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PREFACE

The pages that follow contain the material presented in my introductory
quantitative methods in economics class at the University of Toronto. They
are designed to be used along with any reasonable statistics textbook. The
most recent textbook for the course was James T. McClave, P. George Ben-
son and Terry Sincich, Statistics for Business and Economics, Eighth Edi-
tion, Prentice Hall, 2001. The material draws upon earlier editions of that
book as well as upon John Neter, William Wasserman and G. A. Whitmore,
Applied Statistics, Fourth Edition, Allyn and Bacon, 1993, which was used
previously and is now out of print. It is also consistent with Gerald Keller
and Brian Warrack, Statistics for Management and Economics, Fifth Edi-
tion, Duxbury, 2000, which is the textbook used recently on the St. George
Campus of the University of Toronto. The problems at the ends of the chap-
ters are questions from mid-term and final exams at both the St. George
and Mississauga campuses of the University of Toronto. They were set by
Gordon Anderson, Lee Bailey, Greg Jump, Victor Yu and others including
myself.

This manuscript should be useful for economics and business students en-
rolled in basic courses in statistics and, as well, for people who have studied
statistics some time ago and need a review of what they are supposed to have
learned. Indeed, one could learn statistics from scratch using this material
alone, although those trying to do so may find the presentation somewhat
compact, requiring slow and careful reading and thought as one goes along.

I would like to thank the above mentioned colleagues and, in addition, Ado-
nis Yatchew, for helpful discussions over the years, and John Maheu for
helping me clarify a number of points. I would especially like to thank Gor-
don Anderson, who I have bothered so frequently with questions that he
deserves the status of mentor.

After the original version of this manuscript was completed, I received some
detailed comments on Chapter 8 from Peter Westfall of Texas Tech Univer-
sity, enabling me to correct a number of errors. Such comments are much
appreciated.

J. E. Floyd
July 2, 2010

c⃝J. E. Floyd, University of Toronto
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Chapter 1

Introduction to Statistics,
Data and Statistical
Thinking

1.1 What is Statistics?

In common usage people think of statistics as numerical data—the unem-
ployment rate last month, total government expenditure last year, the num-
ber of impaired drivers charged during the recent holiday season, the crime-
rates of cities, and so forth. Although there is nothing wrong with viewing
statistics in this way, we are going to take a deeper approach. We will view
statistics the way professional statisticians view it—as a methodology for
collecting, classifying, summarizing, organizing, presenting, analyzing and
interpreting numerical information.

1.2 The Use of Statistics in Economics and Other
Social Sciences

Businesses use statistical methodology and thinking to make decisions about
which products to produce, how much to spend advertising them, how to
evaluate their employees, how often to service their machinery and equip-
ment, how large their inventories should be, and nearly every aspect of
running their operations. The motivation for using statistics in the study
of economics and other social sciences is somewhat different. The object
of the social sciences and of economics in particular is to understand how

1



2 INTRODUCTION

the social and economic system functions. While our approach to statistics
will concentrate on its uses in the study of economics, you will also learn
business uses of statistics because many of the exercises in your textbook,
and some of the ones used here, will focus on business problems.

Views and understandings of how things work are called theories. Eco-
nomic theories are descriptions and interpretations of how the economic sys-
tem functions. They are composed of two parts—a logical structure which
is tautological (that is, true by definition), and a set of parameters in that
logical structure which gives the theory empirical content (that is, an ability
to be consistent or inconsistent with facts or data). The logical structure,
being true by definition, is uninteresting except insofar as it enables us to
construct testable propositions about how the economic system works. If
the facts turn out to be consistent with the testable implications of the the-
ory, then we accept the theory as true until new evidence inconsistent with
it is uncovered. A theory is valuable if it is logically consistent both within
itself and with other theories established as “true” and is capable of being
rejected by but nevertheless consistent with available evidence. Its logical
structure is judged on two grounds—internal consistency and usefulness as
a framework for generating empirically testable propositions.

To illustrate this, consider the statement: “People maximize utility.”
This statement is true by definition—behaviour is defined as what people
do (including nothing) and utility is defined as what people maximize when
they choose to do one thing rather than something else. These definitions
and the associated utility maximizing approach form a useful logical struc-
ture for generating empirically testable propositions. One can choose the
parameters in this tautological utility maximization structure so that the
marginal utility of a good declines relative to the marginal utility of other
goods as the quantity of that good consumed increases relative to the quan-
tities of other goods consumed. Downward sloping demand curves emerge,
leading to the empirically testable statement: “Demand curves slope down-
ward.” This theory of demand (which consists of both the utility maxi-
mization structure and the proposition about how the individual’s marginal
utilities behave) can then be either supported or falsified by examining data
on prices and quantities and incomes for groups of individuals and commodi-
ties. The set of tautologies derived using the concept of utility maximization
are valuable because they are internally consistent and generate empirically
testable propositions such as those represented by the theory of demand. If it
didn’t yield testable propositions about the real world, the logical structure
of utility maximization would be of little interest.

