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PREFACE

The pages that follow contain the material presented in my introductory
quantitative methods in economics class at the University of Toronto. They
are designed to be used along with any reasonable statistics textbook. The
most recent textbook for the course was James T. McClave, P. George Ben-
son and Terry Sincich, Statistics for Business and Economics, Eighth Edi-
tion, Prentice Hall, 2001. The material draws upon earlier editions of that
book as well as upon John Neter, William Wasserman and G. A. Whitmore,
Applied Statistics, Fourth Edition, Allyn and Bacon, 1993, which was used
previously and is now out of print. It is also consistent with Gerald Keller
and Brian Warrack, Statistics for Management and Economics, Fifth Edi-
tion, Duxbury, 2000, which is the textbook used recently on the St. George
Campus of the University of Toronto. The problems at the ends of the chap-
ters are questions from mid-term and final exams at both the St. George
and Mississauga campuses of the University of Toronto. They were set by
Gordon Anderson, Lee Bailey, Greg Jump, Victor Yu and others including
myself.

This manuscript should be useful for economics and business students en-
rolled in basic courses in statistics and, as well, for people who have studied
statistics some time ago and need a review of what they are supposed to have
learned. Indeed, one could learn statistics from scratch using this material
alone, although those trying to do so may find the presentation somewhat
compact, requiring slow and careful reading and thought as one goes along.

I would like to thank the above mentioned colleagues and, in addition, Ado-
nis Yatchew, for helpful discussions over the years, and John Maheu for
helping me clarify a number of points. I would especially like to thank Gor-
don Anderson, who I have bothered so frequently with questions that he
deserves the status of mentor.

After the original version of this manuscript was completed, I received some
detailed comments on Chapter 8 from Peter Westfall of Texas Tech Univer-
sity, enabling me to correct a number of errors. Such comments are much
appreciated.

J. E. Floyd
July 2, 2010

c⃝J. E. Floyd, University of Toronto
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Chapter 2

Probability

2.1 Why Probability?

We have seen that statistical inference is a methodology through which we
learn about the characteristics of a population by analyzing samples of el-
ements drawn from that population. Suppose that a friend asks you to
invest $10000 in a joint business venture. Although your friend’s presenta-
tion of the potential for profit is convincing, you investigate and find that
he has initiated three previous business ventures, all of which failed. Would
you think that the current proposed venture would have more than a 50/50
chance of succeeding? In pondering this question you must wonder about
the likelihood of observing three failures in a sample of three elements from
the process by which your friend chooses and executes business ventures if,
in fact, more than half the population of ventures emanating from that pro-
cess will be successful. This line of thinking is an essential part of statistical
inference because we are constantly asking ourselves, in one way or other,
what the likelihood is of observing a particular sample if the population
characteristics are what they are purported to be. Much of statistical infer-
ence involves making an hypothesis about the characteristics of a population
(which we will later call the null hypothesis) and then seeing whether the
sample has a low or high chance of occurring if that hypothesis is true.

Let us begin our study of probability by starting with a population whose
characteristics are known to us and inquire about the likelihood or chances
of observing various samples from that population.
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2.2 Sample Spaces and Events

Suppose we toss a single coin and observe whether it comes up heads or
tails. The relevant population here is the infinite sequence of tosses of a
single coin. With each toss there is uncertainty about whether the result
will be a head or a tail. This coin toss is an example of a random trial or
experiment, which can be defined as an activity having two or more possible
outcomes with uncertainty in advance as to which outcome will prevail. The
different possible outcomes of the random trial are called the basic outcomes.
The set of all basic outcomes for a random trial is called the sample space
for the trial. The sample space for a single coin toss, which we denote by
S, contains two basic outcomes, denoted as H (head) and T (tail). This
represents a sample of one from the infinite population of single coin tosses.
The set of basic outcomes can be written

S = {H,T} (2.1)

These basic outcomes are also called sample points or simple events. They
are mutually exclusive—that is, only one can occur—and mutually exhaus-
tive—that is, at least one of them must occur.

Now suppose we toss two coins simultaneously and record whether they
come up heads or tails. One might think that there would be three basic
outcomes in this case—two heads, head and tail, and two tails. Actually,
there are four simple events or sample points because the combination head
and tail can occur in two ways—head first and then tail, and tail first fol-
lowed by head. Thus, the sample space for this random trial or experiment
will be

S = {HH,HT, TH, TT} (2.2)

A subset of the set of sample points is called an event. For example,
consider the event ‘at least one head’. This would consist of the subspace

E1 = {HH,HT, TH} (2.3)

containing three of the four sample points. Another event would be ‘both
faces same’. This event, which we can call E2, is the subset

E2 = {HH,TT}. (2.4)

The set of outcomes not contained in an event Ej is called the com-
plementary event to the event Ej which we will denote by Ec

j . Thus, the
complementary events to E1 and E2 are, respectively,

Ec
1 = {TT} (2.5)
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and

Ec
2 = {HT, TH}. (2.6)

The set of sample points that belongs to both event Ei and event Ej is
called the intersection of Ei and Ej . The intersection of E1 and Ec

2 turns
out to be the event Ec

2 because both sample points in Ec
2 are also in E1. We

can write this as

E1 ∩ Ec
2 = {HT, TH} = Ec

2. (2.7)

The intersection of Ec
1 and Ec

2 contains no elements, that is

Ec
1 ∩Ec

2 = ϕ (2.8)

where ϕ means nil or nothing. An event containing no elements is called the
null set or null event. When the intersection of two events is the null event,
those two events are said to be mutually exclusive. It should be obvious that
the intersection of an event and its complement is the null event.

