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PREFACE

The pages that follow contain the material presented in my introductory
quantitative methods in economics class at the University of Toronto. They
are designed to be used along with any reasonable statistics textbook. The
most recent textbook for the course was James T. McClave, P. George Ben-
son and Terry Sincich, Statistics for Business and Economics, Eighth Edi-
tion, Prentice Hall, 2001. The material draws upon earlier editions of that
book as well as upon John Neter, William Wasserman and G. A. Whitmore,
Applied Statistics, Fourth Edition, Allyn and Bacon, 1993, which was used
previously and is now out of print. It is also consistent with Gerald Keller
and Brian Warrack, Statistics for Management and Economics, Fifth Edi-
tion, Duxbury, 2000, which is the textbook used recently on the St. George
Campus of the University of Toronto. The problems at the ends of the chap-
ters are questions from mid-term and final exams at both the St. George
and Mississauga campuses of the University of Toronto. They were set by
Gordon Anderson, Lee Bailey, Greg Jump, Victor Yu and others including
myself.

This manuscript should be useful for economics and business students en-
rolled in basic courses in statistics and, as well, for people who have studied
statistics some time ago and need a review of what they are supposed to have
learned. Indeed, one could learn statistics from scratch using this material
alone, although those trying to do so may find the presentation somewhat
compact, requiring slow and careful reading and thought as one goes along.

I would like to thank the above mentioned colleagues and, in addition, Ado-
nis Yatchew, for helpful discussions over the years, and John Maheu for
helping me clarify a number of points. I would especially like to thank Gor-
don Anderson, who I have bothered so frequently with questions that he
deserves the status of mentor.

After the original version of this manuscript was completed, I received some
detailed comments on Chapter 8 from Peter Westfall of Texas Tech Univer-
sity, enabling me to correct a number of errors. Such comments are much
appreciated.

J. E. Floyd
July 2, 2010

c⃝J. E. Floyd, University of Toronto
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Chapter 4

Statistical Sampling: Point
and Interval Estimation

In the previous chapter we assumed that the probability distribution of a
random variable in question was known to us and from this knowledge we
were able to compute the mean and variance and the probabilities that the
random variable would take various values (in the case of discrete distribu-
tions) or fall within a particular range (in the case of uniform distributions).
In most practical applications of statistics we may have some reason to be-
lieve that a random variable is distributed according to a binomial, Poisson,
normal, etc., distribution but have little knowledge of the relevant parame-
ter values. For example, we might know what n is in the case of a binomial
distribution but know nothing about the magnitude of p. Or we may suspect
that a variable is normally distributed by have no idea of the values of the
parameters µ and σ. The practical procedure for finding information about
these parameters is to take a sample and try to infer their values from the
characteristics of the sample.

4.1 Populations and Samples

Let us first review what we learned about populations and samples in Chap-
ter 1. A population is the set of elements of interest. It may be finite or
infinite. Processes, mechanisms that produce data, are infinite populations.
In terms of the analysis of the previous chapter, populations are the complete
set of outcomes of a random variable. And a process is a mechanism by which
outcomes of a random variable are generated. The population of outcomes
of a particular random variable is distributed according to some probability

103



104 STATISTICAL SAMPLING AND ESTIMATION

distribution—possibly but not necessarily binomial, Poisson, normal, uni-
form, or exponential. The parameters of the population are the parameters
of its probability distribution. As such, they are numerical descriptive mea-
sures of the population. A census is a listing of the characteristics of interest
of every element in a population. A sample is a subset of the population
chosen according to some set of rules. Sample statistics are numerical de-
scriptive measures of the characteristics of the sample calculated from the
observations in the sample. We use these sample statistics to make infer-
ences about the unobserved population parameters. You should keep in
mind that a statistic refers to a sample quantity while a parameter refers to
a population quantity. The sample mean is an example of a sample statistic,
while the population mean is an example of a population parameter.

A sample is thus a part of the population under study selected so that
inferences can be drawn from it about the population. It is cheaper and
quicker to use samples to obtain information about a population than to
take a census. Furthermore, testing items sampled may destroy them so
that tests cannot be conducted on the whole population.

A probability sample is one where the selection of the elements from the
population that appear in the sample is made according to known proba-
bilities. A judgment sample is one where judgment is used to select “rep-
resentative” elements or to infer that a sample is “representative” of the
population. In probability samples, no discretion is allowed about which
population elements enter the sample.

The most common sampling procedure is to select a simple random sam-
ple. A simple random sample is one for which each possible sample combi-
nation in the population has an equal probability of being selected. Every
element of the population has the same probability of occupying each posi-
tion in the sample. The sampling is without replacement, so that no element
of the population can appear in the sample twice.

Note that simple random sampling requires more than each element of
the population having the same probability of being selected. Suppose that
we select a sample of 10 students to interview about their career plans. It
is not enough that every student in the population have an equal chance
of being among the 10 selected. Each student must have the same chance
of being the first selected, the second selected, the third selected, etc. For
example, we could divide the population into males and females (suppose
the population contains an equal number of each) and select 5 males and
5 females at random for the sample. Each student would have an equal
chance of being in the sample, but the sample combinations that contain an
unequal number of males and females would be ruled out. One might wish
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to rule these combinations out, but then the sample would not be a simple
random sample.

One way to ensure that each possible sample combination has an equal
chance of being in the sample is to select the sample elements one at a time
in such a way that each element of the population not already in the sample
has an equal chance of being chosen. In the case of a finite population,
select the first element by giving each of the N population elements an
equal chance of being picked. Then select the second sample element by
giving the remaining N − 1 elements of the population an equal chance of
being chosen. Repeat this process until all n sample elements have been
selected.

Suppose we have a population of 5000 students that we wish to sample.
We could assign each student in the population a number between 0 and
4999 and chose 100 numbers at random from the set of integers in this
interval, using the numbers so selected to pick the students to appear in
the sample. To choose the numbers randomly we could get a computer to
spit out 100 numbers between 0 and 4999 in such a way that each of the
5000 numbers had an equal chance of being selected first and each of the
5000 numbers not yet selected had an equal chance of being selected second,
third, etc. Alternatively, we could use a table of random numbers. Such a
table might list five-digit numbers in the following fashion:

13284 21244 99052 00199 40578 . . . . . . . . . etc.