Alternatively, consider the statement: “Canada is a wonderful country.”
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This is not a testable proposition unless we define what we mean by the
adjective “wonderful”. If we mean by wonderful that Canadians have more
flush toilets per capita than every country on the African Continent then
this is a testable proposition. But an analytical structure built around the
statement that Canada is a wonderful country is not very useful because
empirically testable propositions generated by redefining the word wonderful
can be more appropriately derived from some other logical structure, such
as one generated using a concept of real income.

Finally, consider the statement: “The rich are getting richer and the poor
poorer.” This is clearly an empirically testable proposition for reasonable
definitions of what we mean by “rich” and “poor”. It is really an interest-
ing proposition, however, only in conjunction with some theory of how the
economic system functions in generating income and distributing it among
people. Such a theory would usually carry with it some implications as to
how the institutions within the economic system could be changed to prevent
income inequalities from increasing. And thinking about these implications
forces us to analyse the consequences of reducing income inequality and to
form an opinion as to whether or not it should be reduced.

Statistics is the methodology that we use to confront theories like the
theory of demand and other testable propositions with the facts. It is the
set of procedures and intellectual processes by which we decide whether or
not to accept a theory as true—the process by which we decide what and
what not to believe. In this sense, statistics is at the root of all human
knowledge.

Unlike the logical propositions contained in them, theories are never
strictly true. They are merely accepted as true in the sense of being con-
sistent with the evidence available at a particular point in time and more
or less strongly accepted depending on how consistent they are with that
evidence. Given the degree of consistency of a theory with the evidence,
it may or may not be appropriate for governments and individuals to act
as though it were true. A crucial issue will be the costs of acting as if a
theory is true when it turns out to be false as opposed to the costs of acting
as though the theory were not true when it in fact is. As evidence against
a theory accumulates, it is eventually rejected in favour of other “better”
theories—that is, ones more consistent with available evidence.

Statistics, being the set of analytical tools used to test theories, is thus
an essential part of the scientific process. Theories are suggested either by
casual observation or as logical consequences of some analytical structure
that can be given empirical content. Statistics is the systematic investigation
of the correspondence of these theories with the real world. This leads either
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to a wider belief in the ‘truth’ of a particular theory or to its rejection as
inconsistent with the facts.

Designing public policy is a complicated exercise because it is almost
always the case that some members of the community gain and others lose
from any policy that can be adopted. Advocacy groups develop that have
special interests in demonstrating that particular policy actions in their in-
terest are also in the public interest. These special interest groups often
misuse statistical concepts in presenting their arguments. An understand-
ing of how to think about, evaluate and draw conclusions from data is thus
essential for sorting out the conflicting claims of farmers, consumers, envi-
ronmentalists, labour unions, and the other participants in debates on policy
issues.

Business problems differ from public policy problems in the important
respect that all participants in their solution can point to a particular mea-
surable goal—maximizing the profits of the enterprise. Though the indi-
viduals working in an enterprise maximize their own utility, and not the
objective of the enterprise, in the same way as individuals pursue their own
goals and not those of society, the ultimate decision maker in charge, whose
job depends on the profits of the firm, has every reason to be objective in
evaluating information relevant to maximizing those profits.

1.3 Descriptive and Inferential Statistics

The application of statistical thinking involves two sets of processes. First,
there is the description and presentation of data. Second, there is the process
of using the data to make some inference about features of the environment
from which the data were selected or about the underlying mechanism that
generated the data, such as the ongoing functioning of the economy or the
accounting system or production line in a business firm. The first is called
descriptive statistics and the second inferential statistics.

Descriptive statistics utilizes numerical and graphical methods to find
patterns in the data, to summarize the information it reveals and to present
that information in a meaningful way. Inferential statistics uses data to
make estimates, decisions, predictions, or other generalizations about the
environment from which the data were obtained.

Everything we will say about descriptive statistics is presented in the
remainder of this chapter. The rest of the book will concentrate entirely
on statistical inference. Before turning to the tools of descriptive statistics,
however, it is worth while to take a brief glimpse at the nature of statistical
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inference.

1.4 A Quick Glimpse at Statistical Inference

Statistical inference essentially involves the attempt to acquire information
about a population or process by analyzing a sample of elements from that
population or process.

