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PREFACE

The pages that follow contain the material presented in my introductory
quantitative methods in economics class at the University of Toronto. They
are designed to be used along with any reasonable statistics textbook. The
most recent textbook for the course was James T. McClave, P. George Ben-
son and Terry Sincich, Statistics for Business and Economics, Eighth Edi-
tion, Prentice Hall, 2001. The material draws upon earlier editions of that
book as well as upon John Neter, William Wasserman and G. A. Whitmore,
Applied Statistics, Fourth Edition, Allyn and Bacon, 1993, which was used
previously and is now out of print. It is also consistent with Gerald Keller
and Brian Warrack, Statistics for Management and Economics, Fifth Edi-
tion, Duxbury, 2000, which is the textbook used recently on the St. George
Campus of the University of Toronto. The problems at the ends of the chap-
ters are questions from mid-term and final exams at both the St. George
and Mississauga campuses of the University of Toronto. They were set by
Gordon Anderson, Lee Bailey, Greg Jump, Victor Yu and others including
myself.

This manuscript should be useful for economics and business students en-
rolled in basic courses in statistics and, as well, for people who have studied
statistics some time ago and need a review of what they are supposed to have
learned. Indeed, one could learn statistics from scratch using this material
alone, although those trying to do so may find the presentation somewhat
compact, requiring slow and careful reading and thought as one goes along.

I would like to thank the above mentioned colleagues and, in addition, Ado-
nis Yatchew, for helpful discussions over the years, and John Maheu for
helping me clarify a number of points. I would especially like to thank Gor-
don Anderson, who I have bothered so frequently with questions that he
deserves the status of mentor.

After the original version of this manuscript was completed, I received some
detailed comments on Chapter 8 from Peter Westfall of Texas Tech Univer-
sity, enabling me to correct a number of errors. Such comments are much
appreciated.

J. E. Floyd
July 2, 2010

c⃝J. E. Floyd, University of Toronto
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Chapter 3

Some Common Probability
Distributions

3.1 Random Variables

Most of the basic outcomes we have considered thus far have been non-
numerical characteristics. A coin comes up either heads or tails; a delivery
is on the same day with the correct order, the next day with the incorrect
order, etc. We now explicitly consider random trials or experiments that
relate to a quantitative characteristic, with a numerical value associated
with each outcome. For example, patients admitted to a hospital for, say,
X days where X = 1, 2, 3, 4, . . .. Canada’s GNP this year will be a specific
number on the scale of numbers ranging upwards from zero. When the
outcomes of an experiment are particular values on a natural numerical
scale we refer to these values as a random variable. More specifically, a
random variable is a variable whose numerical value is determined by the
outcome of a random trial or experiment where a unique numerical value is
assigned to each sample point.

Random variables may be discrete as in the length of hospital stay in days
or continuous as in the case of next month’s consumer price index or tomor-
row’s Dow Jones Industrial Average, the calculated values of which, though
rounded to discrete units for reporting, fall along a continuum. The essen-
tial distinction between discrete and continuous random variables is that the
sample points can be enumerated (or listed in quantitative order) in the case
of a discrete random variable—for example, we can list the number of po-
tential days of a hospital stay.1 In the case of continuous random variables it

1Hospital stays could also be treated as a continuous variable if measured in fractions
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64 PROBABILITY DISTRIBUTIONS

is not possible to list the sample points in quantitative order—next month’s
consumer price index, for example, could be 120.38947 or 120.38948 or it
could take any one of an infinity of values between 120.38947 and 120.38948.
The number of sample points for a continuous random variable is always in-
finite. For a discrete random variable the number of sample points may or
may not be infinite, but even an infinity of sample points could be listed or
enumerated in quantitative order although it would take an infinite length of
time to list them all. In the case of a continuous random variable any sample
points we might put in a list cannot possibly be next to each other—between
any two points we might choose there will be an infinity of additional points.

3.2 Probability Distributions of Random Variables

The probability distribution for a discrete random variable X associates with
each of the distinct outcomes xi, (i = 1, 2, 3, . . . , k) a probability P (X = xi).
It is also called the probability mass function or the probability function.
The probability distribution for the hospital stay example is shown in the top
panel of Figure 3.1. The cumulative probability distribution or cumulative
probability function for a discrete random variableX provides the probability
that X will be at or below any given value—that is, P (X ≤ xi) for all xi.
This is shown in the bottom panel of Figure 3.1. Note that X takes discrete
values in both panels so that the lengths of the bars in the top panel give the
probabilities that it will take the discrete values associated with those bars.
In the bottom panel the length of each bar equals the sum of the lengths
of all the bars in the top panel associated with values of X equal to or less
than the value of X for that bar.

A continuous random variable assumes values on a continuum. Since
there are an infinity of values between any two points on a continuum it is not
meaningful to associate a probability value with a point on that continuum.
Instead, we associate probability values with intervals on the continuum.
The probability density function of a continuous random variable X is a
mathematical function for which the area under the curve corresponding to
any interval is equal to the probability that X will take on a value in that
interval. The probability density function is denoted by f(x), which gives
the probability density at x. An example is given in the top panel of Figure
3.2 with the shaded area being the probability that X will take a value
between 6 and 7. Note that f(x) is always positive.

of hours or days. They are normally measure discretely in days, however, with patients
being in hospital ‘for the day’ if not released during a given period in the morning.
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Figure 3.1: Probability mass function (top) and cumulative
probability function (bottom) for the discrete random vari-
able ‘number of days of hospitalization’.
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Figure 3.2: Probability density and cumulative probability functions
for a continuouts random variable. The shaded area in the top panel
equals the distance between the two vertical lines in the bottom
panel.

The cumulative probability function of a continuous random variable X
is denoted by F (x) and is defined

F (x) = P (X ≤ x) (3.1)

where −∞ ≤ x ≤ +∞. The cumulative probability function F (x) gives the
probability that the outcome of X in a random trial will be less than or
equal to any specified value x. Thus, F (x) corresponds to the area under
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the probability density function to the left of x. This is shown in the bottom
panel of Figure 3.2. In that panel, the distance between the two horizontal
lines associated with the cumulative probabilities at X ≤ 6 and X ≤ 7 is
equal to the shaded area in the top panel, and the distance of the lower of
those two horizontal lines from the horizontal axis is equal to the area under
the curve in the top panel to the left of X = 6. In mathematical terms we
can express the probability function as

P (a ≤ x ≤ b) =

∫ b

a
f(x) dx (3.2)

and the cumulative probability function as

P (X ≤ x) = F (x) =

∫ x

−∞
f(u) du (3.3)

where u represents the variable of integration.

