. The resulting prediction interval is, of course, much wider than the
confidence interval for E{Ŷh} because the variance of Yh(new) contains an

additional component consisting of the variance of Yh around E{Ŷh}.
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8.9 Inferences Concerning the Slope and
Intercept Parameters

In most regression analysis in economics the primary objective is to esti-
mate β1. The regression slope b1 is an efficient and unbiased estimate of
that parameter. To obtain confidence intervals for β1, however, and test
hypotheses about it, we need the variance of the sampling distribution of
b1. This variance, it turns out, equals

σ2{b1} =
σ2∑

(Xi − X̄)2
(8.28)

which can be estimated by the statistic

s2{b1} =
MSE∑

(Xi − X̄)2
. (8.29)

The confidence interval for β1 can be obtained from the fact that

b1 − β1
s{b1}

is distributed according to the t-distribution with n− 2 degrees of freedom.
As explained in Chapter 4, the t-distribution is symmetrical and flatter than
the standard-normal distribution, becoming equivalent to that distribution
as the degrees of freedom become large. The confidence intervals for β1 with
confidence coefficient α are then

b1 ± t(1− α/2, n− 2) s{b1}.

where t(1− α/2, n− 2) is the t-statistic associated with a cumulative prob-
ability of (1− α) when the degrees of freedom are (n− 2).

Now suppose that we want to test whether there is any relationship
between Y and X. If there is no relationship, β1 will be zero. Accordingly,
we set the null hypothesis as

H0 : β1 = 0

and the alternative hypothesis as

H1 : β1 ̸= 0.

Using our sample data we calculate the standardised test statistic

t∗ =
b1

s{b1}
,
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which is distributed according to the t-distribution with n − 2 degrees of
freedom, and compare it with the critical values of t for the appropriate
degree of α-risk from the table of t-values in the back of our statistics text-
book. When the standardised test statistic is in the critical range—i.e., in
the range for rejecting the null hypothesis—we say that β1 is significantly
different from zero at the 100α percent level. Also we can calculate the
P-value of the test statistic t, which equals the probability that a value of b1
as different from zero as the one observed could have occurred on the basis
of pure chance.

Frequently we want to test whether or not β1 exceeds or falls short of
some particular value, say βo

1 . This can be done by setting the null and
alternative hypotheses as, for example,

H0 : β1 ≤ βo
1

and
H1 : β1 > βo

1 ,

expressing the standardised test statistic as

t∗ =
b1 − βo

1

s{b1}
,

and applying the critical values from the t-table for the appropriate level of
α. When the standardised test statistic is in the critical range we can say
that β1 is significantly greater than βo

1 at the 100α percent level.
Occasionally, inferences concerning the intercept parameter β0 are also of

interest. The regression intercept coefficient b0 is an unbiased and efficient
estimator of β0. To obtain confidence intervals and conduct hypotheses
tests we need an estimator of the sampling variance σ2{b0}. It turns out
that b0 = Ŷh where Xh = 0 so we can use the estimator

s2{Ŷh} = MSE

[
1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]

= s2{b0} = MSE

[
1

n
+

X̄2∑
(Xi − X̄)2

]
. (8.30)

Statistical tests can now be undertaken and confidence intervals calculated
using the statistic

b0 − β0
s{b0}

which is distributed as t(n - 2).
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It turns out that these tests are quite robust—that is, the actual α-risk
and confidence coefficient remain close to their specified values even when
the error terms in the regression model are not exactly normally distributed
as long as the departure from normality is not too great.

8.10 Evaluation of the Aptness of the Model

It must now be reemphasized that the application of this regression model
to practical problems involves some very critical assumptions—namely, that
the true residuals are independently normally distributed with zero mean
and constant variance. We can never be sure in advance that in any partic-
ular application these assumptions will be close enough to the truth to make
our application of the model valid. A basic approach to investigating the
aptness or applicability of the model to a particular situation is to analyse
the residuals from the regression—ei = Yi − Ŷi.

Figure 8.6: The actual and fitted values for a particular
regression.

A number of important departures from the regression model may oc-
cur. First, the regression function we are trying to estimate may not be
linear. We can get a good sense of whether or not this may be a problem
by plotting the actual and predicted values of Y against the independent
variable X, as is done in Figure 8.6, or plotting the residuals against the
predicted values of Y as is done for the same regression in Figure 8.7. When
the true relationship between the variables is linear the residuals will scatter
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Figure 8.7: The residuals of the regression in Figure 8.6 plot-
ted against the fitted values.

Figure 8.8: Well-behaved regression residuals plotted against
the fitted values.

at random around the fitted straight line or around the zero line when plot-
ted against the predicted values of the dependent variable. Obviously, the
underlying functional relationship in Figure 8.6 is non-linear. An example
of well-behaved residuals is given in Figure 8.8.

A second problem is that the variance of the ei may not be constant
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Figure 8.9: An example of heteroscedasticity—regression
residuals plotted against the fitted values.

with respect to Ŷ but may vary systematically with it. This problem is
called heteroscedasticity. This is illustrated in Figure 8.9 where the residuals
obviously increase as the predicted value of Y becomes larger.

Third, there may be lack of normality in the error terms. One way of
checking the error term for normality is to standardise it by dividing it by its
standard deviation—the square root of MSE—and checking to see whether
approximately 2/3 of the errors lie within one standard deviation of zero.
Alternatively, we could apply the chi-square test for normality developed in
the previous chapter. Less formally, we can compare the observed frequen-
cies of the standardised errors with the theoretically expected frequencies.

Finally, the errors may not be independent of each other. This happens
frequently in time-series analysis where there is autocorrelation or serial
correlation in the residuals—when the residual associated with one value
of X or its predicted value of Y is high, the residual associated with the
adjacent values of X or Y will also be high. This problem is discussed in
detail in the next chapter.

To get around these problems it is sometimes useful to transform the vari-
ables. The residuals from estimating Y = β0+β1X may be heteroscedastic,
but those from estimating log(Y ) = β0 + β1X may not be. Similarly, the
relationship between log(X) and log(Y ), or 1/X and 1/Y , may be linear
even though the relationship between X and Y may not be. Sometimes the
residuals from the regression may not be well-behaved because, in truth, Y
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depends on two variables X and Z instead of just X. By leaving Z out of
the model, we are attempting to force the single variable X to explain more
than it is capable of, resulting in deviations of the predicted from the actual
levels of Y that reflect the influence of the absent variable Z.

8.11 Randomness of the Independent Variable

In some regression analyses it is more reasonable to treat both X and Y as
random variables instead of taking the Xi as fixed from sample to sample.
When X is random, the distribution of Y at a given level of X is a condi-
tional distribution with a conditional mean and a conditional variance (i.e.,
conditional upon the level of X). In this case all of the results presented
above for the regression model with X fixed continue to apply as long as

a) the conditional distribution of Y is normal with conditional mean
β0 + β1X and conditional variance σ2, and

b) the Xi are independent random variables whose probability distribu-
tion does not depend on the parameters β0, β1 and σ2.

The interpretations of confidence intervals and risks of errors now refer
to repeated sampling where both the X and Y variables change from one
sample to the next. For example the confidence coefficient would now refer
to the proportion of times that the interval brackets the true parameter
when a large number of repeated samples of n pairs (Xi, Yi) are taken and
the confidence interval is calculated for each sample. Also, when both X and
Y are random variables the correlation coefficient r is an estimator of the
population correlation coefficient ρ rather than only a descriptive measure
of the degree of linear relation between X and Y . And a test for β1 = 0 is
now equivalent to a test of whether or not X and Y are uncorrelated random
variables.

8.12 An Example

During the first part of this century classical economics held that the real
quantity of money demanded tends to be a constant fraction of real income—
that is

M

P
= k RY (8.31)
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where M is the nominal quantity of money held by the public, P is the
general price level, RY is real national income and k is a constant, sometimes
called the Cambridge-k. We want to use some data on nominal money
holdings, nominal income and the consumer price index for Canada to test
this idea. The data are presented in the worksheet below.

WORKSHEET FOR REGRESSION ANALYSIS OF CANADIAN DEMAND FOR MONEY

DATE MON GDP CPI  RMON RGDP D-RMON D-RGDP Col. (6) Sq. Col. (7) Sq. (6) X (7)
(1)  (2)  (3)  (4)  (5)   (6)  (7)   (8)    (9)      (10)    

1957 5.07 34.47 88.65 5.72 38.88 -7.90 -57.34 62.45 3288.30 453.17 
1958 5.55 35.69 90.88 6.11 39.27 -7.51 -56.95 56.47 3243.81 428.00 
1959 5.66 37.88 91.82 6.16 41.25 -7.46 -54.97 55.65 3021.77 410.09 
1960 5.75 39.45 92.99 6.18 42.42 -7.44 -53.80 55.33 2894.42 400.18 
1961 6.31 40.89 93.93 6.71 43.53 -6.91 -52.70 47.74 2776.85 364.09 
1962 6.67 44.41 94.99 7.02 46.75 -6.60 -49.47 43.62 2447.38 326.75 
1963 7.17 47.68 96.51 7.42 49.40 -6.20 -46.82 38.41 2192.23 290.18 
1964 7.72 52.19 98.27 7.85 53.11 -5.77 -43.11 33.27 1858.56 248.68 
1965 8.98 57.53 100.73 8.92 57.11 -4.70 -39.12 22.13 1530.04 184.02 
1966 9.71 64.39 104.49 9.29 61.62 -4.33 -34.60 18.78 1197.08 149.93 
1967 12.33 69.06 108.24 11.39 63.81 -2.23 -32.42 4.96 1050.80 72.22 
1968 15.78 75.42 112.81 13.98 66.85 0.36 -29.37 0.13 862.57 -10.63 
1969 15.40 83.03 117.74 13.08 70.52 -0.54 -25.70 0.29 660.62 13.87 
1970 14.92 89.12 121.72 12.26 73.21 -1.36 -23.01 1.86 529.53 31.40 
1971 16.52 97.29 125.12 13.20 77.75 -0.42 -18.47 0.18 341.06 7.81 
1972 18.54 108.63 131.11 14.14 82.86 0.52 -13.37 0.27 178.68 -6.90 
1973 20.61 127.37 141.07 14.61 90.29 0.99 -5.94 0.98 35.23 -5.87 
1974 21.62 152.11 156.44 13.82 97.24 0.20 1.01 0.04 1.03 0.20 
1975 24.06 171.54 173.44 13.87 98.91 0.25 2.68 0.06 7.20 0.67 
1976 25.37 197.93 186.34 13.62 106.22 -0.01 10.00 0.00 99.92 -0.07 
1977 27.44 217.88 201.35 13.63 108.21 0.00 11.99 0.00 143.71 0.05 
1978 29.69 241.61 219.17 13.55 110.23 -0.08 14.01 0.01 196.35 -1.07 
1979 30.97 276.10 239.23 12.94 115.41 -0.68 19.19 0.46 368.24 -12.99 
1980 32.25 309.89 263.73 12.23 117.50 -1.40 21.28 1.95 452.77 -29.69 
1981 33.64 356.00 296.57 11.34 120.04 -2.28 23.82 5.20 567.16 -54.31 
1982 36.64 374.44 328.58 11.15 113.96 -2.47 17.73 6.11 314.47 -43.83 
1983 42.32 405.72 347.58 12.17 116.73 -1.45 20.50 2.10 420.40 -29.68 
1984 47.42 444.74 362.71 13.07 122.62 -0.55 26.39 0.30 696.61 -14.48 
1985 62.25 477.99 377.13 16.51 126.74 2.88 30.52 8.32 931.49 88.04 
1986 74.38 505.67 392.73 18.94 128.76 5.32 32.53 28.27 1058.53 172.99 
1987 83.87 551.60 409.97 20.46 134.55 6.84 38.32 46.72 1468.75 261.97 
1988 87.81 605.91 426.39 20.59 142.10 6.97 45.88 48.62 2105.07 319.93 
1989 91.45 650.75 447.73 20.42 145.34 6.80 49.12 46.28 2412.99 334.19 
1990 92.26 669.51 468.95 19.67 142.77 6.05 46.55 36.61 2166.45 281.64 
1991 97.88 676.48 495.46 19.76 136.54 6.13 40.31 37.63 1625.23 247.30 
1992 102.79 690.12 502.84 20.44 137.24 6.82 41.02 46.51 1682.78 279.77 
1993 108.98 712.86 512.11 21.28 139.20 7.66 42.98 58.66 1847.10 329.17 
1994 118.83 747.26 513.05 23.16 145.65 9.54 49.43 90.99 2443.32 471.52 
1995 128.83 776.30 524.19 24.58 148.10 10.96 51.87 120.01 2690.85 568.28 

SUM 1583.36 11316.84 9656.76 531.24 3752.67 -0.00 -0.00 1027.40 51809.36 6526.58 
MEAN 40.60 290.18 247.61 13.62 96.22 -0.00 -0.00 

Columns (1) and (2) of the worksheet give the Canadian nominal money
supply and Canadian nominal Gross Domestic Product (GDP) in billions of
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current dollars. Gross Domestic Product is a measure of aggregate nominal
income produced in the domestic economy. Column (3) gives the Cana-
dian Consumer Price Index (CPI) on a base of 1963-66 = 100. The theory
specifies a relationship between real money holdings and real income. Ac-
cordingly, real money holdings and real GDP are calculated in columns (4)
and (5) by dividing the nominal values of these variables by the CPI and
then multiplying by 100. Thus RMON and RGDP measure the Canadian
real money supply and Canadian real GDP in constant 1963-66 dollars. So
equation (8.31) above specifies that the numbers in column (4) should be a
constant fraction of the numbers in column (5) plus a random error. So we
want to run the following simple linear regression:

Yt = β0 + β1Xt + ϵ (8.32)

where Yt is RMON (column (4)) and Xt is RGDP (column (5)). Because
the observations occur through time we designate them by subscript t rather
than subscript i.

To obtain a fitted line to these data we perform the calculations shown
in columns (6) through (10). The columns D-RMON and D-RGDP give
the deviations of RMON and RGDP from their respective means, 13.62 and
96.22, calculated at the bottom of columns (4) and (5). Column (8) gives
D-RMON squared and column (9) gives D-RGDP squared. The sums at the
bottom of these columns thus give

1995∑
t=1957

(Yt − Ȳ )2 = 1027.40

and
1995∑

t=1957

(Xt − X̄)2 = 51809.36

respectively. Column (10) gives the product of D-RMON and D-RGDP and
the sum at the bottom gives

1995∑
t=1957

(Yt − Ȳ )(Xt − X̄) = 6526.58.

