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PREFACE

The pages that follow contain the material presented in my introductory
quantitative methods in economics class at the University of Toronto. They
are designed to be used along with any reasonable statistics textbook. The
most recent textbook for the course was James T. McClave, P. George Ben-
son and Terry Sincich, Statistics for Business and Economics, Eighth Edi-
tion, Prentice Hall, 2001. The material draws upon earlier editions of that
book as well as upon John Neter, William Wasserman and G. A. Whitmore,
Applied Statistics, Fourth Edition, Allyn and Bacon, 1993, which was used
previously and is now out of print. It is also consistent with Gerald Keller
and Brian Warrack, Statistics for Management and Economics, Fifth Edi-
tion, Duxbury, 2000, which is the textbook used recently on the St. George
Campus of the University of Toronto. The problems at the ends of the chap-
ters are questions from mid-term and final exams at both the St. George
and Mississauga campuses of the University of Toronto. They were set by
Gordon Anderson, Lee Bailey, Greg Jump, Victor Yu and others including
myself.

This manuscript should be useful for economics and business students en-
rolled in basic courses in statistics and, as well, for people who have studied
statistics some time ago and need a review of what they are supposed to have
learned. Indeed, one could learn statistics from scratch using this material
alone, although those trying to do so may find the presentation somewhat
compact, requiring slow and careful reading and thought as one goes along.

I would like to thank the above mentioned colleagues and, in addition, Ado-
nis Yatchew, for helpful discussions over the years, and John Maheu for
helping me clarify a number of points. I would especially like to thank Gor-
don Anderson, who I have bothered so frequently with questions that he
deserves the status of mentor.

After the original version of this manuscript was completed, I received some
detailed comments on Chapter 8 from Peter Westfall of Texas Tech Univer-
sity, enabling me to correct a number of errors. Such comments are much
appreciated.

J. E. Floyd
July 2, 2010

c⃝J. E. Floyd, University of Toronto
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Chapter 7

Inferences About Population
Variances and Tests of
Goodness of Fit and
Independence

In the last chapter we made inferences about whether two population means
or proportions differed based on samples from those populations. Integral in
all those tests and in the inferences in the previous chapters about population
means and population proportions was our use of the statistic

s2 =
n∑

i=1

(Xi − X̄)2

n− 1
(7.1)

as an unbiased point estimate of the population variance σ2. A natural next
step is to make inferences—set confidence intervals and test hypotheses—
about σ2 on the basis of the sample statistic s2.

7.1 Inferences About a Population Variance

To proceed we must know the sampling distribution of s2. This involves
the chi-square (χ2) distribution, the basis of which must now be explained.
Suppose we have a set of independent random draws from a variable

X1, X2, X3, . . . . . .
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170 TESTS OF GOODNESS OF FIT AND INDEPENDENCE

which is normally distributed with population mean µ and variance σ2.
Consider this sequence in standardised form

Z1, Z2, Z3, . . . . . .

where, of course,

Zi =
Xi − µ

σ
.

Now square the Zi to obtain

Z2
i =

(Xi − µ)2

σ2
.

It turns out that the sum of n of these squared standardised independent
normal variates,

Z2
1 + Z2

2 + Z3
3 + . . .+ Z2

n,

is distributed as a chi-square distribution. We can thus write

n∑
i=1

Z2
i =

n∑
i=1

(Xi − µ)2

σ2
= χ2(n) (7.2)

where χ2(n) is a chi-square random variable—that is, a random variable dis-
tributed according to the chi-square distribution—with parameter n, which
equals the number of independent normal variates summed. This parameter
is typically referred to as the degrees of freedom. Notice now that

n∑
i=1

(Xi − X̄)2

σ2

differs from the expression above in that X̄ replaces µ in the numerator.
This expression is also distributed as χ2—indeed

n∑
i=1

Z2
i =

n∑
i=1

(Xi − X̄)2

σ2
= χ2(n− 1) (7.3)

where the parameter, the degrees of freedom, is now n− 1.
At this point is worth while to pay further attention to what we mean

by degrees of freedom. The degrees of freedom is the number of independent
pieces of information used in calculating a statistic. In the expression im-
mediately above, the n deviations of the Xi from their sample mean contain
only n − 1 independent pieces of information. The sample mean is con-
structed from the n sample values of Xi by summing the Xi and dividing by
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n. Accordingly, the sum of the deviations around this mean must be zero.
Hence, if we know any n − 1 of the n deviations around the mean we can
calculate the remaining deviation as simply the negative of the sum of the
n− 1 deviations. Hence, only n− 1 of the deviations are freely determined
in the sample. This is the basis of the term ‘degrees of freedom’. Even
though there are n deviations, only n− 1 of them produce independent sum
of squared deviations from the sample mean. This is in contrast to the sum
of squared deviations about the true mean µ, which contains n independent
pieces of information because µ is independent of all the sample observa-
tions. Information is not used up in calculating the population mean as it
is in calculating X̄. This is why the standardised sum of squared deviations
of the sample values about the true mean is distributed as χ2(n) whereas
the sum of squared deviations of the sample values from the sample mean,
standardised by the true variance σ2, is distributed as χ2(n− 1).

