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PREFACE

The pages that follow contain the material presented in my introductory
quantitative methods in economics class at the University of Toronto. They
are designed to be used along with any reasonable statistics textbook. The
most recent textbook for the course was James T. McClave, P. George Ben-
son and Terry Sincich, Statistics for Business and Economics, Eighth Edi-
tion, Prentice Hall, 2001. The material draws upon earlier editions of that
book as well as upon John Neter, William Wasserman and G. A. Whitmore,
Applied Statistics, Fourth Edition, Allyn and Bacon, 1993, which was used
previously and is now out of print. It is also consistent with Gerald Keller
and Brian Warrack, Statistics for Management and Economics, Fifth Edi-
tion, Duxbury, 2000, which is the textbook used recently on the St. George
Campus of the University of Toronto. The problems at the ends of the chap-
ters are questions from mid-term and final exams at both the St. George
and Mississauga campuses of the University of Toronto. They were set by
Gordon Anderson, Lee Bailey, Greg Jump, Victor Yu and others including
myself.

This manuscript should be useful for economics and business students en-
rolled in basic courses in statistics and, as well, for people who have studied
statistics some time ago and need a review of what they are supposed to have
learned. Indeed, one could learn statistics from scratch using this material
alone, although those trying to do so may find the presentation somewhat
compact, requiring slow and careful reading and thought as one goes along.

I would like to thank the above mentioned colleagues and, in addition, Ado-
nis Yatchew, for helpful discussions over the years, and John Maheu for
helping me clarify a number of points. I would especially like to thank Gor-
don Anderson, who I have bothered so frequently with questions that he
deserves the status of mentor.

After the original version of this manuscript was completed, I received some
detailed comments on Chapter 8 from Peter Westfall of Texas Tech Univer-
sity, enabling me to correct a number of errors. Such comments are much
appreciated.

J. E. Floyd
July 2, 2010

c⃝J. E. Floyd, University of Toronto
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Chapter 5

Tests of Hypotheses

In the previous chapter we used sample statistics to make point and interval
estimates of population parameters. Often, however, we already have some
theory or hypothesis about what the population parameters are and we need
to use our sample statistics to determine whether or not it is reasonable to
conclude that the theory or hypothesis is correct. Statistical procedures
used to do this are called statistical tests.

Consider, for example, the case of a firm that has developed a diagnostic
product for use by physicians in private practice and has to decide whether
or not to mount a promotional campaign for the product. Suppose that
the firm knows that such a campaign would lead to higher profits only if
the mean number of units ordered per physician is greater than 5. Office
demonstrations are conducted with a random sample of physicians in the
target market in order to decide whether or not to undertake the campaign.
The campaign is very costly and the firm will incur substantial losses if it
undertakes it only to find that the mean number of orders after the campaign
is less than or equal to 5.

5.1 The Null and Alternative Hypotheses

We can think of two possibilities. The mean number of orders in the popu-
lation of all physicians will exceed 5 or the mean will not exceed 5. Suppose
the firm accepts the hypothesis that the mean number of orders in the pop-
ulation will be greater than 5 when it turns out to be less. A promotional
campaign will be conducted at great loss. Had the guess that the mean
number of orders will be greater than 5 been correct the firm would have
earned a substantial profit. Alternatively, if the firm accepts the hypothesis
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134 TESTS OF HYPOTHESES

that the mean number of orders in the population will be less than 5 when it
turns out to be greater, some profit will be foregone. Had the guess that the
mean number of orders in the population will be less than 5 been correct,
however, huge losses from the promotional campaign will have been avoided.
It turns out that the cost of guessing that the mean number of orders will
be greater than 5, mounting the promotional campaign, and being wrong is
much greater than the cost of guessing that the mean number of orders will
be less than or equal to 5, not mounting the promotional campaign, and
being wrong.

We call the more serious of the two possible errors a Type I error and the
least serious error a Type II error. We call the hypothesis which if wrongly
rejected would lead to the more serious (Type I) error the null hypothesis
and denote it by the symbol H0. The other hypothesis, which if wrongly
rejected would lead to the less serious (Type II) error, we call the alternative
hypothesis and denote it by the symbol H1.

In the problem we have been discussing, the most serious error will occur
if the mean number of orders in the population of physicians will be less than
5 and the firm erroneously concludes that it will be greater than 5. Hence,
the null hypothesis is

H0 : µ ≤ 5

and the alternative hypothesis is

H1 : µ > 5.