The estimate b1 of β1 can thus be calculated as

b1 =

∑1995
t=1957(Yt − Ȳ )(Xt − X̄)∑1995

t=1957(Xt − X̄)2
=

6526.58

51809.36
= .126
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and the estimate b0 of β0 becomes

b0 = Ȳ − b1X̄ = 13.62− (.126)(96.22) = 1.5.

Next we need the R2. This equals the square of

r =

∑1995
t=1957(Yt − Ȳ )(Xt − X̄)√∑1995

t=1957(Xt − X̄)2
√∑1995

t=1957(Yt − Ȳ )2
=

6526.58√
51809.36

√
1027.40

= .8946,

or R2 = (.8946)2 = .8. This means that the sum of squares explained by
the regression is

SSR = R2
1995∑

t=1957

(Yt − Ȳ )2 = (.8)(1027.40) = 821.92

and the sum of squared errors is

SSE = (1−R2)
1995∑

t=1957

(Yt − Ȳ )2 = (.2)(1027.40) = 205.48.

The mean square error is then

MSE =
SSE

n− 2
=

205.48

37
= 5.55.

To test whether there is a statistically significant relationship between real
money holdings and real GNP we form a t statistic by dividing b1 by its
standard deviation. The latter equals

s{b1} =

√
MSE∑1995

t=1957(Xt − X̄)2
=

√
5.55

51809.36
= .01035.

The t-statistic for the test of the null hypothesis that β1 = 0 thus equals

t∗ =
b1 − 0

s{b1}
=

.126

.01035
= 12.17.

Since this exceeds the critical value of t of 3.325 for α = .01, the null-
hypothesis of no relation between real money holdings and real income must
be rejected.

To test the null-hypothesis that the constant term β0 equals zero we
obtain the standard deviation of b0 from (8.30),

s2{b0} = MSE

[
1

n
+

X̄)2∑
(Xi − X̄)2

]
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which yields

s{b0} =

√
5.55

[
1

39
+

96.222

51809.36

]
=

√
(5.55)

[
.02564 +

9258.29

51809.36

]

=
√
(5.55)(.02564 + .1787) = 1.064935.

The t-statistic for the test of the null hypothesis that β0 = 0 is thus

t∗ =
b0 − 0

s{b0}
=

1.5

1.064935
= 1.409

for which the P -value for a two-tailed test is .1672. We cannot reject the
null hypothesis that β0 equals zero at a reasonable significance level.

Figure 8.10: The residuals of the regression of Canadian real
money holdings on Canadian real GDP, plotted against the
fitted values.

The classical hypothesis that the public’s real money holdings tend to
be a constant fraction of their real income cannot be rejected on the basis
of the data used here, because we cannot reject the hypothesis that the true
relationship between RMON and RGNP is a straight line passing through
the origin. Nevertheless, we must be open to the possibility that the ratio of
RMON to RGNP, though perhaps independent of the level of real income,
could depend on other variables not in the regression, such as the rate of
interest (which equals the opportunity cost of holding money instead of
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interest-bearing assets). If this were the case, we might expect the residuals
from the regression to be poorly behaved. Figure (8.10) plots the residuals
against the fitted values. The residuals are clearly not randomly scattered
about zero. It is useful to check for serial correlation in these residuals by
plotting them against time. This is done in Figure (8.11). There is obvious
serial correlation in the residuals from the regression. We will address this
problem again in the next chapter when we investigate the Canadian demand
function for money using multiple regression.

Figure 8.11: The residuals of the regression of Canadian real
money holdings on Canadian real GDP, plotted against time.

8.13 Exercises

1. The following data relate to the model

Yi = α+ βXi + ϵi

where the Xi are assumed non-stochastic and the ϵi are assumed to be
independently identically normally distributed with zero mean and constant
variance.
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i Yi Xi

1 21 10
2 18 9
3 17 8
4 24 11
5 20 11
6 20 10
7 22 12
8 21 11
9 17 9
10 20 9

a) Calculate the regression estimates of α and β. (5.71, 1.43)

b) Calculate a 95% confidence interval for β. (0.56, 2.27)

2. Insect flight ability can be measured in a laboratory by attaching the
insect to a nearly frictionless rotating arm by means of a very thin wire.
The “tethered” insect then files in circles until exhausted. The non-stop
distance flown can easily be calculated from the number of revolutions made
by the arm. Shown below are measurements of this sort made on Culex
tarsalis mosquitos of four different ages. The response variable is the average
(tethered) distance flown until exhaustion for 40 females of the species.

Age, Xi (weeks) Distance Flown, Yi (thousands of meters)

1 12.6
2 11.6
3 6.8
4 9.2

Estimate α and β and test the hypothesis that distance flown depends upon
age. Use a two-sided alternative and the 0.05 level of significance.

3. A random sample of size n = 5 is to be used to estimate the values of the
unknown parameters of the simple linear regression model

Yi = β0 + β1Xi + ϵi

where the random error term ϵi is N(0, σ2). The sample values for (Xi, Yi)
are
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Xi Yi
-2 -6
-1 -2
0 -2
1 4
2 6

a) Compute the values of the least-squares estimators for β0 and β1.

b) Compute the value of the least-squares estimator for σ2 and the coef-
ficient of determination, R2.

c) Conduct a test of the null hypothesis H0: β1 ≤ 2.0 versus the alterna-
tive hypothesis H1: β1 > 2.0 using α = .05 and find the approximate
P -value for the test.

d) Compute a 95% confidence interval for the expected value of Y when
X = 5.

4. The District Medical Care Commission wants to find out whether the
total expenditures per hospital bed for a particular item tends to vary with
the number of beds in the hospital. Accordingly they collected data on
number of beds for the 10 hospitals in the district (Yi) and the total expen-
ditures per hospital bed (Xi). Some simple calculations yielded the following
magnitudes:
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Ȳ = 333.0 X̄ = 273.4

10∑
i=1

(Yi − Ȳ )2 = 10756.0

10∑
i=1

(Xi − X̄)2 = 301748.4

10∑
i=1

(Xi − X̄)(Yi − Ȳ ) = −37498

Use simple regression analysis to analyse the effect of number of beds on cost
of the item per bed. Can you conclude that there is a relationship between
these two variables. Is that relationship positive or negative? Calculate the
R2 and the significance of the regression coefficients. Is the overall relation-
ship between the number of hospitals in a district and total expenditures
per hospital bed statistically significant at reasonable levels of α-risk?



222 SIMPLE LINEAR REGRESSION



Chapter 9

Multiple Regression

While simple regression analysis is useful for many purposes, the assumption
that the dependent variable Y depends on only one independent variable is
very restrictive. For example, if we want to develop a model to estimate the
quantity of bread demanded we can expect the latter to depend, at the very
minimum, on the price of bread, on the prices of at least some substitutes
and on real income.

9.1 The Basic Model

The basic linear multiple regression model is

Yi = β0 + β1X1i + β2X2i + β3X3i + · · · · · ·+ βKXKi + ϵi (9.1)

where i = 1 . . . n and the ϵi are independently normally distributed with
mean zero and constant variance σ2. Actually, we can often get away with
less restrictive assumptions about the ϵi, namely

E{ϵi} = 0

and
E{ϵiϵj} = 0, i ̸= j

E{ϵiϵj} = σ2, i = j.

This says that the ϵi must be independently distributed with constant vari-
ance but not necessarily normally distributed. Our problem is to estimate
the parameters βk, k = 0 . . .K, and σ and to establish confidence intervals
and conduct appropriate statistical tests with respect to these parameters.

223
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The n-observations on the dependent variable and the K independent
variables can be represented as follows:

Y1 = β0 + β1X11 + β2X21 + β3X31 + · · · · · ·+ βKXK1 + ϵ1

Y2 = β0 + β1X12 + β2X22 + β3X32 + · · · · · ·+ βKXK2 + ϵ2

Y3 = β0 + β1X13 + β2X23 + β3X33 + · · · · · ·+ βKXK3 + ϵ3

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

Yn = β0 + β1X1n + β2X2n + β3X3n + · · · · · ·+ βKXKn + ϵn

This appears in matrix form as

Y1
Y2
Y3
...
...
...
...
Yn


=



1 X11 X21 X31 · · · · · · XK1

1 X12 X22 X32 · · · · · · XK2

1 X13 X23 X33 · · · · · · XK3
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 X1n X2n X3n · · · · · · XKn





β0
β1
β2
...
...

βK


+



ϵ1
ϵ2
ϵ3
...
...
...
...
ϵn


and can be written

Y = XB + E (9.2)

where Y is an n by 1 column vector, X is an n by K + 1 matrix (i.e., a
matrix with n rows and K + 1 columns), B is a K + 1 by 1 column vector
and E is an n by 1 column vector. The first column of the matrix X is a
column of 1’s.
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9.2 Estimation of the Model

Our problem is now to choose an estimate of (9.2) of the form

Y = Xb+ e (9.3)

where b is a K + 1 by 1 column vector of point estimates of the vector B
and e is an n by 1 column vector of residuals. According to the method of
least squares we choose the vector b so as to minimize the sum of squared
residuals which appears in matrix form as

[
ϵ1 ϵ2 ϵ3 · · · · · · · · · · · · ϵn

]



ϵ1
ϵ2
ϵ3
...
...
...
...
ϵn


or

e′e =
n∑

i=1

e2i ,

where e′ is the transpose of e and thereby consists of a row vector containing
the n errors ei. This sum of squares can be further represented as

e′e = (Y −Xb)′(Y −Xb)

= (Y′ − b′X′)(Y −Xb)

= (Y′Y −Y′Xb− b′X′Y + b′X′Xb)

= (Y′Y − 2Y′Xb+ b′X′Xb) (9.4)

where the second line uses the facts that the transpose of the sum of two
matrices (vectors) is the sum of the transposes and the transpose of the
product of two matrices (vectors) is the product of the transposes in reverse
order, and the fourth line uses the fact that Y′Xb and b′X′Y are identical
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scalars—this can be seen by noting that Y′Xb is

[
Y1 Y2 Y3 · · · Yn

]


β0 + β1X11 + β2X21 + β3X31 + · · ·+ βKXK1

β0 + β1X12 + β2X22 + β3X32 + · · ·+ βKXK2

β0 + β1X13 + β2X23 + β3X33 + · · ·+ βKXK3
...
...
...

...
...
...

...
...
...

β0 + β1X1n + β2X2n + β3X3n + · · ·+ βKXKn


and b′X′Y is

[
β0 β1 β2 · · · · · · βK

]


1 1 1 · · · · · · 1
X11 X12 X13 · · · · · · X1n

X21 X22 X23 · · · · · · X2n

X31 X32 X33 · · · · · · X3n
...

...
...

...
...

...
...

...
...

...
...

...
XK1 XK2 XK3 · · · · · · XKn





Y1
Y2
Y3
...
...
...
Yn


We now differentiate this system with respect to the vector b and choose

that value of the vector b̂ for which ∂e′e/∂b = 0. We thus obtain

X′Xb̂ = X′Y (9.5)

which yields

b̂ = (X′X)−1X′Y (9.6)

where (X′X)−1 is the inverse of the matrix X′X.
The system of equations (9.5) is called the least-squares normal equa-

tions. In the case where there are only two independent variables plus a
constant term (i.e., K = 2), these equations are

n b̂0 + b̂1
∑

X1i + b̂2
∑

X2i =
∑

Yi
b̂0
∑

X1i + b̂1
∑

X2
1i + b̂2

∑
X1iX2i =

∑
X1iYi

b̂0
∑

X2i + b̂1
∑

X1iX2i + b̂2
∑

X2
2i =

∑
X2iYi

The coefficients b̂k can be obtained by actually calculating all of these
sums of squares and cross products, substituting the resulting numbers into
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the above system of equations, and solving that system simultaneously for
the b̂k’s. Alternatively, the data can be expressed in matrix form (i.e., as
a vector Y and matrix X) and the vector b̂ obtained by applying equation
(9.6) to Y and X using a standard computer linear algebra program.1 The
easiest way to obtain the b̂k, however, is to read the variables Xk and Y into
one of the many standard statistical software packages and apply the linear-
regression procedure contained in that package. This has the computer
do everything—except determine what regression to run and interpret the
results! Remember that a computer performs fast calculations but cannot do
our thinking for us. It does exactly what it is told—whence the fundamental
gigo principle, “garbage in → garbage out”.2

Along with the vector of estimated regression coefficients, the standard
statistical packages give the standard deviations (or standard errors) of these
coefficients, the appropriate t-statistics and sometimes the P -values, the
minimized sum of squared deviations of the dependent variable from the
regression line, and the coefficient of determination or R2.3

9.3 Confidence Intervals and Statistical Tests

To construct confidence intervals and perform statistical tests regarding the
regression coefficients we need estimates of the standard deviations or stan-
dard errors of these coefficients. The matrix of variances and covariances
of the regression coefficients (from which the standard statistical packages
present their standard errors) is


Var{b0} Cov{b0b1} Cov{b0b2} . . . . . . . . . . . . . . . . . . Cov{b0bK}
Cov{b0b1} Var{b1} Cov{b1b2} . . . . . . . . . . . . . . . . . . Cov{b1bK}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cov{b0bK} Cov{b1bK} Cov{b2bK} . . . . . . . . . . . . . . . . . . Var{bK}



= E{(b̂− B)(b̂− B)′} = σ2(X′X)−1.

1Such as, for example, MATLAB, MAPLE or OCTAVE. The first two of these are
commercial programs while the latter one is freely available over the internet.

2Attention should also be paid to a second important principle of computing, rtfm.
The first letter of this acronym stands for the word “read” and the last letter stands for
the word “manual”!

3XlispStat has been used for most of the regression calculations, as well as the graphics,
in this book
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As in the case of simple regression the appropriate estimator for σ2 is

s2 =
e′e

df
= MSE

where df = n−K − 1 is the degrees of freedom and

e′e =
∑

e2i = SSE

is the minimized sum of squared deviations of Yi from the regression line.
The degrees of freedom is n−K−1 because we are using the data to estimate
K + 1 parameters (for K dependent variables plus a constant term). The
sum of squares ‘explained’ by the independent variables is

SSR = (Y − Ȳ )′(Y − Ȳ )− e′e =
∑

(Yi − Ȳ )2 −
∑

e2i = SSTO − SSE.

where Ȳ is the mean value of the dependent variable–i.e., the mean of the
elements of Y. As in the case of simple linear regression, the fraction of the
variation in the dependent variable explained by the independent variables—
the R2—is equal to

R2 = 1− SSE

SSTO
.