A population includes the set of units—usually people, objects, trans-
actions, or events—that we are interested in learning about. For example,
we could be interested in the effects of schooling on earnings in later life,
in which case the relevant population would be all people working. Or we
could be interested in how people will vote in the next municipal election
in which case the relevant population will be all voters in the municipality.
Or a business might be interested in the nature of bad loans, in which case
the relevant population will be the entire set of bad loans on the books at a
particular date.

A process is a mechanism that produces output. For example, a business
would be interested in the items coming off a particular assembly line that
are defective, in which case the process is the flow of production off the
assembly line. An economist might be interested in how the unemployment
rate varies with changes in monetary and fiscal policy. Here, the process
is the flow of new hires and lay-offs as the economic system grinds along
from year to year. Or we might be interested in the effects of drinking on
driving, in which case the underlying process is the on-going generation of
car accidents as the society goes about its activities. Note that a process
is simply a mechanism which, if it remains intact, eventually produces an
infinite population. All voters, all workers and all bad loans on the books
can be counted and listed. But the totality of accidents being generated by
drinking and driving or of steel ingots being produced from a blast furnace
cannot be counted because these processes in their present form can be
thought of as going on forever. The fact that we can count the number of
accidents in a given year, and the number of steel ingots produced by a blast
furnace in a given week suggests that we can work with finite populations
resulting from processes. So whether we think of the items of interest in a
particular case as a finite population or the infinite population generated by
a perpetuation of the current state of a process depends on what we want to
find out. If we are interested in the proportion of accidents caused by drunk
driving in the past year, the population is the total number of accidents
that year. If we are interested in the effects of drinking on driving, it is the
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infinite population of accidents resulting from a perpetual continuance of
the current process of accident generation that concerns us.

A sample is a subset of the units comprising a finite or infinite population.
Because it is costly to examine most finite populations of interest, and im-
possible to examine the entire output of a process, statisticians use samples
from populations and processes to make inferences about their characteris-
tics. Obviously, our ability to make correct inferences about a finite or infi-
nite population based on a sample of elements from it depends on the sample
being representative of the population. So the manner in which a sample is
selected from a population is of extreme importance. A classic example of
the importance of representative sampling occurred in the 1948 presidential
election in the United States. The Democratic incumbent, Harry Truman,
was being challenged by Republican Governor Thomas Dewey of New York.
The polls predicted Dewey to be the winner but Truman in fact won. To
obtain their samples, the pollsters telephoned people at random, forgetting
to take into account that people too poor to own telephones also vote. Since
poor people tended to vote for the Democratic Party, a sufficient fraction
of Truman supporters were left out of the samples to make those samples
unrepresentative of the population. As a result, inferences about the propor-
tion of the population that would vote for Truman based on the proportion
of those sampled intending to vote for Truman were incorrect.

Finally, when we make inferences about the characteristics of a finite
or infinite population based on a sample, we need some measure of the
reliability of our method of inference. What are the odds that we could
be wrong. We need not only a prediction as to the characteristic of the
population of interest (for example, the proportion by which the salaries of
college graduates exceed the salaries of those that did not go to college) but
some quantitative measure of the degree of uncertainty associated with our
inference. The results of opinion polls predicting elections are frequently
stated as being reliable within three percentage points, nineteen times out
of twenty. In due course you will learn what that statement means. But
first we must examine the techniques of descriptive statistics.
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1.5 Data Sets

There are three general kinds of data sets—cross-sectional, time-series and
panel. And within data sets there are two kinds of data—quantitative and
qualitative. Quantitative data can be recorded on a natural numerical scale.
Examples are gross national product (measured in dollars) and the consumer
price index (measured as a percentage of a base level). Qualitative data
cannot be measured on a naturally occurring numerical scale but can only
be classified into one of a group of categories. An example is a series of
records of whether or not the automobile accidents occurring over a given
period resulted in criminal charges—the entries are simply yes or no.

Table 1.1: Highest College Degree of
Twenty Best-Paid Executives

Rank Degree Rank Degree

1 Bachelors 11 Masters
2 Bachelors 12 Bachelors
3 Doctorate 13 Masters
4 None 14 Masters
5 Bachelors 15 Bachelors
6 Doctorate 16 Doctorate
7 None 17 Masters
8 Bachelors 18 Doctorate
9 Bachelors 19 Bachelors

10 Bachelors 20 Masters

Source: Forbes, Vol. 155, No. 11, May
22, 1995.

