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PREFACE

The pages that follow contain the material presented in my introductory
quantitative methods in economics class at the University of Toronto. They
are designed to be used along with any reasonable statistics textbook. The
most recent textbook for the course was James T. McClave, P. George Ben-
son and Terry Sincich, Statistics for Business and Economics, Eighth Edi-
tion, Prentice Hall, 2001. The material draws upon earlier editions of that
book as well as upon John Neter, William Wasserman and G. A. Whitmore,
Applied Statistics, Fourth Edition, Allyn and Bacon, 1993, which was used
previously and is now out of print. It is also consistent with Gerald Keller
and Brian Warrack, Statistics for Management and Economics, Fifth Edi-
tion, Duxbury, 2000, which is the textbook used recently on the St. George
Campus of the University of Toronto. The problems at the ends of the chap-
ters are questions from mid-term and final exams at both the St. George
and Mississauga campuses of the University of Toronto. They were set by
Gordon Anderson, Lee Bailey, Greg Jump, Victor Yu and others including
myself.

This manuscript should be useful for economics and business students en-
rolled in basic courses in statistics and, as well, for people who have studied
statistics some time ago and need a review of what they are supposed to have
learned. Indeed, one could learn statistics from scratch using this material
alone, although those trying to do so may find the presentation somewhat
compact, requiring slow and careful reading and thought as one goes along.

I would like to thank the above mentioned colleagues and, in addition, Ado-
nis Yatchew, for helpful discussions over the years, and John Maheu for
helping me clarify a number of points. I would especially like to thank Gor-
don Anderson, who I have bothered so frequently with questions that he
deserves the status of mentor.

After the original version of this manuscript was completed, I received some
detailed comments on Chapter 8 from Peter Westfall of Texas Tech Univer-
sity, enabling me to correct a number of errors. Such comments are much
appreciated.

J. E. Floyd
July 2, 2010

c⃝J. E. Floyd, University of Toronto
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Chapter 10

Analysis of Variance

Analysis of variance (ANOVA) models study the relationship between a
dependent variable and one or more independent variables within the same
framework as do linear regression models but from a different perspective.
We begin by viewing from an ANOVA perspective the results of a regression
explaining the response of Canadian real money holdings to Canadian real
GNP and the interest rate on Canadian 90-day commercial paper.

10.1 Regression Results in an ANOVA Framework

The regression results were as follows:

Dependent Variable: Canadian Real Money Holdings

Constant 10.47 (3.21)
90-Day Paper Rate -2.62 (0.38)
Real GNP 0.17 (0.01)

R-Squared .91
Standard Error (σ̂) 6.70
Number of Observations 40
Degrees of Freedom 37

The regression model can be seen as attempting to explain the total sum
of squares of the dependent variable, real money holdings, using two inde-
pendent variables, real GNP and the nominal interest rate. The residual
sum of squares SSE represents the portion of the total sum of squares SSTO
that cannot be explained by the independent variables. And the sum of
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2 ANALYSIS OF VARIANCE

squares due to the regression SSR represented the portion of the total sum
of squares explained by the regressors. It will be recalled that the R2 is the
ratio of SSR to SSTO. The regression results above give the standard error
of the regression σ̂ which is a point estimate of σ—it is the square root of
the mean square error MSE. The mean square error in the regression above
is thus

MSE = σ̂2 = 6.702 = 44.89

so the sum of squared errors is

SSE = (n−K − 1)MSE = (37)(44.89) = 1660.93.

Since the coefficient of determination, R2, equals

R2 =
SSR

SSTO
=

SSTO − SSE

SSTO
= 1− SSE

SSTO

it follows that

R2SSTO = SSTO − SSE =⇒ (1−R2)SSTO = SSE,

so that, given R2 and SSE, we can calculate SSTO from the relationship

SSTO =
SSE

1−R2
=

1660.93

1− .91
=

1660.93

.09
= 18454.78.

The sum of squares due to regression then becomes

SSR = SSTO − SSE = 18454.78− 1660.93 = 16793.85.

Now the variance of the dependent variable, real money holdings, is the to-
tal sum of squares divided by (n − 1), the degrees of freedom relevant for
calculating it—one observation out of the n available is used up calculat-
ing the mean of the dependent variable. And we have seen that the error
variance is estimated by dividing the sum of squared errors by (n−K − 1),
the number of degrees of freedom relevant for its calculation—here we have
used up K pieces of information calculating the regression coefficients of the
independent variables and one piece of information to calculate the constant
term, leaving only (n−K − 1) independent squared residuals.