Figure 7.1: A chi-square distribution with 24 degrees of free-
dom. The thick vertical line shows the mean and the thin
vertical lines the critical values for α = .99.

Notice now that the expression for s2, given in equation (7.1) above, can
be rewritten

n∑
i=1

(Xi − X̄)2 = (n− 1) s2. (7.4)
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Substituting this into (7.3), we obtain

(n− 1) s2

σ2
= χ2(n− 1). (7.5)

The sampling distribution for this statistic is skewed to the right, with
the skew being smaller the greater the degrees of freedom. Figure 7.1 shows
a χ2 distribution with 24 degrees of freedom. The thick vertical line gives the
mean and the thin vertical lines the critical values for α = .99. The mean of
the χ2 distribution is the number of degrees of freedom, usually denoted by v
which in the above examples equals either n or n−1 or in Figure 7.1, 24. Its
variance is 2 v or twice the number of degrees of freedom. The percentiles of
the χ2 distribution (i.e., the fractions of the probability weight below given
values of χ2) for the family of chi-square distributions can be obtained from
the chi-square tables at the back of any standard textbook in statistics.1

Now let us look at an example. Suppose a sample of 25 mature trout
whose lengths have a standard deviation of 4.35 is taken from a commercial
fish hatchery. We want a confidence interval for the true population variance
σ2, based on the two statistics s2 = 18.9225 and n = 25. From a standard
chi-square table we obtain the values of the χ2 distribution with 24 degrees
of freedom below which and above which the probability weight is .005,

χ2(α/2;n− 1) = χ2(.005; 24) = 9.89

and

χ2(1− α/2;n− 1) = χ2(.995; 24) = 45.56.

These are indicated by the thin vertical lines in Figure 7.1. Substituting
these values into (7.5) after rearranging that expression to put σ2 on the
right-hand-side, we obtain

L =
24s2

χ2(.995; 24)
=

(24)(18.9225)

45.56
= 9.968

and

U =
24s2

χ2(.005; 24)
=

(24)(18.9225)

9.89
= 45.919

so that

9.968 ≤ σ2 ≤ 45.919.

1Or calculated using XlispStat or another statistical computer program.
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Now suppose we want to test whether the population variance of the
lengths of trout in this hatchery differs from σ2

0 = 16.32, an industry stan-
dard, controlling the α-risk at .01 when σ = 16.32. The null and alternative
hypothesis then are

H0 : σ
2 = 16.32

and

H1 : σ
2 ̸= 16.32.

From (7.5) the test statistic is

X =
(n− 1)s2

σ2
0

which we have shown to be distributed as χ2(n− 1). Its value is

X =
(24)(18.9225)

16.32
= 27.82

which can be compared the critical values 9.89 and 45.56 beyond which we
would reject the null hypothesis of no difference between the variance of the
lengths of trout in this hatchery and the industry standard. Clearly, the
test statistic falls in the acceptance region so that we cannot reject the null
hypothesis.

7.2 Comparisons of Two Population Variances

We are often interested in comparing the variability of two populations. For
example, consider a situation where two technicians have made measure-
ments of impurity levels in specimens from a standard solution. One tech-
nician measured 11 specimens and the other measured 9 specimens. Our
problem is to test whether or not the measurements of impurity levels have
the same variance for both technicians.

Suppose that we can assume that the technicians’ sets of measurements
are independent random samples from normal populations. The sample
results are s1 = 38.6 on the basis of the sample n1 = 11 for technician
number 1, and s2 = 21.7 on the basis of the sample n2 = 9 for technician
number 2.

To proceed further we need a statistic based on the two values of si and
ni that is distributed according to an analytically tractable distribution. It
turns out that the ratio of two chi-square variables, each divided by their
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Figure 7.2: An F -distribution with 10 degrees of freedom in
the numerator and 8 degrees of freedom in the denominator.
The thick vertical line shows the mean and the thin vertical
lines the critical values for α = .90.

respective degrees of freedom, is distributed according to the F-distribution.
In particular

χ2(v1)/v1
χ2(v2)/v2

= F (v1, v2) (7.6)

is distributed according to the F -distribution with parameters v1 and v2,
which are the degrees of freedom of the respective chi-square distributions—
v1 is referred to as the degrees of freedom in the numerator and v2 is the
degrees of freedom in the denominator. The mean and variance of the
F -distribution are