The set of sample points that belong to at least one of the events Ei and
Ej is called the union of Ei and Ej . For example, the union of Ec

1 and Ec
2

is

E3 = Ec
1 ∪Ec

2 = {HT, TH, TT}, (2.9)

the event ‘no more than one head’. Each sample point is itself an event—one
of the elementary events—and the union of all these elementary events is
the sample space itself. An event that contains the entire sample space is
called the universal event.

We can express the intersection and union of several events as, respec-
tively,

E1 ∩ E2 ∩E3 ∩ E4 ∩ · · · · · ·
and

E1 ∪E2 ∪ E3 ∪ E4 ∪ · · · · · · .
The set of all possible events that can occur in any random trial or

experiment, including both the universal event and the null event, is called
the event space.

The above examples of random trials and sample spaces resulting there-
from represent perhaps the simplest cases one could imagine. More complex
situations arise in experiments such as the daily change in the Dow Jones In-
dustrial Average, the number of students of the College involved in accidents
in a given week, the year-over-year rate of inflation in the United Kingdom,
and so forth. Sample points, the sample space, events and the event space
in these more complicated random trials have the same meanings and are
defined in the same way as in the simple examples above.
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2.3 Univariate, Bivariate and Multivariate Sample
Spaces

The sample space resulting from a single coin toss is a univariate sample
space—there is only one dimension to the random trial. When we toss two
coins simultaneously, the sample space has two dimensions—the result of
the first toss and the result of the second toss. It is often useful to portray
bivariate sample spaces like this one in tabular form as follows:

One
Two H T

H HH TH

T HT TT

Each of the four cells of the table gives an outcome of the first toss followed
by an outcome of the second toss. This sample space can also be laid out in
tree form:
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A more interesting example might be the parts delivery operation of a
firm supplying parts for oil drilling rigs operating world wide. The relevant
random trial is the delivery of a part. Two characteristics of the experiment
are of interest—first, whether the correct part was delivered and second, the
number of days it took to get the part to the drilling site. This is also a
bivariate random trial the essence of which can be captured in the following
table:
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Time of Delivery
S N M

Order C C S C N C M
Status I I S I N I M

The status of the order has two categories: ‘correct part’ (C) and ‘in-
correct part’ (I). The time of delivery has three categories: ‘same day’ (S),
‘next day’ (N) and ‘more than one day’ (M). There are six sample points or
basic outcomes. The top row in the table gives the event ‘correct part’ and
the bottom row gives the event ‘incorrect part’. Each of these events contain
three sample points. The first column on the left in the main body of the
table gives the event ‘same day delivery’, the middle column the event ‘next
day delivery’ and the third column the event ‘more than one day delivery’.
These three events each contain two sample points or basic outcomes. The
event ‘correct part delivered in less than two days’ would be the left-most
two sample points in the first row, (C S) and (C N). The complement of that
event, ‘wrong part or more than one day delivery’ would be the remaining
outcomes (C M), (I S), (I N) and (I M).

Notice also that the basic outcome in each cell of the above table is the
intersection of two events—(C S) is the intersection of the event C or ‘correct
part’ and the event S ‘same day delivery’ and (I N) is the intersection of
the event I, ‘incorrect part’, and the event N ‘next day delivery’. The event
‘correct part’ is the union of three simple events, (C S) ∪ (C N) ∪ (C M).
The parts delivery sample space can also be expressed in tree form as follows:
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2.4 The Meaning of Probability

Although probability is a term that most of us used before we began to study
statistics, a formal definition is essential. As we noted above, a random trial
is an experiment whose outcome must be one of a set of sample points
with uncertainty as to which one it will be. And events are collections
of sample points, with an event occurring when one of the sample points
or basic outcomes it contains occurs. Probability is a value attached to a
sample point or event denoting the likelihood that it will be realized. These
probability assignments to events in the sample space must follow certain
rules.

1. The probability of any basic outcome or event consisting of a set of basic
outcomes must be between zero and one. That is, for any outcome oi or
event Ei containing a set of outcomes we have

0 ≤ P (oi) ≤ 1

0 ≤ P (Ei) ≤ 1. (2.10)

If P (oi) = 1 or P (Ei) = 1 the respective outcome or event is certain to
occur; if P (oi) = 0 or P (Ei) = 0 the outcome or event is certain not to
occur. It follows that probability cannot be negative.

2. For any set of events of the sample space S (and of the event space E),

P (Ej) =
J∑

i=1

P (oi). (2.11)

where J is the number of basic events or sample points contained in the
event Ej . In other words, the probability that an event will occur is the
sum of the probabilities that the basic outcomes contained in that event
will occur. This follows from the fact that an event is said to occur when
one of the basic outcomes or sample points it contains occurs.

3. Since it is certain that at least one of the sample points or elementary
events in the sample space will occur, P (S) = 1. And the null event cannot
occur, so P (ϕ) = 0 where ϕ is the null event. These results follow from
the fact that P (S) is the sum of the probabilities of all the simple or basic
events.
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A number of results follow from these postulates

• P (Ei) ≤ P (Ej) when Ei is a subset of (contained in) Ej .

• If Ei and Ej are mutually exclusive events of a sample space, then
P (Ei ∩ Ej) = 0. That is, both events cannot occur at the same time.

Probability can be expressed as an odds ratio. If the probability of an
event Ej is a, then the odds of that event occurring are a to (1− a). If the
probability that you will get into an accident on your way home from work
tonight is .2, then the odds of you getting into an accident are .2 to .8 or 1
to 4. If the odds in favour of an event are a to b then the probability of the
event occurring is

a

a+ b

If the odds that your car will break down on the way home from work are 1
to 10, then the probability it will break down is 1/(10 + 1) = 1/11.