Notice that the addition of new independent variables to the regression will
always increase the R2. To see this, think of an experiment whereby we
keep adding independent variables until the total number of these variables
plus the constant equals the total number of observations—this would yield
an R2 equal to unity. We can thus ‘explain’ more and more of the varia-
tion in the dependent variable by adding additional independent variables,
paying little attention to whether the variables added are relevant deter-
minants of the dependent variable. To obtain a more meaningful measure
of how much of the variation in the dependent variable is being explained,
the R2 is frequently adjusted to compensate for the loss in the degrees of
freedom associated with the inclusion of additional independent variables.
This adjusted R2, called the R̄2 is calculated according to the formula

R̄2 = 1− n− 1

n−K − 1

SSE

SSTO
. (9.7)

For R̄2 to rise as the result of the addition of another independent variable,
the sum of squares of the residuals must fall sufficiently to compensate for the
effect of the addition of that variable on the number of degrees of freedom.
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The ratio of (b̂k − βk) to its standard deviation

t∗ =
b̂k − βk√
Var{b̂k}

(9.8)

is distributed according to the t-distribution with degrees of freedom

df = n−K − 1.

The t-table at the back of any textbook in statistics can be used to establish
critical values and confidence intervals. The t-values associated with the null
hypothesis H0: βk = 0 are also given in most standard statistics computer
packages. To test the null hypothesis that βk takes a particular hypothesized
value, or exceeds or falls short of a particular hypothesized value, we divide
the difference between the estimated value b̂k and the hypothesized value βk
by the standard error of b̂k, also given in most statistics computer packages.
The P -values given by standard computer packages are the probabilities of
observing values of the coefficients as different from zero (in either direction
since the test is two-tailed) as are the respective estimated coefficients when
the true value of the coefficient in question is zero. It should be noted here
that, when conducting tests and setting up confidence intervals, the constant
term is treated simply as another coefficient.

9.4 Testing for Significance of the Regression

Frequently we want to test whether the regression itself is significant—that
is, whether the independent variables taken as a group explain any of the
variation in the dependent variable. The R2 measures this, but it is a point
estimate which could be as high as it is simply because of sampling error.
What we want to test is the null hypothesis

H0 : β1 = β2 = β3 = . . . . . . = βK = 0

against the alternative hypothesis that at least one of these coefficients is
different from zero. Notice that this null-hypothesis does not require that β0,
the constant term, be zero—indeed, when there is no relationship between
all K independent variables and Yi, the constant term will be β0 = Ȳ .

When we run the regression we choose the coefficients b̂k that minimize
the sum of squared residuals

∑
e2i . If the independent variables do not

contribute at all to explaining the variations in Yi we would expect the
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minimized sum of squared residuals to be the same as the sum of squared
deviations of the Yi about their mean,

∑
(Yi − Ȳ )2. That is, we would

expect SSE to equal SSTO. To the extent that∑
e2i ≤

∑
(Yi − Ȳ )2

there is evidence that the independent variables included in the regression
have some explanatory power. The trouble is, however, that SSE could be
less than SSTO strictly as a result of sampling error. We must therefore
test whether the observed excess of SSTO over SSE is bigger than could
reasonably be expected to occur on the basis of sampling error alone.

We have already seen that a sum of squares of independently and iden-
tically distributed normal random variables divided by their variance is dis-
tributed as χ2 with degrees of freedom equal to the number of independent
squared normal deviations being summed. This means that∑

e2i
σ2

= χ2(n−K − 1) (9.9)

and ∑
(Yi − Ȳ )2

σ2
y

= χ2(n− 1). (9.10)

It can be shown (though we will not do it here) that the difference between
two χ2 variables is also distributed according to the χ2 distribution, but with
degrees of freedom equal to the difference between the degrees of freedom of
the two χ2 variables. This implies that∑

e2i
σ2

−
∑

(Yi − Ȳ )2

σ2
y

=

∑
e2i −

∑
(Yi − Ȳ )2

σ2
= χ2(K). (9.11)

Here σ2
y = σ2 under the null hypothesis that adding the independent vari-

ables to the regression has no effect on the residual variance.

We have also learned earlier that the ratio of two independent χ2 dis-
tributions divided by their respective degrees of freedom is distributed ac-
cording to the F -distribution with two parameters equal to the number of
degrees of freedom in the numerator and denominator respectively. Thus,
using (9.9) and (9.11) we obtain∑

(Yi − Ȳ )2 −
∑

e2i
K

÷
∑

e2i
n−K − 1

= F (K,n−K − 1) (9.12)
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where the σ2 variables in the denominators of (9.9) and (9.11) cancel out.
If the independent variables contribute nothing to the explanation of the
dependent variable we would expect

∑
(Yi − Ȳ )2 to approximately equal∑

e2i and the calculated F -statistic to be close to zero. On the other hand, if
the independent variables do explain some of the variation in the dependent
variable the F -statistic will be substantially positive. The question then is
whether the probability of observing a value of F as high as the one observed
for this particular sample, given that the independent variables truly explain
none of the variation in the dependent variable, is small enough that we can
reject the null hypothesis of no effect. We choose a critical value of F based
on the desired α-risk and reject the null hypothesis if the value of the F -
statistic obtained from the sample exceeds this critical value.

Notice now that we can substitute

SSR =
∑

(Yi − Ȳ )2 −
∑

e2i

and
SSE =

∑
e2i

into (9.12) to obtain

n−K − 1

K

SSR

SSE
= F (K,n−K − 1) (9.13)

which can be further simplified using the facts that

SSR = R2SSTO

and
SSE = (1−R2)SSTO

to produce [
n−K − 1

K

] [
R2

1−R2

]
= F (K,n−K − 1). (9.14)

We can thus calculate the F -statistic using the values for R2, n and K
without calculating the total sum of squares and the sum of squared errors.

The basic principle behind (9.12) can be generalized to test the signif-
icance of subsets of the βk and of relationships between various βk. The
test of the significance of a regression involves a comparison of the residu-
als obtained from the regression and the residuals obtained from the same
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regression with everything but the constant term omitted (i.e., with all co-
efficients but the constant term set equal to zero). We could test the joint
significance of, say, two of the K independent variables, X2 and X3, by
running the regression with these two variables omitted and comparing the
residuals so obtained with the residuals from the regression with the two
variables included. This is called a test of restrictions. The two restrictions
in this example are β2 = 0 and β3 = 0. The null hypothesis is

H0 : β2 = β3 = 0

against the alternative hypothesis that either β2 or β3 is non-zero. We call
the sum of squared residuals from the regression that excludes X2 and X3

the restricted residual sum of squares,
∑

e2iR, and the sum of squares of the
residuals from the full regression the unrestricted residual sum of squares,∑

e2i . The question is then whether imposing the restrictions raises the
residual sum of squares by a ‘significant’ amount—that is, by an amount
which would have a probability less than α of occurring if the restrictions
truly have no effect on the explanatory power of the regression. The relevant
F -statistic is∑

e2iR −
∑

e2i
v

÷
∑

e2i
n−K − 1

= F (v, n−K − 1) (9.15)

where v (= 2 in this example) is the number of restrictions imposed on the
regression. If the resulting F -statistic is above the critical value we can
reject the null hypothesis that two coefficients β2 and β3 are both equal
to zero and accept the alternative hypothesis that at least one of them is
non-zero.

The same approach can be used to test particular hypotheses about the
relationship between two coefficients. Suppose we have reason to believe
that β3 should be the negative of β2. We can test this single restriction by
formulating the null hypothesis

H0 : β3 = −β2

and testing it against the alternative hypothesis

H1 : β3 ̸= −β2.

The null hypothesis implies the regression model

Yi = β0 + β1X1i + β2X2i + β3X3i + · · · · · ·+ βKXKi + ϵi

= β0 + β1X1i − β3X2i + β3X3i + · · · · · ·+ βKXKi + ϵi

= β0 + β1X1i + β3(X3i −X2i) + · · · · · ·+ βKXKi + ϵi. (9.16)
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We therefore construct the new variable (X3 − X2) and replace the two
variables (X2 and X3) in the regression with it. The residuals from this new
regression can be designated

∑
e2iR and inserted into (9.15) together with

a value of v equal to 1, representing the single restriction, and a sample
F -statistic so obtained. If this statistic exceeds the critical value of F for
the appropriate degree of α-risk we reject the null hypothesis and conclude
that β3 is not equal to the negative of β2.

9.5 Dummy Variables

The independent variables in a multiple regression need not be quantita-
tive. For example, suppose we have some data on the salaries of managers
in industry and their years of education and want to investigate whether
individuals’ years of education affect their salaries. We run a simple regres-
sion of salary on years of education for the data in question and obtain the
following results (the standard errors of the coefficients are given in brackets
and σ̂ is a point estimate of σ):

Dependent Variable: Salary in $000’s

Constant 38.91 (12.88)
Years of Education .064 (0.898)

R-Squared .00036
Standard Error (σ̂) 8.97
Number of Observations 8
Degrees of Freedom 6

The null hypothesis that years of education has a zero or negative effect on
salary cannot be rejected at any reasonable level of significance given the
test statistic

t∗ =
.064

.898
= .071269.

When we plot the data and impose the fitted regression line on it we get the
data points and the virtually horizontal regression line in Figure 9.1.

Upon examining the data, it turns out that all the data points above the
nearly horizontal fitted line are for individuals who are sales managers and
all the data points below the line are managers who are not in sales. Our
regression should obviously contain a variable specifying whether or not the
individual in the sample is a sales manager. This variable is a qualitative
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Figure 9.1: Plot and fitted lines of regression of salaries of sales managers on
years of education (top line), other managers on years of education (bottom
line) and all managers on years of education (middle line).

variable, usually referred to as a dummy variable. It consists entirely of
zeros or ones—with the variable taking the value of 1 if the individual is a
sales manager and 0 if the individual is not a sales manager.

Our regression model now takes the form

Yi = β0 + β1X1i + β2X2i + ϵ (9.17)

where the variable X1 is salary and X2 is the dummy variable.
Consider the individual sample elements that do not represent sales man-

agers. For these elements X2i = 0 so the equation being fitted yields the
predicted values

Ŷi = b0 + b1X1i. (9.18)

For the individual sample elements that do represent sales managers,X2i = 1
so the fitted equation becomes

Ŷi = b0 + b1X1i + b2X2i = b0 + b1X1i + b2

or

Ŷi = b̃0 + b1X1i (9.19)



9.5. DUMMY VARIABLES 235

where b̃0 = b0 + b2. Adding the dummy variable essentially allows the
regression to have different constant terms for those managers who are sales
managers and for those who are not sales managers. When we run this
regression we get the following results:

Dependent Variable: Salary in $000’s

Constant 8.254 (6.40)
Years of Education 1.62 (0.41)
Sales Manager Dummy 17.28 (2.05)

R-Squared .845
Standard Error (σ̂) 3.66
Number of Observations 16
Degrees of Freedom 13

Notice how the R2 increases and the standard error of the regression falls
when we add the dummy variable. Notice also that the test statistic for the
null hypothesis that the true coefficient of the years-of-education variable is
zero or less is now

t∗ =
1.62

0.41
= 3.95

which has a P -value equal to .00083, so we can easily reject the null hypoth-
esis at an α-risk of .001.

The predicted salary levels for each level of education for sales managers
is given by the top upward-sloping line in Figure 9.1 and the predicted salary
levels for each education level for non-sales managers is given by the lower
upward-sloping line. These lines are very close to the fitted lines that would
be obtained by running separate regressions for sales managers and for other
managers.

We could include a second dummy variable to account for differences
in the slope of the relationship between education and salary for the two
groups of managers. This variable would be the product of the sales-manager
dummy and the years of education—when the data element is a manager not
in sales this variable would take a zero value and when the data element is
a sales manager the variable would take a value equal to years of education.
This dummy variable can be referred to as an interaction between years of
education and whether the manager was sales vs. non-sales. The regression
model would then be

Yi = β0 + β1X1i + β2X2i + β3X3i + ϵ. (9.20)
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For data elements representing non-sales managers the predicted values will
be

Ŷi = b0 + b1X1i (9.21)

since both X2i and X3i will be zero for these elements. For data elements
representing sales managers the predicted values will be

Ŷi = b0 + b1X1i + b2 + b3X1i

since for these elements X3i = X1i and X2i = 1, so we have

Ŷi = b̃0 + b̃1X1i (9.22)

where b̃0 = b0 + b2 and b̃1 = b1 + b3.
The inclusion of dummies for both the constant term and the slope

coefficient turns out to be equivalent to running two separate regressions—
one for sales managers and one for other managers—except that by pooling
the data and running a single regression with dummy variables included for
the constant term and slope parameters we are imposing the assumption
that the variance of the error term is the same in the separate regression
models. Unless we have prior information about the variance of the errors
there is no gain to pooling the data for the two types of managers in this case.
When we include only a single dummy variable to allow, say, for differences
in the constant term there is a gain from pooling the data and running
a single regression provided we are prepared to force upon the model the
assumption that the response of salary to years of education is the same for
sales managers as for other managers. If we are not prepared to assume that
the response of salary to education is the same for both groups we should run
two regressions. It would still be appropriate to add two dummy variables,
one for the constant term and one for the slope of salary with respect to
education of sales vs. other managers, if we also have additional variables in
the regression such as, for example, education of the individual manager’s
parents and race or religion. In this case, of course, the pooled regression
will be appropriate only if we are willing to impose on the estimation the
assumption that the effects of parents’ education, race and religion are the
same for sales managers and other managers.
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9.6 Left-Out Variables

Frequently we do not have the data to include in a regression a variable that
should be there. When this is the case we can often form an opinion, based
on casual knowledge, about the effects of the coefficients of the included
variables of leaving out a variable that should be in the regression. Suppose
that the correct specification of the regression equation is

Yi = β0 + β1X1i + β2X2i + ϵ (9.23)

but we estimate

Yi = β0 + β1X1i + ϵ∗ (9.24)

instead.
Since in the case we are examining the regression actually estimated is

a simple regression, our least-squares estimate of β1 is

b̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
. (9.25)

From the true relationship we know that

Yi − Ȳ = β0 + β1X1i + β2X2i + ϵ∗ − β0 − β1X̄1 + β2X̄2 − ϵ̄∗

= β1(X1i − X̄1) + β2(X2i − X̄2) + ϵ∗ (9.26)

Upon substitution of this equation into (9.25), the expected value for b̂1
becomes

E{b̂1} = β̂1 =
β1
∑n

i=1(Xi − X̄)2 + β2
∑n

i=1(X1i − X̄1)(X2i − X̄2)∑n
i=1(Xi − X̄)2

= β1 + β2

[∑n
i=1(X1i − X̄1)(X2i − X̄2)∑n

i=1(Xi − X̄)2

]
. (9.27)

The term in the big square brackets will be recognized as the slope coefficient
of a regression of the variable X2 on the variable X1. Let us denote this
coefficient by d21. Then (9.27) becomes

β̂1 = β1 + β2 d21 (9.28)

Suppose that the left-out variable is positively correlated with the in-
cluded variable X1 and positively related to the dependent variable. Then
β2 and d21 will both be positive and our least-squares estimate of β1 will
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be biased upward. If the left-out variable is negatively correlated with the
included variable and positively related to the dependent variable, β2 will be
negative and d21 positive so our least-squares estimate of β1 will be biased
downward. If the left-out variable is negatively related to the dependent
variable the bias will be upward when the left-out and included variables
are negatively related and downward when the left-out and included vari-
ables are positively related.

