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PREFACE

The pages that follow contain the material presented in my introductory
quantitative methods in economics class at the University of Toronto. They
are designed to be used along with any reasonable statistics textbook. The
most recent textbook for the course was James T. McClave, P. George Ben-
son and Terry Sincich, Statistics for Business and Economics, Eighth Edi-
tion, Prentice Hall, 2001. The material draws upon earlier editions of that
book as well as upon John Neter, William Wasserman and G. A. Whitmore,
Applied Statistics, Fourth Edition, Allyn and Bacon, 1993, which was used
previously and is now out of print. It is also consistent with Gerald Keller
and Brian Warrack, Statistics for Management and Economics, Fifth Edi-
tion, Duxbury, 2000, which is the textbook used recently on the St. George
Campus of the University of Toronto. The problems at the ends of the chap-
ters are questions from mid-term and final exams at both the St. George
and Mississauga campuses of the University of Toronto. They were set by
Gordon Anderson, Lee Bailey, Greg Jump, Victor Yu and others including
myself.

This manuscript should be useful for economics and business students en-
rolled in basic courses in statistics and, as well, for people who have studied
statistics some time ago and need a review of what they are supposed to have
learned. Indeed, one could learn statistics from scratch using this material
alone, although those trying to do so may find the presentation somewhat
compact, requiring slow and careful reading and thought as one goes along.

I would like to thank the above mentioned colleagues and, in addition, Ado-
nis Yatchew, for helpful discussions over the years, and John Maheu for
helping me clarify a number of points. I would especially like to thank Gor-
don Anderson, who I have bothered so frequently with questions that he
deserves the status of mentor.

After the original version of this manuscript was completed, I received some
detailed comments on Chapter 8 from Peter Westfall of Texas Tech Univer-
sity, enabling me to correct a number of errors. Such comments are much
appreciated.

J. E. Floyd
July 2, 2010

c⃝J. E. Floyd, University of Toronto
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Chapter 9

Multiple Regression

While simple regression analysis is useful for many purposes, the assumption
that the dependent variable Y depends on only one independent variable is
very restrictive. For example, if we want to develop a model to estimate the
quantity of bread demanded we can expect the latter to depend, at the very
minimum, on the price of bread, on the prices of at least some substitutes
and on real income.

9.1 The Basic Model

The basic linear multiple regression model is

Yi = β0 + β1X1i + β2X2i + β3X3i + · · · · · ·+ βKXKi + ϵi (9.1)

where i = 1 . . . n and the ϵi are independently normally distributed with
mean zero and constant variance σ2. Actually, we can often get away with
less restrictive assumptions about the ϵi, namely

E{ϵi} = 0

and
E{ϵiϵj} = 0, i ̸= j

E{ϵiϵj} = σ2, i = j.

This says that the ϵi must be independently distributed with constant vari-
ance but not necessarily normally distributed. Our problem is to estimate
the parameters βk, k = 0 . . .K, and σ and to establish confidence intervals
and conduct appropriate statistical tests with respect to these parameters.
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2 MULTIPLE REGRESSION

The n-observations on the dependent variable and the K independent
variables can be represented as follows:

Y1 = β0 + β1X11 + β2X21 + β3X31 + · · · · · ·+ βKXK1 + ϵ1

Y2 = β0 + β1X12 + β2X22 + β3X32 + · · · · · ·+ βKXK2 + ϵ2

Y3 = β0 + β1X13 + β2X23 + β3X33 + · · · · · ·+ βKXK3 + ϵ3

· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

Yn = β0 + β1X1n + β2X2n + β3X3n + · · · · · ·+ βKXKn + ϵn

This appears in matrix form as

Y1
Y2
Y3
...
...
...
...
Yn


=



1 X11 X21 X31 · · · · · · XK1

1 X12 X22 X32 · · · · · · XK2

1 X13 X23 X33 · · · · · · XK3
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 X1n X2n X3n · · · · · · XKn





β0
β1
β2
...
...

βK


+



ϵ1
ϵ2
ϵ3
...
...
...
...
ϵn


and can be written

Y = XB + E (9.2)

where Y is an n by 1 column vector, X is an n by K + 1 matrix (i.e., a
matrix with n rows and K + 1 columns), B is a K + 1 by 1 column vector
and E is an n by 1 column vector. The first column of the matrix X is a
column of 1’s.
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9.2 Estimation of the Model

Our problem is now to choose an estimate of (9.2) of the form

Y = Xb+ e (9.3)

where b is a K + 1 by 1 column vector of point estimates of the vector B
and e is an n by 1 column vector of residuals. According to the method of
least squares we choose the vector b so as to minimize the sum of squared
residuals which appears in matrix form as

[
ϵ1 ϵ2 ϵ3 · · · · · · · · · · · · ϵn

]



ϵ1
ϵ2
ϵ3
...
...
...
...
ϵn


or

e′e =
n∑

i=1

e2i ,

where e′ is the transpose of e and thereby consists of a row vector containing
the n errors ei. This sum of squares can be further represented as

e′e = (Y −Xb)′(Y −Xb)

= (Y′ − b′X′)(Y −Xb)

= (Y′Y −Y′Xb− b′X′Y + b′X′Xb)

= (Y′Y − 2Y′Xb+ b′X′Xb) (9.4)

where the second line uses the facts that the transpose of the sum of two
matrices (vectors) is the sum of the transposes and the transpose of the
product of two matrices (vectors) is the product of the transposes in reverse
order, and the fourth line uses the fact that Y′Xb and b′X′Y are identical
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scalars—this can be seen by noting that Y′Xb is

[
Y1 Y2 Y3 · · · Yn

]


β0 + β1X11 + β2X21 + β3X31 + · · ·+ βKXK1

β0 + β1X12 + β2X22 + β3X32 + · · ·+ βKXK2

β0 + β1X13 + β2X23 + β3X33 + · · ·+ βKXK3
...
...
...

...
...
...

...
...
...

β0 + β1X1n + β2X2n + β3X3n + · · ·+ βKXKn


and b′X′Y is

[
β0 β1 β2 · · · · · · βK

]


1 1 1 · · · · · · 1
X11 X12 X13 · · · · · · X1n

X21 X22 X23 · · · · · · X2n

X31 X32 X33 · · · · · · X3n
...

...
...

...
...

...
...

...
...

...
...