The table is constructed so each digit between 0 and 9 has an equal chance
of appearing in each of the five positions for each number. We could select
our sample as follows from these numbers:

1328, 2122, skip, 0019, 4057, skip, . . . . . . etc.

Numbers for which the four digits on the left side yield a number larger than
4999 are simply skipped—they can be treated as not being in the table, so
that numbers between 0 and 4999 have an equal chance of being selected and
numbers over 4999 have a zero chance of being selected. Any number already
selected would also be discarded because we want the probability that an
element of the population will be selected more than once to be zero. If the
size of the population is, say, 500000, requiring that we select the elements
in the sample from 6 digit numbers, we merely take each succession of 6
digits in the table of random numbers as a separate number, so that the
above line in the table of random numbers would yield

132842 124499 052001 994057 . . . . . . . . . etc.
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The first three numbers would be used to select the corresponding population
elements, the fourth number would be skipped, and so on. Random numbers
can also be obtained from the table by reading down the columns rather than
across the rows, and the selection process can begin anywhere in the table.

When the population is generated by a process, the process itself fur-
nishes the sample observations. Take the case of pairs of shoes coming off
an assembly line. To test the quality of the production process we could
select a sample of 10 pairs by simply taking the next (or any) 10 pairs off
the line. This will give us a simple random sample if two conditions are
met: First, each item must have the same probability of being defective
as any other item. Second, the probability that any one item is defective
must be independent of whether any particular other item is defective. More
formally, the n random variables X1, X2, X3, . . . Xn generated by a process
constitute a simple random sample from an infinite population if they are
independently and identically distributed.

Once a sample has been selected and observations on the sample ele-
ments have been made, the observations constitute a data set and the usual
summary measures can be made. If X1, X2, X3, . . . Xn represent the values
of the n sample observations, we have

X̄ =

∑n
i=1Xi

n
(4.1)

and

s2 =

∑n
i=1(Xi − X̄)2

n− 1
(4.2)

where X̄ and s2 are the sample mean and variance, and s is the sample
standard deviation. These magnitudes are called sample statistics. The
population mean, variance and standard deviation—that is, the population
parameters—are denoted by µ, σ2 and σ.

4.2 The Sampling Distribution of the Sample
Mean

Consider an example of pairs of newly produced shoes coming off an as-
sembly line. We want to verify their quality. The sample space consists of
three sample points—neither shoe defective, one shoe defective, both shoes
defective. Suppose that the process by which the shoes are manufactured
generates the following population probability distribution for the three val-
ues that the random variable X can take:
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x: 0 1 2

P (x): .81 .18 .01

Note that the population distribution is skewed to the right. Its mean is

E{X} = µ = (0)(.81) + (1)(.18) + (2)(.01) = .2

and its variance is

σ2{X} = (−.2)2(.81) + (.8)2(.18) + (1.8)2(.01) = .18.

Now suppose that we do not observe the probability distribution for the
population and do not know its parameters. We can attempt to make an
inference about these parameters, and hence about the probability distribu-
tion of the population, by taking a sample. Suppose we take a sample of two
and use the sample mean as an estimate of E{X}. There are nine potential
samples of two that can be taken from the population. These potential sam-
ples and the corresponding sample means together with the probabilities of
picking each sample are listed below:

Sample X̄ P (X̄)

0 0 0.0 (.81)2 = .6561
0 1 0.5 (.81)(.18) = .1458
0 2 1.0 (.81)(.01) = .0081
1 0 0.5 (.18)(.81) = .1458
1 1 1.0 (.18)2 = .0324
1 2 1.5 (.18)(.01) = .0018
2 0 1.0 (.01)(.81) = .0081
2 1 1.5 (.01)(.18) = .0018
2 2 2.0 (.01)2 = .0001

1.0000

The sum of the probabilities is unity because all possible samples of two that
can be drawn from the population are listed. It turns out that the sample
mean can take five values— 0, .5, 1, 1.5 and 2. The probabilities that it
will take each of these values can be obtained by adding the probabilities
associated with the occurrence of each possible sample value in the table
above. For example, the probability that the sample mean will be .5 equals
.1458 + .1458 = .2916. We thus have

X̄: 0 .5 1 1.5 2

P (X̄): .6561 .2916 .0486 .0036 .0001
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for which the probabilities sum to unity. This is the exact sampling distri-
bution of X̄. It says that there is a probability of .6561 that a sample of
two will have mean 0, a probability of .2916 that it will have mean 0.5, and
so forth. The mean of the sampling distribution of X̄ is

E{X̄} = (0)(.6561)+(.5)(.2916)+(1)(.0486)+(1.5)(.0036)+(2)(.0001) = .2

which is equal to the population mean. The variance of the sample mean is

σ2{X̄} = (−.2)2(.6561) + (.3)2(.2916) + (.8)2(.0486)

+(1.3)2(.0036) + (1.8)2(.0001) = .09

which turns out to be half the population variance.
Now consider all possible samples of three that we could take. These are

presented in Table 4.1. The sample mean can now take seven values— 0,
1/3, 2/3, 1, 4/3, 5/3, and 2. The exact sampling distribution of the sample
mean (which is obtained by adding up in turn the probabilities associated
with all samples that yield each possible mean) is now

X̄: 0 1/3 2/3 1 4/3 5/3 2
P (X̄): .531441 .354294 .098415 .014580 .001215 .000054 .000001

The usual calculations yield a mean of the sample mean of E{X̄} = .2
and a sample variance of σ2{X̄} = .06. The mean sample mean is again the
same as the population mean and the variance of the sample mean is now
one-third the population variance.