2.5 Probability Assignment

How are probabilities established in any particular case? The short answer
is that we have to assign them. The probability associated with a random
trial or experiment can be thought of as a mass or “gob” of unit weight.
We have to distribute that mass across the sample points or basic elements
in the sample space. In the case of a single coin toss, this is pretty easy
to do. Since a fair coin will come up heads half the time and tails half the
time we will assign half of the unit weight to H and half to T , so that the
probability of a head on any toss is .5 and the probability of a tail is .5. In
the case where we flip two coins simultaneously our intuition tells us that
each of the four sample points HH, HT , TH, and TT are equally likely, so
we would assign a quarter of the mass, a probability of .25, to each of them.
When it comes to determining the probability that I will be hit by a car on
my way home from work tonight, I have to make a wild guess on the basis
of information I might have on how frequently that type of accident occurs
between 5 o’clock and 6 o’clock on weekday afternoons in my neighbourhood
and how frequently I jay-walk. My subjective guess might be that there is
about one chance in a thousand that the elementary event ‘get hit by a car
on my way home from work’ will occur and nine-hundred and ninety-nine
chances in a thousand that the mutually exclusive elementary event ‘do not
get hit by a car on my way home from work’ will occur. So I assign a
probability of .001 to the event ‘get hit’ and a probability of .999 to the
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event ‘not get hit’. Note that the implied odds of me getting hit are 1 to
999.

As you might have guessed from the above discussion the procedures for
assigning probabilities fall into two categories—objective and subjective. In
the case of coin tosses we have what amounts to a mathematical model of
a fair coin that will come up heads fifty percent of the time. If the coin is
known to be fair this leads to a purely objective assignment of probabilities—
no personal judgement or guesswork is involved. Of course, the proposition
that the coin is fair is an assumption, albeit a seemingly reasonable one.
Before assigning the probabilities in a coin toss, we could toss the coin a
million times and record the number of times it comes up heads. If it is
a fair coin we would expect to count 500,000 heads. In fact, we will get
a few more or less than 500,000 heads because the one million tosses is
still only a sample, albeit a large one, of an infinite population. If we got
only 200,000 heads in the 1,000,000 tosses we would doubt that the coin
was a fair one. A theoretically correct assignment of probabilities would
be one based on the frequencies in which the basic outcomes occur in an
infinite sequence of experiments where the conditions of the experiment do
not change. This uses a basic axiom of probability theory called the law
of large numbers. The law states essentially that the relative frequency
of occurrence of a sample point approaches the theoretical probability of
the outcome as the experiment is repeated a larger and larger number of
times and the frequencies are cumulated over the repeated experiments. An
example is shown in Figure 2.1 where a computer generated single-coin toss
is performed 1500 times. The fraction of tosses turning up heads is plotted
against the cumulative number of tosses measured in hundreds.

In practice, the only purely objective method of assigning probabilities
occurs when we know the mathematics of the data generating process—
for example, the exact degree of ‘fairness’ of the coin in a coin toss. Any
non-objective method of assigning probabilities is a subjective method, but
subjective assignments can be based on greater or lesser amounts of infor-
mation, according to the sample sizes used to estimate the frequency of
occurrence of particular characteristics in a population. When relative fre-
quencies are used to assign probabilities the only subjective component is
the choice of the data set from which the relative frequencies are obtained.
For this reason, the assignment of probabilities based on relative frequencies
is often also regarded as objective. In fact, inferential statistics essentially
involves the use of sample data to try to infer, as objectively as possible, the
proximate probabilities of events in future repeated experiments or random
draws from a population. Purely subjective assignments of probabilities are
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those that use neither a model of the data-generating process nor data on
relative frequencies.

Figure 2.1: Illustration of the law of large numbers. Com-
puter generated plot of the cumulative fraction of 1500 single
coin-tosses turning up heads. The horizontal axis gives the
number of tosses in hundreds and the vertical axis the frac-
tion turning up heads.

Purely subjective probability measures tend to be useful in business situ-
ations where the person or organization that stands to lose from an incorrect
assignment of probabilities is the one making the assignment. If I attach
a probability of 0.1 that a recession will occur next year and govern my
investment plans accordingly, I am the one who stands to gain or lose if
the event ‘recession’ occurs and I will be the loser over the long run if my
probability assignments tend to be out of line with the frequency with which
the event occurs. Since I stand to gain or lose, my probability assessment
is ‘believable’ to an outside observer—there is no strategic gain to me from
‘rigging’ it. On the other hand, if the issue in question is the amount my in-
dustry will lose from free trade, then a probability assignment I might make
to the set of sample points comprising the whole range of losses that could
be incurred should not be taken seriously by policy makers in deciding how
much compensation, if any, to give to my industry. Moreover, outside ob-
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servers’ subjective probability assignments are also suspect because one does
not know what their connection might happen to be to firms and industries
affected by proposed policy actions.

2.6 Probability Assignment in Bivariate Sample
Spaces

Probability assignment in bivariate sample spaces can be easily visualized
using the following table, which further extends our previous example of
world-wide parts delivery to oil drilling sites.