...
XK1 XK2 XK3 · · · · · · XKn





Y1
Y2
Y3
...
...
...
Yn


We now differentiate this system with respect to the vector b and choose

that value of the vector b̂ for which ∂e′e/∂b = 0. We thus obtain

X′Xb̂ = X′Y (9.5)

which yields

b̂ = (X′X)−1X′Y (9.6)

where (X′X)−1 is the inverse of the matrix X′X.
The system of equations (9.5) is called the least-squares normal equa-

tions. In the case where there are only two independent variables plus a
constant term (i.e., K = 2), these equations are

n b̂0 + b̂1
∑

X1i + b̂2
∑

X2i =
∑

Yi
b̂0

∑
X1i + b̂1

∑
X2

1i + b̂2
∑

X1iX2i =
∑

X1iYi
b̂0

∑
X2i + b̂1

∑
X1iX2i + b̂2

∑
X2

2i =
∑

X2iYi

The coefficients b̂k can be obtained by actually calculating all of these
sums of squares and cross products, substituting the resulting numbers into
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the above system of equations, and solving that system simultaneously for
the b̂k’s. Alternatively, the data can be expressed in matrix form (i.e., as
a vector Y and matrix X) and the vector b̂ obtained by applying equation
(9.6) to Y and X using a standard computer linear algebra program.1 The
easiest way to obtain the b̂k, however, is to read the variables Xk and Y into
one of the many standard statistical software packages and apply the linear-
regression procedure contained in that package. This has the computer
do everything—except determine what regression to run and interpret the
results! Remember that a computer performs fast calculations but cannot do
our thinking for us. It does exactly what it is told—whence the fundamental
gigo principle, “garbage in → garbage out”.2

Along with the vector of estimated regression coefficients, the standard
statistical packages give the standard deviations (or standard errors) of these
coefficients, the appropriate t-statistics and sometimes the P -values, the
minimized sum of squared deviations of the dependent variable from the
regression line, and the coefficient of determination or R2.3

9.3 Confidence Intervals and Statistical Tests

To construct confidence intervals and perform statistical tests regarding the
regression coefficients we need estimates of the standard deviations or stan-
dard errors of these coefficients. The matrix of variances and covariances
of the regression coefficients (from which the standard statistical packages
present their standard errors) is


Var{b0} Cov{b0b1} Cov{b0b2} . . . . . . . . . . . . . . . . . . Cov{b0bK}
Cov{b0b1} Var{b1} Cov{b1b2} . . . . . . . . . . . . . . . . . . Cov{b1bK}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cov{b0bK} Cov{b1bK} Cov{b2bK} . . . . . . . . . . . . . . . . . . Var{bK}



= E{(b̂− B)(b̂− B)′} = σ2(X′X)−1.

1Such as, for example, MATLAB, MAPLE or OCTAVE. The first two of these are
commercial programs while the latter one is freely available over the internet.

2Attention should also be paid to a second important principle of computing, rtfm.
The first letter of this acronym stands for the word “read” and the last letter stands for
the word “manual”!

3XlispStat has been used for most of the regression calculations, as well as the graphics,
in this book



6 MULTIPLE REGRESSION

As in the case of simple regression the appropriate estimator for σ2 is

s2 =
e′e

df
= MSE

where df = n−K − 1 is the degrees of freedom and

e′e =
∑

e2i = SSE

is the minimized sum of squared deviations of Yi from the regression line.
The degrees of freedom is n−K−1 because we are using the data to estimate
K + 1 parameters (for K dependent variables plus a constant term). The
sum of squares ‘explained’ by the independent variables is

SSR = (Y − Ȳ )′(Y − Ȳ )− e′e =
∑

(Yi − Ȳ )2 −
∑

e2i = SSTO − SSE.

where Ȳ is the mean value of the dependent variable–i.e., the mean of the
elements of Y. As in the case of simple linear regression, the fraction of the
variation in the dependent variable explained by the independent variables—
the R2—is equal to

R2 = 1− SSE

SSTO
.

Notice that the addition of new independent variables to the regression will
always increase the R2. To see this, think of an experiment whereby we
keep adding independent variables until the total number of these variables
plus the constant equals the total number of observations—this would yield
an R2 equal to unity. We can thus ‘explain’ more and more of the varia-
tion in the dependent variable by adding additional independent variables,
paying little attention to whether the variables added are relevant deter-
minants of the dependent variable. To obtain a more meaningful measure
of how much of the variation in the dependent variable is being explained,
the R2 is frequently adjusted to compensate for the loss in the degrees of
freedom associated with the inclusion of additional independent variables.
This adjusted R2, called the R̄2 is calculated according to the formula

R̄2 = 1− n− 1

n−K − 1

SSE

SSTO
. (9.7)

For R̄2 to rise as the result of the addition of another independent variable,
the sum of squares of the residuals must fall sufficiently to compensate for the
effect of the addition of that variable on the number of degrees of freedom.
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The ratio of (b̂k − βk) to its standard deviation

t∗ =
b̂k − βk√
Var{b̂k}

(9.8)

is distributed according to the t-distribution with degrees of freedom

df = n−K − 1.

The t-table at the back of any textbook in statistics can be used to establish
critical values and confidence intervals. The t-values associated with the null
hypothesis H0: βk = 0 are also given in most standard statistics computer
packages. To test the null hypothesis that βk takes a particular hypothesized
value, or exceeds or falls short of a particular hypothesized value, we divide
the difference between the estimated value b̂k and the hypothesized value βk
by the standard error of b̂k, also given in most statistics computer packages.
The P -values given by standard computer packages are the probabilities of
observing values of the coefficients as different from zero (in either direction
since the test is two-tailed) as are the respective estimated coefficients when
the true value of the coefficient in question is zero. It should be noted here
that, when conducting tests and setting up confidence intervals, the constant
term is treated simply as another coefficient.

9.4 Testing for Significance of the Regression

Frequently we want to test whether the regression itself is significant—that
is, whether the independent variables taken as a group explain any of the
variation in the dependent variable. The R2 measures this, but it is a point
estimate which could be as high as it is simply because of sampling error.
What we want to test is the null hypothesis

H0 : β1 = β2 = β3 = . . . . . . = βK = 0

against the alternative hypothesis that at least one of these coefficients is
different from zero. Notice that this null-hypothesis does not require that β0,
the constant term, be zero—indeed, when there is no relationship between
all K independent variables and Yi, the constant term will be β0 = Ȳ .

When we run the regression we choose the coefficients b̂k that minimize
the sum of squared residuals

∑
e2i . If the independent variables do not

contribute at all to explaining the variations in Yi we would expect the
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minimized sum of squared residuals to be the same as the sum of squared
deviations of the Yi about their mean,

∑
(Yi − Ȳ )2. That is, we would

expect SSE to equal SSTO. To the extent that∑
e2i ≤

∑
(Yi − Ȳ )2

there is evidence that the independent variables included in the regression
have some explanatory power. The trouble is, however, that SSE could be
less than SSTO strictly as a result of sampling error. We must therefore
test whether the observed excess of SSTO over SSE is bigger than could
reasonably be expected to occur on the basis of sampling error alone.

We have already seen that a sum of squares of independently and iden-
tically distributed normal random variables divided by their variance is dis-
tributed as χ2 with degrees of freedom equal to the number of independent
squared normal deviations being summed. This means that∑

e2i
σ2

= χ2(n−K − 1) (9.9)

and ∑
(Yi − Ȳ )2

σ2
y

= χ2(n− 1). (9.10)

It can be shown (though we will not do it here) that the difference between
two χ2 variables is also distributed according to the χ2 distribution, but with
degrees of freedom equal to the difference between the degrees of freedom of
the two χ2 variables. This implies that∑

e2i
σ2

−
∑

(Yi − Ȳ )2

σ2
y

=

∑
e2i −

∑
(Yi − Ȳ )2

σ2
= χ2(K). (9.11)

Here σ2
y = σ2 under the null hypothesis that adding the independent vari-

ables to the regression has no effect on the residual variance.