On the basis of an analysis of the exact sampling distributions of the
sample mean for sample sizes of 2 and 3, we might conjecture that the
expected value of the sample mean always equals the population mean and
the variance of the sample mean always equals the variance of the population
divided by the sample size. This conjecture is correct. For a sample of size
n consisting of X1, X2, X3, . . . , Xn, the expectation of the sample mean will
be

E{X̄} = E

{
1

n
(X1 +X2 +X3 + . . .+Xn)

}
=

1

n
(E{X1}+ E{X2}+ E{X3}+ . . .+ E{Xn})

=
1

n
(nµ) = µ (4.3)
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Table 4.1: All possible samples of three for the shoe-testing problem.

X̄ P (X̄)

0 0 0 0 (.81)3 = .531441
0 0 1 1/3 (.81)(.81)(.18) = .118098
0 0 2 2/3 (.81)(.81)(.01) = .006561
0 1 0 1/3 (.81)(.18)(.81) = .118098
0 1 1 2/3 (.81)(.18)(.18) = .026244
0 1 2 1 (.81)(.18)(.01) = .001458
0 2 0 2/3 (.81)(.01)(.81) = .006561
0 2 1 1 (.81)(.18)(.01) = .001458
0 2 2 4/3 (.81)(.01)(.01) = .000081
1 0 0 1/3 (.18)(.81)(.81) = .118098
1 0 1 2/3 (.18)(.81)(.18) = .026244
1 0 2 1 (.18)(.81)(.01) = .001458
1 1 0 2/3 (.18)(.18)(.81) = .026244
1 1 1 1 (.18)3 = .005832
1 1 2 4/3 (.18)(.18)(.01) = .000324
1 2 0 1 (.18)(.01)(.81) = .001458
1 2 1 4/3 (.18)(.01)(.18) = .000324
1 2 2 5/3 (.18)(.01)(.01) = .000018
2 0 0 2/3 (.01)(.81)(.81) = .006561
2 0 1 1 (.01)(.81)(.18) = .001458
2 0 2 4/3 (.01)(.81)(.01) = .000081
2 1 0 1 (.01)(.18)(.81) = .001458
2 1 1 4/3 (.01)(.18)(.18) = .000324
2 1 2 5/3 (.01)(.18)(.01) = .000018
2 2 0 4/3 (.01)(.01)(.81) = .000081
2 2 1 5/3 (.01)(.01)(.18) = .000018
2 2 2 2 (.01)3 = .000001

1.000000
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and the variance of the sample mean will be

σ2{X̄} = E

{[
1

n
(X1 +X2 +X3 + . . .+Xn)− E{X̄}

]2}

= E

{[
1

n
(X1 +X2 +X3 + . . .+Xn)− µ

]2}

= E

{[
1

n
(X1 +X2 +X3 + . . .+Xn)−

nµ

n

]2}

=
1

n2
E
{
[(X1 +X2 +X3 + . . .+Xn)− nµ]2

}
=

1

n2
E
{
[((X1 − µ) + (X2 − µ) + (X3 − µ) + . . .+ (Xn − µ)]2

}
=

1

n2

[
σ2{X1}+ σ2{X2}+ σ2{X3}+ . . .+ σ2{(Xn}

]
=

1

n2

[
nσ2

]
=

σ2

n
. (4.4)

Note that in the second last line we took advantage of the fact that the
sample items were chosen independently to rule out any covariance between
Xi and Xj .

It should be emphasized that the above calculations of the mean and
variance of the sampling distribution are the same regardless of the distri-
bution of the population. For the population above, increasing the sample
size from two to three reduced the probability weight at the right tail of the
distribution and also at X̄ = 0.

The question immediately arises as to what the distribution of the sample
mean will look like if we increase the sample size further. It is not practical
to obtain the exact distribution of the sample mean from the above popu-
lation for sample sizes bigger than three. We have to infer the probability
distribution of the sample mean by taking many samples of each size and
plotting histograms of the resulting sample means.

4.3 The Central Limit Theorem

Figure 4.1 shows the distribution of the sample means obtained for the shoe-
testing problem by taking 1000 samples of n = 2 (top), n = 3 (middle) and
n = 10 (bottom). Notice how the range of the sample mean narrows as the
sample size increases. Also, with a sample size as large as 10 the modal
value ceases to be zero. Figure 4.2 is a continuation of Figure 4.1, showing
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Figure 4.1: Distribution of the Sample Mean for 1000 samples
of n = 2 (top), n = 3 (middle) and n = 10 (bottom).
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Figure 4.2: Distribution of the Sample Mean for 1000 samples
of n = 30 (top), n = 50 (middle) and n = 100 (bottom).
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the distribution of the sample means for 1000 samples when n = 30 (top),
n = 50 (middle) and n = 100 (bottom). The range of the sample mean again
narrows as the sample size increases and the distribution of the sample mean
becomes more symmetrical around the population mean, µ = .2.

Figure 4.3 is obtained by superimposing the relative frequencies of the
sample means obtained from the 1000 samples of n = 50 in the middle
panel of Figure 4.2 on a normal probability density function with µ = .2
and σ2 = 1.8/50 = .0036. Notice that the sampling distribution of the
sample mean does not differ much from the normal distribution when we
take account of the fact that the points representing the histogram are the
center-points of the tops of its respective bars.

Figure 4.3: Relative frequencies of sample mean from 1000
samples of 50 plotted on normal density function with µ = .2
and σ2

X̄
= .0036.

It turns out that the similarity of the histograms to normal distributions
as the sample size increases is not accidental. We have here a demonstration
of the Central Limit Theorem. The Central Limit Theorem says that when
the sample size is sufficiently large the sample mean X̄ will become approx-
imately normally distributed with mean equal to the population mean and
variance equal to the population variance divided by the sample size. And
the larger the sample size, the closer the approximation of the sampling dis-
tribution of X̄ to a normal distribution. This holds true regardless of the
distribution of the population provided it has a finite standard deviation.

The fact that the sample mean is normally distributed for large sample
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sizes tells us that if the sample size is large enough the sample mean should
lie within one standard deviation of the population mean 68% of the time
and within two standard deviations of the population mean 95% of the time.
The standard deviation referred to here is, of course, the standard deviation
of the sample mean, not the standard deviation of the population.