E{F (v1, v2)} =
v2

(v2 − 2)

when v2 > 2, and

σ2{F (v1, v2)} =
2 v22 (v1 + v2 − 2)

v1 (v2 − 2)2 (v2 − 4)

when v2 > 4. The probability density function for an F -distribution with
10 degrees of freedom in the numerator and 8 degrees of freedom in the
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denominator is plotted in Figure 7.2. The thick vertical line gives the
mean and the two thin vertical lines give the critical values for α = .90. The
percentiles for this distribution can be found in the F -tables at the back of
any textbook in statistics.2 These tables give only the percentiles above 50
percent. To obtain the percentiles below 50 percent we must utilize the fact
that the lower tail for the F -value

χ2(v1)/v1
χ2(v2)/v2

= F (v1, v2)

is the same as the upper tail for the F -value

χ2(v2)/v2
χ2(v1)/v1

= F (v2, v1).

This implies that

F (α/2; v1, v2) =
1

F (1− α/2; v2, v1)
.

Equation (7.5) can be written more generally as

v s2

σ2
= χ2(v) (7.7)

which implies that
s2

σ2
=

χ2(v)

v
.

This expression can be substituted appropriately into the numerator and
denominator of equation (7.6) to yield

s21/σ
2
1

s22/σ
2
2

= F (v1, v2) = F (n1 − 1, n2 − 1). (7.8)

To establish confidence intervals for the technician problem, we can manip-
ulate (7.8) to yield

σ2
2

σ2
1

= F (n1 − 1, n2 − 1)
s22
s21

= F (10, 8)
s22
s21

=
21.72

38.62
F (10, 8) =

470.89

1489.96
F (10, 8) = .31604F (10, 8). (7.9)

2Or calculated using XlispStat or another statistical computer program.
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To calculate a 90 percent confidence interval we find the values of F (10, 8)
at α/2 = .05 and 1− α/2 = .95. These are

F (.95; 10, 8) = 3.35

and

F (.05; 10, 8) =
1

F (.95; 8, 10)
=

1

3.07
= .3257

and are indicated by the thin vertical lines in Figure 7.2. The confidence
intervals are thus

L = (.3257)(.31604) = .1029

and

U − (3.35)(.31604) = 1.057

so that

.1029 ≤ σ2
2

σ2
1

≤ 1.057.

Note that this confidence interval is based on the assumption that the two
populations of measurements from which the sample variances are obtained
are normally distributed or approximately so.

Since the above confidence interval straddles 1.0, it is clear that there is
no indication that the variance of the measurements made by one technician
exceeds the variance of the measurements made by the other. Nevertheless,
we can test the hypothesis that the variances of the measurements of the
two technicians are the same. The null and alternative hypotheses are

H0 : σ
2
1 = σ2

2

and

H1 : σ
2
1 ̸= σ2

2.

We want to control the α-risk at 0.1 when σ2
1 = σ2

2. Imposing the equal
variance assumption on (7.8) we can extract the relationship

s21
s22

= F (n1 − 1, n2 − 1).

The statistic on the left of the equality,

s21
s22

=
38.62

21.72
=

1489.96

470.29
= 3.168
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is thus distributed as F (10, 8) and is greater than unity. We therefore need
only look at the upper critical value F (.95; 10, 8) = 3.35 to see that the
statistic falls in the acceptance region. We cannot reject the null hypothesis
that the variances of the measurements of the two technicians are the same.
When performing this test it is always easiest to manipulate the expression
to put the largest variance in the numerator and thereby ensure that the
sample statistic is bigger than unity. The decision to accept or reject the null
hypothesis can then be made on the basis of the easy-to-calculate rejection
region in the upper tail of the F -distribution.

7.3 Chi-Square Tests of Goodness of Fit

Statistical tests frequently require that the underlying populations be dis-
tributed in accordance with a particular distribution. Our tests of the equal-
ity of variances above required, for example, that both the populations in-
volved be normally distributed. Indeed, any tests involving the chi-square
or F -distributions require normally distributed populations. A rough way
to determine whether a particular population is normally distributed is to
examine the frequency distribution of a large sample from the population
to see if it has the characteristic shape of a normal distribution. A more
precise determination can be made by using a chi-square test on a sample
from the population.

Consider, for example, the reported average daily per patient costs for a
random sample of 50 hospitals in a particular jurisdiction. These costs were

257 274 319 282 253
315 313 368 306 230
327 267 318 326 255
392 312 265 249 276
318 272 235 241 309
305 254 271 287 258
342 257 252 282 267
308 245 252 318 331
384 276 341 289 249
309 286 268 335 278

with sample statistics X̄ = 290.46 and s = 38.21. We want to test whether
the reported average daily costs are normally distributed, controlling the
α-risk at .01. The null hypothesis is that they are normally distributed.
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The chi-square test is based on a comparison of the sample data with
the expected outcome if H0 is really true. If the hypothesized distribution
of the population was a discrete one, we could calculate the probability that
each population value Xi will occur and compare that probability with the
relative frequency of the population value in the sample. Since the normal
distribution is a continuous one, however, the probability that any particular
value Xi will occur is zero. So we must compare the probabilities that the
Xi could lie in particular intervals with the frequency with which the sample
values fall in those intervals.