Time of Delivery
S N M Sum

Order C .600 .24 .120 .96
Status I .025 .01 .005 .04

Sum .625 .25 .125 1.00

Probabilities have been assigned to the six elementary events either
purely subjectively or using frequency data. Those probabilities, represented
by the numbers in the central enclosed rectangle must sum to unity because
they cover the entire sample space—at least one of the sample points must
occur. They are called joint probabilities because each is an intersection of
two events—an ‘order status’ event ( C or I) and a ‘delivery time’ event
(S, N, or M). The probabilities in the right-most column and and along the
bottom row are called marginal probabilities. Those in the right margin
give the probabilities of the events ‘correct’ and ‘incorrect’. They are the
unions of the joint probabilities along the respective rows and they must
sum to unity because the order delivered must be either correct or incor-
rect. The marginal probabilities along the bottom row are the probabilities
of the events ‘same day delivery’ (S), ‘next day delivery’ (N) and ‘more than
one day to deliver’ (M). They are the intersections of the joint probabilities
in the respective columns and must also sum to unity because all orders are
delivered eventually. You can read from the table that the probability of the
correct order being delivered in less than two days is .60 + .24 = .84 and
the probability of unsatisfactory performance (either incorrect order or two
or more days to deliver) is (.12 + .025 + .01 + .005) = .16 = (1 - .84).
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2.7 Conditional Probability

One might ask what the probability is of sending the correct order when
the delivery is made on the same day. Note that this is different than the
probability of both sending the correct order and delivering on the same day.
It is the probability of getting the order correct conditional upon delivering
on the same day and is thus called a conditional probability. There are two
things that can happen when delivery is on the same day—the order sent can
be correct, or the incorrect order can be sent. As you can see from the table
a probability weight of .600 + .025 = .625 is assigned to same-day delivery.
Of this probability weight, the fraction .600/.625 = .96 is assigned to the
event ‘correct order’ and the fraction .25/.625 = .04 is assigned to the event
‘incorrect order’. The probability of getting the order correct conditional
upon same day delivery is thus .96 and we define the conditional probability
as

P (C|S) =
P (C ∩ S)

P (S)
. (2.12)

where P (C|S) is the probability of C occurring conditional upon the occur-
rence of S, P (C ∩ S) is the joint probability of C and S (the probability
that both C and S will occur), and P (S) is the marginal or unconditional
probability of S (the probability that S will occur whether or not C occurs).
The definition of conditional probability also implies, from manipulation of
(2.12), that

P (C ∩ S) = P (C|S)P (S). (2.13)

Thus, if we know that the conditional probability of C given S is equal to
.96 and that the marginal probability of C is .625 but are not given the
joint probability of C and S, we can calculate that joint probability as the
product of .625 and .96 —namely .600.
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2.8 Statistical Independence

From application of (2.12) to the left-most column in the main body of the
table we see that the conditional probability distribution of the event ‘order
status’ given the event ‘same day delivery’ is

P (C|S) .96

P (I|S) .04

which is the same as the marginal probability distribution of the event ‘order
status’. Further calculations using (2.12) reveal that the probability distri-
butions of ‘order status’ conditional upon the events ‘next day delivery’ and
‘more than one day delivery’ are

P (C|N) .24/.25 = .96

P (I|N) .01/.25 = .04

and

P (C|M) .120/.125 = .96

P (I|M) .005/.125 = .04

which are the same as the marginal or unconditional probability distribu-
tion of ‘order status’. Moreover, the probability distributions of ‘time of
delivery’ conditional upon the events ‘correct order’ and ‘incorrect order’
are, respectively

P (S|C) .60/.96 = .625

P (N |C) .24/.96 = .25

P (M |C) .12/.96 = .125

and

P (S|I) .025/.04 = .625

P (N |I) .010/.04 = .25

P (M |I) .005/.04 = .125

which are the same as the marginal or unconditional probability distribu-
tion of ‘time of delivery’. Since the conditional probability distributions are
the same as the corresponding marginal probability distributions, the prob-
ability of getting the correct order is the same whether delivery is on the
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same day or on a subsequent day—that is, independent of the day of deliv-
ery. And the probability of delivery on a particular day is independent of
whether or not the order is correctly filled. Under these conditions the two
events ‘order status’ and ‘time of delivery’ are said to be statistically inde-
pendent. Statistical independence means that the marginal and conditional
probabilities are the same, so that

P (C|S) = P (C). (2.14)

The case where two events are not statistically independent can be illus-
trated using another example. Suppose that we are looking at the behaviour
of two stocks listed on the New York Stock Exchange—Stock A and Stock
B—to observe whether over a given interval the prices of the stocks in-
creased, decreased or stayed the same. The sample space, together with the
probabilities assigned to the sample points based on several years of data
on the price movements of the two stocks can be presented in tabular form
as follows:

Stock A
Stock B Increase No Change Decrease

A1 A2 A3 Sum

Increase B1 .20 .05 .05 .30
No Change B2 .15 .10 .15 .40
Decrease B3 .05 .05 .20 .30

Sum .40 .20 .40 1.00

The conditional probability that the price of stock A will increase, given
that the price of stock B increases is

P (A1|B1) =
P (A1 ∩B1)

P (B1)

=
.20

.30
= .666

which is greater than the unconditional probability of an increase in the
price of stock A, the total of the A1 column, equal to .4. This says that the
probability that the price of stock A will increase is greater if the price of
stock B also increases. Now consider the probability that the price of stock
A will fall, conditional on a fall in the price of stock B. This equals

P (A3|B3) =
P (A3 ∩B3)

P (B3)

=
.20

.30
= .666
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which is greater than the 0.4 unconditional probability of a decline in the
price of stock A given by the total at the bottom of the A3 column. The
probability that the price of stock A will decline conditional upon the price
of stock B not declining is

P (A3 ∩B1) + P (A3 ∩B2)

P (B1) + P (B2)
=

.05 + .15

.30 + .40

=
20

70
= .286

which is smaller than the 0.4 unconditional probability of the price of stock
A declining regardless of what happens to the price of stock B. The price
of stock A is more likely to decline if the price of stock B declines and less
likely to decline if the price of stock B does not decline. A comparison of
these conditional probabilities with the relevant unconditional ones make it
clear that the prices of stock A and stock B move together. They are not
statistically independent.