Acceptance of either hypothesis on the basis of sample evidence involves a
risk, since the hypothesis chosen might be the incorrect one. We denote the
probability of making a Type I error (incorrectly rejecting the null hypoth-
esis) an α-risk and the probability of making a Type II error (incorrectly
rejecting the alternative hypothesis) a β-risk. It turns out that if the
sample size is predetermined (i.e., beyond the firm’s control) the firm has
to choose which risk to control. Control of the α-risk at a lower level will
imply a greater degree of β-risk and vice versa. Since by construction Type
I errors are the most damaging, the firm will obviously want to control the
α-risk.

Of course, the situation could have been different. The market for the
type of diagnostic product that the firm has developed may be such that
the first firm providing it could achieve quite an advantage. An erroneous
conclusion by the firm that the mean number of orders will be less than 5,
and the resulting decision not to promote the product, could lead to the
loss of substantial future market opportunities. On the other hand, if the
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cost of the promotion is small, an erroneous conclusion that the number of
orders per physician in the population will equal or exceed 5 would perhaps
lead to a minor loss. In this case we would define the null and alternative
hypotheses as

H0 : µ ≥ 5

and

H1 : µ < 5.

A Type I error will then result when the null hypothesis is incorrectly
rejected—i.e., when we erroneously conclude that the mean order per physi-
cian in the population will be less than 5 when it turns out to be equal
to or greater than 5. The probability of this happening will be the α-risk.
A Type II error will result when the alternative hypothesis is incorrectly
rejected—i.e., when the firm erroneously concludes that the mean order per
physician will be greater than or equal to 5 when it turns out not to be.
The probability of this happening will be the β-risk.

The hypotheses in the above problem were one-sided alternatives. The
crucial question was whether the population parameter µ was above a par-
ticular value µ0 (= 5) or below it. We can also have two sided alternatives.

Suppose it is found that the mean duration of failed marriages was 8.1
years before the divorce law was changed and we want to determine whether
the new legislation has affected the length of time unsuccessful marriages
drag on. A sociologist has a random sample of divorce records accumulated
since the law was changed upon which to make a decision. Erroneously
concluding that the new legislation has changed people’s behaviour when it
has not is judged to be a more serious error than incorrectly concluding that
behaviour has not changed as a result of the new law when it in fact has.
Accordingly, the sociologist chooses the null hypothesis as

H0 : µ = 0

and the alternative hypothesis as

H1 : µ ̸= 0.

A Type I error will arise if the sociologist concludes that behaviour has
changed when it has not—i.e., incorrectly rejects the null hypothesis—and
a Type II error will arise if she erroneously concludes that behaviour has not
changed when it in fact has. The probability of a Type I error will again be
the α-risk and the probability of a Type II error the β-risk.
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5.2 Statistical Decision Rules

Take the case of the diagnostic product discussed above where H0 is µ ≤ 5
and H1 is µ > 5. If upon conducting the office demonstrations the mean
number of orders of physicians in the sample is less than 5, it would be
reasonable to accept the null hypothesis that µ ≤ 5. If the sample mean is
greater than 5, however, should we reject the null hypothesis? Clearly, the
costs of a Type I error are greater than the costs of a Type II error, so we
would not want to reject the null hypothesis if the sample mean is just a
little bit above 5 because the sample mean could be greater than 5 entirely
as a result of sampling error. On the other hand, if the sample mean is 20,
it might seem reasonable to reject the null hypothesis. The question is: At
what value of the sample mean should we reject the null hypothesis that
µ ≤ 5. That value of the mean (or test statistic) at which we decide (ahead
of time, before the sample is taken) to reject the null hypothesis is called
the action limit or critical value. The choice of this critical value is called a
statistical decision rule.

The general form of the statistical decision rule for one-sided and two-
sided alternatives is given in Figure 5.1. Possible values of the sample mean
are divided into two groups along the continuum of values the sample mean
can take. The groups are separated by the critical value A in the case of
one-sided tests shown in the top two panels, or by the critical values A1 and
A2 in the case of a two-sided test shown in the bottom panel. The region
between the critical value or values and µ0, the level of µ at which the test
is being conducted, is called the acceptance region. The region on the other
side(s) of the critical value(s) from µ0 is called the critical region or rejection
region. If the sample mean falls in the rejection region, we reject the null
hypothesis and accept the alternative hypothesis. If it falls in the acceptance
region we accept the null hypothesis and reject the alternative hypothesis.
Note that acceptance of the null hypothesis means only that we will act as
if it were true—it does not mean that the null hypothesis is in fact true.
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two-sided (bottom) alternatives concerning the population
mean µ.
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5.3 Application of Statistical Decision Rules