The true standard deviation of the sample mean is σx̄ = σ/
√
n. Since

the population standard deviation is usually not known, we use

s =

√∑n
i=1(Xi − X̄)2

n− 1

to provide an estimate of σ. The standard deviation of the sample mean is
thus estimated as

sx̄ =
s√
n
.

The Central Limit Theorem tells us the approximate nature of the sam-
pling distribution of the sample mean when the sample is large and the
distribution of the population is either unknown or the population is not
normally distributed. If the population happens to be normally distributed
the sampling distribution of the sample mean will turn out to be exactly
normally distributed regardless of the sample size. This follows from two
facts—first, that the mean of a sample from a normally distributed popu-
lation is a linear function of the population elements in that sample, and
second, that any linear function of normally distributed variables is normally
distributed.

4.4 Point Estimation

The central purpose of statistical inference is to acquire information about
characteristics of populations. An obvious source of information about a
population mean is the mean of a random sample drawn from that popula-
tion. When we use the sample mean to estimate the population mean the
sample mean we obtain is called a point estimate of the population mean.

In general, suppose there is an unknown population characteristic or
parameter that we will denote by θ. To estimate this parameter we select a
simple random sampleX1, X2, X3, . . . , Xn, from the population and then use
some statistic S which is a function of these sample values as a point estimate
of θ. For each possible sample we could take we will get a different set of
sample values, X1, X2, X3, . . . , Xn, and hence a different S. The statistic
S is thus a random variable that has a probability distribution which we
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call the sampling distribution of S. We call S an estimator of θ. When we
take our sample and calculate the value of S for that sample we obtain an
estimate of θ.

Notice the difference between an estimate and an estimator. An estima-
tor is a random variable used to estimate a population characteristic. An
actual numerical value obtained for an estimator is an estimate.

Consider, for example, a trade association that needs to know the mean
number of hourly paid employees per member firm, denoted by µ. To esti-
mate this the association takes a random sample of n = 225 member firms
(a tiny fraction of the total number of firms belonging to the association).
The sample mean X̄ is used as an estimator of µ. The estimate of µ is the
particular value of X̄ obtained from the sample, say, 8.31.

Note that the sample mean is only one possible estimator of the pop-
ulation mean. We could instead use the sample median or, perhaps, the
average of largest and smallest values of X in the sample.

It should be evident from the discussion above that we are using

s =

√∑n
i=1(Xi − X̄)2

n− 1

as an estimator of the population standard deviation σ. As an alternative
we might think of using

ŝ =

√∑n
i=1(Xi − X̄)2

n
.

Why should we use X̄ rather than, say, the sample median, as an es-
timator of µ? And why should we use s rather than ŝ as an estimator of
σ?

4.5 Properties of Good Point Estimators

There are essentially three criteria which we use to select good estimators.
The problem that arises, of course, is that a particular estimators may be
better than another under one criterion but worse than that other estimator
under another criterion.

4.5.1 Unbiasedness

An estimator is unbiased if the mean of its sampling distribution is equal
to the population characteristic to be estimated. That is, S is an unbiased
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estimator of θ if

E{S} = θ.

If the estimate is biased, the bias equals

B = E{S} − θ.

The median, for example, is a biased estimator of the population mean when
the probability distribution of the population being sampled is skewed. The
estimator

ŝ2 =

∑n
i=1(Xi − X̄)2

n

turns out to be a biased estimator of σ2 while the estimator

s2 =

∑n
i=1(Xi − X̄)2

n− 1

is unbiased. This explains why we have been using s2 rather than ŝ2.
Unbiasedness in point estimators refers to the tendency of sampling er-

rors to balance out over all possible samples. For any one sample, the sample
estimate will almost surely differ from the population parameter. An esti-
mator may still be desirable even if it is biased when the bias is not large
because it may have other desirable properties.

4.5.2 Consistency

An estimator is a consistent estimator of a population characteristic θ if the
larger the sample size the more likely it is that the estimate will be close to
θ. For example in the shoe-pair testing example above, X̄ is a consistent
estimator of µ because its sampling distribution tightens around µ = .2
as n increases. More formally, S is a consistent estimator of population
characteristic θ if for any small positive value ϵ,

lim
n→∞

(P (|S − θ| < ϵ) = 1.

4.5.3 Efficiency

The efficiency of an unbiased estimator is measured by the variance of its
sampling distribution. If two estimators based on the same sample size are
both unbiased, the one with the smaller variance is said to have greater
relative efficiency than the other. Thus, S1 is relatively more efficient than
S2 in estimating θ if
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σ2{S1} < σ2{S2} and E{S1} = E{S2} = θ

For example, the sample mean and sample median are both unbiased es-
timators of the mean of a normally distributed population but the mean
is a relatively more efficient estimator because at any given sample size its
variance is smaller.

4.6 Confidence Intervals

Point estimates have the limitation that they do not provide information
about the precision of the estimate—that is, about the error due to sampling.
For example, a point estimate of 5 miles per gallon of fuel consumption
obtained from a sample of 10 trucks out of a fleet of 400 would be of little
value if the range of sampling error of the estimate is 4 miles per gallon—
this would imply that the fuel consumption of the fleet could be anywhere
between 1 and 9 miles per gallon. To provide an indication of the precision
of a point estimate we combine it with an interval estimate. An interval
estimate of the population mean µ would consist of two bounds within which
µ is estimated to lie:

L ≤ µ ≤ U

where L is the lower bound and U is the upper bound. This interval gives
an indication of the degree of precision of the estimation process.

To obtain an estimate of how far the sample mean is likely to deviate
from the population mean—i.e., how tightly it is distributed around the
population mean—we use our estimate of the variance of the sample mean,

s2x̄ =
s2

n
.

This enables us to say that if the sample is large enough, X̄ will lie within
a distance of ±2s of µ with probability .95.