Table 1.1 presents a purely qualitative data set. It gives the highest de-
gree obtained by the twenty highest-paid executives in the United States at
a particular time. Educational attainment is a qualitative, not quantitative,
variable. It falls into one of four categories: None, Bachelors, Masters, or
Doctorate. To organize this information in a meaningful fashion, we need
to construct a summary of the sort shown in Table 1.2. The entries in this
table were obtained by counting the elements in the various categories in
Table 1.1—for larger data sets you can use the spreadsheet program on your
computer to do the counting. A fancy bar or pie chart portraying the infor-
mation in Table 1.2 could also be made, but it adds little to what can be
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Table 1.2: Summary of Table 1.1

Class Frequency Relative Frequency
(Highest (Number of (Proportion
Degree) Executives) of Total)

None 2 0.1
Bachelors 9 0.45
Masters 5 0.25

Doctorate 4 0.2

Total 20 1.0

Source: See Table 1.1

gleaned by looking at the table itself. A bachelors degree was the most com-
monly held final degree, applying in forty-five percent of the cases, followed
in order by a masters degree, a doctorate and no degree at all.

The data set on wages in a particular firm in Table 1.3 contains both
quantitative and qualitative data. Data are presented for fifty employees,
numbered from 1 to 50. Each employee represents an element of the data
set. For each element there is an observation containing two data points, the
individual’s weekly wage in U.S. dollars and gender (male or female). Wage
and gender are variables, defined as characteristics of the elements of a data
set that vary from element to element. Wage is a quantitative variable and
gender is a qualitative variable.

As it stands, Table 1.3 is an organised jumble of numbers. To extract the
information these data contain we need to enter them into our spreadsheet
program and sort them by wage. We do this here without preserving the
identities of the individual elements, renumbering them starting at 1 for the
lowest wage and ending at 50 for the highest wage. The result appears in
Table 1.4. The lowest wage is $125 per week and the highest is $2033 per
week. The difference between these, $2033 − $125 = $1908, is referred to
as the variable’s range. The middle observation in the range is called the
median. When the middle of the range falls in between two observations,
as it does in Table 1.4, we represent the median by the average of the
two observations, in this case $521.50. Because half of the observations
on the variable are below the median and half are above, the median is
called the 50th percentile. Similarly, we can calculate other percentiles of
the variable—90 percent of the observations will be below the 90th percentile
and 80 percent will be below the 80th percentile, and so on. Of particular
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Table 1.3: Weekly Wages of Company Employees
in U.S. Dollars

No. Wage Gender No. Wage Gender

1 236 F 26 334 F
2 573 M 27 600 F
3 660 F 28 592 M
4 1005 M 29 728 M
5 513 M 30 125 F
6 188 F 31 401 F
7 252 F 32 759 F
8 200 F 33 1342 M
9 469 F 34 324 F
10 191 F 35 337 F
11 675 M 36 1406 M
12 392 F 37 530 M
13 346 F 38 644 M
14 264 F 39 776 F
15 363 F 40 440 F
16 344 F 41 548 F
17 949 M 42 751 F
18 490 M 43 618 F
19 745 F 44 822 M
20 2033 M 45 437 F
21 391 F 46 293 F
22 179 F 47 995 M
23 1629 M 48 446 F
24 552 F 49 1432 M
25 144 F 50 901 F
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Table 1.4: Weekly Wages of Company Employees
in U.S. Dollars: Sorted into Ascending Order

No. Wage Gender

1 125 F
2 144 F
3 179 F
4 188 F
5 ... ...
...
11 324 F
12 334 F
13 337 F

340.5 1st (Lower) Quartile
14 344 F (25th Percentile)
15 346 F
16 ... ...
...
23 469 F
24 490 M
25 513 M

521.50 Median
26 530 M (50th Percentile)
27 548 F
28 552 F
29 ... ...
...
35 675 M
36 728 M
37 745 F

748 3rd (Upper) Quartile
38 751 F (75th Percentile)
39 759 F
40 776 F
41 ... ...
...
48 1432 M
49 1629 M
50 2033 M
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interest are the 25th and 75th percentiles. These are called the first quartile
and third quartile respectively. The difference between the observations for
these quartiles, $748− $340.5 = $407.5, is called the interquartile range. So
the wage variable has a median (mid-point) of $521.50, a range of $1908 and
an interquartile range of $407.5, with highest and lowest values being $2033
and $125 respectively. A quick way of getting a general grasp of the “shape”
of this data set is to express it graphically as a histogram, as is done in the
bottom panel of Figure 1.1.

An obvious matter of interest is whether men are being paid higher wages
than women. We can address this by sorting the data in Table 1.3 into two
separate data sets, one for males and one for females. Then we can find
the range, the median, and the interquartile range for the wage variable
in each of the two data sets and compare them. Rather than present new
tables together with the relevant calculations at this point, we can construct
histograms for the wage variable in the two separate data sets. These are
shown in the top two panels of Figure 1.1. It is easy to see from comparing
horizontal scales of the top and middle histograms that the wages of women
tend to be lower than those paid to men.