In order to actually perform the statistical test we must establish the degree
of α-risk (risk of erroneously rejecting the null hypothesis) we are willing to
bear. We must also make sure we are satisfied with the level of µ at which
the α-risk is to be controlled—that is, with the level at which we set µ0. In
the example of the diagnostic product, we need not have set the level of µ at
which the α-risk is to be controlled at 5. We could have been safer (in the
case where the most costly error is to incorrectly conclude that the mean
number of orders from the population of physicians is greater than 5 when
it is in fact less than or equal to 5) to control the α-risk at µ0 = 5.5. At
any given level of α-risk chosen this would have been a more stringent test
than setting µ0 at 5. We also have to establish the probability distribution
of the standardised random variable (X̄ − µ)/sx̄. If the sample size is large,
the Central Limit Theorem tells us that it will be approximately normally
distributed. If the sample size is small and the probability distribution of
the population values Xi around µ is not too different from the normal
distribution, (X̄ − µ)/sx̄ will follow a t-distribution.

Suppose an airline takes a random sample of 100 days’ reservation records
which yields a mean number of no-shows on the daily flight to New York
City of 1.5 and a value of s equal to 1.185. The resulting value of sx̄ is
1.185/

√
100 = 1.185/10 = .1185. The airline knows from extensive experi-

ence that the mean number of no-shows on other commuter flights is 1.32.
The airline wants to test whether the mean number of no-shows on the 4 PM
flight exceeds 1.32. We let H0 be the null hypothesis that the mean number
of no-shows is less than or equal to 1.320 and the alternative hypothesis
H1 be that the mean number of no shows exceeds 1.320. Notice that the
hypothesis is about the number of no-shows in the whole population of reser-
vations for the 4 PM flight to New York City. The airline wants to control
the α-risk at .05 when µ = 1.320. Since the sample is large

z =
X̄ − µ0

sx̄

is approximately standard normal. The sample results in a value of z equal
to

z∗ =
1.500− 1.320

.1185
= 1.519.

At an α-risk of .05 the critical value for z is 1.645 in a one-sided test. Thus,
since z∗ is less than the critical value we cannot reject the null hypothesis.
We accept H0 and reject H1 since the standardised value of the sample mean
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does not fall in the critical region. The probability of observing a sample
mean of 1.50 when the population mean is 1.320 is more than .05. This is an
example of a one-sided upper-tail test because the critical region lies in the
upper tail of the distribution. For an example of a one-sided lower-tail test
consider a situation where a customs department asks travellers returning
from abroad to declare the value of the goods they are bringing into the
country.

The authorities want to test whether the mean reporting error is negative—
that is, whether travellers cheat by underreporting. They set the null hy-
pothesis as H0: µ ≥ 0 and the alternative hypothesis as H1: µ < 0. A
random sample of 300 travellers yields X̄ = −$35.41 and s = $45.94. This
implies sx̄ = 45.94/17.32 = 2.652. The α-risk is to be controlled at µ0 = 0.
The sample size is again so large that the test statistic is distributed ap-
proximately as the standardised normal distribution. The sample yields a
value equal to

z∗ =
−35.41− 0

2.652
= −13.35.

The authorities want to control the α-risk at .001 so the critical value for
z is -3.090. Since z∗ is well within the critical region we can reject the null
hypothesis H0 that the mean reporting error is non-negative and accept the
alternative hypothesis that it is negative. In fact, the observed sample mean
is 13.35 standard deviations below the hypothesized population mean of zero
while the critical value is only 3.090 standard deviations below zero. Note
that the α-risk is only approximately .001 because z is only approximately
normally distributed.