9.7 Multicollinearity

Suppose a young researcher wants to estimate the demand function for
money for Canada. She has learned in her intermediate macroeconomics
class that the demand for real money holdings can be expressed

M

P
= L(rN , YR) (9.29)

where M is the nominal money stock, P is the price level (so that M/P is
the real money stock), rN is the nominal interest rate and YR is the level of
real income. This suggest a regression equation of the form

Yi = β0 + β1X1i + β2X2i + ϵ (9.30)

where Y is Canadian real money holdings, X1 is the nominal interest rate
and X2 is Canadian real income. In the process of collecting her data, our
researcher discovered two different measures of real income, GNP and GDP.4

Not knowing which to use as her measure of real income, she did the easy
thing and simply included both in the regression. Her regression model now
becomes

Yi = β0 + β1X1i + β2X2i + β3X3i + ϵ (9.31)

where X2 is real Canadian GDP and X3 is real Canadian GNP. She used the
Canadian 90-day commercial paper rate as a measure of the Canadian nom-
inal interest rate.5 All the data series were annual (as opposed to quarterly
or monthly) for the years 1957 to 1996 inclusive.

4GDP or gross domestic product measures the level of aggregate real output produced
by resources employed in the country while GNP or gross national product measures the
level of aggregate real output produced by resources owned by domestic residents. To
calculate GNP from GDP we have to subtract out that part of aggregate domestic output
(GDP) produced by resources that are owned by foreigners and then add in the part of
aggregate output abroad that is produced by resources owned by domestic residents.

5The 90-day commercial paper rate is the rate of interest charged on commercial
paper—that is, on securities issued by major corporations for short-term borrowing—that
becomes due 90 days after issue.



9.7. MULTICOLLINEARITY 239

The researcher obtained the following regression results:

Dependent Variable: Canadian Real Money Holdings

Constant 8.50 (4.47)
90-Day Paper Rate -2.65 (0.39)
Real GDP -0.32 (0.50)
Real GNP 0.51 (0.53)

R-Squared .91
Standard Error (σ̂) 6.75
Number of Observations 40
Degrees of Freedom 36

Surprised that both real income coefficients were insignificant, the re-
searcher decided to perform an F -test of the null hypothesis that both are
simultaneously zero (H0: β2 = β3 = 0). So she ran the same regression with
both variables omitted, obtaining the following results:

Dependent Variable: Canadian Real Money Holdings

Constant 43.35 (8.60)
90-Day Paper Rate 1.46 (1.01)

R-Squared .05
Standard Error (σ̂) 21.44
Number of Observations 40
Degrees of Freedom 38

The mean squared errors for the respective regressions are equal to their
sums of squared residuals divided by their respective degrees of freedom.
Thus, the sum of squared residuals for the unrestricted regression (i.e., the
one that included the two real income variables) is∑

e2i = dfσ̂2 = (36)(6.75)2 = 1640

and the sum of squared residuals for the restricted regression (the one that
excluded the two real income variables) is∑

e2Ri = dfσ̂2 = (38)(21.44)2 = 17467
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The appropriate test statistic is therefore∑
e2Ri −

∑
e2i

v
÷

∑
e2i

n−K − 1
=

17467− 1640

2
÷ 1640

36

=
7913.5

45.55
= 173.73 = F (v, n−K − 1) = F (2, 36)

where v is the number of restrictions, equal to 2 in this case. The critical
value for F (2, 36) setting the α-risk at .01 is 5.18 so the researcher rejected
the null hypothesis that both of the coefficients are zero.

What is happening here? Neither of the income variables is statistically
significant in the regression but the two together are significant at far below
the 1% level!

o
oo

o

oo

o

o

X
X 1

2

Y

a

b

Figure 9.2: An illustration of multicolinearity of X1 and X2

in predicting Y .

This is an example of multicollinearity. The problem is that GDP and
GNP are so highly correlated with each other that they are virtually the
same variable. Had they been perfectly correlated, of course, the computer
would not have been able to run the regression. Including two perfectly
correlated variables in the regression is equivalent to including the same
variable twice. This would mean that the X matrix would have two identi-
cal columns so that it would be non-singular and the (X′X)−1 matrix would
not exist. The problem here is that the two variables are not identical but
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nevertheless highly correlated. This makes it impossible to determine their
separate influences in the regression. The situation can be seen from Fig-
ure 9.2 for a multiple regression containing a constant term and two highly
collinear independent variables X1 and X2. The purpose of the regression
is to identify a plane in X1, X2, Y space that indicates how the dependent
variable Y responds to changes in X1 and X2. When X1 and X2 are highly
correlated, however, all the points lie very close to a ray projecting outward
into X1, X2, Y space. It is possible to identify a relationship between X1

and Y and between X2 and Y but not between both X1 and X2 together
and Y . Any estimated plane resting on the line ab in Figure 9.2 will be very
unstable in the dimensions X1, Y and X2, Y—slightly different placements
of the points in different samples will lead to planes with very different slopes
in the X1, Y and X2, Y dimensions.

The researcher’s solution to the problem in this case is easy—simply drop
one of the income variables from the regression, since both are measuring
the same thing, real income. Dropping real GDP, she obtains the following
results:

Dependent Variable: Canadian Real Money Holdings

Constant 10.47 (3.21)
90-Day Paper Rate -2.62 (0.38)
Real GNP 0.17 (0.01)

R-Squared .91
Standard Error (σ̂) 6.70
Number of Observations 40
Degrees of Freedom 37

Situations arise, however, in which two collinear variables really measure
different things and we therefore want to identify their separate effects on
the dependent variable. Suppose, for example, that we want to measure the
effects of domestic and foreign real incomes and domestic relative to foreign
prices on a country’s balance of trade. The theoretical equation takes the
form

BT = B(Y D
R , Y F

R , PR) (9.32)

where Y D
R is domestic real income, Y F

R is foreign real income and PR is the
relative price of domestically produced goods in terms of foreign produced
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goods with all prices measured in a common currency.6 The appropriate
regression model would be

Yi = β0 + β1X1i + β2X2i + β3X3i + ϵ (9.33)

where the dependent variable Y is the real balance of trade, X1 is domestic
real income Y D

R , X2 is foreign real income Y F
R is foreign real income, and X3

is the relative price of domestic goods, PR. Since a rise in the relative price
of domestic in terms of foreign goods will cause both domestic and foreign
residents to switch their purchases away from domestic goods, increasing
imports and reducing exports, we would expect the real balance of trade to
be negatively affected, so the expected sign of β3 is negative. An increase in
domestic income might be expected to cause domestic residents to buy more
foreign goods, increasing imports and reducing the real balance of trade. We
would therefore expect β1 to also be negative. An increase in foreign income,
on the other hand, might be expected to cause foreigners to import more,
resulting in an expansion of domestic exports and an increase in the balance
of trade. The coefficient β2 would thus expected to take on a positive sign.

When we estimate equation (9.33) for some country pairs we might find
that the domestic and foreign real income variables are so highly collinear
that our estimates of β1 and β2 will be statistically insignificant. If we drop
one of the variables, the remaining real income variable acts as a measure
of world real income and the response of the real balance of trade to that
variable will measure the effect of a proportional rise in both domestic and
foreign income on net domestic exports. Our purpose, however, is to measure
the separate effects of the two income variables on the domestic real trade
balance. There is no way that we can do this on the basis of the information
provided by the data we are using. The only way to solve our problem is to
obtain more information.

6The variable PR is called the real exchange rate. The nominal exchange rate is the
price of one country’s money in terms of another country’s money while the real exchange
rate is the price of one country’s output in terms of another country’s output.
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9.8 Serially Correlated Residuals

Perhaps the most important basic assumption of the linear regression model
is that the errors ϵi are independently distributed. This means that the
error associated with the i-th observation does not in any way depend on
the error associated with the j-th observation. This assumption is frequently
violated in regressions involving time series because the errors are correlated
through time. As noted earlier, this situation is called serial correlation
or autocorrelation. High (low) values at any point in time are associated
with high (low) values in neighbouring points in time when there is positive
autocorrelation.

Figure 9.3: Residuals from the regression of Canadian real money holdings
on the country’s 90-day commercial paper rate and real GNP plotted against
time.

Consider the regression of Canadian real money holdings on the 90-day
commercial paper rate and real GNP reported above. The residuals from
that regression are reported in Figure 9.3. It is clear from looking at the
figure that these residuals are serially correlated—high values in one period
are clearly associated with high values in immediately adjacent periods. To
demonstrate formally that serial correlation is present, we can regress each
year’s residual on the residuals for several previous years. Using three lags,
we obtain
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Dependent Variable: Residual

Constant .0544 (0.749122)
Residual-lag-1 1.0279 (0.171394)
Residual-lag-2 -0.4834 (0.233737)
Residual-lag-3 .0959 (0.175700)

R-Squared .5849
Standard Error (σ̂) 4.5437
Number of Observations 37
Degrees of Freedom 33

Statistically significant coefficients were obtained for one and two lags of the
residuals—based on t-ratios of 6.0 and -2.06, respectively. The third lag is
clearly insignificant. When the residual is correlated with the immediately
previous residual, the serial correlation is called first-order serial correlation,
when it is correlated with the residual two periods previous it is called
second-order serial correlation, and so forth. In the above case, there is first-
and second-order serial correlation in the residuals but not third-order. We
do not know whether fourth-order serial correlation is present because we
did not test for it—it is possible to have fourth- (or any other) order serial
correlation in the residuals without having serial correlation of lower orders.

The standard procedure for detecting first-order (and only first-order)
serial correlation in the residuals is to calculate the Durbin-Watson Statistic.
This equals

d =

∑n
t=2(et − et−1)

2∑n
t=1 e

2
t

. (9.34)

The sampling distribution of d is a complex one. It turns out that d can
take values between 0 and 4, and will differ from 2 when first-order serial
correlation is present. When the first-order serial correlation is positive, d
will be less than 2 and when it is negative d will be greater than 2. There
is, however, a wide range of indeterminacy. In the case of positive serial
correlation, one cannot clearly reject the null hypothesis of zero autocorre-
lation unless d is below the lower bound for the chosen level of α-risk in
the table of critical values for the Durbin-Watson d statistic in the back of
one’s statistics textbook. And one can only accept the hypothesis of zero
autocorrelation if d is above the upper bound in the table. For values of d
between the lower and upper bounds we cannot draw any conclusion. For
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negative serial correlation (which is present when d > 2) the same limits
are used except we compare the numbers in the table with 4 − d. In the
regression above, the Durbin-Watson statistic is .58 which is well below the
lower bound for α = .01 and indicates positive first-order serial correlation.

What do we do when first-order serial correlation is present in the resid-
uals? (Dealing with higher order serial correlation is beyond the technical
level of the analysis here.) The answer to this question depends on why the
autocorrelation is present. One possibility is that the true errors are serially
correlated. This implies that the standard linear model is the incorrect one
to apply to the data. An appropriate error term might be

ϵt = ρ ϵt−1 + ut

which implies that
ϵt − ρ ϵt−1 = ut,

where ut is independently normally distributed with zero mean and variance
σ2. Assuming that the residuals actually behave in this way, we can lag the
original regression equation

Yt = β0 + β1X1t + β2X2t + ϵt

once to yield

Yt−1 = β0 + β1X1(t−1) + β2X2(t−1) + ϵt−1

and then subtract ρ times the second equation from the first to obtain

Yt − ρ Yt−1 = β0 + β1(X1t − ρX1(t−1)) + β2(X2t − ρX2(t−1)) + ut. (9.35)

In this equation (Yt − ρ Yt−1), (X1t − ρX1(t−1)) and (X2t − ρX2(t−1)) are
related according to the standard linear model with the independently and
normally distributed error term ut.

To estimate equation (9.35), we need an estimator of ρ. A natural way
to proceed is to regress the residuals from the original regression on them-
selves lagged one period and use the slope coefficient as that estimator. Our
regression model would be

et = γ + ρ et−1 + υt

where υt is an independent draw from the true constant-variance error term
and we would expect our estimate of γ to be zero. The results from this
regression are as follows:
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Dependent Variable: Residual

Constant 0.140 (0.761913)
Residual-lagged 0.716 (0.118507)

R Squared: 0.497
Standard Error (σ̂) 4.7562
Number of Observations 39
Degrees of Freedom 37

We can apply the resulting estimate of ρ (= 0.716) to obtain the new vari-
ables

Ỹt = (Yt − .716Yt−1)

X̃1t = (X1t − .716X1(t−1))

and
X̃2t = (X2t − .716X2(t−1)).