3.3 Expected Value and Variance

The mean value of a random variable in many trials is also known as its ex-
pected value. The expected value of a discrete random variable X is denoted
by E{X} and defined

E{X} =
k∑

i=1

xiP (xi) (3.4)

where P (xi) = P (X = xi). Since the process of obtaining the expected value
involves the calculation denoted by E{} above, E{ } is called the expectation
operator.

Suppose that the probability distribution in the hospital stay example
in Figure 3.1 above is

x: 1 2 3 4 5 6

P (x): .2 .3 .2 .1 .1 .1

The expected value of X is

E{X} = (1)(.2) + (2)(.3) + (3)(.2) + (4)(.1) + (5)(.1) + (6)(.1)

= .2 + .6 + .6 + .4 + .5 + .6 = 2.9.

Note that this result is the same as would result from taking the mean in
the fashion outlined in Chapter 1. Let the probabilities be frequencies where
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the total hospital visits is, say, 100. Then the total number of person-days
spent in the hospital is

(1)(20) + (2)(30) + (3)(20) + (4)(10) + (5)(10) + (6)(10)

= 20 + 60 + 60 + 40 + 50 + 60 = 290

and the common mean is 290/100 = 2.9. E{X} is simply a weighted average
of the possible outcomes with the probability values as weights. For this
reason it is called the mean of the probability distribution of X. Note that
the mean or expected value is a number that does not correspond to any
particular outcome.

The variance of a discrete random variable X is denoted by σ2{X} and
defined as

σ2{X} =
k∑

i=1

(xi − E{X})2P (xi) (3.5)

where σ2{ } is called the variance operator. The calculation of the variance
of the length of hospital stay can be organized in the table below:

x: 1 2 3 4 5 6

P (x): .20 .30 .20 .10 .10 .10
x− E{X}: -1.90 -.90 .10 1.10 2.10 3.10

(x− E{X})2: 3.61 .81 .01 1.21 4.41 9.61

from which

σ2{X} = (3.61)(.2) + (.81)(.3) + (.01)(.2) + (1.21)(.1) + (4.41)(.1)

+(9.61)(.1)

= .722 + .243 + .002 + .121 + .441 + .961 = 2.49.

The variance is a weighted average of the squared deviations of the out-
comes of X from their expected value where the weights are the respective
probabilities of occurrence. Thus σ2{X} measures the extent to which the
outcomes of X depart from their expected value in the same way that the
variance of the quantitative variables in the data sets examined in Chap-
ter 1 measured the variability of the values about their mean. There is an
important distinction, however, between what we are doing here and what
we did in Chapter 1. In Chapter 1 we took an observed variable X and
measured its observed variance. Here we are taking a random variable X
and exploring the nature of its probability distribution.
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Consider a random variable V for which vi = (xi − E{X})2 in (3.5).
Since each vi has a corresponding xi associated with it,

P (vi) = P ((xi − E{X})2) = P (xi),

and (3.5) yields

σ2{X} =
k∑

i=1

viP (vi)

= E{V } = E{(xi − E{X})2}. (3.6)

The variance is simply the expectation of, or expected value of, the squared
deviations of the values from their mean. The standard deviation, denoted
by σ, is defined as the square root of the variance.

The discrete random variable X can be standardised or put in standard-
ised form by applying the relationship

Zi =
Xi − E{X}

σ{X}
(3.7)

where the discrete random variable Z is the standardised form of the vari-
able X. The variable Z is simply the variable X expressed in numbers of
standard deviations from its mean. In the hospital stay example above the
standardised values of the numbers of days of hospitalization are calculated
as follows:

x: 1 2 3 4 5 6

P (x): .2 .3 .2 .1 .1 .1
x− E{X}: -1.9 -.9 .1 1.1 2.1 3.1

(x− E{X})2: 3.61 .81 .01 1.21 4.41 9.61
(x− E{X})/σ{X}: -1.20 -.56 .06 .70 1.32 1.96

where σ =
√
2.49 = 1.58.

The expected value of a continuous random variable is defined as

E{X} =

∫ ∞

−∞
xf(x) dx. (3.8)

This is not as different from the definition of the expected value of a discrete
random variable in (3.4) as it might appear. The integral performs the same
role for a continuous variable as the summation does for a discrete one.
Equation (3.8) sums from minus infinity to plus infinity the variable x with
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each little increment of x, given by dx, weighted by the probability f(x) that
the outcome of x will fall within that increment.2 Similarly, the variance of
a continuous random variable is defined as

σ2{X} = E{(x− E{X})2}

=

∫ ∞

−∞
(x− E{X})2f(x) dx. (3.9)

In this equation the integral is taken over the probability weighted incre-
ments to (x − E{X}2) as compared to (3.8) where the integration is over
the probability weighted increments to x.

Continuous random variables can be standardised in the same fashion as
discrete random variables. The standardised form of the continuous random
variable X is thus

Z =
X − E{X}

σ{X}
. (3.10)

3.4 Covariance and Correlation

We noted in Chapter 1 that covariance and correlation are measures of the
association between two variables. The variables in that case were sim-
ply quantitative data. Here we turn to an analysis of the covariance and
correlation of two random variables as properties of their joint probabil-
ity distribution. The covariation of the outcomes xi and yj of the discrete
random variables X and Y is defined as

(xi − E{X})(yj − E{Y }).

The covariance of two random variables is the expected value of their co-
variation (i.e., their mean covariation after repeated trials). For two discrete
random variables X and Y we thus have

σ{X,Y } = E{(xi − E{X})(yj − E{Y })}
=

∑
i

∑
j

(xi − E{X})(yj − E{Y })P (xi, yj) (3.11)

where P (xi, yj) denotes P (X = xi ∩ Y = yj). We call σ{ , } the covariance
operator. Consider the following example:

2Notice that the definition of probability requires that∫ ∞

−∞
f(x) dx = 1.
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Y
X 5 10

2 .1 .4 .5
3 .3 .2 .5

.4 .6 1.0

The two discrete random variables X and Y each take two values, 2 and 3
and 5 and 10 respectively. The four numbers in the enclosed square give the
joint probability distribution of X and Y —that is, the probabilities

P (X = xi ∩ Y = yj).

