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PREFACE

The pages that follow contain the material presented in my introductory
quantitative methods in economics class at the University of Toronto. They
are designed to be used along with any reasonable statistics textbook. The
most recent textbook for the course was James T. McClave, P. George Ben-
son and Terry Sincich, Statistics for Business and Economics, Eighth Edi-
tion, Prentice Hall, 2001. The material draws upon earlier editions of that
book as well as upon John Neter, William Wasserman and G. A. Whitmore,
Applied Statistics, Fourth Edition, Allyn and Bacon, 1993, which was used
previously and is now out of print. It is also consistent with Gerald Keller
and Brian Warrack, Statistics for Management and Economics, Fifth Edi-
tion, Duxbury, 2000, which is the textbook used recently on the St. George
Campus of the University of Toronto. The problems at the ends of the chap-
ters are questions from mid-term and final exams at both the St. George
and Mississauga campuses of the University of Toronto. They were set by
Gordon Anderson, Lee Bailey, Greg Jump, Victor Yu and others including
myself.

This manuscript should be useful for economics and business students en-
rolled in basic courses in statistics and, as well, for people who have studied
statistics some time ago and need a review of what they are supposed to have
learned. Indeed, one could learn statistics from scratch using this material
alone, although those trying to do so may find the presentation somewhat
compact, requiring slow and careful reading and thought as one goes along.

I would like to thank the above mentioned colleagues and, in addition, Ado-
nis Yatchew, for helpful discussions over the years, and John Maheu for
helping me clarify a number of points. I would especially like to thank Gor-
don Anderson, who I have bothered so frequently with questions that he
deserves the status of mentor.

After the original version of this manuscript was completed, I received some
detailed comments on Chapter 8 from Peter Westfall of Texas Tech Univer-
sity, enabling me to correct a number of errors. Such comments are much
appreciated.

J. E. Floyd
July 2, 2010

c⃝J. E. Floyd, University of Toronto
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Chapter 8

Simple Linear Regression

We now turn to the area of statistics that is most relevant to what economists
usually do—the analysis of relationships between variables. Here we will
concentrate entirely on linear relationships. For example, we might be in-
terested in the relationship between the quantity of money demanded and
the volume of transactions that people make as represented by the level
of money income. Or we might be interested in the relationship between
family expenditures on food and family income and family size. Regression
analysis is used to analyse and predict the relationship between the response
or dependent variable (money holdings and family expenditure on food in
the above examples) and one or more independent, explanatory, or predictor
variables. In the demand for money example the single independent variable
was the level of income; in the family food expenditure example, there were
two independent variables, family income and family size.

We must distinguish two types of relationships between variables. A
deterministic relationship exists if the value of Y is uniquely determined
when the value of X is specified—the relationship between the two variables
is exact. For example, we might have

Y = βX

where β is some constant such as 10. On the other hand, there may be a
relationship between two variables that involves some random component
or random error. This relationship is called a probabilistic or statistical
relationship. In this case we might have

Y = βX + ϵ

which can be viewed as a probabilistic model containing two components—a
deterministic component βX plus a random error ϵ. Figure 8.1 presents
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194 SIMPLE LINEAR REGRESSION

an example of a deterministic straight-line relationship between X and Y
along which all observed combinations of the two variables lie. An example
of a probabilistic relationship is given in Figure 8.2. There is a scatter
of observed combinations of X and Y around a straight-line functional or
deterministic relationship indicating errors in the fit that result from the
influence on Y of unknown factors in addition to X. For each level of X
there is a probability distribution of Y . And the means of these probability
distributions of Y vary in a systematic way with the level of X.

Figure 8.1: A functional or deterministic relationship
between two variables X and Y .

8.1 The Simple Linear Regression Model

When the statistical relationship is linear the regression model for the ob-
servation Yi takes the form

Yi = β0 + β1Xi + ϵi (8.1)

where the functional or deterministic relationship between the variables is
given by β0 + β1Xi and ϵi is the random scatter component. Yi is the
dependent variable for the ith observation, Xi is the independent variable
for the ith observation, assumed to be non-random, β0 and β1 are parameters
and the ϵi are the deviations of the Yi from their predicted levels based on
Xi, β0 and β1.
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Figure 8.2: An probabilistic or statistical relationship
between two variables X and Y .

The error term is assumed to have the following properties:

a) The ϵi are normally distributed.

b) The expected value of the error term, denoted by E{ϵi}, equals zero.

c) The variance of the ϵi is a constant, σ2.

d) The ϵi are statistically independent—that is, the covariance between
ϵi and ϵj is zero.

In other words,

ϵi = N(0, σ2).

This normality assumption for the ϵi is quite appropriate in many cases.
There are often many factors influencing Y other than the independent
variable (or, as we shall see later, variables) in the regression model. Insofar
as the effects of these variables are additive and tend to vary with a degree
of mutual independence, their mean (and their sum) will tend to normality
according to the central limit theorem when the number of these ‘missing’
factors is large. The distribution of the error term and the resulting levels
of Y at various levels of X is given in Figure 8.3.
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Figure 8.3: Simple regression of Y on X: The probability
distribution of Y given X.

Since the error term ϵi is a random variable, so is the dependent variable
Yi. The expected value of Yi equals

E{Yi} = E{β0 + β1Xi + ϵi}
= E{β0}+ E{β1Xi}+ E{ϵi}
= β0 + β1E{Xi}+ 0

= β0 + β1Xi (8.2)

where E{Xi} = Xi because these Xi are a series of pre-determined non-
random numbers. Equation (8.2), the underlying deterministic relationship
is called the regression function. It the line of means that relates the mean
of Y to the value of the independent variable X. The parameter β1 is the
slope of this line and β0 is its intercept.