Finally, we can identify the degrees of freedom used in calculating the
sum of squares due to regression (SSR). SSR is the sum of squared deviations
of the fitted values of the dependent variable from the mean of the dependent
variable—in terms of our regression notation,

SSR =
n∑

i=1

(Ŷi − Ȳ )2.
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There are n fitted values Ŷ that by the nature of the calculations are con-
strained to lie along the fitted line. The potential degrees of freedom in
calculating this line are its K + 1 parameters—the slopes with respect to
the K independent variables, and the intercept. One of these degrees of
freedom is lost because only n − 1 of the (Ŷi − Ȳ ) are independent—the
deviations must satisfy the constraint

n∑
1=1

(Ŷi − Ȳ ) = 0

so if we know any n − 1 of these deviations we also know the remaining
deviation. The sum of squares due to regression is thus calculated with K
degrees of freedom (two in the above example). So we can calculate the
variance due to the regression (i.e., the regression mean square) as

MSR =
SSR

K
=

16793.85

2
= 8396.925.

These analysis of variance results can be set out in the following ANOVA
table:

Analysis of Variance: Canadian Real Money Holdings

Source of Variation Sum of Squares Degrees of Freedom Mean Square

Regression 16793.85 2 8396.925

Error 1660.93 37 44.89

Total 18454.78 39

Notice how the total degrees of freedom is the sum of the degrees of freedom
for calculating the regression sum of squares and the degrees of freedom
for calculating the sum of squared errors. And, as shown in the previous
two chapters as well as above, the total sum of squares is equal to the sum
of squares due to regression plus the error sum of squares. It is especially
important to notice, however, that the mean square due to regression and
the mean square error do not add up to equal the variance of the dependent
variable, which in the case above is 18454.78/39 = 473.2. The F -Statistic
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for testing the null hypothesis of no relationship between the regressors and
the dependent variable is

F =

∑
(Yi − Ŷ )2 −

∑
e2i

K
÷

∑
e2i

n−K − 1

=
SST0− SSE

K
÷ SSE

n−K − 1

=
MSR

MSE
=

8396.925

44.89
= 185.72

which far exceeds the value of F (2, 37) in the statistical tables for at any
reasonable level of α.

10.2 Single-Factor Analysis of Variance

Let us now take a fresh problem and approach it strictly from an ANOVA
perspective. Suppose we randomly select 5 male students and 5 female
students from a large class and give each student an achievement test. Our
objective is to investigate whether male students do better than their female
counterparts on such a test. The resulting data are

Student i
Gender j 1 2 3 4 5

Male 86 82 94 77 86
Female 89 75 97 80 82

This is a designed sampling experiment because we control (and randomize)
the selection of male and female participants. It would be an observational
sampling experiment if we were to simply take a class of 10 students, half of
whom turn out to be female, and give them an achievement test.

Analysis of variance has its own terminology. The achievement test score
is the response or dependent variable as it would be in a linear regression.
The independent variables, whose effects on the response variable we are
interested in determining, are called factors. In the case at hand, there is a
single factor, gender, and it is qualitative—i.e., not measured naturally on
a numerical scale. We could add additional factors such as, say, the race of
the student. The values of the factors utilized in the experiment are called
factor levels. In this single factor experiment, we have two factor levels,
male and female. In the single factor case the factor levels are also called
treatments. In an experiment with more than one factor, the treatments
are the factor-level combinations utilized. For example, if we take the race
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of the students as a second factor, the treatments might be male-white,
female-white, male-non-white and female-non-white. The objects on which
the response variables are observed—i.e., the individual students in the case
considered here—are referred to as experimental units. These are called
elements in regression analysis.

The objective of a completely randomized design is usually to compare
the treatment means—these are the mean achievement scores of male and
female students respectively. The means of the two treatments (male and
female) are, respectively,

86 + 82 + 94 + 77 + 86

5
= 85

and
89 + 75 + 97 + 80 + 82)

5
= 84.6

and the overall mean is 84.8. Some thought suggests that if the response
variable (achievement test score) is not much affected by treatment (i.e., by
whether the student is male or female) the means for the two treatments
will not differ very much as compared to the variability of the achievement
test scores around their treatment means. On the other hand, if test score
responds to gender, there should be a large degree of variability of the treat-
ment means around their common mean as compared to the variability of
the within-group test scores around their treatment means.

We thus calculate the Sum of Squares for Treatments by squaring the
distance between each treatment mean and the overall mean of all sample
measurements, multiplying each squared difference by the number of sample
measurements for the treatment, and adding the results over all treatments.
This yields

SST =
p∑

j=1

(nj)(x̄j − x̄)2 = (5)(85− 84.8)2 + (5)(84.6− 84.8)2

= (5)(.04) + (5)(.04) = .2 + .2 = .4.