The standard procedure is to select the intervals or classes to have equal
probabilities so that the expected frequencies in all classes will be equal.
Also, it is considered desirable to have as many classes as possible consistent
with the expected frequencies in the classes being no less than 5. In the above
example we therefore need 50/5 = 10 classes.

To obtain the class intervals we find the values of z in the table of
standardised normal values which divide the unit probability weight into
10 equal portions. These will be the z-values for which the cumulative
probability density is respectively .1, .2, .3, .4, .5, .6, .7, .8, and .9. The
values of X that fall on these dividing lines are thus obtained from the
relationship

z =
X − X̄

s

which can be rearranged as

X = s z + X̄ = 38.21 z + 290.46.

This gives us the intervals of z and X in the second and third columns of
the table below.

i z X fi Fi (fi − Fi)
2 (fi − Fi)

2/Fi

1 −∞ to -1.28 < 242 3 5 4 0.80
2 -1.28 to -0.84 242 to 258 11 5 36 7.20
3 -0.84 to -0.52 259 to 270 4 5 1 0.20
4 -0.52 to -0.25 271 to 280 6 5 1 0.20
5 -0.25 to -0.00 281 to 290 5 5 0 0.00
6 -0.00 to 0.25 291 to 300 0 5 25 5.00
7 0.25 to 0.52 301 to 310 5 5 0 0.00
8 0.52 to 0.84 311 to 322 7 5 4 0.80
9 0.84 to 1.28 323 to 339 4 5 1 0.20

10 1.28 to ∞ > 339 5 5 0 0.00

Total 50 50 14.40
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Column four gives the actual frequencies with which the sample observations
fall in the ith category and column five gives the theoretically expected fre-
quencies. The remaining two columns give the squared differences between
the actual and expected frequencies and those squared differences as propor-
tions of the expected frequencies. It turns out that the sum of the right-most
column is distributed as χ2 with 7 degrees of freedom. In general, when there
are k classes with equal expected frequencies Fi in all classes and observed
frequencies fi in the ith class,

k∑
k=1

(fi − Fi)
2

Fi

is distributed as χ2(k−m−1) wherem is the number of parameters estimated
from the sample data. As noted earlier in the definition of the chi-square
distribution, the expression (k−m−1) is the number of degrees of freedom.
The 10 squared relative deviations give us potentially 10 degrees of freedom,
but we have to subtract m = 2 because two parameters, X̄ and s were
estimated from the data, and a further degree of freedom because once we
know the frequencies in nine of the ten classes above we can calculate the
tenth frequency so only nine of the classes are independent. This leaves us
with 7 degrees of freedom.

If the fit were perfect—i.e., the average daily per patient hospital costs
were normally distributed—the total at the bottom of the right-most col-
umn in the table above would be zero. All the observed frequencies would
equal their expected values—i.e., five of the sample elements would fall in
each of the 10 classes. Clearly, the greater the deviations of the actual fre-
quencies from expected, the bigger will be the test statistic. The question
is then whether the value of the test statistic, 14.4, is large enough to have
probability of less than 1% of occurring on the basis of sampling error if
the true relative frequencies in the population equal the expected relative
frequencies when the population is normally distributed. The critical value
for χ2(.99; 7) is 18.48, which is substantially above 14.4, so we cannot reject
the null hypothesis that the population from which the sample was chosen
is normally distributed.

It is interesting to note that the residuals indicate very substantial devi-
ations from normality in two of the classes, 242–258 and 291–300 with the
squared deviations from expected frequencies being 36 in the first of these
classes and 25 in the second. We might be wise to examine more detailed
data for certain of the hospitals to determine whether any reasons for devi-
ations of these two specific magnitudes can be uncovered before we dismiss
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these observations as the result of sampling error. Finally, we should keep in
mind that in the above test there is only a 1 percent chance that we would
reject normality on the basis of sampling error alone if the population is in
fact normal. This means that there is up to a 99 percent probability that
we will accept normality if the population deviates from it—the β-risk is
very high and the power of test is low for small departures from normality.
Since it is usually crucial to our research conclusions that the population
be normal, the more serious risk would appear to be the risk of accepting
normality when it is not true rather than the risk of rejecting normality
when it is true. One would like to make H0 the hypothesis of non-normality
and see if the data will lead us to reject it. Unfortunately, this is not pos-
sible because there are infinitely many ways to characterize a situation of
non-normality. This suggests the importance of using large samples to make
these inferences.