Now let us take an example of a two-sided test. Suppose that a random
sample of 11 children out of a large group attending a particular camp are
given a standard intelligence test. It is known that children of that age
have mean scores of 100 on this particular test. The camp organizers want
to know whether or not the children attending the camp are on average
equal in intelligence to those in the population as a whole. Note that the
relevant population here from which the sample is drawn is the entire group
of children attending the camp. The sample mean score was X̄ = 110 and
s was equal to 8.8, resulting in a value for sx̄ of 8.8/3.62 = 2.65. Since the
concern is about possible differences in intelligence in either direction the
appropriate test is a two-tailed test of the null hypothesis H0: µ = µ0 = 100
against the alternative hypothesis H1: µ ̸= µ0 = 100. With a small sample
size, under the assumption that the distribution of the population is not too



140 TESTS OF HYPOTHESES

far from normal,
X̄ − µ

sx̄

will be distributed according to the t-distribution with 10 degrees of freedom.
Suppose that the organizers of the camp want to control the α-risk at .05 at
a value of µ0 = 100. Since the test is a two-tailed test the critical region has
two parts, one at each end of the distribution, each containing probability
weight α/2 = .025 (the two together must have probability weight .05). This
two-part region will contain those t-values greater than 2.228 and less than
-2.228. The value of t that arises from the sample,

t∗ =
110− 100

2.65
= 3.77

clearly lies in the upper part of the critical region so that the null hypothesis
that the intelligence level of the children in the camp is the same as that of
those in the population as a whole must be rejected.

The decision rules for tests of µ can be shown in Figure 5.2. In the upper
panel, which illustrates a one-sided upper-tail test, α is the probability that
X̄ will fall in the critical region if µ ≤ µ0. The area 1− α is the probability
that X̄ will fall in the acceptance region. If X̄ in fact falls in the rejection
region, the probability will be less than α of observing that value, given the
sample size, if µ is really less than or equal to µ0. The center panel does the
same thing for a one-sided lower-tail test. Here, X̄ must fall below A for the
null hypothesis to be rejected. The bottom panel presents an illustration of
a two-sided test. The null hypothesis is rejected if X̄ falls either below A1

or above A2. The probability of rejecting the null hypothesis if µ = µ0 is
equal to α/2 + α/2 = α. We reject the null hypothesis if the probability of
observing a sample mean as extreme as the one we obtain conditional upon
µ = µ0 is less than α.

5.4 P–Values

In the statistical test involving the average intelligence of children at the
camp the value of z that resulted from the sample was 3.77 whereas the
critical value was ±2.228. The probability of obtaining this sample from a
population of children having mean intelligence of 100 is less than .05. An
appropriate question is: What is the probability of observing a sample mean
as extreme as the one observed if the mean intelligence of the population
of children at the camp is 100? Or, to put it another way, what level of
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α-risk would have had to be selected for a borderline rejection of the null
hypothesis? This probability is called the P–value. Formally, the P–value of
a statistical test for µ is the probability that, if µ = µ0, the standardised test
statistic z might have been more extreme in the direction of the rejection
region than was actually observed.

In the case of the children’s intelligence, α/2 would have had to be about
.00275 for t = 3.77 to pass into the right rejection region of the t-distribution.
Since the test is a two-sided one, the α-risk will be two times .00275 or .0055.
The P–value is thus .0055 or somewhat more than half of one percent.

In the case of the customs department example, the value of z of roughly
-13 is so far beyond the critical value of -2.28 that the α-risk required to get
us to borderline reject the null hypothesis would be miniscule. Note that
in this case there is only one critical region because the test is a one-tailed
test, so we do not double the probability weight in that region to obtain the
P–value.

The case of the no-shows on the commuter flight to New York City is
more interesting because the value of z obtained from the sample is slightly
less than the critical value of 1.645 when the α-risk is set at .05. The
associated P–value equals

P (X̄ > 1.50|µ = 1.32) = P (z > 1.519) = .0643.

There is a bit better than a 6 percent chance that we could have as many
no-shows in a sample of 100 if the true mean number of no-shows on the 4
PM flight is 1.32, the mean number of no-shows on all flights.

In Figure 5.2 the P–Value would be the area to the right of our actual
sample mean in the upper panel, the area to the left of our actual sample
mean in the middle panel, and twice the smaller of the areas to the right or
left of the actual sample mean in the lower panel.

5.5 Tests of Hypotheses about Population
Proportions

When the population parameter of interest is a proportion p and the sample
size is large enough to permit a normal approximation to the relevant bino-
mial distribution, the above results go through with little modification apart
from the calculation of the standard deviation of the sample proportion p̄. It
was shown in equation (4.5) of the previous chapter that the p̄ has variance

Var{p̄} =
p (1− p)

n
,
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and standard deviation

sp̄ =

√
p (1− p)

n
.