The variance of Yi given Xi equals

Var{Yi|Xi} = Var{β0 + β1Xi + ϵi}
= Var{β0 + β1Xi}+ Var{ϵi}
= 0 + Var{ϵi} = σ2 (8.3)

where the regression function β0 + β1Xi is deterministic and therefore does
not vary. Thus the Yi have the same variability around their means at all
Xi.

Finally, since the ϵi are assumed to be independent for the various ob-
servations, so are the Yi conditional upon the Xi. Hence it follows that
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Yi = N(β0 + β1Xi, σ
2).

8.2 Point Estimation of the Regression
Parameters

Point estimates of β0 and β1 can be obtained using a number of alternative
estimators. The most common estimation method is the method of least
squares. This method involves choosing the estimated regression line so
that the sum of the squared deviations of Yi from the value predicted by
the line is minimized. Let us denote the deviations of Yi from the fitted
regression line by ei and our least-squares estimates of β0 and β1 by b0 and
b1 respectively. Then we have

Q =
n∑

i=1

e2i =
n∑

i=1

(Yi − b0 − b1Xi)
2 (8.4)

where Q is the sum of squared deviations of the Yi from the values predicted
by the line.

Figure 8.4: A least-squares fit minimizes the sum of the
squared vertical distances of the data-points from the least-
squares line.

The least-squares estimation procedure involves choosing b0 and b1, the
intercept and slope of the line, so as to minimize Q. This minimizes the sum
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of the squared lengths of the vertical lines in Figure 8.4. Expanding equaton
(8.4), we have

Q =
n∑

i=1

(Yi − b0 − b1Xi)
2

=
n∑

i=1

Y 2
i + n b 20 +

n∑
i=1

b 21X
2
i − 2 b0

n∑
i=1

Yi

−2 b1

n∑
i=1

YiXi + 2 b0b1

n∑
i=1

Xi (8.5)

To find the least squares minimizing values of b0 and b1 we differentiate Q
with respect to each of these parameters and set the resulting derivatives
equal to zero. This yields

∂Q

∂b0
= 2n b0 − 2

n∑
i=1

Yi + 2 b1

n∑
i=1

Xi = 0 (8.6)

∂Q

∂b1
= 2 b1

n∑
i=1

X2
i − 2

n∑
i=1

XiYi + 2 b0

n∑
i=1

Xi = 0 (8.7)

which simplify to
n∑

i=1

Yi = n b0 + b1

n∑
i=1

Xi (8.8)

n∑
i=1

XiYi = b0

n∑
i=1

Xi + b1

n∑
i=1

X2
i (8.9)

These two equations can now be solved simultaneously for b0 and b1. Di-
viding (8.8) by n, rearranging to put b0 on the left side and noting that∑

Xi = nX̄ and
∑

Yi = nȲ we obtain

b0 = Ȳ − b1X̄ (8.10)

Substituting this into (8.9), we obtain

n∑
i=1

XiYi = Ȳ
n∑

i=1

Xi − b1X̄
n∑

i=1

Xi + b1

n∑
i=1

X2
i , (8.11)

which can be rearranged to yield

n∑
i=1

XiYi − Ȳ
n∑

i=1

Xi = b1

[
n∑

i=1

X2
i − X̄

n∑
i=1

Xi

]
n∑

i=1

XiYi − n Ȳ X̄ = b1

[
n∑

i=1

X2
i − n X̄2

]
(8.12)
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By expansion it can be shown that

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) =
n∑

i=1

XiYi − n Ȳ X̄

and
n∑

i=1

(Xi − X̄)2 =
n∑

i=1

X2
i − n X̄2

so that by substitution into (8.12) we obtain

b1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
. (8.13)

This expression can be alternatively written as

b1 =

∑
xy

x2
(8.14)

where x = (Xi − X̄) and y = (Yi − Ȳ ) are the deviations of the variables
from their respective means and the summation is over i = 1 . . . n.

The least-squares estimators b0 and b1 are unbiased and, as can be seen
from (8.10) and (8.13), linearly dependent on the n sample values Yi. It
can be shown that least-squares estimators are more efficient—that is, have
lower variance—than all other possible unbiased estimators of β0 and β1 that
are linearly dependent on the Yi. It can also be shown that these desirable
properties do not depend upon the assumption that the ϵi are normally
distributed.

Estimators of β0 and β1 can also be developed using the method of maxi-
mum likelihood (under the assumption that the ϵi are normally distributed).
These estimators turn out to be identical with the least-squares estimators.

Calculation of the regression line is straight forward using (8.10) and
(8.14). The procedure is to

a) calculate the deviations of Xi and Yi from their respective means.

b) square the deviations of the Xi and sum them.

c) multiply the Xi deviations with the corresponding Yi deviations and
sum them.

d) plug these sums of squares and cross products into (8.14) to obtain b1,
and
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e) plug this value of b1 into (8.10) along with the means of the Xi and Yi
to obtain b0.

The regression function E{Y } = β0 + β1X is estimated as

Ŷ = b0 + b1X (8.15)

where Ŷ is referred to as the predicted value of Y . The mean response or
predicted value of Y when X takes some value Xh is

Ŷh = b0 + b1Xh.

The point estimate of E{Yh} is thus Ŷh, the value of the estimated regression
function when X = Xh.