A new regression of the form

Ỹt = β0 + β1X̃1t + β2X̃2t + ut

can then be run, yielding the following results:

Dependent Variable: Real Money Variable

Constant 1.03 (2.03)
Interest rate variable -1.38 (0.33)
Real GNP variable 0.17 (0.02)

R-Squared .73
Standard Error (σ̂) 4.05
Number of Observations 39
Degrees of Freedom 36

It turns out that the effects of this ‘correction’ for serial correlation in the
residuals, comparing the before and after regressions, reduces the absolute
value of the slope coefficient of the interest rate variable from -2.62 to -1.38
and also reduces its standard error slightly. A sophisticated extension of
this procedure is to regress the residuals of this new equation on themselves
lagged and modify the estimate of ρ accordingly, doing this repeatedly until
the estimates of ρ change by less than some minimal amount. When this is
done, we obtain the following results:
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Dependent Variable: Real Money Variable

Constant -4.24 (24.62)
Interest rate variable -1.09 (0.31)
Real GNP variable 0.18 (0.05)
ρ 0.928 (0.07)

R-Squared .97
Standard Error (σ̂) 3.75
Number of Observations 39
Degrees of Freedom 35

These refinements reduce further the absolute value of the slope coefficient
of the interest rate variable and its standard error and raise slightly the
coefficient of the real income variable and more substantially its standard
error.

The ‘optimal’ value of ρ obtained by the above iterative method is very
close to unity. In fact, a long-standing traditional approach to dealing with
serial correlation in the residuals has been to take the first differences of the
variables and run the regression in the form

Yt − Yt−1 = β0 + β1(X1t −X1(t−1)) + β2(X2t −X2(t−1)) + ϑt. (9.36)

This assumes that

ϑt = ϵt − ϵt−1

is independently and normally distributed and therefore that ρ = 1. When
we impose this assumption on the residuals we obtain the following results:

Dependent Variable: Real Money Variable

Constant 0.496 (0.89)
Interest rate variable -0.96 (0.32)
Real GNP variable 0.15 (0.06)

R-Squared .22
Standard Error (σ̂) 3.73
Number of Observations 39
Degrees of Freedom 36

The results differ little from those obtained when ρ was estimated iteratively.
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Which coefficients are we to believe, those with no ‘correction’ of the
residuals for serial correlation or those with a ‘correction’ imposed? To
answer this question we must know the reason for the residuals being serially
correlated. One possibility, of course, is that the residuals of the ‘true’ model
are serially correlated. The problem with this explanation is that there is
no reason in economic theory for the residuals to be serially correlated if
we have correctly modeled the economic process we seek to explain. The
reason why we have serial correlation in the residuals is that we have left
variables that are correlated with time out of the model because we either
could not measure them or could not correctly specify the underlying theory
given the current state of knowledge. Obviously, the best approach is to try
to better specify the model and to be sure that all variables that should
be in it are included in the estimating equation. If we cannot do so our
coefficients are likely to be biased for reasons outlined in section 9.6 above
on left-out variables. Whether we improve things by correcting the residuals
for first-order serial correlation is a question that econometricians will debate
on a case-by-case basis. Clearly, however, it is inappropriate to routinely
and unthinkingly impose a ‘correction’ on the residuals every time serial
correlation is present.

9.9 Non-Linear and Interaction Models

Figure 9.4: Residuals from a linear regression that suggest
the underlying relationship is nonlinear.
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It frequently arises that the residuals show a non-linear pattern as is
illustrated in Figure 9.4. There are a number of simple ways of fitting
non-linear relationships—either the dependent or independent variables or
both can be transformed by inverting them or taking logarithms and using
these non-linear transformations of the variables in a linear regression model.
Another way is to include in the regression model squares of the independent
variables along with their levels. For example, we might have

Yt = β0 + β1Xt + β2X
2
t + ϵt. (9.37)

Interaction models arise when the relationship between the dependent vari-
able and one of the independent variables depends on the level of a second
independent variable. In this case, the appropriate regression model would
be of the form

Yt = β0 + β1X1t + β2X2t + β3X1tX2t + ϵt. (9.38)

Let us work through an example that illustrates both of these modifi-
cations to the standard linear model. It is quite common for colleges and
universities to develop regression models for predicting the grade point av-
erages (GPA’s) of incoming freshmen. This evidence is subsequently used to
decide which students to admit in future years. Two obvious variables that
should be predictors of subsequent student performance are the verbal and
mathematics scores on college entrance examinations. Data for a randomly-
selected group of 40 freshmen were used to obtain the following regression
results:

Dependent Variable: Freshman Grade Point Average

Constant -1.570 (0.4937
Verbal Score (percentile) 0.026 (0.0040)
Math Score (percentile) 0.034 (0.0049)

R-Squared .68
Standard Error (σ̂) .402
Number of Observations 40
Degrees of Freedom 37

These results indicate that students’ scores on both the verbal and mathe-
matical college entrance tests are significant positive predictors of freshman
success (with t-ratios 6.3 and 6.8, respectively). An increase in a student’s
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verbal score by 10 percentiles will lead on average to a .26 increase in his/her
GPA. For example, a student in the 70th percentile on both the verbal and
mathematics sections of the entrance exam will have an expected freshman
GPA of

−1.57 + (70)(.026) + (70)(.034) = 2.58.

An increase in her verbal score on the entrance exam from the 70th to the
80th percentile will increase her expected GPA by 0.26 to 2.84. And an
increase in her math score from the 70th to the 80th percentile will increase
her expected GPA by .34 to 2.92. An increase in both of her scores from the
70th to the 80th percentile will increase her expected GPA by .6 (= .26 +
.34) to 3.18. The increase in expected GPA predicted by an increase in the
percentiles achieved on the mathematics and verbal college entrance exams
will be independent of the initial levels of the student’s scores.

Figure 9.5: Residuals from first order regression model of
grade point average on test scores.

The residuals from this regression are plotted against the two indepen-
dent variables in Figure 9.5. Plotted against verbal score, they have an
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inverse parabolic pattern, suggestive of non-linearity.7 To check this out we
run a second regression that includes the squared verbal and mathematics
scores as additional variables together with an interactive variable consisting
of the product of the verbal and math scores. The results are as follows:

Dependent Variable: Freshman Grade Point Average

Constant -9.9167 (1.35441)
verbal score 0.1668 (0.02124)
math score 0.1376 (0.02673)
verbal score squared -0.0011 (0.00011)
math score squared -0.0008 (0.00016)
verb score x math score 0.0002 (0.00014)

R-Squared .94
Standard Error (σ̂) .187
Number of Observations 40
Degrees of Freedom 34

As expected, the verbal score squared has a significant negative sign indica-
tive of an inverse parabolic relationship (the t-statistic equals -10). The
squared mathematical score is also statistically significant with a negative
sign (the t-ratio equals -5). The interactive term, verbal score times math
score, is not statistically significant, with a t statistic of only 1.43. The
residuals from this extended regression, plotted in Figure 9.6 are very well
behaved. An F -test of the null hypothesis of no effect of the squared and
interactive terms yields the statistic∑

e2iR −
∑

e2i
3

÷
∑

e2i
34

=
(37)(.402)2 − (34)(.187)2

3
÷ (34)(.187)2

34

=
5.98− 1.19

3
÷ 1.19

34
=

1.60

.035
= 45.71 = F (3, 34).

We can reject the null hypothesis at any reasonable level of α-risk.

Notice how the addition of these second order terms (squares and cross-
products) affects the response of GPA to verbal and mathematical test

7A parabola takes the mathematical form

y = ax2 − bx− c.

When a < 0 the parabola will be inverted with the arms extending downward.
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Figure 9.6: Residuals from second order regression model of
grade point average on test scores.
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scores. A student with scores in the 70th percentile on both the verbal
and mathematical tests will have a predicted GPA of

−9.9167 + (.1668)(70) + (.1376)(70)− (.0011)(70)2

−(.0008)(70)2 + (.0002)(70)(70) = 3.04

which is higher than the predicted value from the regression that did not
include the second order terms. Now suppose that the student’s verbal test
score increases to the 80th percentile. This will increase his expected GPA
by

(.1668)(80− 70)− (.0011)(802 − 702) + (.0002)(80− 70)(70) = .158

to 3.198. An increase in the mathematical score from the 70th to the 80th
percentile with his verbal score unchanged would increase his expected GPA
by

(.1376)(80− 70)− (.0008)(802 − 702) + (.0002)(70)(80− 70) = .316

to 3.356. Given the interaction term, an increase in both the verbal and
mathematical scores of the student from the 70th to the 80th percentile
would increase his expected GPA by more than the sum of the two separate
effects above (= .158 + .316 = .474). The increase would be

(.1668)(80− 70)− (.0011)(802− 702)+ (.1376)(80− 70)− (.0008)(802− 702)

+(.0002)[(80− 70)(70) + (70)(80− 70) + (80− 70)(80− 70)

= .158 + .316 + (.0002)(100) = .158 + .316 + .02 = .494

to 3.534. Notice the difference in the levels and predicted changes in the
GPA’s under the second order as opposed to the first order model. Given
that the interaction term is statistically insignificant, however, we might de-
cide to make our predictions on the basis of a regression model that includes
the squared terms but excludes the interaction term.
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9.10 Prediction Outside the Experimental Region:
Forecasting

A major purpose of regression analysis is to make predictions. Problems
arise, however, when the fitted models are used to make predictions outside
the range of the sample from which the regression model was estimated—
i.e., outside the experimental region. The fit within sample is based on the
surrounding sample points. Outside the range of the sample there is no
opportunity for the fitted regression parameters to be influenced by sample
observations—we simply do not know what values of the dependent variable
would be associated with levels of the independent variables in this range
were they to occur. As a result, the farther outside the sample range we
extrapolate using the estimated model the more inaccurate we can expect
those predictions to be.

Predicting outside the sample range in time series regressions is called
forecasting. We have data on, say, the consumer price index, up to and
including the current year and want to predict the level of the consumer price
index next year. We develop a regression model ‘explaining’ past movements
in the consumer price index through time and then use that model to forecast
the level of the consumer price index in future periods beyond the sample
used to estimate the model. To the extent that we use independent variables
other than time we have to forecast the levels of those variables because
their realization has not yet occurred. Errors in those forecasts will produce
errors in predicting the future values of the dependent variable. These will
additional to the errors that will result because we are using the regression
parameters to predict values of the dependent variable outside the sample
range in which those parameters were estimated.

Alternatively, we could forecast the consumer price index based on a
simple regression of a range of its previous realized values against time using
a model such as

YT = β0 + β1T + ϵt

where YT is the consumer price index at time T . This is the simplest time-
series model we could fit to the data—time-series econometricians typically
use much more sophisticated ones. The regression model is estimated for
the period T = 1, 2, . . . N and then a prediction of Y for period N + 1 is
obtained as

YN+1 = b0 + b1 (N + 1).

Obviously, if the time-period N + 1 could have been used in the estimation
of the model, the estimates b0 and b1 would be different. The further we
forecast beyond period N the less the expected accuracy of our forecasts.



9.11. EXERCISES 255

9.11 Exercises

1. A random sample of size n = 20 families is used to conduct a multiple
regression analysis of how family i’s annual savings Si depends on its annual
income Ii and its home-ownership status Hi. Both Si and Ii are measured
in thousands of dollars. Variable Hi is equal to 1 if family i owns its home
and equal to 0 if family i rents. The regression results

Coefficient Estimate Standard Error

Constant — β0 -0.320 0.620
Annual Income — β1 0.0675 0.004
Home Ownership — β2 0.827 0.075

Sum of Squared Errors 0.230
Total Sum of Squares 15.725

yield the fitted equation

Ŝi = −0.320 + 0.0675 Ii + 0.827Hi.

a) The value of the coefficient associated with the variable I is estimated
to be 0.0675. Provide a one-sentence explanation of what this num-
ber implies about the relationship between family income and saving.
Also, provide a one-sentence explanation of what the coefficient es-
timate 0.827 implies about the relationship between home ownership
and saving.

b) Using α = .05, conduct a test of the null hypothesis H0: β1 = β2 = 0
versus the alternative hypothesis that at least one of β1, β2 is not equal
to zero.

2. A shoe store owner estimated the following regression equation to explain
sales as a function of the size of investment in inventories (X1) and adver-
tising expenditures (X2). The sample consisted of 10 stores. All variables
are measured in thousands of dollars.

Ŷ = 29.1270 + .5906X1 + .4980X2

The estimated R2 was .92448, Σ(Yi − Ȳ )2 = 6, 724.125, and the standard
deviations of the coefficients of X1 and X2 obtained from the regression were
.0813 and .0567 respectively.
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a) Find the sum of squared residuals and present a point estimate of the
variance of the error term. (507.81, 72.54)

b) Can we conclude that sales are dependent to a significant degree on
the size of stores’ inventory investments?

c) Can we conclude that advertising expenditures have a significant effect
on sales?

d) Can we conclude that the regression has uncovered a significant overall
relationship between the two independent variables and sales?

e) What do we mean by the term ‘significant’ in b), c) and d) above?

3. Quality control officers at the Goodyear Tire and Rubber Company are
interested in the factors that influence the performance of their Goodyear
TA All Season Radial Tires. To this end, they performed a multiple regres-
sion analysis based on a random sample of 64 automobiles. Each vehicle
was equipped with new tires and driven for one year. Following the test
period, Goodyear experts evaluated tire wear by estimating the number of
additional months for which the tire could be used. For the regression study,
the dependent variable TIRE measures this estimated remaining lifetime in
months. A totally worn out tire will report TIRE= 0. Independent variables
selected for the study include WEIGHT which measures the test vehicle’s
weight in pounds, CITY which measures the number of miles driven in
city traffic in thousands and MILES which measures the total number of
miles driven (city and highway), also in thousands. The statistical software
package Xlispstat reports multiple regression results and a simple regression
of TIRE on WEIGHT. The standard errors of the coefficients are given in
brackets.

Dependent Variable: TIRE

Constant 60.000 (15.000)
WEIGHT -0.003 (0.001)
CITY 0.020 (0.008)
MILES -0.400 (0.100)

R-Squared .86
Standard Error (σ̂) 1.542
Number of Observations 64
Degrees of Freedom 60
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Dependent Variable: TIRE

Constant 72.000 (36.000)
WEIGHT -0.005 (0.001)

R-Squared .79
Standard Error (σ̂) 1.732
Number of Observations 64
Degrees of Freedom 62

a) Interpret each of the estimated parameters in the multiple regression
model (i.e., what does β2 = 0.020 tell you about the relationship between
city miles and tire wear?)

b) Briefly discuss why the estimated coefficient on WEIGHT differs between
the simple and multiple regression models.

c) Perform an hypothesis test to evaluate whether the coefficient on CITY
is significantly greater than zero. Manage the α-risk at 5%. Interpret the
results of this test.

d) Test whether the estimated coefficients on CITY and MILES are jointly
equal to zero. Manage the α-risk at 5%. Interpret the results of this test.