For example, consider a situation where the proportion of workers who are
chronically ill in a particular region is known to be .11, and a random sam-
ple of 1000 workers in one of the many industries in that region yields a
sample proportion of chronically ill equal to .153. We want to test whether
the population of workers in that particular industry contains a higher pro-
portion of chronically ill than the proportion of chronically ill in the entire
region. Since the worst possible error would be to erroneously conclude that
the proportion of chronically ill workers in the industry is bigger than the
proportion in the region, we let the null hypothesis be H0: p ≤ .11 and
the alternative hypothesis be H1: p > .11. If the null hypothesis is true
the standard deviation of p̄ will equal

√
(.11)(1− .11)/1000 = .009894. The

value of the test statistic then becomes

z∗ =
p̄− p

sp̄
=

.153− .110

.009894
= 4.35.

If we are willing to assume an α-risk of .01 in this one-sided upper-tail test
the critical value of z would be 2.326. Since the sample statistic exceeds the
critical value we reject the null hypothesis that the proportion of chronically
ill workers in the industry is the same as or less than the proportion of
chronically ill workers in the entire region.

5.6 Power of Test

Our decision rules for tests of µ have been set up to control the α-risk of the
test when µ = µ0. But we should not be indifferent about the β-risk—i.e.,
the risk of rejecting the alternative hypothesis when it is true. Tests that
have a high risk of failing to accept the alternative hypothesis when it is
true are said to have low power. So we now pose the question: How big is
the β-risk?

Let us consider this question with in the framework of a practical prob-
lem. Suppose that the country-wide mean salary of members of a profes-
sional association is known to be $55.5 thousand. A survey of 100 members
of one of the provincial branches of the association found a mean salary in
that province of X̄ = $62.1 thousand with s = $24.9 thousand, yielding
sx̄ = 24.9/10 = $2.49 thousand. We want to determine whether the mean
salary of members in the province in question exceeds the known mean
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salary of members country-wide. Let us set the α-risk at .05, controlled at
µ0 = 55.5. The critical value of z is 1.645, yielding a value for A of

A = µ+ z(1− α)sx̄ = µ+ z(.95)(2.49) = 55.5 + (1.645)(2.49) = 59.5965.

The sample statistic is 62.1, well above the critical value. The standardised
sample statistic is

z∗ =
62.1− 55.5

2.49
=

6.6

2.49
= 2.65

which is, of course, well above 1.645. The P–Value of the sample statistic is

P (X̄ ≥ 62.1) = P (z∗ ≥ 2.65) = (1− P (z∗ < 2.65)) = 1− .996 = .004.

While the α-risk is .05 controlled at µ0 = 55.5, the β-risk will depend on
where µ actually is. Suppose that µ is actually an infinitesimal amount above
55. The null hypothesis is then false and the alternative hypothesis is true.
Given our critical value A, however, there is almost a .05 probability that we
will reject the null hypothesis and accept the alternative hypothesis. This
means that the probability we will reject the alternative hypothesis when it
is in fact true—the β-risk—is very close to .95.

Now suppose that µ is actually 57.1. The true distribution of X̄ is then
centered on µ = 57.1 in the second panel from the top in Figure 5.3. About
16.1% of the distribution will now lie above the critical value A, so the
probability that we will reject the null hypothesis is .16. This probability is
called the rejection probability or the power of test. The probability that we
will reject the alternative hypothesis is now 1 - .16 = .84. This probability—
the probability of rejecting the alternative hypothesis when it is true—is the
β-risk.

Suppose, instead, that µ is actually 59.6. As can be seen from the second
panel from the bottom of Figure 5.3 this implies that the distribution of the
test statistic is centered around the critical value A. The probability that
we will reject the null hypothesis and accept the alternative hypothesis (i.e.,
the rejection probability or the power of test) is now .5. And the β-risk is
also .5 (unity minus the rejection probability).

Finally, suppose that µ is actually 64.5. The distribution of the test
statistic will now be centered around this value and, as can be seen from the
bottom panel of Figure 5.3, .975 of that distribution now lies in the rejection
region. The power of test is now .975 and the β-risk equals (1 - .975) = .025.

So the higher the actual value of µ the greater is the power of test and
the lower is the β-risk. This can be seen from Figure 5.4. The curve in
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that figure is called the power curve. The distance of that curve from the
horizontal axis gives for each true value of µ the rejection probability or
power of test. And the distance of the curve at each value of µ from the
horizontal line at the top of the figure associated with a rejection probability
of unity gives the β-risk.