A somewhat neater way of characterising these data graphically is to
use box plots. This is done in Figure 1.2. Different statistical computer
packages present box plots in different ways. In the one used here, the top
and bottom edges of the box give the upper and lower quartiles and the
horizontal line through the middle of the box gives the median. The vertical
lines, called whiskers, extend up to the maximum value of the variable and
down to the minimum value.1 It is again obvious from the two side-by-
side box plots that women are paid less than men in the firm to which the
data set applies. So you can now tell your friends that there is substantial
evidence that women get paid less than men. Right?2

The wage data can also be summarised in tabular form. This is done in
Table 1.5. The range of the data is divided into the classes used to draw

1The box plot in Figure 1.2 was drawn and the median, percentiles and interquartile
range above were calculated using XlispStat, a statistical program freely available on the
Internet for the Unix, Linux, MS Windows (3.1, 95, 98, NT, XP, Vista and 7) and Mac-
intosh operating systems. It is easy to learn to do the simple things we need to do for
this course using XlispStat but extensive use of it requires knowledge of object-oriented-
programming and a willingness to learn features of the Lisp programming language. Com-
mercial programs such as SAS, SPSS, and Minitab present more sophisticated box plots
than the one presented here but, of course, these programs are more costly to obtain.

2Wrong! First of all, this is data for only one firm, which need not be representative
of all firms in the economy. Second, there are no references as to where the data came
from—as a matter of fact, I made them up!
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Figure 1.1: Histogram of weekly wages for male (top), female
(middle) and all (bottom) employees. The horizontal scale is
thousands of U.S. dollars.
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Figure 1.2: Box plot of weekly wages for males (left) and females
(right). The vertical scale is thousands of U.S. dollars.

Table 1.5: Frequency Distributions From Table 1.3

Class Frequency Relative Frequency
M F Total M F Total

0.0 – 0.5 1 23 24 .06 .70 .48
0.5 – 1.0 10 10 20 .58 .30 .40
1.0 – 1.5 4 0 4 .24 .00 .08
1.5 – 2.0 1 0 1 .06 .00 .02
2.0 – 2.5 1 0 1 .06 .00 .02

Total 17 33 50 1.00 1.00 1.00
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the histogram for the full data set. Then the observations for the wage
variable in Table 1.3 that fall in each of the classes are counted and the
numbers entered into the appropriate cells in columns 2, 3 and 4 of the
table. The observations are thus ‘distributed’ among the classes with the
numbers in the cells indicating the ‘frequency’ with which observations fall
in the respective classes—hence, such tables present frequency distributions.
The totals along the bottom tell us that there were 17 men and 33 women,
with a total of 50 elements in the data set. The relative frequencies in which
observations fall in the classes are shown in columns 5, 6 and 7. Column 5
gives the proportions of men’s wages, column 6 the proportions of women’s
wages and column 7 the proportions of all wages falling in the classes. The
proportions in each column must add up to one.

All of the data sets considered thus far are cross-sectional. Tables 1.6 and
1.7 present time-series data sets. The first table gives the consumer price
indexes for four countries, Canada, the United States, the United Kingdom
and Japan, for the years 1975 to 1996.3 The second table presents the year-
over-year inflation rates for the same period for these same countries. The
inflation rates are calculated as

π = [100(Pt − Pt−1)/Pt−1]

where π denotes the inflation rate and P denotes the consumer price index.
It should now be obvious that in time-series data the elements are units of
time. This distinguishes time-series from cross-sectional data sets, where all
observations occur in the same time period.

A frequent feature of time-series data not present in cross-sectional data
is serial correlation or autocorrelation. The data in Tables 1.6 and 1.7
are plotted in Figures 1.3 and 1.4 respectively. You will notice from these
plots that one can make a pretty good guess as to what the price level or
inflation rate will be in a given year on the basis of the observed price level
and inflation rate in previous years. If prices or inflation are high this year,
they will most likely also be high next year. Successive observations in each
series are serially correlated or autocorrelated (i.e., correlated through time)
and hence not statistically independent of each other. Figure 1.5 shows a
time-series that has no autocorrelation—the successive observations were
generated completely independently of all preceding observations using a
computer. You will learn more about correlation and statistical indepen-
dence later in this chapter.