8.3 The Properties of the Residuals

To make inferences (i.e., construct confidence intervals and do statistical
tests) in regression analysis we need to estimate the magnitude of the ran-
dom variation in Y . We measure the scatter of the observations around
the regression line by comparing the observed values Yi with the predicted
values associated with the corresponding Xi. The difference between the
observed and predicted values for the ith observation is the residual for that
observation. The residual for the ith observation is thus

ei = Yi − b0 − b1Xi.

Note that ei is the estimated residual while ϵi is the true residual or error
term which measures the deviations of Yi from its true mean E{Y }.

The least-squares residuals have the following properties.

a) They sum to zero —
∑

ei = 0.

b) The sum of the squared residuals
∑

e 2
i is a minimum—this follows

because the method of least squares minimizes Q.

c) The sum of the weighted residuals is zero when each residual is weighted
by the corresponding level of the independent variable —

∑
Xi ei = 0.

d) The sum of the weighted residuals is zero when each residual is weighted
by the corresponding fitted value —

∑
Ŷi ei = 0.
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8.4 The Variance of the Error Term

To conduct statistical inferences about the parameters of the regression we
are going to need an estimate of the variance of the error term. An obvious
way to proceed is to work with the sum of squared deviations of the observed
levels of Y from the predicted levels—i.e.,

n∑
i=1

(Yi − Ŷ )2 =
n∑

i=1

e2i .

It turns out that the mean or average of these squared deviations is the
appropriate estimator of σ2, provided we recognize that all n of of these
deviations are not independent. Since we used the sample data to estimate
two parameters, b0 and b1, we used up two of the n pieces of information
contained in the sample. Hence, there are only n − 2 independent squared
deviations—i.e., n− 2 degrees of freedom. Hence, in taking the average we
divide by n− 2 instead of n. An unbiased estimator of σ2 is

MSE =

∑n
i=1 e

2
i

n− 2
(8.16)

where MSE stands for mean square error. In general, a mean square is a
sum of squares divided by the degrees of freedom with which it is calculated.

8.5 The Coefficient of Determination

Consider the sum of the squared deviations of the Yi from their mean Ȳ ,
otherwise known as the total sum of squares and denoted by SSTO,

SSTO =
n∑

i=1

(Yi − Ȳ )2.

This total sum of squares can be broken down into components by adding
and subtracting Ŷ as follows:

SSTO =
n∑

i=1

(Yi − Ȳ )2

=
n∑

i=1

(Yi − Ŷi + Ŷi − Ȳ )2
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=
n∑

i=1

[
(Yi − Ŷi) + (Ŷi − Ȳ )

]2
=

n∑
i=1

[
(Yi − Ŷi)

2 + (Ŷi − Ȳ )2 + 2(Yi − Ŷi)(Ŷi − Ȳ )
]

=
n∑

i=1

(Yi − Ŷi)
2 +

n∑
i=1

(Ŷi − Ȳ )2 + 2
n∑

i=1

(Yi − Ŷi)(Ŷi − Ȳ ). (8.17)

The term
n∑

i=1

(Yi − Ŷi)(Ŷi − Ȳ )

equals zero, since

n∑
i=1

(Yi − Ŷi)(Ŷi − Ȳ ) =
n∑

i=1

[
(Yi − Ŷi)Ŷi − (Yi − Ŷi)Ȳ

]
=

n∑
i=1

(Yi − Ŷi)Ŷi −
n∑

i=1

(Yi − Ŷi)Ȳ

=
n∑

i=1

eiŶi − Ȳ
n∑

i=1

ei. (8.18)

From the properties a) and d) of the least-squares residuals listed on page 200
above, Ŷ

∑
ei and

∑
eiYi are both zero. We can thus partition the total sum

of squares into the two components,

SSTO =
n∑

i=1

(Ŷi − Ȳ )2 +
n∑

i=1

(Yi − Ŷi)
2

= SSR + SSE. (8.19)

The term

SSE =
n∑

i=1

(Yi − Ŷi)
2

is the sum of squares of the deviations of the observed values Yi from the
values predicted by the regression. It is the portion of the total variability of
Y that remains as a residual or error after the influence of X is considered,
and is referred to as the sum of squared errors. The term

SSR =
n∑

i=1

(Ŷi − Ȳ )2
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is the sum of the squared deviations of the predicted values Yi from the
mean of Y . It is the portion of the total variability of Y that is explained
by the regression—that is, by variations in the independent variable X. It
follows that the sum of squared errors is the total sum of squares minus the
portion explained by X—i.e., SSE = SSTO − SSR.

The coefficient of determination, usually referred to as the R2, is the
fraction of the total variability of the Yi that is explained by the variability
of the Xi. That is,

R2 =
SSR

SSTO
=

SSTO − SSE

SSTO
= 1− SSE

SSTO
. (8.20)

8.6 The Correlation Coefficient Between X and Y

The correlation coefficient between two random variables, X and Y has
previously been defined as

ρ =
Cov{XY }√

Var{X}Var{Y }
. (8.21)

An appropriate estimator of ρ is

r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑
(Yi − Ȳ )2

. (8.22)

As in the case of the true correlation coefficient ρ, r can vary between minus
unity and plus unity. In the present situation, however, the Xi are assumed
fixed—i.e., do not vary from sample to sample—so that X is not a random
variable. Nevertheless, r is still a suitable measure of the degree of associa-
tion between the variable Y and the fixed levels of X. Moreover, when we
square r we obtain

r2 =
(
∑
(Xi − X̄)(Yi − Ȳ ))2∑

(Xi − X̄)2
∑
(Yi − Ȳ )2

(8.23)

which, it turns out, can be shown to equal R2 as defined above.
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8.7 Confidence Interval for the Predicted
Value of Y

Suppose we want to estimate the mean level of Y for a given level of X
and establish confidence intervals for that mean level of Y . For example, an
admissions officer of a U.S. college might wish to estimate the mean grade
point average (GPA) of freshmen students who score 550 on the Scholastic
Aptitude Test (SAT).