In the above expression p = 2 is the number of treatments, nj is the number
of sample elements receiving the j-th treatment, x̄j is the mean response for
the jth treatment and x̄ is the mean response for the entire sample.

Next we calculate the Sum of Squares for Error, which measures the sam-
pling variability within the treatments—that is, the variability around the
treatment means, which is attributed to sampling error. This is computed
by summing the squared distance between each response measurement and
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the corresponding treatment mean and then adding these sums of squared
differences for all (both) treatments. This yields

SSE =
n1∑
i=1

(xi1 − x̄1)
2 +

n2∑
i=1

(xi2 − x̄2)
2

= [(86− 85)2 + (82− 85)2 + (94− 85)2 + (77− 85)2 + (86− 85)2]

+[(89− 84.6)2 + (75− 84.6)2 + (97− 84.6)2 + (80− 84.6)2 + (82− 84.6)2]

= [1 + 9 + 81 + 64 + 1] + [19.36 + 92.16 + 153.76 + 21.16 + 6.76]

= 156 + 293.2 = 449.2.

Again, nj is the number of sample measurements for the jth treatment and
xij is the ith measurement for the jth treatment.

Finally, the Total Sum of Squares is the sum of squares for treatments
plus the sum of squares for error. That is

SSTO = SST + SSE = .4 + 449.2 = 449.6.

Now we calculate the Mean Square for Treatments which equals the sum
of squares for treatments divided by the appropriate degrees of freedom. We
are summing p squared deviations (of each of the p treatment means from
the overall mean) but only p−1 of these squared deviations are independent
because we lose one piece of information in calculating the overall mean. So
for the above example we have

MST =
SST

p− 1
=

0.4

1
= 0.4.

Next we calculate the Mean Square Error which equals the sum of the
squared deviations of the sample measurements from their respective treat-
ment means for all measurements, again divided by the appropriate degrees
of freedom. Here we have n cases (or sample measurements), where

n = n1 + n2 + n3 + . . .+ np

but we had to calculate the p treatment means from the data, so the degrees
of freedom will be n− p. We thus obtain

MSE =
SSE

n− p
=

SSTO − SST

n− p
=

449.2

10− 2
= 56.15.

The above numbers can be used to construct the following ANOVA table:
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Analysis of Variance: Achievement Test Scores

Source of Variation Sum of Squares Degrees of Freedom Mean Square

Treatments 0.4 1 0.4

Error 449.2 8 56.15

Total 449.6 9

The purpose of this whole exercise, of course, is to determine whether
gender (given by treatments) has any effect on achievement test scores (the
response variable). If there is no effect we would expect the error sum of
squares to be nearly as big as the total sum of squares and the treatment sum
of squares to be very small. This appears to be the case in the ANOVA table
above. The sum of squares for treatments (which measures the variability of
the treatment means around the overall mean) is extremely low relative to
the error sum of squares. But is it low enough for us to conclude that there is
no significant relationship of achievement scores to gender? Is the observed
treatment sum of squares as high as it is purely because of sampling error?

The statistical test for significance is straight forward. From the discus-
sions in the previous chapter it is evident that under the null hypothesis of
no relationship

SST

σ2
=

SSTO − SSE

σ2
= χ2(p− 1)

where (p − 1)[= (n − 1) − (n − p)] is the degrees of freedom for treatment
and σ2 is the common variance of the individual achievement scores around
the overall mean achievement score and of the individual scores around
their treatment means. The two types of variation have a common variance
under the null hypotheses that the achievement test scores are independent
of treatment. Also,

SSE

σ2
= χ2(n− p).

We can now apply the principle that the ratio of two independent χ2 vari-
ables, each divided by its degrees of freedom, will be distributed according to
the F -distribution with parameters equal to the number of degrees of free-
dom in the numerator and number of degrees of freedom in the denominator.
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Thus we have

SSTO − SSE

(n− 1)− (n− p)
÷ SSE

n− p
=

SST

p− 1
÷ SSE

n− p
=

MST

MSE
= F (p− 1, n− p)

where the σ2 terms cancel out. In the example under consideration, this
yields

MST

MSE
=

.4

56.15
= .007123778 = F (1, 8).

The critical value of F with one degree of freedom in the numerator and
8 degrees of freedom in the denominator for α = .1 is 3.46. So we cannot
reject the null hypothesis of no effect of gender on achievement test scores.