Take, for example, the above-mentioned trade-association problem where
a random sample of 225 firms was selected to estimate the mean number
of hourly paid employees in member firms. Suppose the estimators X̄ of µ
and s of σ yield point estimates X̄ = 8.31 and s = 4.80. Since the sample
size is quite large we can reasonably expect that in roughly 95 percent of
such samples the sample mean will fall within 2s/

√
n = 9.60/15 = .64

paid employees of µ in either direction. It would thus seem reasonable that
by starting with the sample mean 8.31 and adding and subtracting .64 we
should obtain an interval [7.67 — 8.95] which is likely to include µ.
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If we take many large samples and calculate intervals extending two
standard deviations of the sample mean on either side of that sample mean
for each sample using the estimates of X̄ and sx̄ obtained, about 95% of
these intervals will bracket µ. The probability that any interval so obtained
will bracket µ is roughly .95 (actually .9548).

More formally, consider an interval estimate L ≤ µ ≤ U with a specific
probability (1− α) of bracketing µ. The probability that a correct interval
estimate (i.e., one that actually brackets µ) will be obtained is called a
confidence coefficient and is denoted by (1− α). The interval L ≤ µ ≤ U is
called a confidence interval and the limits L and U are called the lower and
upper confidence limits, respectively. The numerical confidence coefficient is
often expressed as a percent, yielding the 100 (1−α)% confidence interval.

The confidence limits U and L for the population mean µ with approx-
imate confidence coefficient (1− α) when the random sample is reasonably
large are

X̄ ± z
s√
n

where z = z (1−α/2) is the 100 (1−α/2) percentile of the standard normal
distribution. The 100 (1− α) percent confidence interval for µ is

X̄ − z
s√
n
≤ µ ≤ X̄ + z

s√
n

Note that the confidence interval does not imply that there is a probability
(1− α) that µ will take a value between the upper and lower bounds. The
parameter µ is not a variable—it is fixed where it is. Rather, there is a
probability (1 − α) that the interval will bracket the fixed value of µ. The
limits −z (1− α/2) and z (1− α/2) are given by the innermost edges of the
shaded areas on the left and right sides of Figure 4.4. The shaded areas each
contain a probability weight equal to α/2. So for a 95% confidence interval
these areas each represent the probability weight (1 − .95)/2 = .05/2 =
.025 and the sum of these areas represents the probability weight .05. The
area under the probability density function between the two shaded areas
represents the probability weight .95. Note also that the probability (1−α)
is chosen in advance of taking the sample. The actual confidence interval
calculated once the sample is taken may or may not bracket µ. If it does,
the confidence interval is said to be correct.

What confidence coefficient should be chosen? This question hinges on
how much risk of obtaining an incorrect interval one wishes to bear. In
the trade-association problem above the 90, 95, and 99 percent confidence
intervals are
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Figure 4.4: The areas (1−α) and α/2 (shaded) for a standard
normal probability distribution with α = .05.

1− α (1− α/2) z sx̄ zsx̄ X̄ X̄ + zsx̄ X̄ − zsx̄
.90 .950 1.645 .32 .5264 8.31 8.84 7.78
.95 .975 1.960 .32 .6272 8.31 8.94 7.68
.99 .995 2.576 .32 .8243 8.31 9.13 7.48

Note that greater confidence in our results requires that the confidence inter-
val be larger—as (1− α) gets bigger, α/2 gets smaller and z must increase.
We could, of course, narrow the confidence interval at every given level of
confidence by increasing the sample size and thereby reducing s/

√
n.

4.7 Confidence Intervals With Small Samples

In making all the above calculations we standardised the sampling distribu-
tion of X̄, obtaining

z =
(X̄ − µ)

s/
√
n

and then calculated limits for µ based on values for z in the table of standard
normal probabilities. We used s as an estimator of σ. Had we known σ the
standardised value would have been

z =
(X̄ − µ)

σ/
√
n

= − µ

σ/
√
n
+

1

σ/
√
n
X̄.



120 STATISTICAL SAMPLING AND ESTIMATION

Statistical theory tells us that when the population is normally distributed
X̄ is normally distributed because it is a linear function of the normally
distributed Xi. Then the standardised value z is also normally distributed
because it is a linear function of the normally distributed variable X̄. But
when we use s as an estimator of σ the above expression for z becomes

z = − µ

s/
√
n
+

1

s/
√
n
X̄.

Whereas the divisor σ/
√
n is a constant, s/

√
n is a random variable. This

immediately raises the question of the normality of z.
It turns out that the variable

(X̄ − µ)

s/
√
n

is distributed according to the t-distribution, which approximates the normal
distribution when the sample size is large. The t-distribution is symmetrical
about zero like the standardised normal distribution but is flatter, being
less peaked in the middle and extending out beyond the standard normal
distribution in the tails. An example is presented in Figure 4.5. The t-
distribution has one parameter, v, equal to the degrees of freedom, which
equals the sample size minus unity in the case at hand. It has mean zero
and variance v/(v − 2) with v > 2.

Because the t-distribution approximates the normal distribution when
the sample size is large and because the Central Limit Theorem implies
that X̄ is approximately normally distributed for large samples, we could use
z = (X̄−µ)/sx̄ to calculate our confidence intervals in the previous examples.
When the sample size is small, however, we must recognize that (X̄−µ)/sx̄ is
actually distributed according to the t-distribution with parameter v = n−1
for samples of size n drawn from a normal population. We calculate the
confidence interval using the same procedure as in the large sample case
except that we now set

t =
(X̄ − µ)

s/
√
n

and use the appropriate percentile from the t-distribution instead of from
the normal distribution.

More formally, we can state that the confidence limits for µ with con-
fidence coefficient (1 − α), when the sample is small and the population is
normally distributed or the departure from normality is not too marked, are

X̄ ± t sx̄
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Figure 4.5: A t-distribution compared to the standard nor-
mal. The t-distribution is the flatter one with the longer
tails.

where t = t(1− α/2;n− 1). Expressing t in this way means that the value
of t chosen will be the one with degrees of freedom n − 1 and percentile of
the distribution 100(1− α/2).