3Consumer price indexes are calculated by taking the value in each year of the bundle
of goods consumed by a typical person as a percentage of the monetary value of that same
bundle of goods in a base period. In Table 1.6 the base year is 1980.
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Table 1.6: Consumer Price Indexes for Selected
Countries, 1980 = 100

Canada U.S. U.K. Japan

1975 65.8 65.3 51.1 72.5
1976 70.7 69.0 59.6 79.4
1977 76.3 73.5 69.0 85.9
1978 83.1 79.1 74.7 89.4
1979 90.8 88.1 84.8 92.8
1980 100.0 100.0 100.0 100.0
1981 112.4 110.3 111.9 104.9
1982 124.6 117.1 121.5 107.8
1983 131.8 120.9 127.1 109.8
1984 137.6 126.0 133.4 112.3
1985 143.0 130.5 141.5 114.6
1986 149.0 133.0 146.3 115.3
1987 155.5 137.9 152.4 115.4
1988 161.8 143.5 159.9 116.2
1989 169.8 150.4 172.4 118.9
1990 177.9 158.5 188.7 122.5
1991 187.9 165.2 199.7 126.5
1992 190.7 170.2 207.2 128.7
1993 194.2 175.3 210.4 130.3
1994 194.6 179.9 215.7 131.2
1995 198.8 184.9 223.0 131.1
1996 201.9 190.3 228.4 131.3

Source: International Monetary Fund, In-
ternational Financial Statistics.
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Table 1.7: Year-over-year Inflation Rates for
Selected Countries, Percent Per Year

Canada U.S. U.K. Japan

1975 10.9 9.1 24.1 11.8
1976 7.5 5.7 16.6 9.4
1977 8.0 6.5 15.9 8.2
1978 8.9 7.6 8.2 4.1
1979 9.2 11.3 13.5 3.8
1980 10.2 13.6 17.9 7.8
1981 12.4 10.3 11.9 4.9
1982 10.8 6.2 8.6 2.7
1983 5.8 3.2 4.6 1.9
1984 4.3 4.3 5.0 2.2
1985 3.9 3.6 6.1 2.0
1986 4.2 1.9 3.4 0.6
1987 4.4 3.6 4.2 0.1
1988 4.0 4.1 4.9 0.7
1989 5.0 4.2 7.8 2.3
1990 4.8 5.4 9.5 3.1
1991 5.6 4.2 5.8 3.3
1992 1.5 3.0 3.7 1.7
1993 1.8 3.0 1.6 1.3
1994 0.2 2.6 2.4 0.7
1995 2.2 2.8 3.4 -0.1
1996 1.6 2.9 2.4 0.1

Source: International Monetary Fund, In-
ternational Financial Statistics.
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Figure 1.5: A time-series devoid of autocorrelation
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Some data sets are both time-series and cross-sectional. Imagine, for
example a data set containing wage and gender data of the sort in Table
1.3 for each of a series of years. These are called panel data. We will not be
working with panel data in this book.

1.6 Numerical Measures of Position

Although quite a bit of information about data sets can be obtained by
constructing tables and graphs, it would be nice to be able to describe
a data set using two or three numbers. The median, range, interquartile
range, maximum, and minimum, which were calculated for the wage data
in the previous section and portrayed graphically in Figure 1.2 using a box
plot, provide such a description. They tell us where the centre observation
is, the range in which half of the observations lie (interquartile range) and
the range in which the whole data set lies. We can see, for example, that
both male and female wages are concentrated more at the lower than at the
higher levels.

There are three types of numerical summary measures that can be used
to describe data sets. First, there are measures of position or central ten-
dency. Is the typical wage rate paid by the firm in question, for example,
around $500 per week, or $1500 per week, or $5000 per week? The median
provides one measure of position. Second, there are measures of variability
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or dispersion. Are all the weekly wages very close to each other or are they
spread out widely? The range and the interquartile range provide measures
of variability—the bigger these statistics, the more dispersed are the data.
Finally, there are measures of skewness. Are wages more concentrated, for
example, at the lower levels, or are they dispersed symmetrically around
their central value? In this section we will concentrate on numerical mea-
sures of position. Measures of variability and skewness will be considered in
the subsequent two sections.