You might recognize the similarity of this analysis of variance test to the
tests we did in Chapter 6 for differences in the means of two populations.
Indeed, the tests are identical. In Chapter 6 we expressed the difference
between the two population means as

E{Ȳ − X̄} = E{Ȳ } − E{X̄} = µ2 − µ1

and the variance of the difference between the two means as

σ2{Ȳ − X̄} = σ2{Ȳ }+ σ2{X̄},

using
s2{Ȳ − X̄} = s2{Ȳ }+ s2{X̄}

as an unbiased point estimator of σ2{Ȳ − X̄}. We then used in this formula
the expressions for the variances of the means,

s2{Ȳ } = s2{Y/n}

and
s2{X̄} = s2{X/n}.

The difference in means in the case above is 85 − 84.6 = 0.4. The sample
population variances can be obtained by noting that the sums of the squared
deviations of the achievement scores of the male and female students around
their respective means are, respectively, 156 and 293.2. Dividing each of
these by the degrees of freedom relevant for their calculation (ni−1 = 5−1 =
4), we obtain sample population variances for male and female students of 39
and 73.3 respectively. Imposing the condition that the true variances of the
two groups are the same, we then obtain a pooled estimator of this common
variance by calculating a weighted average of the two estimated variances
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with the weights being the ratios of their respective degrees of freedom to
the total. That is

s2P =
(4)(39) + (4)(73.3)

8
=

156 + 293.2

8
= 56.15

which, you will note, equals MSE. The variance of the difference between
the two means (which we denote using the subscripts m for male and f for
female) equals

σ2
m−f =

σ2
m

nm
+

σ2
f

nf
= s2P

[
1

nm
+

1

nf

]
= (56.15)(.2 + .2) = 22.46.

The standard deviation of the difference between the two means then equals√
22.46 = 4.739198. Given the point estimate of the difference in the means

of 0.4, the t-statistic for testing the null-hypothesis of no difference between
the means is

t∗ =
.4

47392
= .08440246.

This statistic will be within the acceptance region for any reasonable level
of significance. The result is the same as we obtained from the analysis of
variance.

As a matter of fact, this test and the analysis of variance test are identi-
cal. Squaring t∗, we obtain .007123778 which equals the F -statistic obtained
in the analysis of variance procedure. This is consistent with the principle,
already noted, that when there is one degree of freedom in the numerator,
F = t2.

A third way of approaching this same problem is from the point of view
of regression analysis. We have n = 10 observations on gender and want
to determine the response of achievement test score to gender. Gender is
a qualitative variable which we can introduce as a dummy variable taking
a value of 0 for elements that are male and 1 for elements that are female.
Our regression model becomes

Yi = β0 + β1Xi + ϵi

where Yi , i = 1 . . . 10, is the test score for the i-th student, and Xi is the
dummy variable taking a value of zero for male students and unity for female
students. The regression results obtained are:
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Dependent Variable: Achievement Test Score

Constant 85 (3.35112)
Female Dummy -.40 (4.73920)

R-Squared .000889
Standard Error (σ̂) 7.4933
Number of Observations 10
Degrees of Freedom 8

The dummy variable for female indicates that the ‘constant term for females’
is 85− 0.4 = 84.6, which is the treatment mean for females obtained by the
analysis of variance procedure. The t−ratio for the hypothesis that the
female dummy is zero (i.e., the female treatment mean equals the male
treatment mean) is -.4/473920, which is the same as was obtained for the
above test for difference between the means. And the square of σ̂ is 56.15,
the mean squared error obtained in the analysis of variance procedure.

Now let us take a more complicated problem. Suppose we randomly
divide fifteen male students enrolled in a mathematics course into three
groups of five students each. We then randomly assign each group to one
of three instructional modes: (1) programmed text, (2) video-taped lecture-
style presentation, and (3) interactive computer programs. These modes are
all designed to augment a standard textbook which is the same for all three
groups. At the end of the course, we give all students the same achievement
test, with the following results:

Student i
Mode j 1 2 3 4 5

1 86 82 94 77 86
2 90 79 88 87 96
3 78 70 65 74 63

Again we have a designed sampling experiment because we were able to con-
trol the details of the instructional modes for the three groups and make sure
that students were randomly assigned to groups and groups were randomly
assigned to instructional modes. The experiment is completely randomized
because the allocation of the students to the three groups is random and the
allocation of the groups to the instructional modes is random. In contrast,
an observational sampling experiment would be one where we, for example,
observe the test scores of three groups of students, perhaps of different sizes,
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who for reasons beyond our control happen to have been instructed in accor-
dance with three alternative instructional modes of the above types. In this
single factor study there are three factor levels or treatments representing
the three modes of instruction.