The problem is, of course, that we do not know the actual value of µ (if
we did, the test would be unnecessary). We thus have to choose the value
of µ that we want to use to control for the β-risk. If we choose µ = 64.5 as
that value we can say that the power of test is .975 at µ equal to 64.5.

It can easily be seen from Figure 5.3 that the higher the value we set
for the α-risk, the lower will be the β-risk at every value of µ we could set
to control for the β-risk. A higher level of α will result in a critical value A
closer to µ0. The further to the left is the vertical line A, the bigger will be
the power of test and the smaller will be the β-risk at every control value
for µ.

The above illustration of the power of test is for one-sided upper-tail
tests. For one-sided lower-tail tests the analysis is essentially the same except
that A is now on the opposite side of µ0. To portray the results graphically,
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simply use the mirror images of the panels in figures 5.3 and 5.4. In the
case of two-sided tests the situation is a bit more complicated. The power
curve now has two branches as can be seen in Figure 5.5. For any given
level of µ selected to control for the β-risk the power of test will be the sum
of the areas of the distribution of the sample statistic, now centered around
that value of µ, to the left and right of the fixed critical levels A1 and A2

respectively. As the control value of µ deviates significantly from µ0 in either
direction, however, only the tail of the distribution in that direction remains
relevant because the critical area on the other tail becomes miniscule. The
power of test for hypotheses about population proportions is determined in
exactly the same manner as above, except that the controls for the α-risk
and β-risk are values of p instead of values of µ.
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5.7 Planning the Sample Size to Control Both the
α and β Risks

We have shown above that the lower the α-risk, the higher will be the β-risk
at every level of µ at which the β-risk can be controlled. And the higher
that control value of µ the greater will be the power of test.

To simultaneously control both the α-risk and the β-risk we have to
choose an appropriate sample size. To choose the appropriate sample size
(which must in any case be reasonably large and a small fraction of the size
of the population) we must specify three things. We must specify the value
µ0 at which the α-risk is to be controlled, the value of µ, call it µa, at which
the β-risk is to be controlled, and the planning value of σ.

A = 25µ 0aµ

βα

= 24.9

A

αβ

pp = .03 = .070 a

= .05

.

= .01

Figure 5.6: Selection of optimal sample size in butter purchase agreement
problem (top) and tile shipment problem (bottom).

As a practical example, consider a purchase agreement between an aid
agency and a group of producers of agricultural products. The agreement
stipulates a price per 25-kilogram box of butter, but it is in the shipping
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company’s interest to make the boxes light. A sample is to be taken from
each shipment by an independent inspection group to test whether the mean
weight of butter per box is 25 kilograms. The seller does not want shipments
rejected if the mean weight of butter per box is equal to or above 25 kilo-
grams. The agreement thus specifies that null-hypothesis be H0: µ ≥ 25,
making the alternative hypothesis H1: µ < 25. The α-risk of rejecting a
shipment when mean weight of the shipment is at least 25 kilograms is set
at .05. At the same time, the company purchasing the butter is interested in
the boxes not being too underweight. So the agreement also stipulates that
there be no more than a five percent chance that a shipment will be accepted
if it contains less than 24.9 kilograms per box of butter. This controls the
β-risk of erroneously rejecting the alternative hypothesis at .05 for a value
of µ = µa = 24.9. The problem then is to choose a sample size such that
the examination process will control the α-risk at .05 when µ = 25 and the
β-risk at .05 when µ = 24.9. The buyer and seller agree to adopt a planning
value of σ equal to .2. The analysis can be illustrated with reference to the
upper panel of Figure 5.6. Let the as yet to be determined critical value for
rejection of a shipment be A. The standardised difference between µ0 and
A must equal

z0 =
µ0 −A

σ/
√
n

=
25−A

.2/
√
n

= 1.645

and the standardised difference between A and µa must equal

z1 =
A− µa

σ/
√
n

=
A− 24.9

.2/
√
n

= 1.645.

These expressions can be rewritten as

25−A = (1.645)(.2/
√
n)

and

A− 24.9 = (1.645)(.2/
√
n).

Adding them together yields

25− 24.9 = .1 = (2)(1.645)(.2/
√
n) = (3.29)(.2)/

√
n)

which implies that

n = (
√
n)2 =

(
(.2)(3.29)

.1

)2

= 43.3.
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A sample size of 44 will do the trick. The critical value A will equal

25− 1.645
.2√
44

= 25− (1.645)(.0301) = 25− .05 = 24.95.