We have already established that the predicted value Yh is a good point
estimator of E{Yh}. In order to obtain confidence intervals for E{Yh},
however, we need a measure of the variance of Ŷh. It turns out that

σ2{Ŷh} = σ2

[
1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]
(8.24)

for which an appropriate estimator is

s2{Ŷh} = MSE

[
1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]
(8.25)

where MSE is the mean square error, previously defined as

MSE =
SSE

n− 2
=

∑
e2i

n− 2
.

The magnitude of the estimated variance s2{Ŷh} is affected by a number of
factors:

a) It is larger the greater the variability of the residuals ei.

b) It is larger the further the specified level of X is from the mean of X
in either direction—i.e., the bigger is (Xh − X̄)2.

c) It is smaller the greater the variability of the Xi about the mean of X.

d) It is smaller the greater the sample size n. There are two reasons for
this. The greater is n, the smaller are both 1/n and MSE and, in
addition, when n is larger the sum of the squared deviations of the Xi

from their mean will tend to be larger.

The above points can be seen with reference to Figure 8.5. The true
functional relationship is given by the thick solid line and has slope β1 and
intercept β0. Alternative fitted regression lines are given by the upward
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Figure 8.5: The true linear functional relationship (thick line)
between Scholastic Aptitude Test (SAT) score and subse-
quent Grade Point Average (GPA) measured on a 5 point
scale in freshman college courses, together with some possi-
ble fitted regression lines based on differing samples.

sloping thin lines. Each regression line always passes through the point
(X̄Ȳ ) for the sample in question. Different samples of Yi’s drawn for the
same set of Xi’s yield different regression lines having different slopes since
b1 is a random variable. Also, different samples will yield different mean
values of Y , though X̄ will be the same because the Xi are fixed from
sample to sample. This means that the level of the regression line is also a
random variable as shown by the thin lines parallel to the true functional
relationship—its variance at X̄ is the variance of the error term σ2 which is
estimated by MSE.

The estimated variance of the predicted values of Y at X̄, associated in
the above example with a SAT score of 500, will be equal to MSE divided
by n and will be determined entirely by the variance of the level of the line.
At levels of X above the mean, say for a SAT score of 600, the variance
of the predicted value of Y will be larger because there is both variance in
the level of the regression line and variance of the slope of the line pivoting
on (X̄Ȳ ). The further away one gets from the mean value of X, the bigger
is the effect on the variance of the predicted Y of the variation of b1 from
sample to sample. Also, notice that the variance of the predicted Y at a SAT
score of 400 will be the same as the variance of the predicted Y at a SAT
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score of 600 because the effect of the sampling variation of b1 is the same
at both points (which are equidistant from X̄) and the effect of sampling
variation on the level of the regression line is the same at all Xi since it
depends on X̄ which is constant from sample to sample. We can now form
the standardised statistic

Ŷh − E{Ŷh}
s{Ŷh}

which is distributed according to the t-distribution with n − 2 degrees of
freedom. There are two less degrees of freedom than the number of obser-
vations because we used the sample to estimate two parameters, β0 and β1.
The confidence limits for E{Yh} with confidence coefficient α are thus

Ŷh ± t(1− α/2;n− 2) s{Ŷh}.

This confidence interval is interpreted for repeated samples when the Xi are
the same from sample to sample. Of many confidence intervals so established
based on repeated samples, 100α percent will bracket E{Yh}.

8.8 Predictions About the Level of Y

Suppose that we want to predict the grade point average of a student with
a SAT score Xh equal to 600. It is important to distinguish this prediction,
and the confidence interval associated with it, from predictions about the
mean level of Yh, the point estimator of which was Ŷh. That is, we want to
predict the level of Y associated with a new observation at some Xh, not
the mean value of Y associated with a whole sample drawn at a value of
X equal to Xh. Predicting the grade point average of a randomly selected
student who scored 600 on the SAT is very different from predicting what
the mean grade point average of students who score 600 on the SAT will be.

If we knew the true values of the regression parameters, β0, β1 and σ,
the procedure would be quite simple. We could simply calculate

E{Yh} = β0 + β1Xh

which might equal, say, 3.7. This would be the point estimate of Yh(new),
the newly selected student’s grade point average. We could then use the
known value of σ to establish a confidence interval for an appropriate value
of α.

But we don’t know the true regression parameters and so must estimate
them. The statistic Ŷh is an appropriate point estimator of Yh(new). To get a
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confidence interval we must estimate the variance of Yh(new). This variance

is based on the variance of the difference between Yh and Ŷh together with
the assumption that the new observation is selected independently of the
original sample observation. This yields

σ2{Ŷh(new)} = σ2{Yh − Ŷh}
= σ2{Yh}+ σ2{Ŷh}
= σ2 + σ2{Ŷh} (8.26)

which is composed of two parts. It is the sum of

a) the variance of the mean predicted level of Y associated with the
particular level of X.

b) the variance of the actual level of Y around its predicted mean level,
denoted by σ2.