Our objective in this completely randomized design is to compare the
treatment means—the mean achievement scores of the students in the three
groups taught using the different instructional modes. The means of the
three modes are

86 + 82 + 94 + 77 + 86

5
= 85

90 + 79 + 88 + 87 + 96

5
= 88

78 + 70 + 65 + 74 + 63

5
= 70

And the overall mean is 81. Again we note that if the response variable
(achievement test score) is not much affected by treatment (instructional
mode) the means for the three treatments will not differ very much as com-
pared to the variability of the achievement test scores around their treatment
means. On the other hand, if test score responds to instructional mode, there
should be a large degree of variability of the treatment means around their
common mean as compared to the variability of the within-group test scores
around their treatment means.

We again calculate the Sum of Squares for Treatments by squaring the
distance between each treatment mean and the overall mean of all sample
measurements, multiplying each squared distance by the number of sample
measurements for the treatment, and adding the results over all treatments.

SST =
p∑

j=1

nj (x̄j − x̄)2 = (5)(85− 81)2 + (5)(88− 81)2 + (5)(70− 81)2

= (5)(16) + (5)(49) + (5)(121) = 80 + 245 + 605 = 930.

In the above expression p = 3 is the number of treatments, x̄j is the mean
response for the jth treatment and x̄ is the mean response for the entire
sample.

Next we calculate the Sum of Squares for Error, which measures the sam-
pling variability within the treatments—the variability around the treatment
means that we attribute to sampling error. This is computed by summing
the squared distance between each response measurement and the corre-
sponding treatment mean and then adding the squared differences over all
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measurements in the entire sample.

SSE =
n1∑
i=1

(xi1 − x̄1)
2 +

n2∑
i=1

(xi2 − x̄2)
2 +

n3∑
i=1

(xi3 − x̄3)
2

= (86− 85)2 + (82− 85)2 + (94− 85)2 + (77− 85)2 + (86− 85)2

+(90− 88)2 + (79− 88)2 + (88− 88)2 + (87− 88)2 + (96− 88)2

+(78− 70)2 + (70− 70)2 + (65− 70)2 + (74− 70)2 + (63− 70)2

= [1 + 9 + 81 + 64 + 1] + [4 + 81 + 0 + 1 + 64] + [64 + 0 + 25 + 16 + 49]

= 156 + 150 + 154 = 460.

Again, nj is the number of sample measurements for the jth treatment,
which turns out to be 5 for all treatments, and xij is the ith measurement
for the jth treatment.

Finally, the Total Sum of Squares, which equals the sum of squares for
treatments plus the sum of squares for error, is

SSTO = SST + SSE = 930 + 460 = 1390.

Now we calculate the Mean Square for Treatments which equals the sum
of squares for treatments divided by the appropriate degrees of freedom. We
are summing 3 squared deviations from the overall mean but only 2 of these
squared deviations are independent because we lose one piece of information
in calculating the overall mean. So we have

MST =
SST

p− 1
=

930

2
= 465.

Finally, we calculate the Mean Square Error which equals the sum of the
squared deviations of the sample measurements from their respective treat-
ment means for all measurements, again divided by the appropriate degrees
of freedom. Here we have 15 cases (or sample measurements), but we had
to calculate the 3 treatment means from the data, so the degrees of freedom
will be 12. We thus obtain

MSE =
SSE

n− p
− 460

12
= 38.333.

The above numbers can be used to construct the following ANOVA table:
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Analysis of Variance: Achievement Test Scores

Source of Variation Sum of Squares Degrees of Freedom Mean Square

Treatments 930 2 465

Error 430 12 38.33

Total 1390 14

Our goal is to determine whether mode of instruction (given by treat-
ments) has any effect on achievement test score (the response variable). If
there is no effect we would expect the error sum of squares to be nearly
as big as the total sum of squares and the treatment sum of squares to
be very small. It turns out that the sum of squares for treatments (which
measures the variability of the treatment means around the overall mean)
is quite high relative to the error sum of squares. But is it high enough
for us to conclude that there is a significant response of achievement scores
to instructional mode? We answer this question by doing an F -test. The
F -statistic obtained is

MST

MSE
=

465

38.33
= 12.13 = F (2, 12),

which is well above the critical value of 6.93 for α = .01. We reject the null
hypothesis of no effect of instruction mode on achievement test score.

The natural question to ask at this point is: Which of the instructional
modes are responsible for the significant overall relationship? All our analy-
sis of variance results tell us is that there is a significant effect of at least one
of the three modes of instruction, compared to the other two, on achieve-
ment test score. We have not established the relative importance of these
modes in determining students’ achievement test scores. To investigate this,
we can approach the problem from the point of view of regression analysis.