The numbers along the right and bottom margins are the marginal probabil-
ities, which sum in each case to unity. On the basis of the earlier discussion
it follows that

E{X} = (2)(.5) + (3)(.5) = 2.5

E{Y } = (5)(.4) + (10)(.6) = 8.0

σ2{X} = (−.52)(.5) + (.52)(.5) = .25

and

σ2{Y } = (−32)(.4) + (22)(.6) = 6.0

which renders σ{X} =
√
0.25 = .5 and σ{Y } =

√
8 = 2.83. The calculation

of the covariance can be organized using the following table:

(X = 2 (X = 2 (X = 3 (X = 3
∩ ∩ ∩ ∩

Y = 5) Y = 10) Y = 5) Y = 10)

P (xi, yj) .1 .4 .3 .2
(xi − E{X}) - .5 -.5 .5 .5
(yj −E{Y }) - 3 2 - 3 2

(xi − E{X})(yj −E{Y }) 1.5 -1 -1.5 1
(xi − E{X})(yj −E{Y })P (xi, yj) .15 -.4 -.45 .2

The sum of the numbers in the bottom row gives

σ{X,Y } =
∑
i

∑
j

(xi − E{X})(yj − E{Y })P (xi, yj) = −.5.
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The coefficient of correlation of two random variables X and Y , denoted
by ρ{X,Y } is defined as

ρ{X,Y } =
σ{X,Y }

σ{X}σ{Y }
. (3.12)

In the example above

ρ{X,Y } = −.5/((.5)(2.83)) = −.5/1.415 = −.35

which signifies a negative relationship between the two random variables.
It is easy to show that the coefficient of correlation between X and Y is
equivalent to the covariance between the standardised forms of those vari-
ables because the covariance of the standardised forms is the same as the
covariance of the unstandardised variables and the standard deviations of
the standardised forms are both unity. Thus, when the variables are stan-
dardised both the covariance and the correlation coefficient are unit free.

The covariance of continuous random variables X and Y is written

σ{X,Y } = E{(x− E{X})(y − E{Y })}

=

∫ ∫
(x− E{X})(y − E{Y })f(x, y) dx dy (3.13)

where f(x, y) is the joint probability density function of X and Y . The
shape of a typical joint probability density function is portrayed graphically
in Figure 3.3 (both variables are in standardised form). The coefficient
of correlation between continuous random variables is defined by equation
(3.12) with the numerator being (3.13) and the denominator the product of
the standard deviations of X and Y obtained by taking the square roots of
successive applications of (3.9).

When two variables are statistically independent both the covariance
and correlation between them is zero. The opposite, however, does not
follow. Zero covariance and correlation do not necessarily imply statistical
independence because there may be a non-linear statistical relationship be-
tween two variables. An example is shown in Figure 3.4. The covariance
and correlation between the two variables is zero, but they are obviously
systematically related.
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Figure 3.3: The joint probability density function of two con-
tinuous standardized random variables.

3.5 Linear Functions of Random Variables

Consider a linear function of the random variable X,

W = a+ bX. (3.14)

A number of relationships hold. First,

E{W} = E{a+ bX} = E{a}+ bE{X}, (3.15)

which implies that

E{a} = a (3.16)

and

E{bX} = bE{X}. (3.17)

We can pass the expectation operator through a linear equation with the
result that E{W} is the same function of E{X} as W is of X. Second,

σ2{W} = σ2{a+ bX} = b2 σ2{X} (3.18)

which implies

σ2{a+X} = σ2{X}, (3.19)

and

σ2{bX} = b2 σ2{X}. (3.20)

This leads to the further result that

σ{a+ bX} = |b|σ{X}. (3.21)
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Figure 3.4: An example of two uncorrelated random variables
that are not statistically independent.

3.6 Sums and Differences of Random Variables

If Z is the sum of two random variables X and Y , then the following two
conditions hold:

E{Z} = E{X + Y } = E{X}+ E{Y } (3.22)

and

σ2{Z} = σ2{X}+ σ2{Y }+ 2σ{X,Y }. (3.23)

When Z is the difference between X and Y , these become

E{Z} = E{X − Y } = E{X} − E{Y } (3.24)

and

σ2{Z} = σ2{X}+ σ2{Y } − 2σ{X,Y }. (3.25)

To prove (3.23) and (3.25) we expand σ2{Z} using the definition of
variance and the rules above:
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σ2{Z} = E{(Z − E{Z})2}
= E{(X + Y − E{X + Y })2}
= E{((X − E{X}) + (Y −E{Y }))2}
= E{((X − E{X})2 + 2 (X − E{X})(Y − E{Y })

+(Y − E{Y })2)}
= E{(X − E{X})2}+ 2E{(X −E{X})(Y −E{Y })}

+E{(Y − E{Y })2}
= σ2{X}+ 2σ{X,Y }+ σ2{Y }. (3.26)

In the case where Z = X−Y the sign of the covariance term changes but the
variance of both terms remains positive because squaring a negative number
yields a positive number.

When X and Y are statistically independent (and thus uncorrelated),
σ{X,Y } = 0 and (3.23) and (3.25) both become

σ2{Z} = σ2{X}+ σ2{Y }.

More generally, if T is the sum of S independent random variables,

T = X1 +X2 +X3 + · · ·+XS ,

where the Xi can take positive or negative values, then

E{T} =
S∑
s

E{Xi} (3.27)

and

σ2{T} =
S∑
s

σ2{Xi}. (3.28)

In concluding this section we can use the rules above to prove that the
mean of a standardised variable is zero and its variance and standard devi-
ation are unity. Let Z be the standardised value of X, that is

Z =
X − E{X}

σ{X}
.
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Then

E{Z} = E

{
X − E{X}

σ{X}

}
=

1

σ{X}
E {X − E{X}}

=
1

σ{X}
(E{X} − E{X}) = 0

and

σ2{Z} = E

{(
X − E{X}

σ{X}
− 0

)2
}

= E

{(
X − E{X}

σ{X}

)2
}

=
1

σ2{X}
E
{
(X − E{X})2

}
=

σ2{X}
σ2{X}

= 1.

It immediately follows that σ{Z} also is unity.
Finally, the correlation coefficient between two standardised random

variables U and V will equal

ρ{U, V } =
σ{U, V }

σ{U}σ{V }
= σ{U, V }

since σ{U} and σ{V } are both unity.

3.7 Binomial Probability Distributions

We can think of many examples of random trials or experiments in which
there are two basic outcomes of a qualitative nature—the coin comes up
either heads or tails, the part coming off the assembly line is either defective
or not defective, it either rains today or it doesn’t, and so forth. These
experiments are called Bernoulli random trials. To quantify these outcomes
we arbitrarily assign one outcome the value 0 and the other the value 1.
This random variable, Xi = {0, 1} is called a Bernoulli random variable.