The median is a measure of position. In the case of the wage data, for
example, it tells us that half the wages are below $521.50 and half are above
that amount. Another important measure of position is the mean (or, more
precisely, the arithmetic mean), commonly known as the average value. The
mean of a set of numbers X1, X2, X3, . . . , XN is defined as

X̄ =

∑N
i=1Xi

N
(1.1)

where X̄ is the arithmetic mean and

N∑
i=1

Xi = X1 +X2 +X3 + . . .+XN . (1.2)

The sum of the weekly wage data (including both males and females) is
$30364 and the mean is $607.28. The mean wages of males and females are,
respectively, $962.24 and $424.42. It follows from equation (1.1) that the
sum of the observations on a particular quantitative variable in a data set
is equal to the mean times the number of items,

N∑
i=1

Xi = NX̄, (1.3)

and that the sum of the deviations of the observations from their mean is
zero,

N∑
i=1

(Xi − X̄) =
N∑
i=1

Xi −NX̄ = NX̄ −NX̄ = 0. (1.4)

When a set of items is divided into classes, as must be done to create a
frequency distribution, the overall mean is a weighted average of the means
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of the observations in the classes, with the weights being the number (or
frequency) of items in the respective classes. When there are k classes,

X̄ =
f1X̄1 + f2X̄2 + f3X̄3 + . . .+ fkX̄k

N
=

∑k
i=1 fiX̄i

N
(1.5)

where X̄i is the mean of the observations in the ith class and fi is the
number (frequency) of observations in the ith class. If all that is known is
the frequency in each class with no measure of the mean of the observations
in the classes available, we can obtain a useful approximation to the mean
of the data set using the mid-points of the classes in the above formula in
place of the class means.

An alternative mean value is the geometric mean which is defined as
the anti-log of the arithmetic mean of the logarithms of the values. The
geometric mean can thus be obtained by taking the anti-log of

logX1 + logX2 + logX3 + . . .+ logXN

N

or the nth root of X1X2X3 . . . XN .4 Placing a bar on top of a variable
to denote its mean, as in X̄, is done only to represent means of samples.
The mean of a population is represented by the Greek symbol µ. When
the population is finite, µ can be obtained by making the calculation in
equation 1.1 using all elements in the population. The mean of an infinite
population generated by a process has to be derived from the mathematical
representation of that process. In most practical cases this mathematical
data generating process is unknown. The ease of obtaining the means of
finite as opposed to infinite populations is more apparent than real. The
cost of calculating the mean for large finite populations is usually prohibitive
because a census of the entire population is required.

The mean is strongly influenced by extreme values in the data set. For
example, suppose that the members of a small group of eight people have
the following annual incomes in dollars: 24000, 23800, 22950, 26000, 275000,
25500, 24500, 23650. We want to present a single number that characterises

4Note from the definition of logarithms that taking the logarithm of the nth root of
(X1X2X3 . . . XN ), which equals

(X1X2X3 . . . XN )
1
N ,

yields
logX1 + logX2 + logX3 + . . .+ logXN

N
.
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how ‘well off’ this group of people is. The (arithmetic) mean income of
the group is $55675.5 But a look at the actual numbers indicates that
all but one member of the group have incomes between $23000 and $26000.
The mean does not present a good picture because of the influence of the
enormous income of one member of the group.

When there are extreme values, a more accurate picture can often be
presented by using a trimmed mean. The 50 percent trimmed mean, for
example, is the (arithmetic) mean of the central 50 percent of the values—
essentially, the mean of the values lying in the interquartile range. This
would be $24450 in the example above. We could, instead, use an 80 (or
any other) percent trimmed mean. The median, which is $24250 is also a
better measure of the central tendency of the data than the mean. It should
always be kept in mind, however, that extreme values may provide important
information and it may be inappropriate to ignore them. Common sense is
necessary in presenting and interpreting data. In the example above, the
most accurate picture would be given by the following statement: Seven of
the eight members of the group have incomes between $22950 and $26000,
with mean $24342, while the eighth member has an income of $275000.

Another measure of position of the mode, which is defined as the most
frequently appearing value. When the variable is divided into equal-sized
classes and presented as a histogram or frequency distribution the class
containing the most observations is called the modal class. In the wage
data, using the classes defined in Table 1.5, the modal class for females and
for all workers is $0–$500, and the modal class for males is $500–$1000.
Using the classes defined in the middle panel of Figure 1.1 the modal class
for female wages is $300–$400.

Sometimes there will be two peaks in a histogram of the observations for a
variable. A frequent example is the performance of students on mathematics
(and sometimes statistics) tests where the students divide into two groups—
those who understand what is going on and those to do not. Given that there
is variability within each group there will typically be two humps in the
histogram—one at a high grade containing the students who understand
the material and one at a low grade containing the students who do not
understand the material. In such situations the data are referred to as
bimodal. Figure 1.6 gives examples of a bimodal and a unimodal or hump-
shaped distribution. We could imagine the horizontal scales as representing
the grade achieved on a mathematics test.

5The arithmetic mean is generally referred to as simply the mean with the geometric
mean, which is rarely used, denoted by its full name. The geometric mean of the eight
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Figure 1.6: Bimodal distribution (top) and unimodal
or humped-shaped distribution (bottom).