The dependent variable for our regression is achievement test score in a
sample of 15 students. Taking the programmed text instructional mode as a
reference, we create two dummy variables—one that takes a value of 1 when
the instructional mode is video-taped lecture and zero otherwise, and a sec-
ond that takes a value of 1 when the mode is interactive computer programs
and zero otherwise. The effect of programmed text, the reference treatment,
is thus measured by the constant terms and the differences in the effects of
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the other two treatments from the reference treatment are measured by the
coefficients of their respective dummy variables. Our regression model is
therefore

Yi = β0 + β1X1i + β2X2i + ϵi

where Yi , i = 1 . . . 15, is the test score for the i-th student, and X1i is the
dummy variable for video-taped lecture and X2i is the dummy variable for
computer programs. The regression results obtained are:

Dependent Variable: Achievement Test Score

Constant 85 (2.77)
Dummy-video 3 (3.92)
Dummy-computer -15 (3.92)

R-Squared .67
Standard Error (σ̂) 6.19139
Number of Observations 15
Degrees of Freedom 12

The mean score for students using programmed text is equal to the constant
term, 85. And the mean score for students receiving video-taped lectures is
3 points higher than that for students using programmed text—i.e., 85 +
3 = 88. Finally, the mean score for students using computer programs is
15 points less than those using programmed text—i.e., 85 - 15 = 70. These
correspond to the means calculated earlier. The t-statistic for testing the
null hypothesis of no difference between the means for programmed text and
video-taped lectures—that is β1 = 0—is

t∗ =
3

3.92
= .765,

which is well with any reasonable acceptance region. So we cannot reject
the null hypothesis of no difference between the means for programmed text
and video-taped lecture. The t-statistic for testing the null hypothesis of no
difference between computer program and programmed text is

t∗ =
−15

3.92
= −3.83,

leading us to conclude that mean test score under computer programmed
learning is significantly below that of programmed text—the critical value
of t(12) for α = .005 is 3.055.
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The question arises as to whether there is a significant difference between
the test scores under video-taped lecture vs. computer programmed learning.
This would seem to be the case. To check this out we rerun the regression
letting video-taped lecture be the reference—that is, including dummies for
programmed text and computer program but no dummy variable for video-
taped lecture. This yields

Dependent Variable: Achievement Test Score

Constant 88 (2.77)
Dummy-text -3 (3.92)
Dummy-computer -18 (3.92)

R-Squared .67
Standard Error (σ̂) 6.19139
Number of Observations 15
Degrees of Freedom 12

The computer program dummy is clearly statistically significant, having a
t−statistic of -4.59. We have to reject the null hypothesis of no difference
between the mean test scores under video-taped lecture and computer pro-
grammed learning.

Notice how the difference between the coefficient of Dummy-video and
Dummy-computer in the regression that uses programmed text as the ref-
erence treatment is exactly the same as the coefficient of Dummy-computer
in the regression that uses video-taped lectures as the reference treatment,
and that the standard errors of the dummy coefficients are the same in both
regressions. It would appear that instead of running the second regression
we could have simply subtracted the coefficient of Dummy-computer from
the coefficient of Dummy-video (to obtain the number 18) and then simply
divided that difference by the variance of all dummy coefficients to obtain
the correct t-statistic for testing the null hypothesis of no difference between
the coefficients of the two dummy variables.

This suggests that we might have approached the problem of testing for
a significant difference between the two coefficients in the same way as we
approached the problem of comparing two population means in Chapter 6.
In the problem at hand, however, the required computations are different
than we used in Chapter 6 for two reasons. First, the regression coefficients
we are comparing represent the mean responses of the dependent variable to
the respective independent variables, so their variances are the variances of
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means rather than population variances. We therefore do not need to divide
these variances by n. Second, the coefficients of the independent variables
in linear regressions are not necessarily statistically independent, so we can-
not obtain the variance of the difference between two coefficients simply by
adding their variances—we must subtract from this sum an amount equal
to twice their covariance. The variance-covariance matrix of the coefficients
in the regression that used programmed text as the reference treatment is1

b0 b1 b2
b0 7.6666 -7.6666 -7.6666
b1 -7.6666 15.3333 7.6666
b2 -7.6666 7.6666 15.3333

The variance of the difference between the coefficient estimates b1 and b2 is

Var{b1 − b2} = Var{b1}+ Var{b2} − 2Cov{b1, b2}

= 15.3333+15.3333− (2)(7.6666) = 15.3333+15.3333− 15.3333 = 15.3333.