We have also learned earlier that the ratio of two independent χ2 dis-
tributions divided by their respective degrees of freedom is distributed ac-
cording to the F -distribution with two parameters equal to the number of
degrees of freedom in the numerator and denominator respectively. Thus,
using (9.9) and (9.11) we obtain∑

(Yi − Ȳ )2 −
∑

e2i
K

÷
∑

e2i
n−K − 1

= F (K,n−K − 1) (9.12)
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where the σ2 variables in the denominators of (9.9) and (9.11) cancel out.
If the independent variables contribute nothing to the explanation of the
dependent variable we would expect

∑
(Yi − Ȳ )2 to approximately equal∑

e2i and the calculated F -statistic to be close to zero. On the other hand, if
the independent variables do explain some of the variation in the dependent
variable the F -statistic will be substantially positive. The question then is
whether the probability of observing a value of F as high as the one observed
for this particular sample, given that the independent variables truly explain
none of the variation in the dependent variable, is small enough that we can
reject the null hypothesis of no effect. We choose a critical value of F based
on the desired α-risk and reject the null hypothesis if the value of the F -
statistic obtained from the sample exceeds this critical value.

Notice now that we can substitute

SSR =
∑

(Yi − Ȳ )2 −
∑

e2i

and
SSE =

∑
e2i

into (9.12) to obtain

n−K − 1

K

SSR

SSE
= F (K,n−K − 1) (9.13)

which can be further simplified using the facts that

SSR = R2SSTO

and
SSE = (1−R2)SSTO

to produce [
n−K − 1

K

] [
R2

1−R2

]
= F (K,n−K − 1). (9.14)

We can thus calculate the F -statistic using the values for R2, n and K
without calculating the total sum of squares and the sum of squared errors.

The basic principle behind (9.12) can be generalized to test the signif-
icance of subsets of the βk and of relationships between various βk. The
test of the significance of a regression involves a comparison of the residu-
als obtained from the regression and the residuals obtained from the same
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regression with everything but the constant term omitted (i.e., with all co-
efficients but the constant term set equal to zero). We could test the joint
significance of, say, two of the K independent variables, X2 and X3, by
running the regression with these two variables omitted and comparing the
residuals so obtained with the residuals from the regression with the two
variables included. This is called a test of restrictions. The two restrictions
in this example are β2 = 0 and β3 = 0. The null hypothesis is

H0 : β2 = β3 = 0

against the alternative hypothesis that either β2 or β3 is non-zero. We call
the sum of squared residuals from the regression that excludes X2 and X3

the restricted residual sum of squares,
∑

e2iR, and the sum of squares of the
residuals from the full regression the unrestricted residual sum of squares,∑

e2i . The question is then whether imposing the restrictions raises the
residual sum of squares by a ‘significant’ amount—that is, by an amount
which would have a probability less than α of occurring if the restrictions
truly have no effect on the explanatory power of the regression. The relevant
F -statistic is∑

e2iR −
∑

e2i
v

÷
∑

e2i
n−K − 1

= F (v, n−K − 1) (9.15)

where v (= 2 in this example) is the number of restrictions imposed on the
regression. If the resulting F -statistic is above the critical value we can
reject the null hypothesis that two coefficients β2 and β3 are both equal
to zero and accept the alternative hypothesis that at least one of them is
non-zero.

The same approach can be used to test particular hypotheses about the
relationship between two coefficients. Suppose we have reason to believe
that β3 should be the negative of β2. We can test this single restriction by
formulating the null hypothesis

H0 : β3 = −β2

and testing it against the alternative hypothesis

H1 : β3 ̸= −β2.

The null hypothesis implies the regression model

Yi = β0 + β1X1i + β2X2i + β3X3i + · · · · · ·+ βKXKi + ϵi

= β0 + β1X1i − β3X2i + β3X3i + · · · · · ·+ βKXKi + ϵi

= β0 + β1X1i + β3(X3i −X2i) + · · · · · ·+ βKXKi + ϵi. (9.16)
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We therefore construct the new variable (X3 − X2) and replace the two
variables (X2 and X3) in the regression with it. The residuals from this new
regression can be designated

∑
e2iR and inserted into (9.15) together with

a value of v equal to 1, representing the single restriction, and a sample
F -statistic so obtained. If this statistic exceeds the critical value of F for
the appropriate degree of α-risk we reject the null hypothesis and conclude
that β3 is not equal to the negative of β2.

9.5 Dummy Variables

The independent variables in a multiple regression need not be quantita-
tive. For example, suppose we have some data on the salaries of managers
in industry and their years of education and want to investigate whether
individuals’ years of education affect their salaries. We run a simple regres-
sion of salary on years of education for the data in question and obtain the
following results (the standard errors of the coefficients are given in brackets
and σ̂ is a point estimate of σ):

Dependent Variable: Salary in $000’s

Constant 38.91 (12.88)
Years of Education .064 (0.898)

R-Squared .00036
Standard Error (σ̂) 8.97
Number of Observations 8
Degrees of Freedom 6

The null hypothesis that years of education has a zero or negative effect on
salary cannot be rejected at any reasonable level of significance given the
test statistic

t∗ =
.064

.898
= .071269.

When we plot the data and impose the fitted regression line on it we get the
data points and the virtually horizontal regression line in Figure 9.1.

Upon examining the data, it turns out that all the data points above the
nearly horizontal fitted line are for individuals who are sales managers and
all the data points below the line are managers who are not in sales. Our
regression should obviously contain a variable specifying whether or not the
individual in the sample is a sales manager. This variable is a qualitative
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Figure 9.1: Plot and fitted lines of regression of salaries of sales managers on
years of education (top line), other managers on years of education (bottom
line) and all managers on years of education (middle line).

variable, usually referred to as a dummy variable. It consists entirely of
zeros or ones—with the variable taking the value of 1 if the individual is a
sales manager and 0 if the individual is not a sales manager.

Our regression model now takes the form

Yi = β0 + β1X1i + β2X2i + ϵ (9.17)

where the variable X1 is salary and X2 is the dummy variable.
Consider the individual sample elements that do not represent sales man-

agers. For these elements X2i = 0 so the equation being fitted yields the
predicted values

Ŷi = b0 + b1X1i. (9.18)

For the individual sample elements that do represent sales managers,X2i = 1
so the fitted equation becomes

Ŷi = b0 + b1X1i + b2X2i = b0 + b1X1i + b2

or

Ŷi = b̃0 + b1X1i (9.19)
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where b̃0 = b0 + b2. Adding the dummy variable essentially allows the
regression to have different constant terms for those managers who are sales
managers and for those who are not sales managers. When we run this
regression we get the following results:

Dependent Variable: Salary in $000’s

Constant 8.254 (6.40)
Years of Education 1.62 (0.41)
Sales Manager Dummy 17.28 (2.05)

R-Squared .845
Standard Error (σ̂) 3.66
Number of Observations 16
Degrees of Freedom 13

Notice how the R2 increases and the standard error of the regression falls
when we add the dummy variable. Notice also that the test statistic for the
null hypothesis that the true coefficient of the years-of-education variable is
zero or less is now

t∗ =
1.62

0.41
= 3.95

which has a P -value equal to .00083, so we can easily reject the null hypoth-
esis at an α-risk of .001.

The predicted salary levels for each level of education for sales managers
is given by the top upward-sloping line in Figure 9.1 and the predicted salary
levels for each education level for non-sales managers is given by the lower
upward-sloping line. These lines are very close to the fitted lines that would
be obtained by running separate regressions for sales managers and for other
managers.