Usually we are interested in a whole sequence of random trials. In the
process of checking the effectiveness of a process of manufacturing com-
puter monitors, for example, we can let Xi = 1 if the ith monitor off the
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line is defective and Xi = 0 if the ith monitor is not defective. The Xi,
(i = 1, 2, 3, . . . , n) can then be viewed as a sequence of Bernoulli random vari-
ables. Such a sequence is called a Bernoulli process. Let X1, X2, X3, . . . , Xn

be a sequence of random variables associated with a Bernoulli process. The
process is said to be independent if the Xi are statistically independent and
stationary if every Xi = {0 , 1} has the same probability distribution. The
first of these conditions means that whether or not, say, the 5th monitor off
the assembly line is defective will have nothing to do with whether the 6th,
7th, 100th, 200th, or any other monitor is defective. The second condition
means that the probability of, say, the 10th monitor off the line being de-
fective is exactly the same as the probability that any other monitor will be
defective—the Xi are identically distributed. The random variables in the
sequence are thus independently and identically distributed.

In a sequence of Bernoulli random trials we are typically interested in the
number of trials that have the outcome 1. The sum X1+X2+X3+. . .+X300

would give the number of defective monitors in a sample of 300 off the line.
The sum of n independent and identically distributed Bernoulli random
variables, denoted by X,

X = X1 +X2 +X3 + . . .+Xn,

is called a binomial random variable. It can take n+1 values ranging from
zero (when Xi = 0 for all i) to n (when Xi = 1 for all i). This random
variable is distributed according to the binomial probability distribution.

The binomial probability function, which gives the probabilities that X
will take values (0, . . . , n), is

P (x) =

(
n
x

)
px(1− p)n−x (3.29)

where P (x) = P (X = x), x = 0, 1, 2, . . . , n, and 0 ≤ p ≤1. The parameter p
is the probability that Xi = 1. It is the same for all i because the Bernoulli
random variables Xi are identically distributed. The term(

n
x

)

represents a binomial coefficient which is defined as(
n
x

)
=

n!

x!(n− x)!
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Figure 3.5: Binomial probability distributions with n = 10
and p = .2 (top), p = .5 (middle) and p = .8 (bottom.
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where a! = (a)(a− 1)(a− 2)(a− 3) . . . (1) and 0! = 1.
The binomial probability distribution is a discrete probability distribu-

tion since X can only take the discrete values 0, 1, . . . , n. The parameters
in the binomial probability distribution are p and n. Accordingly, there
is a whole family of such distributions, one for each (p, n) combination.
Figure 3.5 plots three examples—the distribution is skewed right if p < .5,
skewed left if p > .5 and symmetrical if p = .5. The mean of the binomial
distribution is

E{X} = np (3.30)

and the variance is

σ2{X} = np (1− p). (3.31)

If we have two independent binomial random variables V and W with com-
mon probability parameter p and based on nv and nw trials, the sum V +W
is a binomial random variable with parameters p and n = nv + nw.

To more fully understand the workings of the binomial distribution con-
sider the following problem. Four gauges are tested for accuracy. This
involves four Bernoulli random trials Xi = {0, 1} where 0 signifies that the
gauge is accurate and 1 signifies that it is inaccurate. Whether or not any
one of the four gauges is inaccurate has nothing to do with the accuracy of
the remaining three so the Xi are statistically independent. The probability
that each gauge is inaccurate is assumed to be .25. We thus have a binomial
random variable X with n = 4 and p = .25. The sample space of X is

S = {0, 1, 2, 3, 4}.

Taking into account the fact that n! = (4)(3)(2)(1) = 24, the probability
distribution can be calculated by applying equation (3.29) as follows:

x n!/(x!(n− x)!) px (1− p)n−x P (x)

0 24/(0!4!) = 1 .250 = 1.0000 .754 = .3164 .3164

1 24/(1!3!) = 4 .251 = .2500 .753 = .4219 .4219

2 24/(2!2!) = 6 .252 = .0625 .752 = .5625 .2109

3 24/(3!3!) = 4 .253 = .0156 .751 = .7500 .0469

4 24/(4!1!) = 1 .254 = .0039 .750 = 1.0000 .0039
1.0000
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This probability distribution can be derived in a longer but more informative
way by looking at the elementary events in the sample space and building up
the probabilities from them. The four gauges are tested one after the other.
There are 16 basic outcomes or sequences with probabilities attached to each
sequence. The sequences are shown in Table 3.1. To see how the probabilities
are attached to each sequence, consider sequence S12. It consists of four
outcomes of four independent and identically distributed Bernoulli random
trials—0,1,0,0. The probability that 0 will occur on any trial is .75 and the
probability that 1 will occur is .25. The probability of the four outcomes in
the sequence observed is the product of the four probabilities. That is, the
probability that first a 0 and then a 1 will occur is the probability of getting
a 0 on the first trial times the probability of getting a 1 on the next trial.
To obtain the probability that a sequence of 0,1,0 will occur we multiply the
previously obtained figure by the probability of getting a zero. Then to get
the probability of the sequence 0,1,0,0 we again multiply the previous figure
by the probability of getting a zero. Thus the probability of the sequence
S12 is

(.75)(.25)(.75)(.75) = (.25)1(.75)3 = .4219

which, it turns out, is the same as the probability of obtaining sequences S8,
S14 and S15. Clearly, all sequences involving three zeros and a single one
have the same probability regardless of the order in which the zeros and the
one occur.

A frequency distribution of these sequences is presented in Table 3.2.
There is one occurrence of no ones and four zeros, four occurrences of one
and three zeros, six occurrences of two ones and two zeros, four occurrences
of three ones and one zero, and one occurrence of four ones and no zeros.
Thus, to find the probability that two ones and two zeros will occur we
want the probability that any of the six sequences having that collection of
ones and zeros will occur. That will be the probability of the union of the
six elementary events, which will be the sum of the probabilities of the six
sequences. Since all six sequences have the same probability of occurring the
probability of two ones and two zeros is six times the probability associated
with a single sequence containing two ones and two zeros.

Notice something else. Expand the expression (x+ y)4.