The standard deviation of the difference between the two coefficients is there-
fore equal to the square root of 15.3333, which equals 3.91578, the standard
error of the coefficients of both dummy variables. So we can legitimately
test whether the coefficients of Dummy-video and Dummy computer differ
significantly by taking the difference between the coefficients and dividing
it by their common standard error to form an appropriate t-statistic.

It should be noted, however, that although we could have obtained an
appropriate test of the difference between the coefficients of the two dummy
variables in this case by simply dividing the difference between the coef-
ficients by their common standard error and comparing the resulting t-
statistic with the critical values in the table at the back of our textbook,
this will not necessarily work under all circumstances. We have not inves-
tigated what would be the best procedure to follow when, for example, the
numbers of sample elements receiving each of the three treatments differ.
We always have to take account of the fact that the covariance between
estimated regression coefficients will not in general be zero.

1This was obtained from XlispStat, the computer program used to calculate the re-
gression. Using the matrix notation we very briefly developed in Chapter 9, the variance
covariance matrix can be written (see page 5) as s2(X ′X)−1.
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10.3 Two-factor Analysis of Variance

In ending this chapter we examine briefly a two-factor designed experiment.
We add fifteen randomly selected female students to the fifteen male stu-
dents in the above single factor experiment. These fifteen female students
are also randomly divided into three groups of 5 students each. One group is
instructed by programmed text, one by video-taped lecture and one by com-
puter programs. In this two factor experiment the number of treatments ex-
pands from three to six according to the six factor combinations—male-text,
male-video, male-computer, female-text, female-video and female-computer.
The best way to approach this problem for our purposes is to use a regres-
sion analysis of the sort immediately above. In setting up the regression,
we obviously need a dummy variable to separate the genders—we let it take
a value of 0 if the student is male and 1 if the student is female. Letting
programmed text be the reference, we also need dummy variables for video-
taped lecture (taking the value of 1 if the instructional mode is video-taped
lecture and zero otherwise) and for computer programmed learning (tak-
ing a value of 1 if the instructional mode is computer programs and zero
otherwise). This would give us the following regression model

Yi = β0 + β1X1i + β2X2i + β3X3i + ϵi

where Yi is test score, X1i is the female dummy, X2i the video dummy and
X3i the computer dummy. The mean test scores identified in the model are
as follows:

Males-text β0
Females-text β0 + β1
Males-video β0 + β2
Males-computer β0 + β3
Females-video β0 + β1 + β2
Females-computer β0 + β1 + β3

But this imposes the condition that the effects of the different modes of
instruction on achievement test scores be the same for males as for females—
using video-taped-lectures instead of programmed text will increase the test
scores by an amount equal to β2 for both males and females, and using
computer programs instead of programmed text will increase their test scores
uniformly by β3.

This formulation is inadequate because we should be taking account of
whether mode of instruction has a differential effect on the achievement
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test scores of females and males. We do this by adding interaction dummy
variables constructed by multiplying the female dummy by the mode-of-
instruction dummy. Our regression model then becomes

Yi = β0 + β1X1i + β2X2i + β3X3i + β4X1iX2i + β5X1iX3i + ϵi.

The first three independent variables are the same as before—female dummy,
the video dummy, and the computer dummy. The fourth independent vari-
able is the product of the female dummy and the video dummy—it will take
the value 1 if the student is both female and using video-taped lecture in-
struction and 0 otherwise. And the fifth independent variable is the product
of the female dummy and computer dummy, which will be equal to 1 if the
student is both female and using computer programmed instruction and 0
otherwise. Notice that the five dummy variables together with the constant
term represent the six treatments in the two-factor experiment. The mean
test scores identified in the model for the six treatments are now

Males-text β0
Females-text β0 + β1
Males-video β0 + β2
Males-computer β0 + β3
Females-video β0 + β1 + β2 + β4
Females-computer β0 + β1 + β3 + β5

The regression results obtained are as follows:

Dependent Variable: Achievement Test Score

Constant 85 (2.86)
Dummy-female -0.4 (4.05)
Dummy-video 3 (4.05)
Dummy-computer -15 (4.05)
Dummy-video-female 1 (5.73)
Dummy-computer-female 14 (5.73)

R-Squared .54
Standard Error (σ̂) 6.40182
Number of Observations 30
Degrees of Freedom 24