7.4 One-Dimensional Count Data: The Multino-
mial Distribution

Consider a manufacturer of toothpaste who wants to compare the mar-
ketability of its own brand as compared to the two leading competitors, A
and B. The firm does a survey of the brand preferences of a random sample
of 150 consumers, asking them which of the three brands they prefer. The
results are presented in the table below.

Brand A Brand B Firm’s Own Brand

61 53 36

The firm wants to know whether these data indicate that the population of
all consumers have a preference for a particular brand.

Notice that the binomial distribution would provide the proper basis
for the statistical analysis required here had the question stated “Do you
prefer the firm’s own brand to its competitors? Yes or No?” Each person’s
answer—i.e., each random trial—will yield an outcome Xi = 1 if the answer
is ‘yes’ and Xi = 0 if it is ‘no’. If the answer of each consumer in the survey
is independent of the answer of all others, and if the probability that the
answer of a random person picked will be ‘yes’ is the same for any person
picked at random, then the total number of ‘yes’ answers,

X =
n∑

i=1

Xi
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will be distributed as a binomial distribution with parameters p and n. The
parameter p is the unknown probability that a person picked at random
from the population will say ‘yes’.

In the actual example above, the consumer surveyed has to choose be-
tween not two options (which would be a simple yes/no comparison) but
three—she can prefer either brand A, brand B, or the firm’s brand. Each
random trial has 3 outcomes instead of 2. There are now three probabilities,
p1, p2 and p3, the probabilities of selecting A, B, or the firm’s own brand,
which must sum to unity. And the firm is interested in the counts n1, n2

and n3 of consumers preferring the respective brands. This experiment is
a multinomial experiment with k, the number of possible outcomes of each
trial, equal to 3. The probabilities of observing various counts n1, n2 and
n3, given p1, p2 and p3, is a multinomial probability distribution. In the case
at hand, p1, p2 and p3 are unknown and we want to make an inference about
them on the basis of a sample n. The observed counts will be

n1 + n2 + n3 = n.

To decide whether the population of consumers prefers a particular
brand, we set up the null hypothesis of no preference and see if the data will
prompt us to reject it. The null hypothesis is thus

H0 : p1 = p2 = p3.

If the null-hypothesis is true we would expect an equal number of the sam-
pled consumers to choose each brand—that is

E{n1} = E{n2} = E{n3} =
n

3
= 50.

Notice the similarity of the problem here to the test of normality above.
We have three classes each with an expected frequency of 50 and an actual
frequency that differs from 50.

i fi Fi (fi − Fi)
2 (fi − Fi)

2/Fi

A 61 50 121 2.42
B 53 50 9 .18

Own Brand 36 50 196 3.92

Total 150 150 6.52

As in the normality test would expect

k∑
k=1

(fi − Fi)
2

Fi
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to be distributed as χ2(k−m−1). The number of classes here is k = 3, and
no parameters were estimated from the sample data so m = 0. The statistic
is thus distributed as χ2(3 − 1) = χ2(2). From the chi-square table at the
back of any textbook in statistics the critical value for χ2(2) for (α = .05)
will be found to be 5.99147. Since the total in the right-most column in the
table above is 6.52, we can reject the null hypothesis of no brand preference
when the α-risk is controlled at .05. The P -value of the statistic is .038.
Does this imply a positive or negative preference for the firm’s brand of
toothpaste as compared to brands A and B? We want now to test whether
consumers’ preferences for the firm’s own brand are greater or less than their
preferences for brands A and B. This problem is a binomial one—consumers
either prefer the firm’s brand or they don’t.

We can now use the techniques presented earlier—using a normal ap-
proximation to the binomial distribution—to set up a confidence interval
for the proportion of the population of consumers choosing the firm’s brand
of toothpaste. Our sample estimate of p, now the proportion preferring the
firm’s brand, is

p̄ =
36

150
= .24.

Using the results in section 9 of Chapter 4, the standard deviation of p̄ is

sp̄ =

√
p̄ (1− p̄)

n− 1
=

√
(.24)(.76)

149
=

√
.00122316 = .03497.

The 95 percent confidence interval for p is thus (using the critical value
z = 1.96 from the normal distribution table)

.24± (1.96)(.03497) = .24± .0685412,

or
.17 ≤ p ≤ .30984.

It is clear from this confidence interval that less than 1/3 of consumers prefer
the firm’s own brand of toothpaste, contrary to what one would expect
under the null hypothesis of no differences in consumer preference. Indeed,
we can test the hypothesis of no difference in preference between the firm’s
brand of toothpaste and other brands by setting up the null and alternative
hypotheses

H0 : p =
1

3

and

H1 : p ̸= 1

3
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and calculating

z∗ =
p̄− p

sp

where

sp =

√
p (1− p)

n
=

√
(13)(

2
3

150
=

√
.00148148148 = .03849.