(x+ y)4 = (x+ y)(x+ y)(x+ y)(x+ y)

= (x+ y)(x+ y)(x2 + 2x y + y2)

= (x+ y)(x3 + 3x2 y + 3x y2 + y3)

= x4 + 4x3 y + 6x2 y2 + 4x y3 + y4.
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Table 3.1: Sequence of Outcomes in an Accuracy Test of Four Guages

X1 X2 X3 X4 Sequence X =
∑

xi Probability

1 S1 4 (.25)4(.75)0

1
0 S2 3 (.25)3(.75)1

1
1 S3 3 (.25)3(.75)1

0
0 S4 2 (.25)2(.75)2

1

1 S5 3 (.25)3(.75)1

1
0 S6 2 (.25)2(.75)2

0
1 S7 2 (.25)2(.75)2

0
0 S8 1 (.25)1(.75)3

1 S9 3 (.25)3(.75)1

1
0 S10 2 (.25)2(.75)2

1
1 S11 2 (.25)2(.75)2

0
0 S12 1 (.25)1(.75)3

0

1 S13 2 (.25)2(.75)2

1
0 S14 1 (.25)1(.75)3

0
1 S15 1 (.25)1(.75)3

0
0 S16 0 (.25)0(.75)4
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Table 3.2: Frequency Distribution of Sequences in Table 3.1

x Frequency Probability of Sequence P (x)

0 1 (.25)0(.75)4 ×1 = .3164

1 4 (.25)1(.75)3 ×4 = .4219

2 6 (.25)2(.75)2 ×6 = .2109

3 4 (.25)3(.75)1 ×4 = .0469

4 1 (.25)4(.75)0 ×1 = .0039

It turns out that the coefficients of the four terms are exactly the frequencies
of the occurrences in the frequency distribution above and the x y terms
become the sequence probabilities in the table when x is replaced by the
probability of a one and y is replaced the probability of a zero and n = 4.
The above expansion of (x + y)4 is called the binomial expansion, whence
the term binomial distribution. The easiest way to calculate the binomial
coefficients for the simplest cases (where n is small) is through the use of
Pascal’s Triangle.

Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

etc.. . . . . .

Additional rows can be added to the base by noting that each number that
is not unity is the sum of the two numbers above it. The relevant binomial
coefficients appear in the row with n+ 1 entries.



3.8. POISSON PROBABILITY DISTRIBUTIONS 83

Fortunately, all these complicated calculations need not be made every
time we want to find a binomial probability. Probability tables have been
calculated for all necessary values of n and p and appear at the end of every
statistics textbook.3

3.8 Poisson Probability Distributions

The Poisson probability distribution applies to many random phenomena
occurring during a period of time—for example, the number of inaccurate
gauges coming off an assembly line in a day or week. It also applies to spatial
phenomena such as, for example, the number of typographical errors on a
page.

A Poisson random variable is a discrete variable that can take on any
integer value from zero to infinity. The value gives the number of occur-
rences of the circumstance of interest during a particular period of time or
within a particular spatial area. A unit probability mass is assigned to this
sample space. Our concern is then with the probability that there will be,
for example, zero, one, two, three, etc., calls to the police during a particular
time period on a typical day, or that in typing this manuscript I will make
zero, one, two, etc. errors on a particular page.

The Poisson probability function is

P (x) =
λx e−λ

x!
(3.32)

where

P (x) = P (X = x)

with

x = 0, 1, 2, 3, 4, . . . ,∞

and 0 < λ < ∞. The parameter e = 2.71828 is a constant equal to the base
of natural logarithms.4 Note that, whereas the binomial distribution had
two parameters, n and p, the Poisson distribution has only one parameter,
λ, which is the average number of calls over the period.

3These probabilities can also be calculated, and the various distributions plotted, using
XlispStat and other statistical software.

4The number e is equal to

e = lim
n→∞

(
1 +

1

n

)n

.
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Consider an example. Suppose that the number of calls to the 911 emer-
gency number between 8:00 and 8:30 PM on Fridays is a Poisson random
variable X with λ = 3.5. We can calculate a portion of the probability
distribution as follows:

x P (X = x) P (X ≤ x)

0 [3.50e−3.5]/0! = [(1)(.03019738)]/1 = .0302 .0302

1 [3.51e−3.5]/1! = [(3.5)(.03019738)]/1 = .1057 .1359

2 [3.52e−3.5]/2! = [(12/250)(.03019738)]/2 = .1850 .3208

3 [3.53e−3.5]/3! = [(42.875)(.03019738)]/6 = .2158 .5366

4 [3.54e−3.5]/4! = [(150.0625)(.03019738)]/24 = .1888 .7254

5 [3.55e−3.5]/5! = [(525.2188)(.03019738)]/120 = .1322 .8576

6 [3.56e−3.5]/6! = [(1838.266)(.03019738)]/720 = .0771 .9347

7 [3.57e−3.5]/7! = [(6433.903)(.03019738)]/5040 = .0385 .9732

The figures in the right-most column are the cumulative probabilities. The
probably of receiving 3 calls is slightly over .2 and the probability of receiving
3 or less calls is just under .54. Note that over 97 percent of the probability
mass is already accounted for by x ≤ 7 even though x ranges to infinity.

As in the case of the binomial distribution, it is unnecessary to calculate
these probabilities by hand—Poisson tables can be found at the back of any
textbook in statistics.5 The mean and variance of a Poisson probability
distribution are

E{X} = λ

and
σ2{X} = λ.

Plots of Poisson distributions are shown in Figure 3.6. The top panel shows
a Poisson distribution with λ = .5, the middle panel shows one with λ = 3

5And, as in the case of other distributions, probabilities can be calculated using statis-
tical software such as XlispStat.
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Figure 3.6: Poisson probability distributions with λ = .5
(top), λ = 3 (middle) and λ = 5 (bottom).
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and the distribution plotted in the bottom panel has λ = 5. All Poisson
probability distributions are skewed to the right although they become more
symmetrical as λ gets larger.

Just as binomial distributions result from a Bernoulli process, Poisson
distributions are the result of a Poisson process. A Poisson process is any
process that generates occurrences randomly over a time or space continuum
according to the following rules:

• The numbers of occurrences in non-overlapping time (space) intervals
are statistically independent.

• The number of occurrences in a time (space) interval has the same
probability distribution for all time (space) intervals.

• The probability of two or more occurrences in any interval (t + ∆t)
is negligibly small relative to the probability of one occurrence in the
interval.

When these postulates hold, the number of occurrences in a unit time (space)
interval follows a Poisson probability distribution with parameter λ.

If V and W are two independent Poisson random variables with param-
eters λv and λw, respectively, the sum V +W is a Poisson random variable
with λ = λv + λw.

3.9 Uniform Probability Distributions

Uniform probability distributions result when the probability of all occur-
rences in the sample space are the same. These probability distributions
may be either discrete or continuous.