There is an easy way to determine if the two variables in a bivariate
sample space are statistically independent. From the definition of statis-
tical independence (2.14) and the definition of conditional probability as
portrayed in equation (2.13) we have

P (C ∩ S) = P (C|S)P (S) = P (C)P (S). (2.15)

This means that when there is statistical independence the joint probabil-
ities in the tables above can be obtained by multiplying together the two
relevant marginal probabilities. In the delivery case, for example, the joint
probability of ‘correct order’ and ‘next day’ is equal to the product of the
two marginal probabilities .96 and .25, which yields the entry .24. The
variables ‘order status’ and ‘time of delivery’ are statistically independent.
On the other hand, if we multiply the marginal probability of A1 and the
marginal probability of B1 in the stock price change example we obtain
.30 × .40 = .12 which is less than .20, the actual entry in the joint prob-
ability distribution table. This indicates that the price changes of the two
stocks are not statistically independent.



2.9. BAYES THEOREM 49

2.9 Bayes Theorem

Many times when we face a problem of statistical inference about a popu-
lation from a sample, we already have some information prior to looking at
the sample. Suppose, for example, that we already know that the proba-
bilities that an offshore tract of a particular geological type contains no gas
(A1), a minor gas deposit (A2) or a major gas deposit (A3) are .7, .25 and
.05 respectively. Suppose further that we know that a test well drilled in a
tract like the one in question will yield no gas (B1) if none is present and
will yield gas (B2) with probability .3 if a minor deposit is present and with
probability .9 if a major deposit is present. A sensible way to proceed is to
begin with the information contained in the probability distribution of gas
being present in the tract and then upgrade that probability distribution on
the basis of the results obtained from drilling a test well. Our procedure can
be organized as follows:

Prior Joint Posterior
Probability Probability Probability

P (Ai) P (B2|Ai) P (Ai ∩B2) P (Ai|B2)

No Gas (A1) 0.70 0.00 0.000 0.000
Minor Deposit (A2) 0.25 0.30 0.075 0.625
Major Deposit (A3) 0.05 0.90 0.045 0.375

Total 1.00 0.120 1.000

Suppose that our test well yields gas (otherwise it’s game over!). We
begin with our prior probabilities P (Ai) and then use the fact that the joint
probability distribution P (B2 ∩Ai) equals the prior probabilities multiplied
by the conditional probabilities P (B2|Ai) that gas will be obtained, given
the respective Ai,

P (B2 ∩Ai) = P (B2|Ai)P (Ai).

These probabilities are entered in the second column from the right. Their
sum gives the probability of finding gas, which equals .12 (the probability of
finding gas and there being no gas (0.000) plus the probability of finding gas
and there being a minor deposit (0.075) plus the probability of finding gas
and there being a major deposit (0.045)). It then follows that the probability
of there being no gas conditional upon gas being found in the test well is
0.000/.12 = 0.000, the probability of there being a minor deposit conditional
upon the test well yielding gas is .075/.12 = .625 and the probability of there
being a major deposit conditional upon gas being found in the test well is
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.045/.12 = .375. Since the test well yielded gas, these latter probabilities
are the posterior (post-test or post-sample) probabilities of there being no
gas, a minor deposit and a major deposit. They are entered in the column
on the extreme right. When we are finished we can say that there is a .625
probability that the tract contains a minor gas deposit and a .375 probability
that it contains a major deposit.

Notice what we have done here. We have taken advantage of the fact
that the joint probability distribution P (Ai ∩ Bj) can be obtained in two
ways:

P (Ai ∩Bj) = P (Ai|Bj)P (Bj)

and
P (Ai ∩Bj) = P (Bj |Ai)P (Ai).

Subtracting the second of these from the first, we obtain

P (Ai|Bj)P (Bj) = P (Bj |Ai)P (Ai)

which implies

P (Ai|Bj) = P (Bj |Ai)
P (Ai)

P (Bj)
(2.16)

We can then use the fact that

P (Bj) =
∑
i

P (Bj ∩Ai) =
∑
i

[P (Bj |Ai)P (Ai)] (2.17)

to express (2.16) as

P (Ai|Bj) =
P (Bj |Ai)P (Ai)∑
i [P (Bj |Ai)P (Ai)]

(2.18)

This latter equation is called Bayes Theorem. Given the prior probability
distribution P (Ai) (the marginal or unconditional probabilities of gas being
present) plus the conditional probability distribution P (Bj |Ai) (the prob-
abilities of finding gas conditional upon it being not present, present in a
minor deposit or present in a major deposit), we can calculate the posterior
probability distribution (probabilities of no deposit or a minor or major de-
posit being present conditional upon the information obtained from drilling
a test hole).

The operation of Bayes Theorem can perhaps best be understood with
reference to a tabular delineation of the sample space of the sort used in the
parts delivery case.
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Test Drill Prior
Type of Deposit No Gas Gas Probability

(B1) (B2) Distribution

(A1) 0.000 0.70
(A2) 0.075 0.25
(A3) 0.045 0.05

Total 0.120 1.00

On the basis of our previous calculations we are able to fill in the right-most
two columns. The column on the extreme right gives the prior probabilities
and the second column from the right gives the joint probabilities obtained
by multiplying together the prior probabilities and the probabilities of find-
ing gas in a test well conditional upon its absence or minor or major presence
in the tract. We can fill in the missing column by subtracting the second
column from the right from the right-most column. This yields

Test Well Prior
Type of Deposit No Gas Gas Probability

(B1) (B2) Distribution

(A1) 0.700 0.000 0.70
(A2) 0.175 0.075 0.25
(A3) 0.005 0.045 0.05

Total 0.880 0.120 1.00

We can now see from the bottom row that the probability of not finding gas
in a test well drilled in this type of tract is .88. The posterior probabilities
conditional upon finding no gas or gas, respectively, in the test well can be
calculated directly from the table by taking the ratios of the numbers in
the two columns to the unconditional probabilities at the bottoms of those
columns. The posterior probabilities are therefore