The coefficient of Dummy-video, which is a point estimate of β2, mea-
sures the difference in male scores under video-taped lecture instruction as
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compared to programmed text. Its t-ratio of

t∗ =
3

4.05
= .74071

indicates that β2 is not significantly different from zero. The coefficient of
Dummy-computer is a point estimate of β3 and measures the difference in
male scores under computer-programmed instruction as compared to pro-
grammed text. Its t-ratio is

t∗ =
−15

4.05
= −3.7037,

indicating a significant negative effect of computer programs over programmed
text as a method of instruction. The coefficient for Dummy-female is a
point estimate of β1, measuring the effect of being female rather than male
on achievement test scores when programmed text is the method of instruc-
tion. It should be obvious that β1 is not significantly different from zero. The
point estimate of β4, the coefficient of Dummy-video-female, measures the
estimated effect of being female rather than male when taking video-lecture
instruction. The relevant t-ratio, .17452, indicates no significant effect. Fi-
nally, the coefficient of Dummy-computer-female, which measures the effect
of being female rather than male when taking computer-programmed in-
struction, is plus 14 with a t-statistic of

t∗ =
14

5.73
= 2.4433.

This indicates a significantly positive effect of being female rather than male
when taking computer programmed instruction. It is clear that females
do significantly better than males when the instruction mode is computer
programs. In fact, it can be seen from a comparison of the coefficient of
Dummy-computer with that of Dummy-computer-female that the negative
effect of computer programmed instruction on learning, which is statistically
significant for male students, almost vanishes when the student is female.
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10.4 Exercises

1. In a completely randomized design experiment with one factor the fol-
lowing data were obtained for two samples:

Sample 1: 5 5 7 11 13 13
Sample 2: 10 10 12 16 18 18

Test the null hypothesis that the two samples were drawn from populations
with equal means and draw up the appropriate ANOVA table.

2. A clinical psychologist wished to compare three methods for reducing
hostility levels in university students. A certain psychological test (HLT)
was used to measure the degree of hostility. High scores on this test indicate
great hostility. Eleven students obtaining high and nearly equal scores were
used in the experiment. Five were selected at random from among the
eleven problem cases and treated by method A. Three were taken at random
from the remaining six students and treated by method B. The other three
students were treated by method C. All treatments continued throughout
a semester. Each student was given the HLT test again at the end of the
semester, with the results shown below:

Method A Method B Method C

73 54 79
83 74 95
76 71 87
68
80

Do the data provide sufficient evidence to indicate that at least one of the
methods of treatment produces a mean student response different from the
other methods? What would you conclude at the α = .05 level of signifi-
cance?

3. Is eating oat bran an effective way to reduce cholesterol? Early studies
indicated that eating oat bran daily reduces cholesterol levels by 5 to 10%.
Reports of these studies resulted in the introduction of many new break-
fast cereals with various percentages of oat bran as an ingredient. However,
a January 1990 experiment performed by medical researchers in Boston,
Massachusetts cast doubt on the effectiveness of oat bran. In that study,
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20 volunteers ate oat bran for breakfast and another 20 volunteers ate an-
other grain cereal for breakfast. At the end of six weeks the percentage of
cholesterol reduction was computed for both groups:

Oat Bran Other Cereal

14 3
18 3
4 8
9 11
4 9
0 7
12 12
2 13
8 18
12 2
10 7
11 5
12 1
6 5
15 3
17 13
12 11
4 2
14 19
7 9

What can we conclude at the 5% significance level?

4. Prior to general distribution of a successful hardcover novel in paperback
form, an experiment was conducted in nine test markets with approximately
equal sales potential. The experiment sought to assess the effects of three dif-
ferent price discount levels for the paperback (50, 75, 95 cents off the printed
cover price) and the effects of three different cover designs (abstract, photo-
graph, drawing) on sales of the paperback. Each of the nine combinations
of price discount and cover design was assigned at random to one of the test
markets. The dependent variable was sales, and the independent variables
were the discount off cover price, a dummy variable taking a value of 1 if
the design was photograph and 0 otherwise, and a dummy variable taking
a value of 1 if the design was drawing and 0 otherwise.
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The regression results were as follows:

Dependent Variable: Sales

Constant 6.03685 (0.753114)
Discount 0.18363 (0.009418)
Photo-dummy -0.68333 (0.424682)
Drawing-Dummy 1.60000 (0.424682)

R-Squared .98970
Standard Error (σ̂) 0.520126
Number of Observations 9
Degrees of Freedom 5

The numbers in brackets are the standard errors of the respective coefficients
and σ̂ is the standard error of the regression, a point estimate of the standard
deviation of the error term.

a) Is there good evidence that discounting the price increases sales?

b) Is there good evidence that using an abstract cover rather than putting
on a photograph or drawing results in less sales?

c) Is the overall regression relationship statistically significant?

d) What would be the expected level of sales if the discount is 75 cents
off the printed cover price and a drawing is put on the cover?