Consider a computer random number generator that cranks out random
numbers between 0 and 9. By construction of the computer program, the
probability that any one of the 10 numbers will be turned up is 1/10 or 0.1.
The probability distribution for this process is therefore

x: 0 1 2 3 4 5 6 7 8 9

P (x): .1 .1 .1 .1 .1 .1 .1 .1 .1 .1

This random variable is called a discrete uniform random variable and its
probability distribution is a discrete uniform probability distribution. The
discrete probability function is

P (x) =
1

s
(3.33)
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where
P (x) = P (X = x),

x = a, a+ 1, a+ 2, . . . , a+ (s− 1).

The parameters a and s are integers with s > 0. Parameter a denotes the
smallest outcome and parameter s denotes the number of distinct outcomes.
In the above example, a = 0 and s = 10.

The mean and variance of a discrete uniform probability distribution are

E{X} = a+
s− 1

2

and

σ2 =
s2 − 1

12
.

In the example above, E{X} = 0 + 9/2 = 4.5 and σ2 = 99/12 = 8.25.
A graph of a discrete probability distribution is shown in the top panel of
Figure 3.7.

The continuous uniform or rectangular probability distribution is the
continuous analog to the discrete uniform probability distribution. A con-
tinuous uniform random variable has uniform probability density over an
interval. The continuous uniform probability density function is

f(x) =
1

b− a
(3.34)

where the interval is a ≤ x ≤ b. Its mean and variance are

E{X} =
b+ a

2

and

σ2{X} =
(b− a)2

12

and the cumulative probability function is

F (x) = P (X ≤ x) =
x− a

b− a
. (3.35)

Suppose, for example, that a team preparing a bid on an excavation
project assesses that the lowest competitive bid is a continuous uniform
random variable X with a =$250.000 and b =$300.000. With X measured
in units of one thousand, the density function will be

f(x) = 1/50 = .02
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Figure 3.7: Discrete uniform probability distribution (top) and con-
tinuous uniform probability distribution (bottom).

where 250 ≤ x ≤ 300. The graph of this distribution is shown in the
bottom panel of Figure 3.7. The mean is 275 thousand and the variance is
502/12 = 2500/12 = 208.33. The cumulative probability is the area to the
left of x in the bottom panel of Figure 3.7. It is easy to eyeball the mean
and the various percentiles of the distribution from the graph. The mean
(and median) is the value of x that divides the rectangle in half, the lower
quartile is the left-most quarter of the rectangle, and so forth. Keep in mind
that, X being a continuous random variable, the probability that X = x is
zero.
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3.10 Normal Probability Distributions

The family of normal probability distributions is the most important of all
for our purposes. It is an excellent model for a wide variety of phenomena—
for example, the heights of 10 year olds, the temperature in New York City
at 12:01 on January 1, the IQs of individuals in standard IQ tests, etc. The
normal random variable is a continuous one that may take any value from
−∞ to +∞. Even though the normal random variable is not bounded, its
probability distribution yields an excellent approximation to many phenom-
ena.

The normal probability density function is

f(x) =
1

σ
√
2π

e−(1/2)[(x−µ)/σ]2 (3.36)

where −∞ ≤ x ≤ +∞, −∞ ≤ µ ≤ +∞, σ > 0, π = 3.14159 and
e = 2.71828.

The mean and variance of a normal probability distribution are

E{X} = µ

and

σ2{X} = σ2.

The distribution’s two parameters, µ and σ, are its mean and standard
deviation. Each parameter pair (µ, σ) corresponds to a different member of
the family of normal probability distributions. Every normal distribution is
bell shaped and symmetrical, each is centred at the value of µ and spread
out according to the value of σ. Normal distributions are often referred to
using the compact notation N(µ, σ2). Three different members of the family
of normal distributions are shown in Figure 3.8. In the top panel µ = 56
and σ = 2.7 [N(56, 7.29)] and in the middle panel µ = 66.5 and σ = 2.7
[N(66.5, 7.29)]. In the bottom panel µ = 66.5 and σ = 4.1 [N(66.5, 16.81)].

The standardised normal distribution is the most important member of
the family of normal probability distributions—the one with µ = 0 and
σ = 1. The normal random variable distributed according to the standard
normal distribution is called the standard normal variable and is denoted
by Z. It is expressed as

Z =
X − µ

σ
(3.37)
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µ = 56 , σ = 2.7

µ = 66.5 , σ = 2.7

µ = 66.5 , σ = 4.1

Figure 3.8: Three different members of the family of normal
probability distributions.
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A basic feature of normal distributions is that any linear function of a normal
random variable is also a normal random variable. Thus

Z = − µ

σ
+

1

σ
X (3.38)

and

X = µ+ σ Z (3.39)

Figure 3.9 plots a normally distributed random variable in both its regular
and standard form. It can be shown using (3.38) and (3.39) that X = 67.715
(i.e, 67.715 on the X scale) is equivalent to Z = .45 (i.e., .45 on the Z scale).
This means that 67.715 is .45 standard deviations away from µ, which is 66.5.
The probability that X ≥ 67.715 is found by finding the corresponding value
on the Z scale using (3.38) and looking up the relevant area to the left of
that value in the table of standard normal values that can be found in the
back of any textbook in statistics. To find the value of X corresponding to
any cumulative probability value, we find the corresponding value of Z in
the table of standard normal values and then convert that value of Z into
X using (3.39). All calculations involving normal distributions, regardless
of the values of µ and σ can thus be made using a single table of standard
normal values.

If V and W are two independent normal random variables with means
µv and µw and variances σ2

v and σ2
w respectively, the sum V +W is a normal

random variable with mean µ = µv + µw and variance σ2 = σ2
v + σ2

w. This
extends, of course, to the sum of more than two random variables.

It is often useful to use the normal distribution as an approximation to
the binomial distribution when the binomial sample space is large. This
is appropriate when both np and n(1 − p) are greater than 5. To make a
normal approximation we calculate the standard variate

Z =
X − µ

σ
=

X − np√
n p (1− p)

. (3.40)

We can then look up a value of Z so obtained in the normal distribution
table. Alternatively, if we are given a probability of X being, say, less than
a particular value we can find the value of Z from the table consistent with
that probability and then use (3.39) to find the corresponding value of X.

For example, suppose we were to flip a coin 1000 times and want to know
the probability of getting more than 525 heads. That is, we want to find the
probability that X ≥ 525. It turns out that

n p = n (1− p) = 500 > 5
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Figure 3.9: A normal distribution (top) and its standardized form
(bottom). As marked by the vertical lines, 67.715 on the X scale in
the top panel corresponds to .45 on the Z scale in the bottom panel.

so a normal approximation is appropriate. From (3.40) we have

Z = (525− 500)/
√
(1000)(.5)(.5) = 25/

√
250 = 1.58.