We could include a second dummy variable to account for differences
in the slope of the relationship between education and salary for the two
groups of managers. This variable would be the product of the sales-manager
dummy and the years of education—when the data element is a manager not
in sales this variable would take a zero value and when the data element is
a sales manager the variable would take a value equal to years of education.
This dummy variable can be referred to as an interaction between years of
education and whether the manager was sales vs. non-sales. The regression
model would then be

Yi = β0 + β1X1i + β2X2i + β3X3i + ϵ. (9.20)
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For data elements representing non-sales managers the predicted values will
be

Ŷi = b0 + b1X1i (9.21)

since both X2i and X3i will be zero for these elements. For data elements
representing sales managers the predicted values will be

Ŷi = b0 + b1X1i + b2 + b3X1i

since for these elements X3i = X1i and X2i = 1, so we have

Ŷi = b̃0 + b̃1X1i (9.22)

where b̃0 = b0 + b2 and b̃1 = b1 + b3.
The inclusion of dummies for both the constant term and the slope

coefficient turns out to be equivalent to running two separate regressions—
one for sales managers and one for other managers—except that by pooling
the data and running a single regression with dummy variables included for
the constant term and slope parameters we are imposing the assumption
that the variance of the error term is the same in the separate regression
models. Unless we have prior information about the variance of the errors
there is no gain to pooling the data for the two types of managers in this case.
When we include only a single dummy variable to allow, say, for differences
in the constant term there is a gain from pooling the data and running
a single regression provided we are prepared to force upon the model the
assumption that the response of salary to years of education is the same for
sales managers as for other managers. If we are not prepared to assume that
the response of salary to education is the same for both groups we should run
two regressions. It would still be appropriate to add two dummy variables,
one for the constant term and one for the slope of salary with respect to
education of sales vs. other managers, if we also have additional variables in
the regression such as, for example, education of the individual manager’s
parents and race or religion. In this case, of course, the pooled regression
will be appropriate only if we are willing to impose on the estimation the
assumption that the effects of parents’ education, race and religion are the
same for sales managers and other managers.
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9.6 Left-Out Variables

Frequently we do not have the data to include in a regression a variable that
should be there. When this is the case we can often form an opinion, based
on casual knowledge, about the effects of the coefficients of the included
variables of leaving out a variable that should be in the regression. Suppose
that the correct specification of the regression equation is

Yi = β0 + β1X1i + β2X2i + ϵ (9.23)

but we estimate

Yi = β0 + β1X1i + ϵ∗ (9.24)

instead.
Since in the case we are examining the regression actually estimated is

a simple regression, our least-squares estimate of β1 is

b̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
. (9.25)

From the true relationship we know that

Yi − Ȳ = β0 + β1X1i + β2X2i + ϵ∗ − β0 − β1X̄1 + β2X̄2 − ϵ̄∗

= β1(X1i − X̄1) + β2(X2i − X̄2) + ϵ∗ (9.26)

Upon substitution of this equation into (9.25), the expected value for b̂1
becomes

E{b̂1} = β̂1 =
β1

∑n
i=1(Xi − X̄)2 + β2

∑n
i=1(X1i − X̄1)(X2i − X̄2)∑n

i=1(Xi − X̄)2

= β1 + β2

[∑n
i=1(X1i − X̄1)(X2i − X̄2)∑n

i=1(Xi − X̄)2

]
. (9.27)

The term in the big square brackets will be recognized as the slope coefficient
of a regression of the variable X2 on the variable X1. Let us denote this
coefficient by d21. Then (9.27) becomes

β̂1 = β1 + β2 d21 (9.28)

Suppose that the left-out variable is positively correlated with the in-
cluded variable X1 and positively related to the dependent variable. Then
β2 and d21 will both be positive and our least-squares estimate of β1 will
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be biased upward. If the left-out variable is negatively correlated with the
included variable and positively related to the dependent variable, β2 will be
negative and d21 positive so our least-squares estimate of β1 will be biased
downward. If the left-out variable is negatively related to the dependent
variable the bias will be upward when the left-out and included variables
are negatively related and downward when the left-out and included vari-
ables are positively related.

9.7 Multicollinearity

Suppose a young researcher wants to estimate the demand function for
money for Canada. She has learned in her intermediate macroeconomics
class that the demand for real money holdings can be expressed

M

P
= L(rN , YR) (9.29)

where M is the nominal money stock, P is the price level (so that M/P is
the real money stock), rN is the nominal interest rate and YR is the level of
real income. This suggest a regression equation of the form

Yi = β0 + β1X1i + β2X2i + ϵ (9.30)

where Y is Canadian real money holdings, X1 is the nominal interest rate
and X2 is Canadian real income. In the process of collecting her data, our
researcher discovered two different measures of real income, GNP and GDP.4

Not knowing which to use as her measure of real income, she did the easy
thing and simply included both in the regression. Her regression model now
becomes

Yi = β0 + β1X1i + β2X2i + β3X3i + ϵ (9.31)

where X2 is real Canadian GDP and X3 is real Canadian GNP. She used the
Canadian 90-day commercial paper rate as a measure of the Canadian nom-
inal interest rate.5 All the data series were annual (as opposed to quarterly
or monthly) for the years 1957 to 1996 inclusive.

4GDP or gross domestic product measures the level of aggregate real output produced
by resources employed in the country while GNP or gross national product measures the
level of aggregate real output produced by resources owned by domestic residents. To
calculate GNP from GDP we have to subtract out that part of aggregate domestic output
(GDP) produced by resources that are owned by foreigners and then add in the part of
aggregate output abroad that is produced by resources owned by domestic residents.

5The 90-day commercial paper rate is the rate of interest charged on commercial
paper—that is, on securities issued by major corporations for short-term borrowing—that
becomes due 90 days after issue.
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The researcher obtained the following regression results:

Dependent Variable: Canadian Real Money Holdings

Constant 8.50 (4.47)
90-Day Paper Rate -2.65 (0.39)
Real GDP -0.32 (0.50)
Real GNP 0.51 (0.53)

R-Squared .91
Standard Error (σ̂) 6.75
Number of Observations 40
Degrees of Freedom 36

Surprised that both real income coefficients were insignificant, the re-
searcher decided to perform an F -test of the null hypothesis that both are
simultaneously zero (H0: β2 = β3 = 0). So she ran the same regression with
both variables omitted, obtaining the following results:

Dependent Variable: Canadian Real Money Holdings

Constant 43.35 (8.60)
90-Day Paper Rate 1.46 (1.01)

R-Squared .05
Standard Error (σ̂) 21.44
Number of Observations 40
Degrees of Freedom 38

The mean squared errors for the respective regressions are equal to their
sums of squared residuals divided by their respective degrees of freedom.
Thus, the sum of squared residuals for the unrestricted regression (i.e., the
one that included the two real income variables) is∑

e2i = dfσ̂2 = (36)(6.75)2 = 1640

and the sum of squared residuals for the restricted regression (the one that
excluded the two real income variables) is∑

e2Ri = dfσ̂2 = (38)(21.44)2 = 17467
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The appropriate test statistic is therefore∑
e2Ri −

∑
e2i

v
÷

∑
e2i

n−K − 1
=

17467− 1640

2
÷ 1640

36

=
7913.5

45.55
= 173.73 = F (v, n−K − 1) = F (2, 36)

where v is the number of restrictions, equal to 2 in this case. The critical
value for F (2, 36) setting the α-risk at .01 is 5.18 so the researcher rejected
the null hypothesis that both of the coefficients are zero.