Notice that we use the value of p under the null hypothesis here instead of
p̄. Thus we have

z∗ =
p̄− p

sp
=

.24− .333

.03849
=

.09333

.03849
= 2.42.

The critical value of z for a two-tailed test with α = .05 is 1.96. Clearly, we
are led to reject the null hypothesis of no difference in preference. Indeed
we could reject the null hypotheses that the population of consumers prefers
the firm’s brand to other brands with an α-risk of less than .01 because the
P -value for a one-tailed test is .00776.

7.5 Contingency Tables: Tests of Independence

In the multinomial distribution above the data were classified according
to a single criterion—the preferences of consumers for the three brands of
toothpaste. Now we turn to multinomial distributions involving data that
are classified according to more than one criterion.

Consider, for example, an economist who wants to determine if there is
a relationship between occupations of fathers and the occupations of their
sons. She interviewed 500 males selected at random to determine their
occupation and the occupation of their fathers. Occupations were divided
into four classes: professional/business, skilled, unskilled, and farmer. The
data are tabulated as follows:
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Occupation of Son
Prof/Bus Skilled Unskilled Farmer Total

Prof/Bus 55 38 7 0 100

Occupation Skilled 79 71 25 0 175
of

Father Unskilled 22 75 38 10 145

Farmer 15 23 10 32 80

Total 171 207 80 42 500

The problem the economist faces is to determine if this evidence supports
the hypothesis that sons’ occupations are related to their fathers’. We
can visualize there being a joint probability density function over all father-
occupation, son-occupation pairs giving the probability that each combina-
tion of father and son occupations will occur. Treated as a table of proba-
bilities, the above table would appear as

Occupation of Son
Prof/Bus Skilled Unskilled Farmer Total

Prof/Bus p11 p12 p13 p14 pr1

Occupation Skilled p21 p22 p23 p24 pr2
of

Father Unskilled p31 p32 p33 p34 pr3

Farmer p41 p42 p43 p44 pr4

Total pc1 pc2 pc3 pc4 1.00

where the probabilities along the right-most column pri are the marginal
probabilities of fathers’ occupations—i.e., the sum of the joint probabilities
pij in the ith row and jth column over the j columns—and the proba-
bilities along the bottom row pcj are the marginal probabilities of sons’
occupations—i.e., the sum of the joint probabilities pij over the i rows.

The count data, since they indicate the frequencies for each cell, can be
thought of as providing point estimates of these probabilities. The marginal
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probabilities along the bottom row and the right-most column are the cell
entries divided by 500 as shown in the table below. We know from the
definition of statistical independence that if events A and B are independent,

P (A|B) = P (A)

which implies that

P (A ∩B) = P (A|B)P (B) = P (A)P (B).

Hence the joint probabilities in each cell of the table below should equal the
product of the marginal probabilities for that particular row and column.
The joint probabilities under the null hypothesis that fathers’ occupations
and sons’ occupations are independent are as given below.

Occupation of Son
Prof/Bus Skilled Unskilled Farmer Total

Prof/Bus .0684 .0828 .0320 .0168 .20

Occupation Skilled .1197 .1449 .0560 .0294 .35
of

Father Unskilled .0992 .1201 .0464 .0244 .29

Farmer .0547 .0662 .0256 .0134 .16

Total .342 .414 .16 .084 1.00

This means that if the occupations of sons were independent of the occupa-
tions of their fathers the number or frequency of fathers and sons who were
both in the professional or business category would be the joint probability
of this outcome (.0684) times the number of sons sampled (500). Accord-
ingly, we can calculate the expected number or expected count in each cell
by multiplying the joint probability for that cell by 500. This yields the fol-
lowing table of actual and expected outcomes, with the expected outcomes
in brackets below the actual outcomes.
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Occupation of Son
Prof/Bus Skilled Unskilled Farmer Total

Prof/Bus 55 38 7 0 100
(34.2) (41.4) (16.0) (8.4)

Occupation Skilled 79 71 25 0 175
of (59.85) (72.45) (28.0) (14.7)

Father Unskilled 22 75 38 10 145
(49.6) (60.05) (23.2) (12.2)

Farmer 15 23 10 32 80
(27.34) (33.10) (12.8) (6.7)

Total 171 207 80 42 500

From this point the procedure is the same as in the test of normality.
The tabulation, working from left to right, row by row, is as follows:

Father–Son fi Fi (fi − Fi)
2 (fi − Fi)

2/Fi

Prof/Bus–Prof/Bus 55 34.20 432.64 12.65
Prof/Bus–Skilled 38 41.40 11.56 0.28

Prof/Bus–Unskilled 7 16.00 81.00 5.06
Prof/Bus–Farmer 0 8.40 70.56 8.40
Skilled–Prof/Bus 79 59.85 366.72 6.13