Now consider an example. Suppose that the mean operating costs in
cents per mile from a random sample of 9 vehicles (in a large fleet) turns
out to be 26.8 and a value of s equal to 2.5966 is obtained. The standard
deviation of the mean is thus s/3 = .8655. We want to estimate µ, the mean
operating costs of the fleet. For a 90% confidence interval, t(0.95; 8) = 1.860.
This implies a confidence interval of

26.80± (1.8860)(.8655)

or
25.19 ≤ µ ≤ 28.41.

Had the normal distribution been used, z would have been 1.645, yielding a
confidence interval of

26.80± 1.4237

or
25.38 ≤ µ ≤ 28.22.

Inappropriate use of the normal distribution would give us a narrower in-
terval and a degree of ‘false confidence’.
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Notice that the use of the t-distribution requires that the population be
normal or nearly so. If the population is non-normal and n is large we can use
z and the standard normal distribution. What do we do if the population is
non-normal and the sample size is small? In this case we “cross our fingers”
and use the t-distribution and allow that the confidence coefficient is now
only approximately 1− α. This assumes that the t-distribution is robust—
i.e., applies approximately for many other populations besides normal ones.
Essentially we are arguing, and there is disagreement among statisticians
about this, that the distribution of (X̄ − µ)/sx̄ is better approximated by
the t-distribution than the normal distribution when the population is non-
normal and the sample size is small.

4.8 One-Sided Confidence Intervals

Sometimes we are interested in an upper or lower bound to some popula-
tion parameter. For example, we might be interested in the upper limit
of fuel consumption of trucks in a fleet. One-sided confidence intervals are
constructed the same as two-sided intervals except that all the risk that the
interval will not bracket µ, given by α, is placed on one side. We would
thus set a single lower confidence interval at X̄ − z(1 − α)sx̄ instead of
X̄ − z(1− α/2)sx̄. A single upper-confidence interval is set in similar fash-
ion. Of course, for small samples we would use t instead of z.

4.9 Estimates of a Population Proportion

When the sample size is large the above methods apply directly to point
and interval estimation of a population proportion. Suppose that we want to
estimate the proportion of voters who will vote yes in the next referendum on
whether Quebec should become independent from the rest of Canada. It is
natural to take a large sample of voters to determine the sample proportion
p̄ that are in favour of independence. The Central Limit Theorem tells
us that this sample proportion should be normally distributed around the
population proportion p if the sample size is large enough. To construct a
confidence interval we then need an estimate of the standard deviation of p̄.
Since the total number of people in the sample voting for independence, X,
is distributed according to the binomial distribution with parameters n and
p, its variance is np (1 − p). The variance of the sample proportion p̄ then
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equals

Var{p̄} = Var{X
n
} =

1

n2
Var{X}

=
1

n2
np(1− p) =

p (1− p)

n
. (4.5)

It is natural to estimate the standard deviation of p̄ as the square root of
the above expression with p̄ substituted for p. When we do so we divide by
n− 1 rather than n. This recognizes the fact that

sp̄ =

√
p̄(1− p̄)

n− 1

turns out to be an unbiased estimator of σ2
p̄ whereas

s̃p̄ =

√
p̄(1− p̄)

n

is a biased estimator. The 100 (1 − α) confidence interval for p therefore
becomes

p̄± z

√
p̄(1− p̄)

n
.

where z is the value from the standard normal table that will produce
the appropriate percentile 100 (1 − α/2) for a two-sided confidence inter-
val or 100 (1 − α) for a one-sided confidence interval. Suppose that we
took a random sample of 1000 voters and found that 350 of them would
vote for making Quebec into a separate country. This yields p̄ = .35 as
a point estimate of p. The standard deviation of p̄ is estimated to be√
(.35)(.65)/999 = .015083. A two-sided 95% confidence interval for p, for

which z = z(1− α/2) = z(.975) = 1.96, thus becomes

[.35− (1.96)(.015083)] ≤ p ≤ [.35 + (1.96)(.025083)]

.3204 ≤ p ≤ .3796.
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4.10 The Planning of Sample Size

If we know the confidence we require in our results we can choose the sample
size that will yield that confidence. Resources need not be wasted selecting
an excessively large sample while at the same time the risk of choosing an
uninformative sample can be avoided. We assume that the sample selected
will be reasonably large in absolute value but a small fraction of the popu-
lation. Let us call the distance between the sample mean and the upper (or
lower) confidence limit the half-width (which is half the distance between
the upper and lower limits) and denote it by h. The upper limit will then
be

X̄ + h = X̄ + z
σ√
n

where σ is a value of the population standard deviation picked for planning
purposes, so that

h = z
σ√
n
.

Squaring both sides and then multiplying them by n yields

nh2 = z2σ2

so that

n =
z2σ2

h2
.

In formal terms we can thus state that the necessary random sample size
to achieve the desired half-width h for the specified confidence coefficient
(1−α) for a given planning value of the population standard deviation σ is

n =
z2σ2

h2
(4.6)

where z = z(1− α/2) and the half-width h represents the deviation of each
interval from the sample mean. In the case of a one-sided confidence interval,
h would equal the entire interval.

Consider an example. Suppose that a nationwide survey of physicians is
to be undertaken to estimate µ, the mean number of prescriptions written
per day. The desired margin of error is ±.75 prescriptions, with a 99%
confidence coefficient. A pilot study indicated that a reasonable value for
the population standard deviation is 5. We therefore have z = z(1−.01/2) =
z(.995) = 2.575, h = .75 and σ = 5. The proper sample size then equals

n = [(2.575)(5)]2/(.75)2 = (12.88)2/.5625 = 165.89/.5625 = 295.
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The same general principles apply to choosing the sample size required to
estimate a population proportion to the desired degree of accuracy. Consider
a poll to estimate the results of the next Quebec referendum. How big
a sample will we need to estimate the proportion of the voters that will
vote for separation to an accuracy of ±2 percentage points, 19 times out
of 20? The ratio 19/20 = .95 provides us with (1 − α). We can obtain
a planning value of σp̄ by noting that

√
p(1− p)/n will be a maximum

when p = .5 and using this value of p to obtain the standard deviation
of p̄ for planning purposes.1 Thus, a deviation of 2 percentage points or
.02 from p must equal z(1 − α/2) = z(1 − .05/2) = z(.975), multiplied
by σp̄ =

√
p(1− p)/n =

√
(.5)(.5)/

√
n = .5/

√
n. Letting U be the upper

confidence limit, we thus have

U − p̄ = .02 = z

√
p(1− p)

n
=

(1.96)(.5)√
n

=
.98√
n
,

which implies that
√
n =

.98

.02
= 49.