4. J. M. Keynes postulated that aggregate real consumption (RCONS)
is positively related to aggregate real GNP (RGNP) in such a way that
the marginal propensity to consume—the change in consumption resulting
from a one-unit change in income—is less than the average propensity to
consume—the ratio of consumption to income. There remains the question
of whether consumption is negatively related to the rate of interest (or, which
is the same thing, savings is positively related to the interest rate). The table
on the next page presents some data on consumption, real GNP and interest
rates in Canada, along with the LOTUS-123 regression output using these
data. A dummy variable is included to test whether consumption depends on
whether the exchange rate is fixed or flexible. The column PRED gives the
level of consumption predicted by the regression that includes the dummy
variable and the column ERROR gives the difference between the actual
value of consumption and the value predicted by that regression. SQERR
is the error squared and the right-most column gives the error times itself
lagged.
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WORKSHEET FOR REGRESSION ANALYSIS OF CANADIAN CONSUMPTION

ERROR TIMES
RCONS RGNP INTRATE DUMMY PRED ERROR SQERR ERROR LAGGED

1961 105.4 161.4 3.37 0 99.7 5.7 32.3 
1962 111.1 173.4 4.38 0 105.7 5.4 29.0 30.629 
1963 116.4 182.8 4.01 1 114.1 2.3 5.4 12.530 
1964 122.8 196.6 4.20 1 121.9 0.9 0.8 2.023 
1965 129.7 211.5 5.01 1 129.8 -0.1 0.0 -0.079 
1966 136.8 228.2 6.27 1 138.4 -1.6 2.5 0.143 
1967 142.9 236.3 5.84 1 143.5 -0.5 0.3 0.831 
1968 150.0 248.4 6.82 1 149.6 0.4 0.2 -0.207 
1969 157.1 262.0 7.84 1 156.5 0.5 0.3 0.212 
1970 160.6 271.9 7.34 0 160.2 0.4 0.1 0.196 
1971 169.3 288.5 4.51 0 172.4 -3.1 9.5 -1.122 
1972 181.0 308.0 5.10 0 183.2 -2.2 4.8 6.763 
1973 192.4 335.8 7.45 0 197.2 -4.8 22.6 10.447 
1974 202.7 361.1 10.50 0 209.1 -6.4 40.6 30.310 
1975 211.9 367.5 7.93 0 215.1 -3.3 10.7 20.837 
1976 225.3 393.2 9.17 0 228.9 -3.7 13.6 12.036 
1977 231.3 399.7 7.47 0 234.2 -2.9 8.4 10.691 
1978 236.2 405.4 8.83 0 236.3 -0.1 0.0 0.294 
1979 241.5 423.8 12.07 0 244.0 -2.6 6.5 0.259 
1980 246.3 432.0 13.15 0 247.9 -1.6 2.5 4.012 
1981 249.3 438.3 18.33 0 246.8 2.4 5.9 -3.810 
1982 241.4 415.2 14.15 0 237.2 4.2 17.6 10.189 
1983 250.8 427.5 9.45 0 248.6 2.3 5.1 9.495 
1984 261.8 449.2 11.18 0 259.6 2.3 5.1 5.106 
1985 276.1 465.9 9.56 0 270.7 5.3 28.4 12.037 
1986 287.1 474.2 9.16 0 275.9 11.2 126.3 59.940 

SUM 5037.1 8557.8 213.1 7.0 10.6 378.6 233.8 
MEAN 193.7 329.1 8.2 0.3 0.0 
VAR 3164.17 10421.87 12.6228 0.204 

********************

Regression Output: Regression Output: Dummy Variable Excluded: 

Constant 9.12 Constant 12.21 
R Squared 0.99527 R Squared 0.99504 
No. of Observations 26 No. of Observations 26 

RGNP INTRATE DUMMY RGNP INTRATE
X Coefficient(s) 0.58 -0.90 2.53 X Coefficient(s) 0.57 -0.84 
Std Err of Coef. 0.02 0.38 2.40 Std Err of Coef. 0.01 0.38 
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a) Can we conclude that consumption is positively related to income?

b) How would you test the proposition that the marginal propensity to
consume equals the average propensity to consume?

c) Can we conclude that the interest rate has a negative effect on consump-
tion?

d) Is aggregate consumption affected by whether the country was on fixed
as opposed to flexible exchange rates?

e) Test whether the regression that includes all three independent variables
is statistically significant.

f) Do an F -test of the proposition that consumption depends on whether the
country was on a fixed or flexible exchange rate. Show that the F-statistic
so obtained is equal to the square of the relevant t-statistic in the regression
that includes the dummy variable.

g) Perform a crude test of whether residuals of the regression are serially
correlated.
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Chapter 10

Analysis of Variance

Analysis of variance (ANOVA) models study the relationship between a
dependent variable and one or more independent variables within the same
framework as do linear regression models but from a different perspective.
We begin by viewing from an ANOVA perspective the results of a regression
explaining the response of Canadian real money holdings to Canadian real
GNP and the interest rate on Canadian 90-day commercial paper.

10.1 Regression Results in an ANOVA Framework

The regression results were as follows:

Dependent Variable: Canadian Real Money Holdings

Constant 10.47 (3.21)
90-Day Paper Rate -2.62 (0.38)
Real GNP 0.17 (0.01)

R-Squared .91
Standard Error (σ̂) 6.70
Number of Observations 40
Degrees of Freedom 37

The regression model can be seen as attempting to explain the total sum
of squares of the dependent variable, real money holdings, using two inde-
pendent variables, real GNP and the nominal interest rate. The residual
sum of squares SSE represents the portion of the total sum of squares SSTO
that cannot be explained by the independent variables. And the sum of

261



262 ANALYSIS OF VARIANCE

squares due to the regression SSR represented the portion of the total sum
of squares explained by the regressors. It will be recalled that the R2 is the
ratio of SSR to SSTO. The regression results above give the standard error
of the regression σ̂ which is a point estimate of σ—it is the square root of
the mean square error MSE. The mean square error in the regression above
is thus

MSE = σ̂2 = 6.702 = 44.89

so the sum of squared errors is

SSE = (n−K − 1)MSE = (37)(44.89) = 1660.93.

Since the coefficient of determination, R2, equals

R2 =
SSR

SSTO
=

SSTO − SSE

SSTO
= 1− SSE

SSTO

it follows that

R2SSTO = SSTO − SSE =⇒ (1−R2)SSTO = SSE,

so that, given R2 and SSE, we can calculate SSTO from the relationship

SSTO =
SSE

1−R2
=

1660.93

1− .91
=

1660.93

.09
= 18454.78.

The sum of squares due to regression then becomes

SSR = SSTO − SSE = 18454.78− 1660.93 = 16793.85.

Now the variance of the dependent variable, real money holdings, is the to-
tal sum of squares divided by (n − 1), the degrees of freedom relevant for
calculating it—one observation out of the n available is used up calculat-
ing the mean of the dependent variable. And we have seen that the error
variance is estimated by dividing the sum of squared errors by (n−K − 1),
the number of degrees of freedom relevant for its calculation—here we have
used up K pieces of information calculating the regression coefficients of the
independent variables and one piece of information to calculate the constant
term, leaving only (n−K − 1) independent squared residuals.

Finally, we can identify the degrees of freedom used in calculating the
sum of squares due to regression (SSR). SSR is the sum of squared deviations
of the fitted values of the dependent variable from the mean of the dependent
variable—in terms of our regression notation,

SSR =
n∑

i=1

(Ŷi − Ȳ )2.
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There are n fitted values Ŷ that by the nature of the calculations are con-
strained to lie along the fitted line. The potential degrees of freedom in
calculating this line are its K + 1 parameters—the slopes with respect to
the K independent variables, and the intercept. One of these degrees of
freedom is lost because only n − 1 of the (Ŷi − Ȳ ) are independent—the
deviations must satisfy the constraint

n∑
1=1

(Ŷi − Ȳ ) = 0

so if we know any n − 1 of these deviations we also know the remaining
deviation. The sum of squares due to regression is thus calculated with K
degrees of freedom (two in the above example). So we can calculate the
variance due to the regression (i.e., the regression mean square) as

MSR =
SSR

K
=

16793.85

2
= 8396.925.

These analysis of variance results can be set out in the following ANOVA
table:

Analysis of Variance: Canadian Real Money Holdings

Source of Variation Sum of Squares Degrees of Freedom Mean Square

Regression 16793.85 2 8396.925

Error 1660.93 37 44.89

Total 18454.78 39

Notice how the total degrees of freedom is the sum of the degrees of freedom
for calculating the regression sum of squares and the degrees of freedom
for calculating the sum of squared errors. And, as shown in the previous
two chapters as well as above, the total sum of squares is equal to the sum
of squares due to regression plus the error sum of squares. It is especially
important to notice, however, that the mean square due to regression and
the mean square error do not add up to equal the variance of the dependent
variable, which in the case above is 18454.78/39 = 473.2. The F -Statistic
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for testing the null hypothesis of no relationship between the regressors and
the dependent variable is

F =

∑
(Yi − Ŷ )2 −

∑
e2i

K
÷

∑
e2i

n−K − 1

=
SST0− SSE

K
÷ SSE

n−K − 1

=
MSR

MSE
=

8396.925

44.89
= 185.72

which far exceeds the value of F (2, 37) in the statistical tables for at any
reasonable level of α.

10.2 Single-Factor Analysis of Variance

Let us now take a fresh problem and approach it strictly from an ANOVA
perspective. Suppose we randomly select 5 male students and 5 female
students from a large class and give each student an achievement test. Our
objective is to investigate whether male students do better than their female
counterparts on such a test. The resulting data are

Student i
Gender j 1 2 3 4 5

Male 86 82 94 77 86
Female 89 75 97 80 82

This is a designed sampling experiment because we control (and randomize)
the selection of male and female participants. It would be an observational
sampling experiment if we were to simply take a class of 10 students, half of
whom turn out to be female, and give them an achievement test.

Analysis of variance has its own terminology. The achievement test score
is the response or dependent variable as it would be in a linear regression.
The independent variables, whose effects on the response variable we are
interested in determining, are called factors. In the case at hand, there is a
single factor, gender, and it is qualitative—i.e., not measured naturally on
a numerical scale. We could add additional factors such as, say, the race of
the student. The values of the factors utilized in the experiment are called
factor levels. In this single factor experiment, we have two factor levels,
male and female. In the single factor case the factor levels are also called
treatments. In an experiment with more than one factor, the treatments
are the factor-level combinations utilized. For example, if we take the race
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of the students as a second factor, the treatments might be male-white,
female-white, male-non-white and female-non-white. The objects on which
the response variables are observed—i.e., the individual students in the case
considered here—are referred to as experimental units. These are called
elements in regression analysis.

The objective of a completely randomized design is usually to compare
the treatment means—these are the mean achievement scores of male and
female students respectively. The means of the two treatments (male and
female) are, respectively,

86 + 82 + 94 + 77 + 86

5
= 85

and
89 + 75 + 97 + 80 + 82)

5
= 84.6

and the overall mean is 84.8. Some thought suggests that if the response
variable (achievement test score) is not much affected by treatment (i.e., by
whether the student is male or female) the means for the two treatments
will not differ very much as compared to the variability of the achievement
test scores around their treatment means. On the other hand, if test score
responds to gender, there should be a large degree of variability of the treat-
ment means around their common mean as compared to the variability of
the within-group test scores around their treatment means.

We thus calculate the Sum of Squares for Treatments by squaring the
distance between each treatment mean and the overall mean of all sample
measurements, multiplying each squared difference by the number of sample
measurements for the treatment, and adding the results over all treatments.
This yields

SST =
p∑

j=1

(nj)(x̄j − x̄)2 = (5)(85− 84.8)2 + (5)(84.6− 84.8)2

= (5)(.04) + (5)(.04) = .2 + .2 = .4.

In the above expression p = 2 is the number of treatments, nj is the number
of sample elements receiving the j-th treatment, x̄j is the mean response for
the jth treatment and x̄ is the mean response for the entire sample.

Next we calculate the Sum of Squares for Error, which measures the sam-
pling variability within the treatments—that is, the variability around the
treatment means, which is attributed to sampling error. This is computed
by summing the squared distance between each response measurement and
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the corresponding treatment mean and then adding these sums of squared
differences for all (both) treatments. This yields

SSE =
n1∑
i=1

(xi1 − x̄1)
2 +

n2∑
i=1

(xi2 − x̄2)
2

= [(86− 85)2 + (82− 85)2 + (94− 85)2 + (77− 85)2 + (86− 85)2]

+[(89− 84.6)2 + (75− 84.6)2 + (97− 84.6)2 + (80− 84.6)2 + (82− 84.6)2]

= [1 + 9 + 81 + 64 + 1] + [19.36 + 92.16 + 153.76 + 21.16 + 6.76]

= 156 + 293.2 = 449.2.

Again, nj is the number of sample measurements for the jth treatment and
xij is the ith measurement for the jth treatment.

Finally, the Total Sum of Squares is the sum of squares for treatments
plus the sum of squares for error. That is

SSTO = SST + SSE = .4 + 449.2 = 449.6.

Now we calculate the Mean Square for Treatments which equals the sum
of squares for treatments divided by the appropriate degrees of freedom. We
are summing p squared deviations (of each of the p treatment means from
the overall mean) but only p−1 of these squared deviations are independent
because we lose one piece of information in calculating the overall mean. So
for the above example we have

MST =
SST

p− 1
=

0.4

1
= 0.4.

Next we calculate the Mean Square Error which equals the sum of the
squared deviations of the sample measurements from their respective treat-
ment means for all measurements, again divided by the appropriate degrees
of freedom. Here we have n cases (or sample measurements), where

n = n1 + n2 + n3 + . . .+ np

but we had to calculate the p treatment means from the data, so the degrees
of freedom will be n− p. We thus obtain

MSE =
SSE

n− p
=

SSTO − SST

n− p
=

449.2

10− 2
= 56.15.

The above numbers can be used to construct the following ANOVA table:
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Analysis of Variance: Achievement Test Scores

Source of Variation Sum of Squares Degrees of Freedom Mean Square

Treatments 0.4 1 0.4

Error 449.2 8 56.15

Total 449.6 9

The purpose of this whole exercise, of course, is to determine whether
gender (given by treatments) has any effect on achievement test scores (the
response variable). If there is no effect we would expect the error sum of
squares to be nearly as big as the total sum of squares and the treatment sum
of squares to be very small. This appears to be the case in the ANOVA table
above. The sum of squares for treatments (which measures the variability of
the treatment means around the overall mean) is extremely low relative to
the error sum of squares. But is it low enough for us to conclude that there is
no significant relationship of achievement scores to gender? Is the observed
treatment sum of squares as high as it is purely because of sampling error?