Consider another example where a purchaser of a large shipment of tiles
wishes to control the β-risk of accepting the shipment at .01 when the pro-
portion of tiles that are damaged is p = .07 while the vendor wishes to
control the α-risk of having the shipment rejected at .025 when the pro-
portion of damaged tiles is .03. A random sample of tiles will be selected
from the shipment by the purchaser on the basis of which a decision will be
made to accept (H0: p ≤ .03) or reject (H1: p > .03) the shipment. We
need to find the sample size sufficient to meet the requirements of both the
purchaser and vendor. The analysis can be conducted with reference to the
bottom panel of Figure 5.6. The standardised distance between the as yet
to be determined critical value A and p = .03 must be

z0 =
A− .03

σp̄0
=

A− .03√
(.03)(.97)/n

= 1.96

and the standardised difference between .07 and A must be

z1 =
.07−A

σp̄1
=

.07−A√
(.07)(.93)/n

= 2.326.

Note that we use the values of p at which the α-risk and β-risk are being
controlled to obtain the relevant values of σp̄ for standardizing their differ-
ences from the critical value A. Multiplying both of the above equations by√
n and then adding them, we obtain

(.04)
√
n = (1.96)

√
(.03)(.97) + (2.326)

√
(.07)(.93)

which yields

n =

(
(1.96)

√
(.03)(.97) + (2.326)

√
(.07)(.93)

.04

)2

= 538.

The critical value A will then equal

A = .03 + z0 σp̄0 = .03 + 1.96
√
(.03)(.97)/538 = .0444.
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5.8 Exercises

1. It is desired to test H0: µ ≥ 50 against H1: µ < 50 with a significance
level α = .05. The population in question is normally distributed with
known standard deviation σ = 12. A random sample of n = 16 is drawn
from the population.

a) Describe the sampling distribution of X̄, given that µ = 50.

b) If µ is actually equal to 47, what is the probability that the hypothesis
test will lead to a Type II error. (.74059)

c) What is the power of this test for detecting the alternative hypothesis
Ha: µ = 44? (.5213)

2. A sales analyst in a firm producing auto parts laboriously determined,
from a study of all sales invoices for the previous fiscal year, that the mean
profit contribution per invoice was $16.50. For the current fiscal year, the
analyst selected a random sample of 25 sales invoices to test whether the
mean profit contribution this year had changed from $16.50 (H1) or not
(H0). The sample of 25 invoices yielded the following results for the invoice
profit contributions: X̄ = $17.14, s = $18.80. The α risk is to be controlled
at 0.05 when µ = 16.50.

a) Conduct the test. State the alternatives, the decision rule, the value
of the standardised test statistic, and the conclusion.

b) What constitute Type I and Type II errors here? Given the conclusion
above, is it possible that a Type I error has been made in this test? Is
a Type II error possible here? Explain.

3. In a tasting session, a random sample of 100 subjects from a target
consumer population tasted a food item, and each subject individually gave
it a rating from 1 (very poor) to 10 (very good). It is desired to test H0:
µ ≤ 6.0 vs. H1: µ > 6.0, where µ denotes the mean rating for the food item
in the target population. A computer analysis of the sample results showed
that the one-sided P–value of the test is .0068.

a) Does the sample mean lie above or below µ0 = 6.0?

b) What must be the value of value of z generated by the sample? (2.47)
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c) The sample standard deviation is s = 2.16. What must be the sample
mean X̄? (6.5332)

d) Does the magnitude of the P–value indicate that the sample results
are inconsistent with conclusion H0? Explain.

4. The developer of a decision-support software package wishes to test
whether users consider a colour graphics enhancement to be beneficial, on
balance, given its list price of $800. A random sample of 100 users of the
package will be invited to try out the enhancement and rate it on a scale
ranging from -5 (completely useless) to 5 (very beneficial). The test alterna-
tives are H0: µ ≤ 0, H1: µ > 0, where µ denotes the mean rating of users.
The α risk of the test is to be controlled at 0.01 when µ = 0. The standard
deviation of users’ ratings is σ = 1.3.

a) Show the decision rule for X̄ relevant for this test.

b) Calculate the rejection probabilities at µ = 0, 0.5, 1.0 and 1.5 for the
decision rule above.

c) Sketch the rejection probability curve for the decision rule you selected
above.

d) What is the incorrect conclusion when µ = 0.60? What is the proba-
bility that the above decision rule will lead to the incorrect conclusion
when µ = .60? Is the probability an α or β risk?