The appropriate sample size is therefore (49)2 = 2401.

4.11 Prediction Intervals

Sometimes we want to use sample data to construct an interval estimate
for a new observation. Consider the earlier problem of determining the
operating costs for a vehicle fleet. Having established a confidence interval
regarding the operating costs of vehicles in the fleet, we can use the same
evidence to help determine whether a particular vehicle not in the sample
meets standards.

Suppose that the vehicle in question is selected independently of our
earlier random sample of 9 vehicles. Let the operating costs of this vehicle
be Xnew. And suppose that the population (i.e., the operating costs in cents
per mile of all vehicles in the fleet) follows a normal distribution.

Now if we knew the values of µ and σ for the population the calculation
of a prediction interval would be very simple. We simply obtain a value of
z equal to the number of standard deviations from the mean of a normal
distribution that would meet our desired level of confidence—that is,

1It can be easily seen that (.4)(.6) = (.6)(.4) = .24 < (.5)(.5) = .25 and that values of
p less than .4 or greater than .6 yield even smaller values for p(1− p).
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z = z(1 − α/2), where 100 (1 − α) is our desired level of confidence—and
calculate µ ± z σ. We would predict that 100 (1 − α)% of the time Xnew

will fall in this interval. If Xnew does not fall in this interval we can send
the vehicle in for service on the grounds that the chance is no more than
100α/2 percent (looking at the upper tail) that its cost per mile is equal to
or less than the mean for the fleet.

The problem is that we do not know µ and σ and have to use the sample
statistics X̄ and s as estimators. To calculate the prediction interval we
have to know the standard deviation of Xnew. The estimated variance of
Xnew is

s2{Xnew} = E{(Xnew − µ)2} = E{[(Xnew − X̄) + (X̄ − µ)]2}
= E{(Xnew − X̄)2}+ E{(X̄ − µ)2}

= s2 +
s2

n
= [1 +

1

n
] s2.

The prediction interval for Xnew then becomes

X̄ ± t s{Xnew}

where t = t(1− α/2;n− 1) is the ‘number of standard deviations’ obtained
from the t-distribution table for the probability weight (1−α/2) and degrees
of freedom (n− 1). In the case of a vehicle selected from the fleet,

X̄ ± t(.975; 8) s{Xnew} = 26.80± (2.306)
√
(1 + 1/9) (2.5966)

= 26.80± (2.306)(1.05409)(2.5966) = 26.80± 6.31

which yields
20.49 ≤ µ ≤ 33.11.

Notice that the prediction interval is much wider than the 95% confidence
interval for X̄ which would be

26.80± (2.306)
s√
n
= 26.80± (2.306)(.8655) = 26.80± 3.1715

or
23.63 ≤ 26.80 ≤ 29.97.

This is the case because there are two sources of deviation of Xnew from
µ—the deviation from the sample mean, taken as a point estimate of µ, and
the deviation of that sample mean from µ. The confidence interval for the
sample mean only includes the second source of deviation.
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4.12 Exercises

1. Find the following probabilities for the standard normal random variable
z:

a) P (−1 ≤ z ≤ 1)

b) P (−2 ≤ z ≤ 2)

c) P (−2.16 ≤ z ≤ .55)

d) P (−.42 < z < 1.96)

e) P (z ≥ −2.33)

f) P (z > 2.33)

2. Suppose that a random sample of n measurements is selected from a
population with mean µ = 100 and variance σ2 = 100. For each of the
following values of n, give the mean and standard deviation of the sampling
distribution of the sample mean X̄.

a) n = 4.

b) n = 25.

c) n = 100.

d) n = 50.

e) n = 50.

f) n = 500.

g) n = 1000.

3. A particular experiment generates a random variable X that has only
two outcomes: X = 1 (success) with probability p = 0.6 and X = 0 (failure)
with probability (1 − p) = .4. Consider a random sample consisting of
n = 3 independent replications of this experiment. Find the exact sampling
distribution of the sample mean.

4. Write down the Central Limit Theorem and explain what it means.
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5. The mean and standard deviation of a random sample of n measurements
are equal to 33.9 and 3.3 respectively.

a) Find a 95% confidence interval for µ if n = 100. (33.2532, 34.5468)

b) Find a 95% confidence interval for µ if n = 400.

c) What is the effect on the width of the confidence interval of quadru-
pling the sample size while holding the confidence coefficient fixed?

6. Health insurers and the federal government are both putting pressure on
hospitals to shorten the average length of stay of their patients. In 1993 the
average length of stay for men in the United States was 6.5 days and the
average for women was 5.6 days (Statistical Abstract of the United States:
1995 ). A random sample of 20 hospitals in one state had a mean length of
stay for women in 1996 of 3.6 days and a standard deviation of 1.2 days.

a) Use a 90% confidence interval to estimate the population mean length
of stay for women in the state’s hospitals in 1996.

b) Interpret the interval in terms of this application.

c) What is meant by the phrase ‘90% confidence interval’?

7. The population mean for a random variable X is µ = 40. The population
variance is σ2 = 81. For a (large) random sample of size n drawn from this
population, find the following:

a) The expected value and the variance of the sample mean X̄ when
n = 36.

b) The probability that P (X̄ ≥ 41) in the above case.

c) The probability P (38.5 ≤ X̄ ≤ 40.5) when n = 64.

8. A number of years ago, Lucien Bouchard and John Charest were in a
tough fight for the premiership of Quebec. How big a simple random sample
would have been needed to estimate the proportion of voters that would vote
for Bouchard to an accuracy of ±1 percentage points, 19 times out of 20?