It can be seen from the probability tables for the normal distribution that

P (Z ≤ 1.58) = .9429

which implies that

P (X ≥ 525) = P (Z ≥ 1.58) = 1− .9429 = .0571.
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There is almost a 6% chance of getting more than 525 heads.

Figure 3.10: A normal approximation to a binomial distribution
requiring correction for continuity.

Consider a second example of using a normal distribution to approximate
a binomial one. Suppose the probability that a machine is in an unproduc-
tive state is p = .2. Let X denote the number of times the machine is in an
unproductive state when it is observed at 50 random moments in time. It is
permissible to use a normal approximation here because (.2)(50) = 10 and
(1−.2)(50) = 40 and both these numbers exceed 5. The mean of distribution
of X is n p = 10 and the standard deviation is

σ{X} =
√
n p (1− p) =

√
(50)(.2)(.8) = 2.83.

Now suppose we want to obtain the probability that X = 15. Since n =
50, X can be located at only 51 of the infinitely many points along the
continuous line from 0 to 50. The probability that X = 15 on the continuum
is zero. Since the underlying distribution is discrete, the probability that
X = 15 is the area of the vertical strip under the probability density function
between X = 14.5 and X = 15.5. This can be seen in Figure 3.10. So the
probability that X = 15 becomes

P (X ≤ 15.5)− P (X ≤ 14.5) = P (Z ≤ (15.5− 10)/2.83)

− P (Z ≤ (14.5− 10)/2.83)

= P (Z ≤ 1.94)− P (Z ≤ 1.59)

= .9738− .9441 = .0297.
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Similarly, if we want to calculate the probability that X > 15 we must
calculate

P (X ≥ 15.5) = (P (Z ≥ 1.59) = 1− P (Z ≤ 1.59) = 1− .9739 = .0262.

We base the calculation on X ≥ 15.5 rather than X ≥ 15 to correct for the
fact that we are using a continuous distribution to approximate a discrete
one. This is called a correction for continuity. It can be seen from Figure
3.10 that if we were to base our calculation on X ≥ 15 the number obtained
would be too large.

3.11 Exponential Probability Distributions

The Poisson probability distribution applies to the number of occurrences
in a time interval. The exponential probability distribution applies to the
amount of time between occurrences. For this reason it is often called
the waiting-time distribution. It is a continuous distribution because time is
measured along a continuum. An exponential random variable X is the time
between occurrences of a random event. The probability density function is

f(x) = λe−λx, (x > 0). (3.41)

It turns out that the probability that X ≥ x is

P (X ≥ x) = e−λx. (3.42)

The mean and variance of an exponential distribution are

E{X} =
1

λ

and

σ2{X} =
1

λ2
.

The shape of the exponential distribution is governed by the single parameter
λ. As indicated in the plots of some exponential distributions in Figure
3.11, the exponential probability density function declines as x increases
from zero, with the decline being sharper the greater the value of λ. The
probability density function intersects the y-axis at λ.

The area to the right of any value of x—that is, P (X ≥ x)—can be
looked up in the exponential distribution table at the back of any statistics
textbook.
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λ = 2

λ = 1

λ = 0.5

Figure 3.11: Three different members of the family of expo-
nential probability distributions.
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Consider an example. Suppose that the manufacturer of an electronic
component has good reason to believe that its length of life in years follows
an exponential probability distribution with λ = 16. He is considering
giving a guarantee on the component and wants to know what fraction of
the components he will have to replace if he makes the guarantee a five-year
one. The mean time until the component breaks will be 1/λ = 1/16 = 6.25
years. To find the fraction of components that will have to be replaced
within 5 years we need P (X ≤ 5)—that is, the area under the distribution
to the left of x = 5. That area is equal to (1−P (X ≥ 5)) which can be found
by using either equation (3.42) or the exponential distribution table. The
value obtained is .550671. This means that about 55% of the components
will have to be replaced within five years.

There is a close relationship between the exponential and Poisson distri-
butions. If occurrences are generated by a Poisson process with parameter
λ then the number of occurrences in equal non-overlapping units are inde-
pendent random variables having a Poisson distribution with parameter λ
and the durations between successive occurrences are independent random
variables having the exponential distribution with parameter λ.

3.12 Exercises

1. The random variableX has a normal probability distribution with µ = 12
and σ = 16. Estimate the following probabilities:

a) P (X ≤ 14.4)

b) P (7.2 ≤ X ≤ 12.8) (.35)

c) P ((X − µ) ≤ 5.6)

d) P (X ≥ 8.0)

2. The number of coating blemishes in 10-square-meter rolls of customized
wallpaper is a Poisson random variable X1 with λ1 = 0.3. The number of
printing blemishes in these 10-square-meter rolls of customized wallpaper is
a Poisson random variable X2 with λ2 = 0.1. Assume that X1 and X2 are
independent and let T = X1 +X2.

a) According to what distribution is the random variable T distributed?

b) What is the most probable total number of blemishes in a roll? (0)
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c) If rolls with a total of two or more blemishes are scrapped, what is the
probability that a roll will be scrapped? (.062)

d) What are the mean and standard deviation of the probability distri-
bution of T?

3. There are three surviving members of the Jones family: John, Sarah, and
Beatrice. All live in different locations. The probability that each of these
three family members will have a stay of some length in the hospital next
year is 0.2.

a) What is the probability that none of the three of them will have a
hospital stay next year? (.512)

b) What is the probability that all of them will have a hospital stay next
year?

c) What is the probability that two members of the family will spend
time in hospital next year? (.096)

d) What is the probability that either John or Sarah, but not both, will
spend time in the hospital next year?

Hint: Portray the sample space as a tree.

4. Based on years of accumulated evidence, the distribution of hits per
team per nine-innings in Major League Baseball has been found to be ap-
proximately normal with mean 8.72 and standard deviation 1.10. What
percentage of 9-inning Major League Baseball games will result in fewer
than 5 hits?

5. The Statistical Abstract of the United States, 1995 reports that that
24% of households are composed of one person. If 1,000 randomly selected
homes are to participate in a Nielson survey to determine television ratings,
find the approximate probability that no more than 240 of these homes are
one-person households.