What is happening here? Neither of the income variables is statistically
significant in the regression but the two together are significant at far below
the 1% level!

o
oo

o

oo

o

o

X
X 1

2

Y

a

b

Figure 9.2: An illustration of multicolinearity of X1 and X2

in predicting Y .

This is an example of multicollinearity. The problem is that GDP and
GNP are so highly correlated with each other that they are virtually the
same variable. Had they been perfectly correlated, of course, the computer
would not have been able to run the regression. Including two perfectly
correlated variables in the regression is equivalent to including the same
variable twice. This would mean that the X matrix would have two identi-
cal columns so that it would be non-singular and the (X′X)−1 matrix would
not exist. The problem here is that the two variables are not identical but
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nevertheless highly correlated. This makes it impossible to determine their
separate influences in the regression. The situation can be seen from Fig-
ure 9.2 for a multiple regression containing a constant term and two highly
collinear independent variables X1 and X2. The purpose of the regression
is to identify a plane in X1, X2, Y space that indicates how the dependent
variable Y responds to changes in X1 and X2. When X1 and X2 are highly
correlated, however, all the points lie very close to a ray projecting outward
into X1, X2, Y space. It is possible to identify a relationship between X1

and Y and between X2 and Y but not between both X1 and X2 together
and Y . Any estimated plane resting on the line ab in Figure 9.2 will be very
unstable in the dimensions X1, Y and X2, Y—slightly different placements
of the points in different samples will lead to planes with very different slopes
in the X1, Y and X2, Y dimensions.

The researcher’s solution to the problem in this case is easy—simply drop
one of the income variables from the regression, since both are measuring
the same thing, real income. Dropping real GDP, she obtains the following
results:

Dependent Variable: Canadian Real Money Holdings

Constant 10.47 (3.21)
90-Day Paper Rate -2.62 (0.38)
Real GNP 0.17 (0.01)

R-Squared .91
Standard Error (σ̂) 6.70
Number of Observations 40
Degrees of Freedom 37

Situations arise, however, in which two collinear variables really measure
different things and we therefore want to identify their separate effects on
the dependent variable. Suppose, for example, that we want to measure the
effects of domestic and foreign real incomes and domestic relative to foreign
prices on a country’s balance of trade. The theoretical equation takes the
form

BT = B(Y D
R , Y F

R , PR) (9.32)

where Y D
R is domestic real income, Y F

R is foreign real income and PR is the
relative price of domestically produced goods in terms of foreign produced
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goods with all prices measured in a common currency.6 The appropriate
regression model would be

Yi = β0 + β1X1i + β2X2i + β3X3i + ϵ (9.33)

where the dependent variable Y is the real balance of trade, X1 is domestic
real income Y D

R , X2 is foreign real income Y F
R is foreign real income, and X3

is the relative price of domestic goods, PR. Since a rise in the relative price
of domestic in terms of foreign goods will cause both domestic and foreign
residents to switch their purchases away from domestic goods, increasing
imports and reducing exports, we would expect the real balance of trade to
be negatively affected, so the expected sign of β3 is negative. An increase in
domestic income might be expected to cause domestic residents to buy more
foreign goods, increasing imports and reducing the real balance of trade. We
would therefore expect β1 to also be negative. An increase in foreign income,
on the other hand, might be expected to cause foreigners to import more,
resulting in an expansion of domestic exports and an increase in the balance
of trade. The coefficient β2 would thus expected to take on a positive sign.

When we estimate equation (9.33) for some country pairs we might find
that the domestic and foreign real income variables are so highly collinear
that our estimates of β1 and β2 will be statistically insignificant. If we drop
one of the variables, the remaining real income variable acts as a measure
of world real income and the response of the real balance of trade to that
variable will measure the effect of a proportional rise in both domestic and
foreign income on net domestic exports. Our purpose, however, is to measure
the separate effects of the two income variables on the domestic real trade
balance. There is no way that we can do this on the basis of the information
provided by the data we are using. The only way to solve our problem is to
obtain more information.

6The variable PR is called the real exchange rate. The nominal exchange rate is the
price of one country’s money in terms of another country’s money while the real exchange
rate is the price of one country’s output in terms of another country’s output.
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9.8 Serially Correlated Residuals

Perhaps the most important basic assumption of the linear regression model
is that the errors ϵi are independently distributed. This means that the
error associated with the i-th observation does not in any way depend on
the error associated with the j-th observation. This assumption is frequently
violated in regressions involving time series because the errors are correlated
through time. As noted earlier, this situation is called serial correlation
or autocorrelation. High (low) values at any point in time are associated
with high (low) values in neighbouring points in time when there is positive
autocorrelation.

Figure 9.3: Residuals from the regression of Canadian real money holdings
on the country’s 90-day commercial paper rate and real GNP plotted against
time.

Consider the regression of Canadian real money holdings on the 90-day
commercial paper rate and real GNP reported above. The residuals from
that regression are reported in Figure 9.3. It is clear from looking at the
figure that these residuals are serially correlated—high values in one period
are clearly associated with high values in immediately adjacent periods. To
demonstrate formally that serial correlation is present, we can regress each
year’s residual on the residuals for several previous years. Using three lags,
we obtain
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Dependent Variable: Residual

Constant .0544 (0.749122)
Residual-lag-1 1.0279 (0.171394)
Residual-lag-2 -0.4834 (0.233737)
Residual-lag-3 .0959 (0.175700)

R-Squared .5849
Standard Error (σ̂) 4.5437
Number of Observations 37
Degrees of Freedom 33

Statistically significant coefficients were obtained for one and two lags of the
residuals—based on t-ratios of 6.0 and -2.06, respectively. The third lag is
clearly insignificant. When the residual is correlated with the immediately
previous residual, the serial correlation is called first-order serial correlation,
when it is correlated with the residual two periods previous it is called
second-order serial correlation, and so forth. In the above case, there is first-
and second-order serial correlation in the residuals but not third-order. We
do not know whether fourth-order serial correlation is present because we
did not test for it—it is possible to have fourth- (or any other) order serial
correlation in the residuals without having serial correlation of lower orders.

The standard procedure for detecting first-order (and only first-order)
serial correlation in the residuals is to calculate the Durbin-Watson Statistic.
This equals

d =

∑n
t=2(et − et−1)

2∑n
t=1 e

2
t

. (9.34)

The sampling distribution of d is a complex one. It turns out that d can
take values between 0 and 4, and will differ from 2 when first-order serial
correlation is present. When the first-order serial correlation is positive, d
will be less than 2 and when it is negative d will be greater than 2. There
is, however, a wide range of indeterminacy. In the case of positive serial
correlation, one cannot clearly reject the null hypothesis of zero autocorre-
lation unless d is below the lower bound for the chosen level of α-risk in
the table of critical values for the Durbin-Watson d statistic in the back of
one’s statistics textbook. And one can only accept the hypothesis of zero
autocorrelation if d is above the upper bound in the table. For values of d
between the lower and upper bounds we cannot draw any conclusion. For
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negative serial correlation (which is present when d > 2) the same limits
are used except we compare the numbers in the table with 4 − d. In the
regression above, the Durbin-Watson statistic is .58 which is well below the
lower bound for α = .01 and indicates positive first-order serial correlation.