Posterior Probabilities Prior
Type of Deposit No Gas Gas Probability

(Ai|B1) (Ai|B2) Distribution

(A1) 0.795 0.000 0.70
(A2) 0.199 0.625 0.25
(A3) 0.006 0.375 0.05

Total 1.000 1.000 1.00

Notice how the prior probabilities are revised as a consequence of the test
results. The prior probability of no gas being present is .70. If the test well
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yields no gas, that probability is adjusted upward to .795 and if the test well
yields gas it is adjusted downward to zero. The prior probability that there
is a minor deposit in the tract is .25. If the test well yields no gas this is
adjusted downward to less than .2 while if gas is found in the test well this
probability is adjusted upward to .625. Note that it is possible for gas to be
present even if the test well yields no gas (gas could be present in another
part of the tract) while if there is no gas present the test well will not find
any. Finally, the prior probability of there being a major deposit present is
adjusted upward from .05 to .375 if the test well yields gas and downward
to .006 if the test well finds no gas.

2.10 The AIDS Test

Now consider another application of Bayes Theorem. You go to your doctor
for a routine checkup and he tells you that you have just tested positive for
HIV. He informs you that the test you have been given will correctly identify
an AIDS carrier 90 percent of the time and will give a positive reading for
a non-carrier of the virus only 1 percent of the time. He books you for a
second more time consuming and costly but absolutely definitive test for
Wednesday of next week.

The first question anyone would ask under these circumstances is “Does
this mean that I have a 90 percent chance of being a carrier of HIV.” On
the way home from the doctor’s office you stop at the library and rummage
through some medical books. In one of them you find that only one per-
son per thousand of the population in your age group is a carrier of aids.1

You think “Am I so unfortunate to be one of these?” Then you remember
about Bayes Theorem from your statistics class and decide to do a thorough
analysis. You arrange the sample space as follows

Test Result Prior
An HIV Positive Negative Probability
Carrier? (T1) (T0) Distribution

No (A0) 0.0099 0.999
Yes (A1) 0.0009 0.001

Total 0.0108 1.000

and make special note that the test results give you some conditional prob-
abilities. In particular, the probability of a positive result conditional upon

1These numbers, indeed the entire scenario, should not be taken seriously—I ammaking
everything up as I go along!
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you being a carrier is P (T1|A1) = .90 and the probability of a positive result
conditional upon you not being a carrier is P (T1|A0) = .01. You obtain
the joint probability of being a carrier and testing positive by multiplying
P (T1|A1) by P (A1) to obtain .90 × .001 = .0009 and enter it into the ap-
propriate cell of the above table. You then obtain the joint probability of
testing positive and not being a carrier by multiplying P (T1|A0) by P (A0).
This yields .01 × .999 = .0099 which you enter appropriately in the above
table. You then sum the numbers in that column to obtain the uncondi-
tional probability of testing positive, which turns out to be .0108. You can
now calculate the posterior probability—that is, the probability of being a
carrier conditional on testing positive. This equals .0009/.0108 = .08333.
The information from the test the doctor gave you has caused you to revise
your prior probability of .001 upward to .0833. You can now fill in the rest
of the table by subtracting the joint probabilities already there from the
prior probabilities in the right margin.

Test Result Prior
An HIV Positive Negative Probability
Carrier? (T1) (T0) Distribution

No (A0) 0.0099 .9891 0.999
Yes (A1) 0.0009 .0001 0.001

Total 0.0108 .9892 1.000

Notice the importance to this problem of the 1% conditional probability of
testing positive when you don’t carry HIV. If that conditional probability
were zero then the fact that the test will come up positive for a carrier 90%
of the time is irrelevant. The joint probability of testing positive and not
being a carrier is zero. A carrier of HIV will sometimes test negative but a
non-carrier will never test positive. The above tabular representation of the
bivariate sample space then becomes

Test Result Prior
An HIV Positive Negative Probability
Carrier? (T1) (T0) Distribution

No (A0) 0.0000 .999 0.999
Yes (A1) 0.0009 .0001 0.001

Total 0.0009 .9991 1.000

The probability that you carry HIV conditional upon testing positive is now
.0009/.0009 = 1.000. You are a carrier.



54 PROBABILITY

2.11 Basic Probability Theorems

This chapter concludes with a statement of some basic probability theorems,
most of which have already been motivated and developed and all of which
will be used extensively in the chapters that follow. These theorems are best
understood with reference to the Venn diagram presented in Figure 2.2. The
area inside the square denotes the sample space with each point representing
a sample point. The circular areas E1, E2 and E3 represent events—the
points inside these areas are those points belonging to the sample space
contained in the respective events. The letters A, B, C and D denote
collections of sample points inside the respective events. For example the
event E1 consists of A + B, event E2 consists of B + C. And the area
D represents event E3. The probability theorems below apply to any two
events of a sample space.

E
E

E

1
2

3

A
B C

D

Figure 2.2: Venn diagram to illustrate basic probability the-
orems. The rectangle contains the sample space and the cir-
cular areas denote events E1, E2 and E3.

1. Addition

P (E1 ∪E2) = P (E1) + P (E2)− P (E1 ∩E2) (2.19)

The probabilities of the two events are added together and then the joint
probability of the two events, given by the probability mass associated with
the area B in Figure 2.2 is subtracted out to avoid double counting. If
the events are mutually exclusive, as in the case of E1 and E3 the joint
probability term will be zero,

P (E1 ∪E3) = P (E1) + P (E3). (2.20)
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2. Complementation

P (E1) = 1− P (Ec
1) (2.21)

where Ec
1 is the complementary event to E1.