Skilled–Skilled 71 72.45 2.10 0.03
Skilled–Unskilled 25 28.00 9.00 0.32
Skilled–Farmer 0 14.70 216.09 14.70

Unskilled–Prof/Bus 22 49.60 761.76 15.35
Unskilled–Skilled 75 60.05 223.50 3.72

Unskilled–Unskilled 38 23.20 219.04 9.44
Unskilled–Farmer 10 12.20 4.84 0.40
Farmer–Prof/Bus 15 27.34 152.28 5.57

Farmer–Skilled 23 33.10 102.01 3.08
Farmer–Unskilled 10 12.80 7.84 0.61
Farmer–Farmer 32 6.70 640.09 95.54

Total 500 500.00 181.28

It turns out that the total sum of squared relative deviations from expected
values, represented by the number 181.28 at the bottom of the right-most
column,

k∑
k=1

(fi − Fi)
2

Fi
,
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Table 7.1: Percentage of Sons’ Occupations by Father’s Occupation

Father’s Occupation
Prof/Bus Skilled Unskilled Farmer Total

Prof/Bus 55 45 15 19 34

Son’s Skilled 38 41 52 29 42
Occupation

Unskilled 7 14 26 12 16

Farmer 0 0 7 40 8

Total 100 100 100 100 100

is distributed according to a chi-square distribution with degrees of freedom
equal to the product of the number of rows minus one and the number
of columns minus one—i.e., χ2((nr − 1)(nc − 1)), where nr and nc are,
respectively, the number of rows and columns in the contingency table. In
the case at hand, the total is distributed as χ2(9). The critical value for
α-risk = .01 from the chi-square table for 9 degrees of freedom is 21.6660.
Since the total in the right-most column of the table vastly exceeds that
critical value, we must reject the hypothesis of independence and conclude
that sons’ occupations depend on the occupations of their fathers.

The pattern of dependence can be seen more clearly when we take the
percentage of sons in each category of father’s occupation and compare them
with the overall percentage of sons in each occupation. This is done in the
table immediately above. Each column of the table gives the percentage
of sons of fathers in the occupation indicated at the top of that column
who are in the various occupations listed along the left margin of the table.
The right-most column gives the percentage of all sons in the respective
occupations.

If sons’ occupations were independent of their fathers’, 34 percent of the
sons in each father’s-occupation category would be in professional/business
occupations. As can be seen from the table, 55 percent of the sons of profes-
sional/business fathers and 45 percent of the sons of fathers in skilled trades
are in professional/business occupations. Yet only 15 and 19 percent, respec-
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tively, of sons of unskilled and farmer fathers work in the professions and
business. If sons’ occupations were unrelated to their fathers’ occupations,
42 percent would be in skilled occupations, regardless of the occupation of
the father. It turns out from the table that 52 percent of sons of unskilled
fathers are in skilled trades and less than 42 percent of the sons of fathers in
each of the other categories are skilled workers. Judging from this and from
the 45 percent of sons of skilled fathers who are in professional/business oc-
cupations, it would seem that the sons of skilled fathers tend either to move
up into the business/professional category or fall back into the unskilled cat-
egory, although the percentage of sons of skilled fathers who are also skilled
is only slightly below the percentage of all sons who are skilled. If there
were no occupational dependence between fathers and sons, 16 percent of
sons of unskilled fathers would also be in unskilled work. As we can see
from the table, 26 percent of the sons of unskilled workers are themselves
unskilled and less than 16 percent of the sons of unskilled fathers are in each
of the other three occupational categories. Finally, if the occupations of fa-
thers and their sons were statistically independent we would expect that 8
percent of the sons of farmers would be in each occupational category. In
fact, 40 percent of the sons of farmers are farmers, 7 percent of the sons of
unskilled fathers are farmers, and none of the sons of fathers in the skilled
and professional/business occupations are farmers.

The dependence of son’s occupation on father’s occupation can also be
seen from the table by drawing a wide diagonal band across the table from
top left to bottom right. The frequencies tend to be higher in this diagonal
band than outside it, although there are exceptions. This indicates that
sons’ occupations tend to be the same or similar to their fathers’. Sons’
occupations and the occupations of their fathers are statistically dependent.

7.6 Exercises

1. Independent random samples were selected from each of two normally
distributed populations. The sample results are summarized as follows:

Sample 1 Sample 2

n1 = 10 n2 = 23
X̄1 = 31.7 X̄2 = 37.4
s21 = 3.06 s22 = 7.60

Setting the α-risk at 0.05, test the null hypothesis H0: σ
2
1 = σ2

2 against the
alternative hypothesis H1: σ

2
1 ̸= σ2

2,
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2. A financial analyst is exploring the relationship between the return earned
by stocks and the return earned by bonds. For a period of n = 25 months,
the analyst records the return on a particular stock, denoted X, and the
return on a particular bond, denoted Y . The relevant sample statistics are
recorded below:

Monthly Returns Stock (X) Bond (Y )

Mean 1.5 1.2
Standard Deviation 1.0 0.8

Assume that X and Y are uncorrelated and perform hypotheses tests to
determine whether the two population variances are equal. Then perform a
test to determine whether the two population means are equal. How would
your answer change if it turned out that the sample correlation between X
and Y was rxy = −0.20.