The statistical test for significance is straight forward. From the discus-
sions in the previous chapter it is evident that under the null hypothesis of
no relationship

SST

σ2
=

SSTO − SSE

σ2
= χ2(p− 1)

where (p − 1)[= (n − 1) − (n − p)] is the degrees of freedom for treatment
and σ2 is the common variance of the individual achievement scores around
the overall mean achievement score and of the individual scores around
their treatment means. The two types of variation have a common variance
under the null hypotheses that the achievement test scores are independent
of treatment. Also,

SSE

σ2
= χ2(n− p).

We can now apply the principle that the ratio of two independent χ2 vari-
ables, each divided by its degrees of freedom, will be distributed according to
the F -distribution with parameters equal to the number of degrees of free-
dom in the numerator and number of degrees of freedom in the denominator.
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Thus we have

SSTO − SSE

(n− 1)− (n− p)
÷ SSE

n− p
=

SST

p− 1
÷ SSE

n− p
=

MST

MSE
= F (p− 1, n− p)

where the σ2 terms cancel out. In the example under consideration, this
yields

MST

MSE
=

.4

56.15
= .007123778 = F (1, 8).

The critical value of F with one degree of freedom in the numerator and
8 degrees of freedom in the denominator for α = .1 is 3.46. So we cannot
reject the null hypothesis of no effect of gender on achievement test scores.

You might recognize the similarity of this analysis of variance test to the
tests we did in Chapter 6 for differences in the means of two populations.
Indeed, the tests are identical. In Chapter 6 we expressed the difference
between the two population means as

E{Ȳ − X̄} = E{Ȳ } − E{X̄} = µ2 − µ1

and the variance of the difference between the two means as

σ2{Ȳ − X̄} = σ2{Ȳ }+ σ2{X̄},

using
s2{Ȳ − X̄} = s2{Ȳ }+ s2{X̄}

as an unbiased point estimator of σ2{Ȳ − X̄}. We then used in this formula
the expressions for the variances of the means,

s2{Ȳ } = s2{Y/n}

and
s2{X̄} = s2{X/n}.

The difference in means in the case above is 85 − 84.6 = 0.4. The sample
population variances can be obtained by noting that the sums of the squared
deviations of the achievement scores of the male and female students around
their respective means are, respectively, 156 and 293.2. Dividing each of
these by the degrees of freedom relevant for their calculation (ni−1 = 5−1 =
4), we obtain sample population variances for male and female students of 39
and 73.3 respectively. Imposing the condition that the true variances of the
two groups are the same, we then obtain a pooled estimator of this common
variance by calculating a weighted average of the two estimated variances
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with the weights being the ratios of their respective degrees of freedom to
the total. That is

s2P =
(4)(39) + (4)(73.3)

8
=

156 + 293.2

8
= 56.15

which, you will note, equals MSE. The variance of the difference between
the two means (which we denote using the subscripts m for male and f for
female) equals

σ2
m−f =

σ2
m

nm
+

σ2
f

nf
= s2P

[
1

nm
+

1

nf

]
= (56.15)(.2 + .2) = 22.46.

The standard deviation of the difference between the two means then equals√
22.46 = 4.739198. Given the point estimate of the difference in the means

of 0.4, the t-statistic for testing the null-hypothesis of no difference between
the means is

t∗ =
.4

47392
= .08440246.

This statistic will be within the acceptance region for any reasonable level
of significance. The result is the same as we obtained from the analysis of
variance.

As a matter of fact, this test and the analysis of variance test are identi-
cal. Squaring t∗, we obtain .007123778 which equals the F -statistic obtained
in the analysis of variance procedure. This is consistent with the principle,
already noted, that when there is one degree of freedom in the numerator,
F = t2.

A third way of approaching this same problem is from the point of view
of regression analysis. We have n = 10 observations on gender and want
to determine the response of achievement test score to gender. Gender is
a qualitative variable which we can introduce as a dummy variable taking
a value of 0 for elements that are male and 1 for elements that are female.
Our regression model becomes

Yi = β0 + β1Xi + ϵi

where Yi , i = 1 . . . 10, is the test score for the i-th student, and Xi is the
dummy variable taking a value of zero for male students and unity for female
students. The regression results obtained are:
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Dependent Variable: Achievement Test Score

Constant 85 (3.35112)
Female Dummy -.40 (4.73920)

R-Squared .000889
Standard Error (σ̂) 7.4933
Number of Observations 10
Degrees of Freedom 8

The dummy variable for female indicates that the ‘constant term for females’
is 85− 0.4 = 84.6, which is the treatment mean for females obtained by the
analysis of variance procedure. The t−ratio for the hypothesis that the
female dummy is zero (i.e., the female treatment mean equals the male
treatment mean) is -.4/473920, which is the same as was obtained for the
above test for difference between the means. And the square of σ̂ is 56.15,
the mean squared error obtained in the analysis of variance procedure.

Now let us take a more complicated problem. Suppose we randomly
divide fifteen male students enrolled in a mathematics course into three
groups of five students each. We then randomly assign each group to one
of three instructional modes: (1) programmed text, (2) video-taped lecture-
style presentation, and (3) interactive computer programs. These modes are
all designed to augment a standard textbook which is the same for all three
groups. At the end of the course, we give all students the same achievement
test, with the following results:

Student i
Mode j 1 2 3 4 5

1 86 82 94 77 86
2 90 79 88 87 96
3 78 70 65 74 63

Again we have a designed sampling experiment because we were able to con-
trol the details of the instructional modes for the three groups and make sure
that students were randomly assigned to groups and groups were randomly
assigned to instructional modes. The experiment is completely randomized
because the allocation of the students to the three groups is random and the
allocation of the groups to the instructional modes is random. In contrast,
an observational sampling experiment would be one where we, for example,
observe the test scores of three groups of students, perhaps of different sizes,
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who for reasons beyond our control happen to have been instructed in accor-
dance with three alternative instructional modes of the above types. In this
single factor study there are three factor levels or treatments representing
the three modes of instruction.

Our objective in this completely randomized design is to compare the
treatment means—the mean achievement scores of the students in the three
groups taught using the different instructional modes. The means of the
three modes are

86 + 82 + 94 + 77 + 86

5
= 85

90 + 79 + 88 + 87 + 96

5
= 88

78 + 70 + 65 + 74 + 63

5
= 70

And the overall mean is 81. Again we note that if the response variable
(achievement test score) is not much affected by treatment (instructional
mode) the means for the three treatments will not differ very much as com-
pared to the variability of the achievement test scores around their treatment
means. On the other hand, if test score responds to instructional mode, there
should be a large degree of variability of the treatment means around their
common mean as compared to the variability of the within-group test scores
around their treatment means.

We again calculate the Sum of Squares for Treatments by squaring the
distance between each treatment mean and the overall mean of all sample
measurements, multiplying each squared distance by the number of sample
measurements for the treatment, and adding the results over all treatments.

SST =
p∑

j=1

nj (x̄j − x̄)2 = (5)(85− 81)2 + (5)(88− 81)2 + (5)(70− 81)2

= (5)(16) + (5)(49) + (5)(121) = 80 + 245 + 605 = 930.

In the above expression p = 3 is the number of treatments, x̄j is the mean
response for the jth treatment and x̄ is the mean response for the entire
sample.

Next we calculate the Sum of Squares for Error, which measures the sam-
pling variability within the treatments—the variability around the treatment
means that we attribute to sampling error. This is computed by summing
the squared distance between each response measurement and the corre-
sponding treatment mean and then adding the squared differences over all
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measurements in the entire sample.

SSE =
n1∑
i=1

(xi1 − x̄1)
2 +

n2∑
i=1

(xi2 − x̄2)
2 +

n3∑
i=1

(xi3 − x̄3)
2

= (86− 85)2 + (82− 85)2 + (94− 85)2 + (77− 85)2 + (86− 85)2

+(90− 88)2 + (79− 88)2 + (88− 88)2 + (87− 88)2 + (96− 88)2

+(78− 70)2 + (70− 70)2 + (65− 70)2 + (74− 70)2 + (63− 70)2

= [1 + 9 + 81 + 64 + 1] + [4 + 81 + 0 + 1 + 64] + [64 + 0 + 25 + 16 + 49]

= 156 + 150 + 154 = 460.

Again, nj is the number of sample measurements for the jth treatment,
which turns out to be 5 for all treatments, and xij is the ith measurement
for the jth treatment.

Finally, the Total Sum of Squares, which equals the sum of squares for
treatments plus the sum of squares for error, is

SSTO = SST + SSE = 930 + 460 = 1390.

Now we calculate the Mean Square for Treatments which equals the sum
of squares for treatments divided by the appropriate degrees of freedom. We
are summing 3 squared deviations from the overall mean but only 2 of these
squared deviations are independent because we lose one piece of information
in calculating the overall mean. So we have

MST =
SST

p− 1
=

930

2
= 465.

Finally, we calculate the Mean Square Error which equals the sum of the
squared deviations of the sample measurements from their respective treat-
ment means for all measurements, again divided by the appropriate degrees
of freedom. Here we have 15 cases (or sample measurements), but we had
to calculate the 3 treatment means from the data, so the degrees of freedom
will be 12. We thus obtain

MSE =
SSE

n− p
− 460

12
= 38.333.

The above numbers can be used to construct the following ANOVA table:
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Analysis of Variance: Achievement Test Scores

Source of Variation Sum of Squares Degrees of Freedom Mean Square

Treatments 930 2 465

Error 430 12 38.33

Total 1390 14

Our goal is to determine whether mode of instruction (given by treat-
ments) has any effect on achievement test score (the response variable). If
there is no effect we would expect the error sum of squares to be nearly
as big as the total sum of squares and the treatment sum of squares to
be very small. It turns out that the sum of squares for treatments (which
measures the variability of the treatment means around the overall mean)
is quite high relative to the error sum of squares. But is it high enough
for us to conclude that there is a significant response of achievement scores
to instructional mode? We answer this question by doing an F -test. The
F -statistic obtained is

MST

MSE
=

465

38.33
= 12.13 = F (2, 12),

which is well above the critical value of 6.93 for α = .01. We reject the null
hypothesis of no effect of instruction mode on achievement test score.

The natural question to ask at this point is: Which of the instructional
modes are responsible for the significant overall relationship? All our analy-
sis of variance results tell us is that there is a significant effect of at least one
of the three modes of instruction, compared to the other two, on achieve-
ment test score. We have not established the relative importance of these
modes in determining students’ achievement test scores. To investigate this,
we can approach the problem from the point of view of regression analysis.

The dependent variable for our regression is achievement test score in a
sample of 15 students. Taking the programmed text instructional mode as a
reference, we create two dummy variables—one that takes a value of 1 when
the instructional mode is video-taped lecture and zero otherwise, and a sec-
ond that takes a value of 1 when the mode is interactive computer programs
and zero otherwise. The effect of programmed text, the reference treatment,
is thus measured by the constant terms and the differences in the effects of
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the other two treatments from the reference treatment are measured by the
coefficients of their respective dummy variables. Our regression model is
therefore

Yi = β0 + β1X1i + β2X2i + ϵi

where Yi , i = 1 . . . 15, is the test score for the i-th student, and X1i is the
dummy variable for video-taped lecture and X2i is the dummy variable for
computer programs. The regression results obtained are:

Dependent Variable: Achievement Test Score

Constant 85 (2.77)
Dummy-video 3 (3.92)
Dummy-computer -15 (3.92)

R-Squared .67
Standard Error (σ̂) 6.19139
Number of Observations 15
Degrees of Freedom 12

The mean score for students using programmed text is equal to the constant
term, 85. And the mean score for students receiving video-taped lectures is
3 points higher than that for students using programmed text—i.e., 85 +
3 = 88. Finally, the mean score for students using computer programs is
15 points less than those using programmed text—i.e., 85 - 15 = 70. These
correspond to the means calculated earlier. The t-statistic for testing the
null hypothesis of no difference between the means for programmed text and
video-taped lectures—that is β1 = 0—is

t∗ =
3

3.92
= .765,

which is well with any reasonable acceptance region. So we cannot reject
the null hypothesis of no difference between the means for programmed text
and video-taped lecture. The t-statistic for testing the null hypothesis of no
difference between computer program and programmed text is

t∗ =
−15

3.92
= −3.83,

leading us to conclude that mean test score under computer programmed
learning is significantly below that of programmed text—the critical value
of t(12) for α = .005 is 3.055.
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The question arises as to whether there is a significant difference between
the test scores under video-taped lecture vs. computer programmed learning.
This would seem to be the case. To check this out we rerun the regression
letting video-taped lecture be the reference—that is, including dummies for
programmed text and computer program but no dummy variable for video-
taped lecture. This yields

Dependent Variable: Achievement Test Score

Constant 88 (2.77)
Dummy-text -3 (3.92)
Dummy-computer -18 (3.92)

R-Squared .67
Standard Error (σ̂) 6.19139
Number of Observations 15
Degrees of Freedom 12

The computer program dummy is clearly statistically significant, having a
t−statistic of -4.59. We have to reject the null hypothesis of no difference
between the mean test scores under video-taped lecture and computer pro-
grammed learning.

Notice how the difference between the coefficient of Dummy-video and
Dummy-computer in the regression that uses programmed text as the ref-
erence treatment is exactly the same as the coefficient of Dummy-computer
in the regression that uses video-taped lectures as the reference treatment,
and that the standard errors of the dummy coefficients are the same in both
regressions. It would appear that instead of running the second regression
we could have simply subtracted the coefficient of Dummy-computer from
the coefficient of Dummy-video (to obtain the number 18) and then simply
divided that difference by the variance of all dummy coefficients to obtain
the correct t-statistic for testing the null hypothesis of no difference between
the coefficients of the two dummy variables.