3. Multiplication

P (E1 ∩E2) = P (E1)P (E2|E1). (2.22)

This follows from the definition of conditional probability. In Figure 2.2,
P (E2|E1) = P (B)/(P (A)+P (B)) (the proportion of the total weight in E1

that also falls in E2). And P (E1) = P (A)+P (B). So P (E1∩E2) = [P (A)+
P (B)][P (B)/(P (A) + P (B))] = P (B). If we know the joint probability and
the marginal probability we can find the conditional probability. Similarly,
if we know the conditional probability and the marginal probability we can
find the joint probability.

2.12 Exercises

1. Suppose a random trial has three basic outcomes: o1, o2 and o3. The
probabilities of o2 and o3 are .5 and .4 respectively. Let E be the event con-
sisting of basic outcomes o2 and o3. The probability of the complementary
event to E is

a) .1

b) .9

c) .8

d) .2

e) none of the above.

2. Two marbles are drawn at random and without replacement from a
box containing two blue marbles and three red marbles. Determine the
probability of observing the following events.

a) Two blue marbles are drawn.
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b) A red and a blue marble are drawn.

c) Two red marbles are drawn.

Hint: Organize the sample space according to a tree-diagram and then at-
tach probabilities to the respective draws. Alternatively, you can organize
the sample space in rectangular fashion with one draw represented as rows
and the other as columns.

3. Three events, A, B, and C are defined over some sample space S. Events
A and B are independent. Events A and C are mutually exclusive. Some
relevant probabilities are P (A) = .04, P (B) = .25, P (C) = .2 and P (B|C) =
.15. Compute the values of P (A∪B), P (A∪C), P (A∪B∪C) and P (C|B).

4. An experiment results in a sample space S containing five sample points
and their associated probabilities of occurrence:

s1 s2 s3 s4 s5
.22 .31 .15 .22 .10

The following events have been defined

• E1 = {s1, s3}.

• E2 = {s2, s3, s4}.

• E3 = {s1, s5}.

Find each of the following probabilities:

a) P (E1).

b) P (E2).

c) P (E1 ∩ E2).

d) P (E1|E2).

e) P (E2 ∩ E3).

f) P (E3|E2).
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Consider each pair of events E1 and E2, E1 and E3 and E2 and E3. Are any
of these events statistically independent? Why or why not? Hint: Are the
joint probabilities equal to the products of the unconditional probabilities?

5. Roulette is a very popular game in Las Vegas. A ball spins on a circular
wheel that is divided into 38 arcs of equal length, bearing the numbers 00,
0, 1, 2, . . . , 35, 36. The number of the arc on which the ball stops after
each spin of the wheel is the outcome of one play of the game. The numbers
are also coloured as follows:

Red: 1,3,5,7,9,12,14,16,18,19,21,23,25,27,30,32,34,36
Black: 2,4,6,8,10,11,13,15,17,20,22,24,26,28,29,31,33,35
Green: 00,0

Players may place bets on the table in a variety of ways including bets on
odd, even, red, black, high, low, etc. Define the following events:

• A: Outcome is an odd number (00 and 0 are considered neither even
nor odd).

• B: Outcome is a black number.

• C: Outcome is a low number, defined as one of numbers 1–18 inclusive.

a) What is the sample space here?

b) Define the event A ∩B as a specific set of sample points.

c) Define the event A ∪B as a specific set of sample points.

d) Find P (A), P (B), P (A ∪B), P (A ∩B) and P (C).

e) Define the event A ∩B ∩ C as a specific set of sample points.

f) Find P (A ∪B).

g) Find P (A ∩B ∩ C).

h) Define the event A ∪B ∪ C as a specific set of sample points.

6. A bright young economics student at Moscow University in 1950 criticized
the economic policies of the great leader Joseph Stalin. He was arrested and
sentenced to banishment for life to a work camp in the east. In those days
70 percent of those banished were sent to Siberia and 30 percent were sent
to Mongolia. It was widely known that a major difference between Siberia
and Mongolia was that fifty percent of the men in Siberia wore fur hats,
while only 10 percent of the people in Mongolia wore fur hats. The student
was loaded on a railroad box car without windows and shipped east. After
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many days the train stopped and he was let out at an unknown location.
As the train pulled away he found himself alone on the prairie with a single
man who would guide him to the work camp where he would spend the rest
of his life. The man was wearing a fur hat. What is the probability he
was in Siberia? In presenting your answer, calculate all joint and marginal
probabilities. Hint: Portray the sample space in rectangular fashion with
location represented along one dimension and whether or not a fur hat is
worn along the other.

7. On the basis of a physical examination and symptoms, a physician as-
sesses the probabilities that the patient has no tumour, a benign tumour, or
a malignant tumour as 0.70, 0.20, and 0.10, respectively. A thermographic
test is subsequently given to the patient. This test gives a negative result
with probability 0.90 if there is no tumour, with probability 0.80 if there is
a benign tumour, and with probability 0.20 if there is a malignant tumour.

a) What is the probability that a thermographic test will give a negative
result for this patient?

b) Obtain the posterior probability distribution for the patient when the
test result is negative?

c) Obtain the posterior probability distribution for the patient when the
test result is positive?

d) How does the information provided by the test in the two cases change
the physician’s view as to whether the patient has a malignant tumour?

8. A small college has a five member economics department. There are two
microeconomists, two macroeconomists and one econometrician. The World
Economics Association is holding two conferences this year, one in Istanbul
and one in Paris. The college will pay the expenses of one person from the
department for each conference. The five faculty members have agreed to
draw two names out of a hat containing all five names to determine who
gets to go to the conferences. It is agreed that the person winning the trip
to the first conference will not be eligible for the draw for the second one.

a) What is the probability that the econometrician will get to go to a
conference?

b) What is the probability that macroeconomists will be the attendees at
both conferences?
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c) What is the probability that the attendees of the two conferences will
be from different fields of economics?

d) The econometrician argued that a rule should be imposed specifying
that both attendees could not be from the same field. She was out-
voted. Would the provision have increased the probability that the
econometrician would get to attend a conference?