3. A labour economist studied the durations of the most recent strikes in
the vehicles and construction industries to see whether strikes in the two
industries are equally difficult to settle. To achieve approximate normality
and equal variances, the economist worked with the logarithms (to the base
10) of the duration data (expressed in days). In the vehicle industry there
were 13 strikes having a mean log-duration of 0.593 and a standard deviation
of log-duration of 0.294. In the construction industry there were 15 strikes
with a mean log-duration was 0.973 and a standard deviation of log-duration
of 0.349. The economist believes that it is reasonable to treat the data as
constituting independent random samples.

a) Construct and interpret a 90 percent confidence interval for the differ-
ence in the mean log-durations of strikes in the two industries.

b) Test whether the strikes in the two industries have the same log-
durations, controlling the α risk at 0.10. State the alternatives, the
decision rule, the value of the test statistic and the conclusion.

c) Test the economist’s assumption that the log-durations of strikes in
the two industries have the same variance controlling the α risk at
0.10. State the alternatives, the decision rule, the value of the test
statistic and the conclusion.
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4. An industrial machine has a 1.5-meter hydraulic hose that ruptures occa-
sionally. The manufacturer has recorded the location of these ruptures for
25 ruptured hoses. These locations, measured in meters from the pump end
of the hose, are as follows:

1.32 1.07 1.37 1.19 0.13
1.14 1.21 1.16 1.43 0.97
0.33 1.36 0.64 1.42 1.12
1.46 1.27 0.27 0.80 0.08
1.46 1.37 0.75 0.38 1.22

Using the chi-square procedure, test whether the probability distribution of
the rupture locations is uniform with lowest value a = 0 and highest value
b = 1.5.

5. A city expressway utilizing four lanes in each direction was studied to
see whether drivers prefer to drive on the inside lanes. A total of 1000
automobiles was observed during the heavy early-morning traffic and their
respective lanes recorded. The results were as follows:

Lane Observed Count

1 294
2 276
3 238
4 192

Do these data present sufficient evidence to indicate that some lanes are
preferred over others? Use α = .05 in your test.

6. It has been estimated that employee absenteeism costs North American
companies more than $100 billion per year. As a first step in addressing the
rising cost of absenteeism, the personnel department of a large corporation
recorded the weekdays during which individuals in a sample of 362 absentees
were away from work over the past several months:

Number Absent

Monday 87
Tuesday 62
Wednesday 71
Thursday 68
Friday 74
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Do these data suggest that absenteeism is higher on some days of the week
than others?

7. The trustee of a company’s pension plan has solicited the opinions of a
sample of the company’s employees about a proposed revision of the plan.
A breakdown of the responses is shown in the accompanying table. Is there
evidence at the 10% level to infer that the responses differ among the three
groups of employees?

Blue-Collar White Collar Managers
Responses Workers Workers

For 67 32 11
Against 63 18 9

8. A study of the amount of violence viewed on television as it relates to
the age of the viewer showed the accompanying results for 81 people. Each
person in the study could be classified according to viewing habits as a
low-violence or high-violence viewer.

16–34 yrs. old 35–54 yrs. old 55 yrs. and over

Low Violence 8 12 21
High Violence 18 15 7

Do the data indicate that viewing of violence is not independent of age of
viewer at the 5% significance level?

9. To see if there was any dependency between the type of professional
job held and one’s religious affiliation, a random sample of 638 individuals
belonging to a national organization of doctors, lawyers and engineers were
chosen in a 1968 study. The results were as follows:

Doctors Lawyers Engineers

Protestant 64 110 152
Catholic 60 86 78
Jewish 57 21 10

Test at the 5 percent level of significance the hypothesis that the profession
of individuals in this organization and their religious affiliation are indepen-
dent. Repeat at the 1 percent level.
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10. To study the effect of fluoridated water supplies on tooth decay, two
communities of roughly the same socio-economic status were chosen. One
of these communities had fluoridated water while the other did not. Ran-
dom samples of 200 teenagers from both communities were chosen and the
numbers of cavities they had were determined. The results were as follows:

Cavities Fluoridated Town Nonfluoridated Town

0 154 133
1 20 18
2 14 21

3 or more 12 28

Do these data establish, at the 5 percent level of significance, that the num-
ber of dental cavities a person has is not independent of whether that per-
son’s water supply is fluoridated? What about at the 1% level?