What do we do when first-order serial correlation is present in the resid-
uals? (Dealing with higher order serial correlation is beyond the technical
level of the analysis here.) The answer to this question depends on why the
autocorrelation is present. One possibility is that the true errors are serially
correlated. This implies that the standard linear model is the incorrect one
to apply to the data. An appropriate error term might be

ϵt = ρ ϵt−1 + ut

which implies that
ϵt − ρ ϵt−1 = ut,

where ut is independently normally distributed with zero mean and variance
σ2. Assuming that the residuals actually behave in this way, we can lag the
original regression equation

Yt = β0 + β1X1t + β2X2t + ϵt

once to yield

Yt−1 = β0 + β1X1(t−1) + β2X2(t−1) + ϵt−1

and then subtract ρ times the second equation from the first to obtain

Yt − ρ Yt−1 = β0 + β1(X1t − ρX1(t−1)) + β2(X2t − ρX2(t−1)) + ut. (9.35)

In this equation (Yt − ρ Yt−1), (X1t − ρX1(t−1)) and (X2t − ρX2(t−1)) are
related according to the standard linear model with the independently and
normally distributed error term ut.

To estimate equation (9.35), we need an estimator of ρ. A natural way
to proceed is to regress the residuals from the original regression on them-
selves lagged one period and use the slope coefficient as that estimator. Our
regression model would be

et = γ + ρ et−1 + υt

where υt is an independent draw from the true constant-variance error term
and we would expect our estimate of γ to be zero. The results from this
regression are as follows:
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Dependent Variable: Residual

Constant 0.140 (0.761913)
Residual-lagged 0.716 (0.118507)

R Squared: 0.497
Standard Error (σ̂) 4.7562
Number of Observations 39
Degrees of Freedom 37

We can apply the resulting estimate of ρ (= 0.716) to obtain the new vari-
ables

Ỹt = (Yt − .716Yt−1)

X̃1t = (X1t − .716X1(t−1))

and
X̃2t = (X2t − .716X2(t−1)).

A new regression of the form

Ỹt = β0 + β1X̃1t + β2X̃2t + ut

can then be run, yielding the following results:

Dependent Variable: Real Money Variable

Constant 1.03 (2.03)
Interest rate variable -1.38 (0.33)
Real GNP variable 0.17 (0.02)

R-Squared .73
Standard Error (σ̂) 4.05
Number of Observations 39
Degrees of Freedom 36

It turns out that the effects of this ‘correction’ for serial correlation in the
residuals, comparing the before and after regressions, reduces the absolute
value of the slope coefficient of the interest rate variable from -2.62 to -1.38
and also reduces its standard error slightly. A sophisticated extension of
this procedure is to regress the residuals of this new equation on themselves
lagged and modify the estimate of ρ accordingly, doing this repeatedly until
the estimates of ρ change by less than some minimal amount. When this is
done, we obtain the following results:
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Dependent Variable: Real Money Variable

Constant -4.24 (24.62)
Interest rate variable -1.09 (0.31)
Real GNP variable 0.18 (0.05)
ρ 0.928 (0.07)

R-Squared .97
Standard Error (σ̂) 3.75
Number of Observations 39
Degrees of Freedom 35

These refinements reduce further the absolute value of the slope coefficient
of the interest rate variable and its standard error and raise slightly the
coefficient of the real income variable and more substantially its standard
error.

The ‘optimal’ value of ρ obtained by the above iterative method is very
close to unity. In fact, a long-standing traditional approach to dealing with
serial correlation in the residuals has been to take the first differences of the
variables and run the regression in the form

Yt − Yt−1 = β0 + β1(X1t −X1(t−1)) + β2(X2t −X2(t−1)) + ϑt. (9.36)

This assumes that

ϑt = ϵt − ϵt−1

is independently and normally distributed and therefore that ρ = 1. When
we impose this assumption on the residuals we obtain the following results:

Dependent Variable: Real Money Variable

Constant 0.496 (0.89)
Interest rate variable -0.96 (0.32)
Real GNP variable 0.15 (0.06)

R-Squared .22
Standard Error (σ̂) 3.73
Number of Observations 39
Degrees of Freedom 36

The results differ little from those obtained when ρ was estimated iteratively.
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Which coefficients are we to believe, those with no ‘correction’ of the
residuals for serial correlation or those with a ‘correction’ imposed? To
answer this question we must know the reason for the residuals being serially
correlated. One possibility, of course, is that the residuals of the ‘true’ model
are serially correlated. The problem with this explanation is that there is
no reason in economic theory for the residuals to be serially correlated if
we have correctly modeled the economic process we seek to explain. The
reason why we have serial correlation in the residuals is that we have left
variables that are correlated with time out of the model because we either
could not measure them or could not correctly specify the underlying theory
given the current state of knowledge. Obviously, the best approach is to try
to better specify the model and to be sure that all variables that should
be in it are included in the estimating equation. If we cannot do so our
coefficients are likely to be biased for reasons outlined in section 9.6 above
on left-out variables. Whether we improve things by correcting the residuals
for first-order serial correlation is a question that econometricians will debate
on a case-by-case basis. Clearly, however, it is inappropriate to routinely
and unthinkingly impose a ‘correction’ on the residuals every time serial
correlation is present.

9.9 Non-Linear and Interaction Models

Figure 9.4: Residuals from a linear regression that suggest
the underlying relationship is nonlinear.
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It frequently arises that the residuals show a non-linear pattern as is
illustrated in Figure 9.4. There are a number of simple ways of fitting
non-linear relationships—either the dependent or independent variables or
both can be transformed by inverting them or taking logarithms and using
these non-linear transformations of the variables in a linear regression model.
Another way is to include in the regression model squares of the independent
variables along with their levels. For example, we might have

Yt = β0 + β1Xt + β2X
2
t + ϵt. (9.37)

Interaction models arise when the relationship between the dependent vari-
able and one of the independent variables depends on the level of a second
independent variable. In this case, the appropriate regression model would
be of the form

Yt = β0 + β1X1t + β2X2t + β3X1tX2t + ϵt. (9.38)

Let us work through an example that illustrates both of these modifi-
cations to the standard linear model. It is quite common for colleges and
universities to develop regression models for predicting the grade point av-
erages (GPA’s) of incoming freshmen. This evidence is subsequently used to
decide which students to admit in future years. Two obvious variables that
should be predictors of subsequent student performance are the verbal and
mathematics scores on college entrance examinations. Data for a randomly-
selected group of 40 freshmen were used to obtain the following regression
results:

Dependent Variable: Freshman Grade Point Average

Constant -1.570 (0.4937
Verbal Score (percentile) 0.026 (0.0040)
Math Score (percentile) 0.034 (0.0049)

R-Squared .68
Standard Error (σ̂) .402
Number of Observations 40
Degrees of Freedom 37

These results indicate that students’ scores on both the verbal and mathe-
matical college entrance tests are significant positive predictors of freshman
success (with t-ratios 6.3 and 6.8, respectively). An increase in a student’s
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verbal score by 10 percentiles will lead on average to a .26 increase in his/her
GPA. For example, a student in the 70th percentile on both the verbal and
mathematics sections of the entrance exam will have an expected freshman
GPA of

−1.57 + (70)(.026) + (70)(.034) = 2.58.