This suggests that we might have approached the problem of testing for
a significant difference between the two coefficients in the same way as we
approached the problem of comparing two population means in Chapter 6.
In the problem at hand, however, the required computations are different
than we used in Chapter 6 for two reasons. First, the regression coefficients
we are comparing represent the mean responses of the dependent variable to
the respective independent variables, so their variances are the variances of
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means rather than population variances. We therefore do not need to divide
these variances by n. Second, the coefficients of the independent variables
in linear regressions are not necessarily statistically independent, so we can-
not obtain the variance of the difference between two coefficients simply by
adding their variances—we must subtract from this sum an amount equal
to twice their covariance. The variance-covariance matrix of the coefficients
in the regression that used programmed text as the reference treatment is1

b0 b1 b2
b0 7.6666 -7.6666 -7.6666
b1 -7.6666 15.3333 7.6666
b2 -7.6666 7.6666 15.3333

The variance of the difference between the coefficient estimates b1 and b2 is

Var{b1 − b2} = Var{b1}+ Var{b2} − 2Cov{b1, b2}

= 15.3333+15.3333− (2)(7.6666) = 15.3333+15.3333− 15.3333 = 15.3333.

The standard deviation of the difference between the two coefficients is there-
fore equal to the square root of 15.3333, which equals 3.91578, the standard
error of the coefficients of both dummy variables. So we can legitimately
test whether the coefficients of Dummy-video and Dummy computer differ
significantly by taking the difference between the coefficients and dividing
it by their common standard error to form an appropriate t-statistic.

It should be noted, however, that although we could have obtained an
appropriate test of the difference between the coefficients of the two dummy
variables in this case by simply dividing the difference between the coef-
ficients by their common standard error and comparing the resulting t-
statistic with the critical values in the table at the back of our textbook,
this will not necessarily work under all circumstances. We have not inves-
tigated what would be the best procedure to follow when, for example, the
numbers of sample elements receiving each of the three treatments differ.
We always have to take account of the fact that the covariance between
estimated regression coefficients will not in general be zero.

1This was obtained from XlispStat, the computer program used to calculate the re-
gression. Using the matrix notation we very briefly developed in Chapter 9, the variance
covariance matrix can be written (see page 227) as s2(X ′X)−1.
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10.3 Two-factor Analysis of Variance

In ending this chapter we examine briefly a two-factor designed experiment.
We add fifteen randomly selected female students to the fifteen male stu-
dents in the above single factor experiment. These fifteen female students
are also randomly divided into three groups of 5 students each. One group is
instructed by programmed text, one by video-taped lecture and one by com-
puter programs. In this two factor experiment the number of treatments ex-
pands from three to six according to the six factor combinations—male-text,
male-video, male-computer, female-text, female-video and female-computer.
The best way to approach this problem for our purposes is to use a regres-
sion analysis of the sort immediately above. In setting up the regression,
we obviously need a dummy variable to separate the genders—we let it take
a value of 0 if the student is male and 1 if the student is female. Letting
programmed text be the reference, we also need dummy variables for video-
taped lecture (taking the value of 1 if the instructional mode is video-taped
lecture and zero otherwise) and for computer programmed learning (tak-
ing a value of 1 if the instructional mode is computer programs and zero
otherwise). This would give us the following regression model

Yi = β0 + β1X1i + β2X2i + β3X3i + ϵi

where Yi is test score, X1i is the female dummy, X2i the video dummy and
X3i the computer dummy. The mean test scores identified in the model are
as follows:

Males-text β0
Females-text β0 + β1
Males-video β0 + β2
Males-computer β0 + β3
Females-video β0 + β1 + β2
Females-computer β0 + β1 + β3

But this imposes the condition that the effects of the different modes of
instruction on achievement test scores be the same for males as for females—
using video-taped-lectures instead of programmed text will increase the test
scores by an amount equal to β2 for both males and females, and using
computer programs instead of programmed text will increase their test scores
uniformly by β3.

This formulation is inadequate because we should be taking account of
whether mode of instruction has a differential effect on the achievement
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test scores of females and males. We do this by adding interaction dummy
variables constructed by multiplying the female dummy by the mode-of-
instruction dummy. Our regression model then becomes

Yi = β0 + β1X1i + β2X2i + β3X3i + β4X1iX2i + β5X1iX3i + ϵi.

The first three independent variables are the same as before—female dummy,
the video dummy, and the computer dummy. The fourth independent vari-
able is the product of the female dummy and the video dummy—it will take
the value 1 if the student is both female and using video-taped lecture in-
struction and 0 otherwise. And the fifth independent variable is the product
of the female dummy and computer dummy, which will be equal to 1 if the
student is both female and using computer programmed instruction and 0
otherwise. Notice that the five dummy variables together with the constant
term represent the six treatments in the two-factor experiment. The mean
test scores identified in the model for the six treatments are now

Males-text β0
Females-text β0 + β1
Males-video β0 + β2
Males-computer β0 + β3
Females-video β0 + β1 + β2 + β4
Females-computer β0 + β1 + β3 + β5

The regression results obtained are as follows:

Dependent Variable: Achievement Test Score

Constant 85 (2.86)
Dummy-female -0.4 (4.05)
Dummy-video 3 (4.05)
Dummy-computer -15 (4.05)
Dummy-video-female 1 (5.73)
Dummy-computer-female 14 (5.73)

R-Squared .54
Standard Error (σ̂) 6.40182
Number of Observations 30
Degrees of Freedom 24

The coefficient of Dummy-video, which is a point estimate of β2, mea-
sures the difference in male scores under video-taped lecture instruction as
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compared to programmed text. Its t-ratio of

t∗ =
3

4.05
= .74071

indicates that β2 is not significantly different from zero. The coefficient of
Dummy-computer is a point estimate of β3 and measures the difference in
male scores under computer-programmed instruction as compared to pro-
grammed text. Its t-ratio is

t∗ =
−15

4.05
= −3.7037,

indicating a significant negative effect of computer programs over programmed
text as a method of instruction. The coefficient for Dummy-female is a
point estimate of β1, measuring the effect of being female rather than male
on achievement test scores when programmed text is the method of instruc-
tion. It should be obvious that β1 is not significantly different from zero. The
point estimate of β4, the coefficient of Dummy-video-female, measures the
estimated effect of being female rather than male when taking video-lecture
instruction. The relevant t-ratio, .17452, indicates no significant effect. Fi-
nally, the coefficient of Dummy-computer-female, which measures the effect
of being female rather than male when taking computer-programmed in-
struction, is plus 14 with a t-statistic of

t∗ =
14

5.73
= 2.4433.

This indicates a significantly positive effect of being female rather than male
when taking computer programmed instruction. It is clear that females
do significantly better than males when the instruction mode is computer
programs. In fact, it can be seen from a comparison of the coefficient of
Dummy-computer with that of Dummy-computer-female that the negative
effect of computer programmed instruction on learning, which is statistically
significant for male students, almost vanishes when the student is female.
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10.4 Exercises

1. In a completely randomized design experiment with one factor the fol-
lowing data were obtained for two samples:

Sample 1: 5 5 7 11 13 13
Sample 2: 10 10 12 16 18 18

Test the null hypothesis that the two samples were drawn from populations
with equal means and draw up the appropriate ANOVA table.

2. A clinical psychologist wished to compare three methods for reducing
hostility levels in university students. A certain psychological test (HLT)
was used to measure the degree of hostility. High scores on this test indicate
great hostility. Eleven students obtaining high and nearly equal scores were
used in the experiment. Five were selected at random from among the
eleven problem cases and treated by method A. Three were taken at random
from the remaining six students and treated by method B. The other three
students were treated by method C. All treatments continued throughout
a semester. Each student was given the HLT test again at the end of the
semester, with the results shown below:

Method A Method B Method C

73 54 79
83 74 95
76 71 87
68
80

Do the data provide sufficient evidence to indicate that at least one of the
methods of treatment produces a mean student response different from the
other methods? What would you conclude at the α = .05 level of signifi-
cance?

3. Is eating oat bran an effective way to reduce cholesterol? Early studies
indicated that eating oat bran daily reduces cholesterol levels by 5 to 10%.
Reports of these studies resulted in the introduction of many new break-
fast cereals with various percentages of oat bran as an ingredient. However,
a January 1990 experiment performed by medical researchers in Boston,
Massachusetts cast doubt on the effectiveness of oat bran. In that study,
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20 volunteers ate oat bran for breakfast and another 20 volunteers ate an-
other grain cereal for breakfast. At the end of six weeks the percentage of
cholesterol reduction was computed for both groups:

Oat Bran Other Cereal

14 3
18 3
4 8
9 11
4 9
0 7
12 12
2 13
8 18
12 2
10 7
11 5
12 1
6 5
15 3
17 13
12 11
4 2
14 19
7 9

What can we conclude at the 5% significance level?

4. Prior to general distribution of a successful hardcover novel in paperback
form, an experiment was conducted in nine test markets with approximately
equal sales potential. The experiment sought to assess the effects of three dif-
ferent price discount levels for the paperback (50, 75, 95 cents off the printed
cover price) and the effects of three different cover designs (abstract, photo-
graph, drawing) on sales of the paperback. Each of the nine combinations
of price discount and cover design was assigned at random to one of the test
markets. The dependent variable was sales, and the independent variables
were the discount off cover price, a dummy variable taking a value of 1 if
the design was photograph and 0 otherwise, and a dummy variable taking
a value of 1 if the design was drawing and 0 otherwise.
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The regression results were as follows:

Dependent Variable: Sales

Constant 6.03685 (0.753114)
Discount 0.18363 (0.009418)
Photo-dummy -0.68333 (0.424682)
Drawing-Dummy 1.60000 (0.424682)

R-Squared .98970
Standard Error (σ̂) 0.520126
Number of Observations 9
Degrees of Freedom 5

The numbers in brackets are the standard errors of the respective coefficients
and σ̂ is the standard error of the regression, a point estimate of the standard
deviation of the error term.

a) Is there good evidence that discounting the price increases sales?

b) Is there good evidence that using an abstract cover rather than putting
on a photograph or drawing results in less sales?

c) Is the overall regression relationship statistically significant?

d) What would be the expected level of sales if the discount is 75 cents
off the printed cover price and a drawing is put on the cover?
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predicted level, 207
confidence intervals for

parameters, 209
correcting residuals for

serial correlation, 245–248
degrees of freedom, 201, 262, 264
Durbin-Watson statistic, 244
error or residual sum

of squares, 202
fitted line, 197
forecasting, 254
heteroscedasticity, 211
left-out variables, 237
maximum likelihood

estimators, 199
mean square error, 201, 228, 262
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nature of, 193
non-linear models, 249–251
non-linearity, 210
non-normality of error

term, 212
normality of error term, 195
prediction outside

experimental region, 254
prediction outside sample

range, 254
properties of error

term, 195, 197, 223
properties of residuals, 200
randomness of independent

variables, 213
regression function, 196
regression mean square, 263
serially correlated

residuals, 212, 243
statistical significance, 209
sum of squares due to

regression, 202, 203, 262
t-statistic, 229
tests of hypotheses about

parameters, 209
time-series models, 254
total sum of squares, 202, 262
unbiased and efficient

estimators, 199
variance of error term, 201, 205
variance of fitted (mean)

value, 204–206
variance of predicted

level, 206, 207
regression analysis (multiple)

dummy variables, 234
R̄2, 228
basic model, 223
confidence intervals for

parameters, 227

constant term in, 229
dealing with

multicollinearity, 241, 242
degrees of freedom, 228
dummy variable for slope, 235
dummy variables, 270, 278
estimated coefficients not

statistically independent, 276
estimation of model, 225–227
F-test of

restrictions, 232, 233, 240
F-test of significance

of regression, 231
in matrix form, 224
in two-factor analysis of

variance, 277
interaction dummy

variables, 278
left-out variables, 237
multicollinearity, 240
non-linear interaction terms, 251
non-linear models, 251
second-order terms, 251
statistical tests, 227
sum of squares due to

regression, 228
testing for significance

of regression, 229
variance-covariance matrix

of coefficients, 276
variance-covariance matrix of

coefficients, 227
regression analysis (simple)

R2, 203
calculating parameter

estimates, 200
coefficient of determination, 203
confidence interval
for intercept, 209
for slope coefficient, 208



INDEX 291

estimating parameters, 197, 199
linear model, 194
significance of slope parameter,

208, 209
variance of slope coefficient, 208
worked-out example, 213

rejection probability, 144
relationship between variables

deterministic, 193
linear, 194
probabilistic, 193
statistical, 193

sample, 6, 35, 104
sample mean

expectation of, 108
variance of, 110

sample point, 36, 39
sample points, enumerating, 64
sample size

planning of, 124, 125
planning of to control

α and β risks, 148–150
sample space

and basic outcomes, 36
and event space, 40
union of all events, 37
univariate vs.

multivariate, 38
sample statistics, 104
sample statistics vs. population

parameters, 106
sample, matched, 160
sample, representative, 6
sampling a process, 106
sampling error

interpretation of, 180
sampling methods, 105, 106
SAS, 11
scatter plots, 28

serial correlation, 14
simple events, 36
simple random sample, 104–106
skewness, 19, 24
skewness, measuring, 25
sorting data, 8
SPSS, 11
standard deviation

calculation of, 23
definition of, 69
matched samples, 160
measure of variability, 22
of difference between sample

means, 156
of estimated population

proportion, 123
of sample mean, 114
of standardised random

variables, 72
pooled or combined

estimator, 157
standard error of difference between

sample means, 156
standardised form

of continuous random
variable, 70

of discrete random variable, 69
standardised normal probability

distribution, 89
standardised values, 25, 26
statistic vs. parameter, 104
statistical decision rule

acceptance region, 136
critical values, 136
diagrammatic illustration, 140
nature of, 136
rejection region, 136

statistical dependence, 47
statistical independence

and conditional probability, 48
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checking for, 48
matched samples, 160
nature of, 47

statistical test, 133
sum of squares

restricted vs. unrestricted, 232

t-distribution
compared to normal

distribution, 120, 121
degrees of freedom, 120
nature of, 120
when population non-

normal, 122
testable propositions, 3
theories, truth of, 3
theory of demand, 2
time-series data, 14
two-sided test, 139
two-tailed hypothesis test, 140
Type I error, 134
Type II error, 134

unbiasedness, 116
uniform probability

distributions, 86
union of events, 37
universal event, 37

variable
concept of, 8
dependent or response, 193
independent, explanatory

or predictor, 193
quantitative vs. qualitative, 8

variance
calculation of, 23
matched samples, 160
measure of variability, 22
of continuous random

variable, 70

of difference between sample
means, 156

of discrete random
variable, 68, 69

of sample mean, 108
of sample proportion, 142
of sums and differences of

variables, 75
pooled or combined

estimator, 157
sample vs. population, 22
special case of

covariance, 30
Venn diagram, 54

XlispStat, 11, 83, 84, 172, 175, 227,
256, 276