In the situation above where we knew the true parameters of the regression
model we could calculate Ŷh exactly so that its variance was zero and the
grade point average of the new student then varied only because of σ2.

The variance of Ŷh(new) can be estimated by

s2{Ŷh(new)} = MSE + σ2{Ŷh}

= MSE +MSE

[
1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]

= MSE

[
1 +

1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]
. (8.27)

The calculation of the confidence interval is now a routine matter, using the
fact that

Ŷh(new) − Ŷh

s2{Ŷh(new)}

is distributed according the t-distribution with degrees of freedom equal to
n − 2. The resulting prediction interval is, of course, much wider than the
confidence interval for E{Ŷh} because the variance of Yh(new) contains an

additional component consisting of the variance of Yh around E{Ŷh}.
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8.9 Inferences Concerning the Slope and
Intercept Parameters

In most regression analysis in economics the primary objective is to esti-
mate β1. The regression slope b1 is an efficient and unbiased estimate of
that parameter. To obtain confidence intervals for β1, however, and test
hypotheses about it, we need the variance of the sampling distribution of
b1. This variance, it turns out, equals

σ2{b1} =
σ2∑

(Xi − X̄)2
(8.28)

which can be estimated by the statistic

s2{b1} =
MSE∑

(Xi − X̄)2
. (8.29)

The confidence interval for β1 can be obtained from the fact that

b1 − β1
s{b1}

is distributed according to the t-distribution with n− 2 degrees of freedom.
As explained in Chapter 4, the t-distribution is symmetrical and flatter than
the standard-normal distribution, becoming equivalent to that distribution
as the degrees of freedom become large. The confidence intervals for β1 with
confidence coefficient α are then

b1 ± t(1− α/2, n− 2) s{b1}.

where t(1− α/2, n− 2) is the t-statistic associated with a cumulative prob-
ability of (1− α) when the degrees of freedom are (n− 2).

Now suppose that we want to test whether there is any relationship
between Y and X. If there is no relationship, β1 will be zero. Accordingly,
we set the null hypothesis as

H0 : β1 = 0

and the alternative hypothesis as

H1 : β1 ̸= 0.

Using our sample data we calculate the standardised test statistic

t∗ =
b1

s{b1}
,
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which is distributed according to the t-distribution with n − 2 degrees of
freedom, and compare it with the critical values of t for the appropriate
degree of α-risk from the table of t-values in the back of our statistics text-
book. When the standardised test statistic is in the critical range—i.e., in
the range for rejecting the null hypothesis—we say that β1 is significantly
different from zero at the 100α percent level. Also we can calculate the
P-value of the test statistic t, which equals the probability that a value of b1
as different from zero as the one observed could have occurred on the basis
of pure chance.

Frequently we want to test whether or not β1 exceeds or falls short of
some particular value, say βo

1 . This can be done by setting the null and
alternative hypotheses as, for example,

H0 : β1 ≤ βo
1

and
H1 : β1 > βo

1 ,

expressing the standardised test statistic as

t∗ =
b1 − βo

1

s{b1}
,

and applying the critical values from the t-table for the appropriate level of
α. When the standardised test statistic is in the critical range we can say
that β1 is significantly greater than βo

1 at the 100α percent level.
Occasionally, inferences concerning the intercept parameter β0 are also of

interest. The regression intercept coefficient b0 is an unbiased and efficient
estimator of β0. To obtain confidence intervals and conduct hypotheses
tests we need an estimator of the sampling variance σ2{b0}. It turns out
that b0 = Ŷh where Xh = 0 so we can use the estimator

s2{Ŷh} = MSE

[
1

n
+

(Xh − X̄)2∑
(Xi − X̄)2

]

= s2{b0} = MSE

[
1

n
+

X̄2∑
(Xi − X̄)2

]
. (8.30)

Statistical tests can now be undertaken and confidence intervals calculated
using the statistic

b0 − β0
s{b0}

which is distributed as t(n - 2).
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It turns out that these tests are quite robust—that is, the actual α-risk
and confidence coefficient remain close to their specified values even when
the error terms in the regression model are not exactly normally distributed
as long as the departure from normality is not too great.

8.10 Evaluation of the Aptness of the Model

It must now be reemphasized that the application of this regression model
to practical problems involves some very critical assumptions—namely, that
the true residuals are independently normally distributed with zero mean
and constant variance. We can never be sure in advance that in any partic-
ular application these assumptions will be close enough to the truth to make
our application of the model valid. A basic approach to investigating the
aptness or applicability of the model to a particular situation is to analyse
the residuals from the regression—ei = Yi − Ŷi.

Figure 8.6: The actual and fitted values for a particular
regression.

A number of important departures from the regression model may oc-
cur. First, the regression function we are trying to estimate may not be
linear. We can get a good sense of whether or not this may be a problem
by plotting the actual and predicted values of Y against the independent
variable X, as is done in Figure 8.6, or plotting the residuals against the
predicted values of Y as is done for the same regression in Figure 8.7. When
the true relationship between the variables is linear the residuals will scatter
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Figure 8.7: The residuals of the regression in Figure 8.6 plot-
ted against the fitted values.

Figure 8.8: Well-behaved regression residuals plotted against
the fitted values.

at random around the fitted straight line or around the zero line when plot-
ted against the predicted values of the dependent variable. Obviously, the
underlying functional relationship in Figure 8.6 is non-linear. An example
of well-behaved residuals is given in Figure 8.8.