6. Suppose the f-word is heard in the main hall in a Toronto high school
every 3 minutes on average. Find the probability that as many as 5 minutes
could elapse without us having to listen to that profanity. (.188)

7. A manufacturer produces electric toasters and can openers. Weekly sales
of these two items are random variables which are shown to have positive
covariance. Therefore, higher sales volumes of toasters:
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a) are less likely to occur than smaller sales volumes of toasters.

b) tend to be associated with higher sales volumes of can openers.

c) tend to be associated with smaller sales volumes of can openers.

d) are unrelated to sales of can openers.

8. Which of the following could be quantified as a Bernoulli random variable?

a) number of persons in a hospital ward with terminal diagnoses.

b) weights of deliveries at a supermarket.

c) square foot areas of houses being built in a suburban tract develop-
ment.

d) whether or not employees wear glasses.

e) none of the above.

9. Fifteen percent of the patients seen in a pediatric clinic have a respiratory
complaint. In a Bernoulli process of 10 patients, what is the probability that
at least three have a respiratory complaint?

a) .1298

b) .1798

c) .1960

d) .9453

e) none of the above.

10. Two random variables X and Y have the following properties: µx = 10,
σx = 4, µy = 8, σy = 5, σx,y = −12.

a) Find the expected value and variance of (3X − 4Y ).

b) Find the expected value of X2. (Hint: work from the definition of the
variance of X.)

c) Find the correlation between X and (X + Y ).
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d) Find the covariance between the standardised values of X and Y .

11. John Daly is among the best putters on the PGA golf tour. He sinks 10
percent of all puts that are of length 20 feet or more. In a typical round of
golf, John will face puts of 20 feet or longer 9 times. What is the probability
that John will sink 2 or more of these 9 puts? What is the probability that
he will sink 2 or more, given that he sinks one? Hint: If we know he is going
to sink at least one then the only remaining possibilities are that he will sink
only that one or two or more. What fraction of the remaining probability
weight (excluding the now impossible event that he sinks zero) falls on the
event ‘two or more’.

12. Let X and Y be two random variables. Derive formulae for E{X + Y },
E{X − Y }, σ2{X + Y }, and σ2{X − Y }. Under what conditions does
σ2{X + Y } = σ2{X − Y }?

13. According to the Internal Revenue Service (IRS), the chances of your
tax return being audited are about 6 in 1000 if your income is less than
$50,000, 10 in 1000 if your income is between $50,000 and $99,999, and 49
in 1000 if your income is $100,000 or more (Statistical Abstract of the United
States: 1995.

a) What is the probability that a taxpayer with income less than $50,000
will be audited by the IRS?With income between $50,000 and $99,999?
With income of $100,000 or more?

b) If we randomly pick five taxpayers with incomes under $50,000, what
is the probability that one of them will be audited? That more than
one will be audited? Hint: What are n and p here?

14. Let Xi = 1 with probability p and 0 with probability 1− p where Xi is
an independent sequence. For

X =
n∑

i=1

Xi

show that
E{X} = np

and
σ2{X} = np(1− p).
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15. The number of goals scored during a game by the Toronto Maple Leafs
is a normally distributed random variable X with µx = 3 and σx = 1.2.
The number of goals given up during a game when Curtis Joseph is the
goaltender for the Maple Leafs is a normally distributed random variable Y
with µy = 2.85 and σy = 0.9. Assume that X and Y are independent.

a) What is the probability that the Maple Leafs will win a game in which
Curtis Joseph is the goaltender? (The probability of a game ending in
a tie is zero here.)

b) What is the probability that the Maple Leafs will lose a game by 2 or
more goals when Curtis Joseph is the goaltender?

c) Let T denote the total number of goals scored by both the Maple Leafs
and their opponent during a game in which Curtis Joseph is the Leafs’
goaltender. What is the expected value and variance of T?

d) Given your answer to a) and assuming that the outcomes of consecutive
games are independent, what is the expected number of wins for the
Maple Leafs over 50 games in which Curtis Joseph is the goaltender?
Hint: What kind of process is occurring here?

16. The elapsed time (in minutes) between the arrival of west-bound trains
at the St. George subway station is an exponential random variable with a
value of λ = .2.

a) What are the expected value and variance of X?

b) What is the probability that 10 or more minutes will elapse between
consecutive west-bound trains?

c) What is the probability that 10 or more minutes will elapse between
trains, given that at least 8 minutes have already passed since the pre-
vious train arrived? Hint: What proportion of the probability weight
that remains, given that a waiting time of less than 8 minutes is no
longer possible, lies in the interval 8 minutes to 10 minutes?

17. The number of houses sold each month by a top real estate agent is a
Poisson random variable X with λ = 4.

a) What are the expected value and standard deviation of X?
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b) What is the probability that the agent will sell more than 6 houses in
a given month?

c) Given that the agent sells at least 2 houses in a month, what is the
probability that she will sell 5 or more?

18. In the National Hockey League (NHL), games that are tied at the end of
three periods are sent to “sudden death” overtime. In overtime, the team to
score the first goal wins. An analysis of NHL overtime games played between
1970 and 1993 showed that the length of time elapsed before the winning goal
is scored has an exponential distribution with mean 9.15 minutes (Chance,
Winter 1995).

a) For a randomly selected overtime NHL game, find the probability that
the winning goal is scored in three minutes or less.

b) In the NHL, each period (including overtime) lasts 20 minutes. If
neither team scores a goal in one period of overtime, the game is
considered a tie. What is the probability of an NHL game ending in a
tie?

19. A taxi service based at an airport can be characterized as a transporta-
tion system with one source terminal and a fleet of vehicles. Each vehicle
takes passengers from the terminal to different destinations and then returns
after some random trip time to the terminal and makes another trip. To
improve the vehicle-dispatching decisions involved in such a system, a study
was conducted and published in the European Journal of Operational Re-
search (Vol. 21, 1985). In modelling the system, the authors assumed travel
times of successive trips to be independent exponential random variables
with λ = .05.

a) What is the mean trip time for the taxi service?

b) What is the probability that a particular trip will take more than 30
minutes?

c) Two taxis have just been dispatched. What is the probability that
both will be gone more than 30 minutes? That at least one of the
taxis will return within 30 minutes?
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20. The probability that an airplane engine will fail is denoted by π. Failures
of engines on multi-engine planes are independent events. A two engine
plane will crash only if both of its engines fail. A four engine plane can
remain airborne with two or more engines in operation. If π = 0 or π = 1, a
traveller will clearly be indifferent between planes with two or four engines.
What are the values of π that make a two engine plane safer than a four
engine plane? Hint: Set the sample space up in tree form.