An increase in her verbal score on the entrance exam from the 70th to the
80th percentile will increase her expected GPA by 0.26 to 2.84. And an
increase in her math score from the 70th to the 80th percentile will increase
her expected GPA by .34 to 2.92. An increase in both of her scores from the
70th to the 80th percentile will increase her expected GPA by .6 (= .26 +
.34) to 3.18. The increase in expected GPA predicted by an increase in the
percentiles achieved on the mathematics and verbal college entrance exams
will be independent of the initial levels of the student’s scores.

Figure 9.5: Residuals from first order regression model of
grade point average on test scores.

The residuals from this regression are plotted against the two indepen-
dent variables in Figure 9.5. Plotted against verbal score, they have an
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inverse parabolic pattern, suggestive of non-linearity.7 To check this out we
run a second regression that includes the squared verbal and mathematics
scores as additional variables together with an interactive variable consisting
of the product of the verbal and math scores. The results are as follows:

Dependent Variable: Freshman Grade Point Average

Constant -9.9167 (1.35441)
verbal score 0.1668 (0.02124)
math score 0.1376 (0.02673)
verbal score squared -0.0011 (0.00011)
math score squared -0.0008 (0.00016)
verb score x math score 0.0002 (0.00014)

R-Squared .94
Standard Error (σ̂) .187
Number of Observations 40
Degrees of Freedom 34

As expected, the verbal score squared has a significant negative sign indica-
tive of an inverse parabolic relationship (the t-statistic equals -10). The
squared mathematical score is also statistically significant with a negative
sign (the t-ratio equals -5). The interactive term, verbal score times math
score, is not statistically significant, with a t statistic of only 1.43. The
residuals from this extended regression, plotted in Figure 9.6 are very well
behaved. An F -test of the null hypothesis of no effect of the squared and
interactive terms yields the statistic∑

e2iR −
∑

e2i
3

÷
∑

e2i
34

=
(37)(.402)2 − (34)(.187)2

3
÷ (34)(.187)2

34

=
5.98− 1.19

3
÷ 1.19

34
=

1.60

.035
= 45.71 = F (3, 34).

We can reject the null hypothesis at any reasonable level of α-risk.

Notice how the addition of these second order terms (squares and cross-
products) affects the response of GPA to verbal and mathematical test

7A parabola takes the mathematical form

y = ax2 − bx− c.

When a < 0 the parabola will be inverted with the arms extending downward.
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Figure 9.6: Residuals from second order regression model of
grade point average on test scores.
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scores. A student with scores in the 70th percentile on both the verbal
and mathematical tests will have a predicted GPA of

−9.9167 + (.1668)(70) + (.1376)(70)− (.0011)(70)2

−(.0008)(70)2 + (.0002)(70)(70) = 3.04

which is higher than the predicted value from the regression that did not
include the second order terms. Now suppose that the student’s verbal test
score increases to the 80th percentile. This will increase his expected GPA
by

(.1668)(80− 70)− (.0011)(802 − 702) + (.0002)(80− 70)(70) = .158

to 3.198. An increase in the mathematical score from the 70th to the 80th
percentile with his verbal score unchanged would increase his expected GPA
by

(.1376)(80− 70)− (.0008)(802 − 702) + (.0002)(70)(80− 70) = .316

to 3.356. Given the interaction term, an increase in both the verbal and
mathematical scores of the student from the 70th to the 80th percentile
would increase his expected GPA by more than the sum of the two separate
effects above (= .158 + .316 = .474). The increase would be

(.1668)(80− 70)− (.0011)(802− 702)+ (.1376)(80− 70)− (.0008)(802− 702)

+(.0002)[(80− 70)(70) + (70)(80− 70) + (80− 70)(80− 70)

= .158 + .316 + (.0002)(100) = .158 + .316 + .02 = .494

to 3.534. Notice the difference in the levels and predicted changes in the
GPA’s under the second order as opposed to the first order model. Given
that the interaction term is statistically insignificant, however, we might de-
cide to make our predictions on the basis of a regression model that includes
the squared terms but excludes the interaction term.
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9.10 Prediction Outside the Experimental Region:
Forecasting

A major purpose of regression analysis is to make predictions. Problems
arise, however, when the fitted models are used to make predictions outside
the range of the sample from which the regression model was estimated—
i.e., outside the experimental region. The fit within sample is based on the
surrounding sample points. Outside the range of the sample there is no
opportunity for the fitted regression parameters to be influenced by sample
observations—we simply do not know what values of the dependent variable
would be associated with levels of the independent variables in this range
were they to occur. As a result, the farther outside the sample range we
extrapolate using the estimated model the more inaccurate we can expect
those predictions to be.

Predicting outside the sample range in time series regressions is called
forecasting. We have data on, say, the consumer price index, up to and
including the current year and want to predict the level of the consumer price
index next year. We develop a regression model ‘explaining’ past movements
in the consumer price index through time and then use that model to forecast
the level of the consumer price index in future periods beyond the sample
used to estimate the model. To the extent that we use independent variables
other than time we have to forecast the levels of those variables because
their realization has not yet occurred. Errors in those forecasts will produce
errors in predicting the future values of the dependent variable. These will
additional to the errors that will result because we are using the regression
parameters to predict values of the dependent variable outside the sample
range in which those parameters were estimated.

Alternatively, we could forecast the consumer price index based on a
simple regression of a range of its previous realized values against time using
a model such as

YT = β0 + β1T + ϵt

where YT is the consumer price index at time T . This is the simplest time-
series model we could fit to the data—time-series econometricians typically
use much more sophisticated ones. The regression model is estimated for
the period T = 1, 2, . . . N and then a prediction of Y for period N + 1 is
obtained as

YN+1 = b0 + b1 (N + 1).

Obviously, if the time-period N + 1 could have been used in the estimation
of the model, the estimates b0 and b1 would be different. The further we
forecast beyond period N the less the expected accuracy of our forecasts.
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9.11 Exercises

1. A random sample of size n = 20 families is used to conduct a multiple
regression analysis of how family i’s annual savings Si depends on its annual
income Ii and its home-ownership status Hi. Both Si and Ii are measured
in thousands of dollars. Variable Hi is equal to 1 if family i owns its home
and equal to 0 if family i rents. The regression results

Coefficient Estimate Standard Error

Constant — β0 -0.320 0.620
Annual Income — β1 0.0675 0.004
Home Ownership — β2 0.827 0.075

Sum of Squared Errors 0.230
Total Sum of Squares 15.725

yield the fitted equation

Ŝi = −0.320 + 0.0675 Ii + 0.827Hi.

a) The value of the coefficient associated with the variable I is estimated
to be 0.0675. Provide a one-sentence explanation of what this num-
ber implies about the relationship between family income and saving.
Also, provide a one-sentence explanation of what the coefficient es-
timate 0.827 implies about the relationship between home ownership
and saving.

b) Using α = .05, conduct a test of the null hypothesis H0: β1 = β2 = 0
versus the alternative hypothesis that at least one of β1, β2 is not equal
to zero.

2. A shoe store owner estimated the following regression equation to explain
sales as a function of the size of investment in inventories (X1) and adver-
tising expenditures (X2). The sample consisted of 10 stores. All variables
are measured in thousands of dollars.