A second problem is that the variance of the ei may not be constant
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Figure 8.9: An example of heteroscedasticity—regression
residuals plotted against the fitted values.

with respect to Ŷ but may vary systematically with it. This problem is
called heteroscedasticity. This is illustrated in Figure 8.9 where the residuals
obviously increase as the predicted value of Y becomes larger.

Third, there may be lack of normality in the error terms. One way of
checking the error term for normality is to standardise it by dividing it by its
standard deviation—the square root of MSE—and checking to see whether
approximately 2/3 of the errors lie within one standard deviation of zero.
Alternatively, we could apply the chi-square test for normality developed in
the previous chapter. Less formally, we can compare the observed frequen-
cies of the standardised errors with the theoretically expected frequencies.

Finally, the errors may not be independent of each other. This happens
frequently in time-series analysis where there is autocorrelation or serial
correlation in the residuals—when the residual associated with one value
of X or its predicted value of Y is high, the residual associated with the
adjacent values of X or Y will also be high. This problem is discussed in
detail in the next chapter.

To get around these problems it is sometimes useful to transform the vari-
ables. The residuals from estimating Y = β0+β1X may be heteroscedastic,
but those from estimating log(Y ) = β0 + β1X may not be. Similarly, the
relationship between log(X) and log(Y ), or 1/X and 1/Y , may be linear
even though the relationship between X and Y may not be. Sometimes the
residuals from the regression may not be well-behaved because, in truth, Y
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depends on two variables X and Z instead of just X. By leaving Z out of
the model, we are attempting to force the single variable X to explain more
than it is capable of, resulting in deviations of the predicted from the actual
levels of Y that reflect the influence of the absent variable Z.

8.11 Randomness of the Independent Variable

In some regression analyses it is more reasonable to treat both X and Y as
random variables instead of taking the Xi as fixed from sample to sample.
When X is random, the distribution of Y at a given level of X is a condi-
tional distribution with a conditional mean and a conditional variance (i.e.,
conditional upon the level of X). In this case all of the results presented
above for the regression model with X fixed continue to apply as long as

a) the conditional distribution of Y is normal with conditional mean
β0 + β1X and conditional variance σ2, and

b) the Xi are independent random variables whose probability distribu-
tion does not depend on the parameters β0, β1 and σ2.

The interpretations of confidence intervals and risks of errors now refer
to repeated sampling where both the X and Y variables change from one
sample to the next. For example the confidence coefficient would now refer
to the proportion of times that the interval brackets the true parameter
when a large number of repeated samples of n pairs (Xi, Yi) are taken and
the confidence interval is calculated for each sample. Also, when both X and
Y are random variables the correlation coefficient r is an estimator of the
population correlation coefficient ρ rather than only a descriptive measure
of the degree of linear relation between X and Y . And a test for β1 = 0 is
now equivalent to a test of whether or not X and Y are uncorrelated random
variables.

8.12 An Example

During the first part of this century classical economics held that the real
quantity of money demanded tends to be a constant fraction of real income—
that is

M

P
= k RY (8.31)
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where M is the nominal quantity of money held by the public, P is the
general price level, RY is real national income and k is a constant, sometimes
called the Cambridge-k. We want to use some data on nominal money
holdings, nominal income and the consumer price index for Canada to test
this idea. The data are presented in the worksheet below.

WORKSHEET FOR REGRESSION ANALYSIS OF CANADIAN DEMAND FOR MONEY

DATE MON GDP CPI  RMON RGDP D-RMON D-RGDP Col. (6) Sq. Col. (7) Sq. (6) X (7)
(1)  (2)  (3)  (4)  (5)   (6)  (7)   (8)    (9)      (10)    