9. One of the continuing concerns of U.S. industry is the increasing cost of
health insurance for its workers. In 1993 the average cost of health premiums
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per employee was $2,851, up 10.5% from 1992 (Nation’s Business, Feb. 1995).
In 1997, a random sample of 23 U.S. companies had a mean health insurance
premium per employee of $3,321 and a standard deviation of $255.

a) Use a 95% confidence interval to estimate the mean health insurance
premium per employee for all U.S. companies.

b) What assumption is necessary to ensure the validity of the confidence
interval?

c) Make an inference about whether the true mean health insurance pre-
mium per employee in 1997 exceeds $2,851, the 1993 mean.

10. The mean and the standard deviation of the annual snowfalls in a north-
ern city for the past 20 years are 2.03 meters and 0.45 meters, respectively.
Assume that annual snowfalls for this city are random observations from
a normal population. Construct a 95 percent prediction interval for next
year’s snowfall. Interpret the prediction interval.

11. Accidental spillage and misguided disposal of petroleum wastes have
resulted in extensive contamination of soils across the country. A com-
mon hazardous compound found in the contaminated soil is benzo(a)pyrene
[B(a)p]. An experiment was conducted to determine the effectiveness of a
treatment designed to remove B(a)p from the soil (Journal of Hazardous
Materials, June 1995). Three soil specimens contaminated with a known
amount of B(a)p were treated with a toxin that inhibits microbial growth.
After 95 days of incubation, the percentage of B(a)p removed from each soil
specimen was measured. The experiment produced the following summary
statistics: X̄ = 49.3 and s = 1.5.

a) Use a 99% confidence interval to estimate the mean percentage of
B(a)p removed from a soil specimen in which toxin was used.

b) Interpret the interval in terms of this application.

c) What assumption is necessary to ensure the validity of this confidence
interval?
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4.13 Appendix: Maximum Likelihood
Estimators

The Maximum Likelihood Method is a general method of finding point esti-
mators with desirable qualities.

Let us proceed by using an example. Suppose we know that the number
of annual visits to a dentist by a child is a Poisson random variable X with
unknown parameter λ. In a random sample of two children the numbers of
visits to the dentist last year were X1 = 0 and X2 = 3.

The idea of maximum likelihood is to choose the value for λ for which
it is most likely that we would observe the sample {X1, X2}. We do this
by calculating the probability of observing the sample for various values of
λ—say, 0, 1, 1.5, 2, 3, etc.—and picking the value of λ that maximizes this
probability. The Poisson probability function, defined in equation (3.32), is

P (x) =
λx e−λ

x!
.

Since the observations are independent of each other, the probability of
observing the sample {X1, X2} is P (x = X1) times P (x = X2). From the
table of Poisson probabilities we obtain the following probabilities for various
values of λ:

λ P (x = 0) P (x = 3) P (x = 0)P (x = 3)

0.0 .0000 .0000 .0000
1.0 .3679 .0613 .0225
1.5 .2231 .1255 .0280
2.0 .1353 .1804 .0244
3.0 .0498 .2240 .0112

The value of λ that maximizes the likelihood of observing the sample in the
above table is λ = 1.5.

We could calculate P (x = 0)P (x = 3) for values of λ between the ones
in the table above and plot them to obtain the smooth curve in Figure 4.6.
This curve maps the probability density as a function of λ which is called the
likelihood function. It confirms that 1.5 is the maximum likelihood estimate
of λ.

Let us now approach the problem more formally and suppose that we
have a set of sample observations Xi from which we want to estimate a
parameter θ. There is some probability

P (X1, X2, X3, . . . , Xn; θ)
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Figure 4.6: The likelihood function for the children-to-the
dentist example.

of drawing a particular sample of observations, given the magnitude of the
unknown parameter θ. Because the sample observations X1, X2, X3, . . . , Xn

are independent, this probability function equals

P (X1, X2, X3, . . . , Xn; θ) = P (X1; θ)P (X2; θ)P (X3; θ) . . . P (Xn; θ).

This product of probabilities, when viewed as a function of θ for given
X1, X2, X3, . . . , Xn is called the likelihood function

L(θ) = P (X1; θ)P (X2; θ)P (X3; θ) . . . P (Xn; θ). (4.7)

We find the value of θ that maximizes L(θ) either by analytic methods or,
when that approach is not feasible, by efficient numerical search procedures.

Consider a Poisson process with unknown parameter λ and select a ran-
dom sample X1, X2, X3, . . . , Xn. Using the formula for the Poisson proba-
bility distribution, the likelihood function can be expressed

L(θ) =

[
λX1 e−λ

X1!

] [
λX2 e−λ

X2!

]
. . . . . .

[
λXn e−λ

Xn!

]

=

[
λ
∑

Xi e−nλ

X1!X2! . . . Xn!

]
=

[
λnX̄ e−nλ

X1!X2! . . . Xn!

]
. (4.8)

To maximize L(λ) we differentiate it with respect to λ and find the value
for λ for which this differential is zero. Differentiating (using the chain rule
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whereby dxy = xdy + ydx) we have

dL(θ)

dθ
=

1

X1!X2! . . . Xn!

[
d

dλ

(
λnX̄ e−nλ

)]
=

1

X1!X2! . . . Xn!

[
λnX̄ d

dλ

(
e−nλ

)
+ e−nλ d

dλ

(
λnX̄

)]
=

1

X1!X2! . . . Xn!

[
−λnX̄ e−nλ n + e−nλ nX̄ λnX̄−1

]
=

1

X1!X2! . . . Xn!

[
n

(
X̄

λ
− 1

)(
λnX̄ e−nλ

)]
(4.9)

This expression equals zero—i.e., L(λ) is a maximum—when[
X̄

λ
− 1

]
= 0,

which occurs when λ = X̄. Thus, the sample mean is a maximum likelihood
estimator of λ for a random sample from a Poisson distribution. In the
children-to-dentist example above, the sample mean is (0 + 3)/2 = 1.5, the
value of λ that produced the largest value for L(λ) in Figure 4.6.