Hint: Use a rectangular portrayal of the sample space with persons who can
be chosen in the first draw along one axis and persons who can be chosen
in the second draw along the other. Then blot out the diagonal on grounds
that the same person cannot be chosen twice.

9. There is a 0.8 probability that the temperature will be below freezing on
any winter’s day in Toronto. Given that the temperature is below freezing
my car fails to start 15 percent of the time. Given that the temperature is
above freezing my car fails to start 5 percent of the time. Given that my
car starts, what is the probability that the temperature is below freezing?

10. If a baseball player is hitting .250 (i.e., if averages one hit per four times
at bat), how many times will he have to come up to bat to have a 90%
chance of getting a hit? Hint: Ask yourself what the probability is of not
getting a hit in n times at bat. Then take advantage of the fact that the
event ‘getting at least one hit in n times at bat’ is the complementary event
to the event of ‘not getting a hit in n times at bat’.

11. A particular automatic sprinkler system for high-rise apartment build-
ings, office buildings, and hotels has two different types of activation devices
on each sprinkler head. One type has a reliability of .91 (i.e., the proba-
bility that it will activate the sprinkler when it should is .91). The other
type, which operates independently of the first type, has a reliability of .87.
Suppose a serious fire starts near a particular sprinkler head.

a) What is the probability that the sprinkler head will be activated?

b) What is the probability that the sprinkler head will not be activated?

c) What is the probability that both activation devices will work prop-
erly?

d) What is the probability that only the device with reliability .91 will
work properly?
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Hint: Again use a rectangular portrayal of the sample space with the events
‘type 1 activation (yes, no)’ on one axis and ‘type 2 activation (yes, no)’ on
the other.

12. At every one of the Toronto BlueJay’s home games, little Johnny is there
with his baseball mit. He wants to catch a ball hit into the stands. Years
of study have suggested that the probability is .0001 that a person sitting
in the type of seats Johnny and his dad sit in will have the opportunity to
catch a ball during any game. Johnny is just turned six years old before the
season started. If he goes to every one of the 81 home games from the start
of the current season until he is 15 years old, what is the probability that
he will have the opportunity to catch a ball.

13. A club has 100 members, 30 of whom are lawyers. Within the club,
25 members are liars and 55 members are neither lawyers nor liars. What
proportion of the lawyers are liars?

14. The following is the probability distribution for an exam where students
have to choose one of two questions. The pass mark is 3 points or more.

5 4 3 2 1

Q1 .1 .1 .1 .2 0.0

Q2 0.0 .2 .1 .1 .1

a) Derive the marginal marks probability distribution.

b) What is the probability that a randomly selected student will pass?
(.6)

c) Given that a randomly selected student got 4 marks, what is the prob-
ability that she did question 2?

15. Suppose you are on a game show and you are given the opportunity to
open one of three doors and receive what ever is behind it. You are told
that behind one of the doors is a brand new Rolls Royce automobile and
behind the other two doors are goats. You pick a particular door—say door
number 1—and before the host of the show, who knows what is behind each
door, opens that door he opens one of the other doors—say door number
3—behind which is a goat. He then gives you the opportunity to stay with
door number 1, which you originally chose, or switch your choice to door 2.
Should you switch?
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Answer:

This is a classic puzzle in statistics having a level of difficulty much greater
than questions usually asked at the beginning level. Accordingly an effort
is made here to present a detailed answer. One approach to answering this
question is to examine the expected returns to “holding” (staying with the
door originally picked) and “switching” to the other unopened door. Let us
call the door you initially pick, which ever one it is, door A. Two mutually
exclusive events are possible:

1) The car is behind door A —call this event AY.

2) The car is not behind door A —call this event AN.

If your initial guess is right (which it will be 1/3 of the time) you win the car
by holding and lose it by switching. If your initial guess is wrong (which it
will be 2/3 of the time) the host, by opening the door with the goat behind,
reveals to you the door the car will be behind. You win by switching and
lose by holding. If contestants in this game always switch they will win the
car 2/3 of the time because their initial pick will be wrong 2/3 of the time.
The expected payoff can be shown in tabular form. Let winning the car
have a payoff of 1 and not winning it have a payoff of zero.

Hold Switch Probability

AY 1 0 1/3

AN 0 1 2/3

Expected 1/3× 1 1/3× 0
Payoff +1/3× 0 = 1/3 +2/3× 1 = 2/3

An alternative way to view the question is as a problem in Bayesian up-
dating. Call the door you initially pick door A, the door the host opens
door B, and the door you could switch to door C. On each play of the game
the particular doors assigned the names A, B, and C will change as the
doors picked by the contestant and opened by the host are revealed. The
probabilities below are the probabilities that the car is behind the door in
question.
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AY AN
Door

A B C

Prior
Probability 1/3 1/3 1/3

Information
From Host P (B|AN) = 0 P (C|AN) = 1

Joint P (B ∩AN) = P (C ∩AN) =
Probability P (B|AN)(P (AN)) = 0 P (C|AN)(P (AN)) = 2/3

Posterior
Probability 1/3 0 2/3

Keep in mind in looking at the above table that P (AN) = P (B) + P (C) =
2/3. The posterior probability of the car being behind the door the host
leaves closed (i.e. the probability that it is behind door C conditional upon
it not being behind door B) is 2/3. The posterior probability of the car being
behind door A (i.e., the probability of it being behind door A conditional
upon it not being behind door B) is 1/3, the same as the prior probability
that it was behind door A. You should always switch!