5. “Take the Pepsi Challenge” was a marketing campaign used by the Pepsi-
Cola Company. Coca Cola drinkers participated in a blind taste test where
they were asked to taste unmarked cups of Pepsi and Coke and were asked
to select their favourite. In one Pepsi television commercial the announcer
states that “in recent blind taste tests more than half the Diet Coke drinkers
surveyed said they preferred the taste of Pepsi.” (Consumer’s Research,
May 1993). Suppose that 100 Coke drinkers took the Pepsi challenge and
56 preferred the taste of Diet Pepsi. Does this indicate that more than half
of all Coke drinkers prefer the taste of Pepsi?

6. A salary survey conducted on behalf of the Institute of Management
Accountants and the publication Management Accounting revealed that the
average salary for all members of the Institute was $56,391. A random
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sample of 122 members from New York were questioned and found to have a
mean salary of $62,770 and a standard deviation of s = $28972 (Management
Accounting, June 1995).

a) Assume that the national mean is known with certainty. Do the sample
data provide sufficient evidence to conclude that the true mean salary
of Institute members in New York is higher than the National Average?

b) Suppose the true mean salary for all New York members is $66,391.
What is the power of your test above to detect this $10,000 difference?

7. One of the most pressing problems in high-technology industries is
computer-security. Computer security is typically achieved by a password—
a collection of symbols (usually letters and numbers) that must be supplied
by the user before the computer system permits access to the account. The
problem is that persistent hackers can create programs that enter millions
of combinations of symbols into a target system until the correct password
is found. The newest systems solve this problem by requiring authorized
users to identify themselves by unique body characteristics. For example,
system developed by Palmguard, Inc. tests the hypothesis

H0: The proposed user is authorized

versus

H1: The proposed user is unauthorized.

by checking characteristics of the proposed user’s palm against those stored
in the authorized users’ data bank (Omni, 1984 ).

a) Define a Type I error and a Type II error for this test. Which is the
more serious error? Why?

b) Palmguard reports that the Type I error rate for its system is less than
1% where as the Type II error rate is .00025%. Interpret these error
rates.

c) Another successful security system, the EyeDentifyer, “spots autho-
rized computer users by reading the one-of-a-kind patterns formed by
the network of minute blood vessels across the retina at the back of
the eye.” The EyeDentifier reports Type I and Type II error rates of
.01% (1 in 10,000) and .005% (5 in 100,000), respectively. Interpret
these rates.
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8. Under what circumstances should one use the t-distribution in testing
an hypothesis about a population mean? For each of the following rejection
regions, sketch the sampling distribution of t, and indicate the location of
the rejection region on your sketch:

a) t > 1.440 where v = 6.

b) t < −1.782 where v = 12.

c) t < −2.060 or t > 2.060 where v = 25.

9. Periodic assessment of stress in paved highways is important to maintain-
ing safe roads. The Mississippi Department of Transportation recently col-
lected data on number of cracks (called crack intensity) in an undivided two-
lane highway using van-mounted state-of-the-art video technology (Journal
of Infrastructure Systems, March 1995). The mean number of cracks found
in a sample of eight 5-meter sections of the highway was X̄ = .210, with
a variance of s2 = .011. Suppose that the American Association of State
Highway and Transportation Officials (AASHTO) recommends a maximum
mean crack intensity of .100 for safety purposes. Test the hypothesis that the
true mean crack intensity of the Mississippi highway exceeds the AASHTO
recommended maximum. Use α = .01.

10. Organochlorine pesticides (OCP’s) and polychlorinated biphenyls, the
familiar PCB’s, are highly toxic organic compounds that are often found in
fish. By law, the levels of OCP’s and PCB’s in fish are constantly moni-
tored, so it is important to be able to accurately measure the amounts of
these compounds in fish specimens. A new technique called matrix solid-
phase dispersion (MSPD) has been developed for chemically extracting trace
organic compounds from solids (Chromatographia, March 1995). The MSPD
method was tested as follows. Uncontaminated fish fillets were injected with
a known amount of OCP or PCB. The MSPD method was then used to ex-
tract the contaminant and the percentage of the toxic compound uncovered
was measured. The recovery percentages for n = 5 fish fillets injected with
the OCP Aldrin are listed below:

99 102 94 99 95

Do the data provide sufficient evidence to indicate that the mean recovery
percentage of Aldrin exceeds 85% using the new MSPD method? Set the
α-risk at .05.