1957 5.07 34.47 88.65 5.72 38.88 -7.90 -57.34 62.45 3288.30 453.17 
1958 5.55 35.69 90.88 6.11 39.27 -7.51 -56.95 56.47 3243.81 428.00 
1959 5.66 37.88 91.82 6.16 41.25 -7.46 -54.97 55.65 3021.77 410.09 
1960 5.75 39.45 92.99 6.18 42.42 -7.44 -53.80 55.33 2894.42 400.18 
1961 6.31 40.89 93.93 6.71 43.53 -6.91 -52.70 47.74 2776.85 364.09 
1962 6.67 44.41 94.99 7.02 46.75 -6.60 -49.47 43.62 2447.38 326.75 
1963 7.17 47.68 96.51 7.42 49.40 -6.20 -46.82 38.41 2192.23 290.18 
1964 7.72 52.19 98.27 7.85 53.11 -5.77 -43.11 33.27 1858.56 248.68 
1965 8.98 57.53 100.73 8.92 57.11 -4.70 -39.12 22.13 1530.04 184.02 
1966 9.71 64.39 104.49 9.29 61.62 -4.33 -34.60 18.78 1197.08 149.93 
1967 12.33 69.06 108.24 11.39 63.81 -2.23 -32.42 4.96 1050.80 72.22 
1968 15.78 75.42 112.81 13.98 66.85 0.36 -29.37 0.13 862.57 -10.63 
1969 15.40 83.03 117.74 13.08 70.52 -0.54 -25.70 0.29 660.62 13.87 
1970 14.92 89.12 121.72 12.26 73.21 -1.36 -23.01 1.86 529.53 31.40 
1971 16.52 97.29 125.12 13.20 77.75 -0.42 -18.47 0.18 341.06 7.81 
1972 18.54 108.63 131.11 14.14 82.86 0.52 -13.37 0.27 178.68 -6.90 
1973 20.61 127.37 141.07 14.61 90.29 0.99 -5.94 0.98 35.23 -5.87 
1974 21.62 152.11 156.44 13.82 97.24 0.20 1.01 0.04 1.03 0.20 
1975 24.06 171.54 173.44 13.87 98.91 0.25 2.68 0.06 7.20 0.67 
1976 25.37 197.93 186.34 13.62 106.22 -0.01 10.00 0.00 99.92 -0.07 
1977 27.44 217.88 201.35 13.63 108.21 0.00 11.99 0.00 143.71 0.05 
1978 29.69 241.61 219.17 13.55 110.23 -0.08 14.01 0.01 196.35 -1.07 
1979 30.97 276.10 239.23 12.94 115.41 -0.68 19.19 0.46 368.24 -12.99 
1980 32.25 309.89 263.73 12.23 117.50 -1.40 21.28 1.95 452.77 -29.69 
1981 33.64 356.00 296.57 11.34 120.04 -2.28 23.82 5.20 567.16 -54.31 
1982 36.64 374.44 328.58 11.15 113.96 -2.47 17.73 6.11 314.47 -43.83 
1983 42.32 405.72 347.58 12.17 116.73 -1.45 20.50 2.10 420.40 -29.68 
1984 47.42 444.74 362.71 13.07 122.62 -0.55 26.39 0.30 696.61 -14.48 
1985 62.25 477.99 377.13 16.51 126.74 2.88 30.52 8.32 931.49 88.04 
1986 74.38 505.67 392.73 18.94 128.76 5.32 32.53 28.27 1058.53 172.99 
1987 83.87 551.60 409.97 20.46 134.55 6.84 38.32 46.72 1468.75 261.97 
1988 87.81 605.91 426.39 20.59 142.10 6.97 45.88 48.62 2105.07 319.93 
1989 91.45 650.75 447.73 20.42 145.34 6.80 49.12 46.28 2412.99 334.19 
1990 92.26 669.51 468.95 19.67 142.77 6.05 46.55 36.61 2166.45 281.64 
1991 97.88 676.48 495.46 19.76 136.54 6.13 40.31 37.63 1625.23 247.30 
1992 102.79 690.12 502.84 20.44 137.24 6.82 41.02 46.51 1682.78 279.77 
1993 108.98 712.86 512.11 21.28 139.20 7.66 42.98 58.66 1847.10 329.17 
1994 118.83 747.26 513.05 23.16 145.65 9.54 49.43 90.99 2443.32 471.52 
1995 128.83 776.30 524.19 24.58 148.10 10.96 51.87 120.01 2690.85 568.28 

SUM 1583.36 11316.84 9656.76 531.24 3752.67 -0.00 -0.00 1027.40 51809.36 6526.58 
MEAN 40.60 290.18 247.61 13.62 96.22 -0.00 -0.00 

Columns (1) and (2) of the worksheet give the Canadian nominal money
supply and Canadian nominal Gross Domestic Product (GDP) in billions of
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current dollars. Gross Domestic Product is a measure of aggregate nominal
income produced in the domestic economy. Column (3) gives the Cana-
dian Consumer Price Index (CPI) on a base of 1963-66 = 100. The theory
specifies a relationship between real money holdings and real income. Ac-
cordingly, real money holdings and real GDP are calculated in columns (4)
and (5) by dividing the nominal values of these variables by the CPI and
then multiplying by 100. Thus RMON and RGDP measure the Canadian
real money supply and Canadian real GDP in constant 1963-66 dollars. So
equation (8.31) above specifies that the numbers in column (4) should be a
constant fraction of the numbers in column (5) plus a random error. So we
want to run the following simple linear regression:

Yt = β0 + β1Xt + ϵ (8.32)

where Yt is RMON (column (4)) and Xt is RGDP (column (5)). Because
the observations occur through time we designate them by subscript t rather
than subscript i.

To obtain a fitted line to these data we perform the calculations shown
in columns (6) through (10). The columns D-RMON and D-RGDP give
the deviations of RMON and RGDP from their respective means, 13.62 and
96.22, calculated at the bottom of columns (4) and (5). Column (8) gives
D-RMON squared and column (9) gives D-RGDP squared. The sums at the
bottom of these columns thus give

1995∑
t=1957

(Yt − Ȳ )2 = 1027.40

and
1995∑

t=1957

(Xt − X̄)2 = 51809.36

respectively. Column (10) gives the product of D-RMON and D-RGDP and
the sum at the bottom gives

1995∑
t=1957

(Yt − Ȳ )(Xt − X̄) = 6526.58.

The estimate b1 of β1 can thus be calculated as

b1 =

∑1995
t=1957(Yt − Ȳ )(Xt − X̄)∑1995

t=1957(Xt − X̄)2
=

6526.58

51809.36
= .126
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and the estimate b0 of β0 becomes

b0 = Ȳ − b1X̄ = 13.62− (.126)(96.22) = 1.5.

Next we need the R2. This equals the square of

r =

∑1995
t=1957(Yt − Ȳ )(Xt − X̄)√∑1995

t=1957(Xt − X̄)2
√∑1995

t=1957(Yt − Ȳ )2
=

6526.58√
51809.36

√
1027.40

= .8946,

or R2 = (.8946)2 = .8. This means that the sum of squares explained by
the regression is

SSR = R2
1995∑

t=1957

(Yt − Ȳ )2 = (.8)(1027.40) = 821.92

and the sum of squared errors is

SSE = (1−R2)
1995∑

t=1957

(Yt − Ȳ )2 = (.2)(1027.40) = 205.48.