Ŷ = 29.1270 + .5906X1 + .4980X2

The estimated R2 was .92448, Σ(Yi − Ȳ )2 = 6, 724.125, and the standard
deviations of the coefficients of X1 and X2 obtained from the regression were
.0813 and .0567 respectively.
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a) Find the sum of squared residuals and present a point estimate of the
variance of the error term. (507.81, 72.54)

b) Can we conclude that sales are dependent to a significant degree on
the size of stores’ inventory investments?

c) Can we conclude that advertising expenditures have a significant effect
on sales?

d) Can we conclude that the regression has uncovered a significant overall
relationship between the two independent variables and sales?

e) What do we mean by the term ‘significant’ in b), c) and d) above?

3. Quality control officers at the Goodyear Tire and Rubber Company are
interested in the factors that influence the performance of their Goodyear
TA All Season Radial Tires. To this end, they performed a multiple regres-
sion analysis based on a random sample of 64 automobiles. Each vehicle
was equipped with new tires and driven for one year. Following the test
period, Goodyear experts evaluated tire wear by estimating the number of
additional months for which the tire could be used. For the regression study,
the dependent variable TIRE measures this estimated remaining lifetime in
months. A totally worn out tire will report TIRE= 0. Independent variables
selected for the study include WEIGHT which measures the test vehicle’s
weight in pounds, CITY which measures the number of miles driven in
city traffic in thousands and MILES which measures the total number of
miles driven (city and highway), also in thousands. The statistical software
package Xlispstat reports multiple regression results and a simple regression
of TIRE on WEIGHT. The standard errors of the coefficients are given in
brackets.

Dependent Variable: TIRE

Constant 60.000 (15.000)
WEIGHT -0.003 (0.001)
CITY 0.020 (0.008)
MILES -0.400 (0.100)

R-Squared .86
Standard Error (σ̂) 1.542
Number of Observations 64
Degrees of Freedom 60
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Dependent Variable: TIRE

Constant 72.000 (36.000)
WEIGHT -0.005 (0.001)

R-Squared .79
Standard Error (σ̂) 1.732
Number of Observations 64
Degrees of Freedom 62

a) Interpret each of the estimated parameters in the multiple regression
model (i.e., what does β2 = 0.020 tell you about the relationship between
city miles and tire wear?)

b) Briefly discuss why the estimated coefficient on WEIGHT differs between
the simple and multiple regression models.

c) Perform an hypothesis test to evaluate whether the coefficient on CITY
is significantly greater than zero. Manage the α-risk at 5%. Interpret the
results of this test.

d) Test whether the estimated coefficients on CITY and MILES are jointly
equal to zero. Manage the α-risk at 5%. Interpret the results of this test.

4. J. M. Keynes postulated that aggregate real consumption (RCONS)
is positively related to aggregate real GNP (RGNP) in such a way that
the marginal propensity to consume—the change in consumption resulting
from a one-unit change in income—is less than the average propensity to
consume—the ratio of consumption to income. There remains the question
of whether consumption is negatively related to the rate of interest (or, which
is the same thing, savings is positively related to the interest rate). The table
on the next page presents some data on consumption, real GNP and interest
rates in Canada, along with the LOTUS-123 regression output using these
data. A dummy variable is included to test whether consumption depends on
whether the exchange rate is fixed or flexible. The column PRED gives the
level of consumption predicted by the regression that includes the dummy
variable and the column ERROR gives the difference between the actual
value of consumption and the value predicted by that regression. SQERR
is the error squared and the right-most column gives the error times itself
lagged.
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WORKSHEET FOR REGRESSION ANALYSIS OF CANADIAN CONSUMPTION

ERROR TIMES
RCONS RGNP INTRATE DUMMY PRED ERROR SQERR ERROR LAGGED

1961 105.4 161.4 3.37 0 99.7 5.7 32.3 
1962 111.1 173.4 4.38 0 105.7 5.4 29.0 30.629 
1963 116.4 182.8 4.01 1 114.1 2.3 5.4 12.530 
1964 122.8 196.6 4.20 1 121.9 0.9 0.8 2.023 
1965 129.7 211.5 5.01 1 129.8 -0.1 0.0 -0.079 
1966 136.8 228.2 6.27 1 138.4 -1.6 2.5 0.143 
1967 142.9 236.3 5.84 1 143.5 -0.5 0.3 0.831 
1968 150.0 248.4 6.82 1 149.6 0.4 0.2 -0.207 
1969 157.1 262.0 7.84 1 156.5 0.5 0.3 0.212 
1970 160.6 271.9 7.34 0 160.2 0.4 0.1 0.196 
1971 169.3 288.5 4.51 0 172.4 -3.1 9.5 -1.122 
1972 181.0 308.0 5.10 0 183.2 -2.2 4.8 6.763 
1973 192.4 335.8 7.45 0 197.2 -4.8 22.6 10.447 
1974 202.7 361.1 10.50 0 209.1 -6.4 40.6 30.310 
1975 211.9 367.5 7.93 0 215.1 -3.3 10.7 20.837 
1976 225.3 393.2 9.17 0 228.9 -3.7 13.6 12.036 
1977 231.3 399.7 7.47 0 234.2 -2.9 8.4 10.691 
1978 236.2 405.4 8.83 0 236.3 -0.1 0.0 0.294 
1979 241.5 423.8 12.07 0 244.0 -2.6 6.5 0.259 
1980 246.3 432.0 13.15 0 247.9 -1.6 2.5 4.012 
1981 249.3 438.3 18.33 0 246.8 2.4 5.9 -3.810 
1982 241.4 415.2 14.15 0 237.2 4.2 17.6 10.189 
1983 250.8 427.5 9.45 0 248.6 2.3 5.1 9.495 
1984 261.8 449.2 11.18 0 259.6 2.3 5.1 5.106 
1985 276.1 465.9 9.56 0 270.7 5.3 28.4 12.037 
1986 287.1 474.2 9.16 0 275.9 11.2 126.3 59.940 

SUM 5037.1 8557.8 213.1 7.0 10.6 378.6 233.8 
MEAN 193.7 329.1 8.2 0.3 0.0 
VAR 3164.17 10421.87 12.6228 0.204 

********************

Regression Output: Regression Output: Dummy Variable Excluded: 

Constant 9.12 Constant 12.21 
R Squared 0.99527 R Squared 0.99504 
No. of Observations 26 No. of Observations 26 

RGNP INTRATE DUMMY RGNP INTRATE
X Coefficient(s) 0.58 -0.90 2.53 X Coefficient(s) 0.57 -0.84 
Std Err of Coef. 0.02 0.38 2.40 Std Err of Coef. 0.01 0.38 
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a) Can we conclude that consumption is positively related to income?

b) How would you test the proposition that the marginal propensity to
consume equals the average propensity to consume?

c) Can we conclude that the interest rate has a negative effect on consump-
tion?

d) Is aggregate consumption affected by whether the country was on fixed
as opposed to flexible exchange rates?

e) Test whether the regression that includes all three independent variables
is statistically significant.

f) Do an F -test of the proposition that consumption depends on whether the
country was on a fixed or flexible exchange rate. Show that the F-statistic
so obtained is equal to the square of the relevant t-statistic in the regression
that includes the dummy variable.

g) Perform a crude test of whether residuals of the regression are serially
correlated.