The mean square error is then

MSE =
SSE

n− 2
=

205.48

37
= 5.55.

To test whether there is a statistically significant relationship between real
money holdings and real GNP we form a t statistic by dividing b1 by its
standard deviation. The latter equals

s{b1} =

√
MSE∑1995

t=1957(Xt − X̄)2
=

√
5.55

51809.36
= .01035.

The t-statistic for the test of the null hypothesis that β1 = 0 thus equals

t∗ =
b1 − 0

s{b1}
=

.126

.01035
= 12.17.

Since this exceeds the critical value of t of 3.325 for α = .01, the null-
hypothesis of no relation between real money holdings and real income must
be rejected.

To test the null-hypothesis that the constant term β0 equals zero we
obtain the standard deviation of b0 from (8.30),

s2{b0} = MSE

[
1

n
+

X̄)2∑
(Xi − X̄)2

]
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which yields

s{b0} =

√
5.55

[
1

39
+

96.222

51809.36

]
=

√
(5.55)

[
.02564 +

9258.29

51809.36

]

=
√
(5.55)(.02564 + .1787) = 1.064935.

The t-statistic for the test of the null hypothesis that β0 = 0 is thus

t∗ =
b0 − 0

s{b0}
=

1.5

1.064935
= 1.409

for which the P -value for a two-tailed test is .1672. We cannot reject the
null hypothesis that β0 equals zero at a reasonable significance level.

Figure 8.10: The residuals of the regression of Canadian real
money holdings on Canadian real GDP, plotted against the
fitted values.

The classical hypothesis that the public’s real money holdings tend to
be a constant fraction of their real income cannot be rejected on the basis
of the data used here, because we cannot reject the hypothesis that the true
relationship between RMON and RGNP is a straight line passing through
the origin. Nevertheless, we must be open to the possibility that the ratio of
RMON to RGNP, though perhaps independent of the level of real income,
could depend on other variables not in the regression, such as the rate of
interest (which equals the opportunity cost of holding money instead of
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interest-bearing assets). If this were the case, we might expect the residuals
from the regression to be poorly behaved. Figure (8.10) plots the residuals
against the fitted values. The residuals are clearly not randomly scattered
about zero. It is useful to check for serial correlation in these residuals by
plotting them against time. This is done in Figure (8.11). There is obvious
serial correlation in the residuals from the regression. We will address this
problem again in the next chapter when we investigate the Canadian demand
function for money using multiple regression.

Figure 8.11: The residuals of the regression of Canadian real
money holdings on Canadian real GDP, plotted against time.

8.13 Exercises

1. The following data relate to the model

Yi = α+ βXi + ϵi

where the Xi are assumed non-stochastic and the ϵi are assumed to be
independently identically normally distributed with zero mean and constant
variance.
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i Yi Xi

1 21 10
2 18 9
3 17 8
4 24 11
5 20 11
6 20 10
7 22 12
8 21 11
9 17 9
10 20 9

a) Calculate the regression estimates of α and β. (5.71, 1.43)

b) Calculate a 95% confidence interval for β. (0.56, 2.27)

2. Insect flight ability can be measured in a laboratory by attaching the
insect to a nearly frictionless rotating arm by means of a very thin wire.
The “tethered” insect then files in circles until exhausted. The non-stop
distance flown can easily be calculated from the number of revolutions made
by the arm. Shown below are measurements of this sort made on Culex
tarsalis mosquitos of four different ages. The response variable is the average
(tethered) distance flown until exhaustion for 40 females of the species.

Age, Xi (weeks) Distance Flown, Yi (thousands of meters)

1 12.6
2 11.6
3 6.8
4 9.2

Estimate α and β and test the hypothesis that distance flown depends upon
age. Use a two-sided alternative and the 0.05 level of significance.

3. A random sample of size n = 5 is to be used to estimate the values of the
unknown parameters of the simple linear regression model

Yi = β0 + β1Xi + ϵi

where the random error term ϵi is N(0, σ2). The sample values for (Xi, Yi)
are
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Xi Yi
-2 -6
-1 -2
0 -2
1 4
2 6

a) Compute the values of the least-squares estimators for β0 and β1.

b) Compute the value of the least-squares estimator for σ2 and the coef-
ficient of determination, R2.

c) Conduct a test of the null hypothesis H0: β1 ≤ 2.0 versus the alterna-
tive hypothesis H1: β1 > 2.0 using α = .05 and find the approximate
P -value for the test.

d) Compute a 95% confidence interval for the expected value of Y when
X = 5.

4. The District Medical Care Commission wants to find out whether the
total expenditures per hospital bed for a particular item tends to vary with
the number of beds in the hospital. Accordingly they collected data on
number of beds for the 10 hospitals in the district (Yi) and the total expen-
ditures per hospital bed (Xi). Some simple calculations yielded the following
magnitudes:
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Ȳ = 333.0 X̄ = 273.4

10∑
i=1

(Yi − Ȳ )2 = 10756.0

10∑
i=1

(Xi − X̄)2 = 301748.4

10∑
i=1

(Xi − X̄)(Yi − Ȳ ) = −37498

Use simple regression analysis to analyse the effect of number of beds on cost
of the item per bed. Can you conclude that there is a relationship between
these two variables. Is that relationship positive or negative? Calculate the
R2 and the significance of the regression coefficients. Is the overall relation-
ship between the number of hospitals in a district and total expenditures
per hospital bed statistically significant at reasonable levels of α-risk?