1.7 Numerical Measures of Variability

The range and interquartile range are measures of variability—the bigger
these are, the more dispersed are the data. More widely used measures,
however, are the variance and standard deviation. The variance is, broadly,
the mean or average of the squared deviations of the observations from their
mean. For data sets that constitute samples from populations or processes
the calculation is

s2 =

∑N
i=1(Xi − X̄)2

N − 1
, (1.6)

where s2 denotes the sample variance. An approximation can be calculated
from a frequency distribution of the sample using

s2 =

∑S
i=1 fi(X̄i − X̄)2

N − 1
, (1.7)

where S is the number of classes, fi is the frequency of the ith class, X̄i is
the mean of the ith class, X̄ is the mean of the whole sample and the total

observations above is $32936.
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number of elements in the sample equals

N =
S∑

i=1

fi.

The population variance is denoted by σ2. For a finite population it can be
calculated using (1.6) after replacing N −1 in the denominator by N . N −1
is used in the denominator in calculating the sample variance because the
variance is the mean of the sum of squared independent deviations from the
sample mean and only N − 1 of the N deviations from the sample mean
can be independently selected—once we know N − 1 of the deviations, the
remaining one can be calculated from those already known based on the
way the sample mean was calculated. Each sample from a given population
will have a different sample mean, depending upon the population elements
that appear in it. The population mean, on the other hand, is a fixed
number which does not change from sample to sample. The deviations of the
population elements from the population mean are therefore all independent
of each other. In the case of a process, the exact population variance can only
be obtained from knowledge of the mathematical data-generation process.

In the weekly wage data above, the variance of wages is 207161.5 for
males, 42898.7 for females and 161893.7 for the entire sample. Notice that
the units in which these variances are measured is dollars-squared—we are
taking the sum of the squared dollar-differences of each person’s wage from
the mean. To obtain a measure of variability measured in dollars rather than
dollars-squared we can take the square root of the variance—s in equation
(1.6). This is called the standard deviation. The standard deviation of wages
in the above sample is $455.15 for males, $207.12 for females, and $402.36
for the entire sample.

Another frequently used measure of variability is the coefficient of vari-
ation, defined as the standard deviation taken as a percentage of the mean,

C =
100s

X̄
, (1.8)

where C denotes the coefficient of variation. For the weekly wage data
above, the coefficient of variation is 47.30 for males, 48.8 for females and
66.28 for the entire sample.
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Figure 1.7: Left-skewed distribution (top—mean =
55.1 , median = 58, mode = 75) and right-skewed
distribution (bottom —mean = 46.4, median = 43.5,
mode = 35).

1.8 Numerical Measures of Skewness

Skewed quantitative data are data for which a frequency distribution based
on equal classes is not symmetrical. For example, the wage data presented
Figure 1.1 are not symmetrical—the right tail is longer than the left tail,
which is non-existent in the bottom panel. These data are described as
skewed right—the skew is in the direction of the longer tail. This skewness
appears in the box plots in Figure 1.2 as a longer upper whisker than lower
whisker. Notice that in the wage data the mean is always larger than the
median and the median larger than the mode. The means, medians and
modes (taken as the mid-points of the modal classes) are respectively $962,
$822.5 and $750 for males, $424, $391 and $350 for females and $607, $521
and $200 for all workers. The mean will always exceed the median and
the median will always exceed the mode when the data are skewed to the
right. When the skew is to the left the mean will be below the median and
the median below the mode. This is shown in Figure 1.7. The rightward
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(leftward) skew is due to the influence of the rather few unusually high
(low) values—the extreme values drag the mean in their direction. The
median tends to be above the mode when the data are skewed right because
low values are more frequent than high values and below the mode when
the data are skewed to the left because in that case high values are more
frequent than low values. When the data are symmetrically distributed, the
mean, median and mode are equal.

Skewness can be measured by the average cubed deviation of the values
from the sample mean,

m3 =

∑N
i=1(Xi − X̄)3

N − 1
. (1.9)

If the large deviations are predominately positive m3 will be positive and if
the large deviations are predominately negative m3 will be negative. This
happens because (Xi − X̄)3 has the same sign as (Xi − X̄). Since large
deviations are associated with the long tail of the frequency distribution, m3

will be positive or negative according to whether the direction of skewness is
positive (right) or negative (left). In the wage data m3 is positive for males,
females and all workers as we would expect from looking at figures 1.1 and
1.2.

1.9 Numerical Measures of Relative Position:
Standardised Values

In addition to measures of the central tendency of a set of values and their
dispersion around these central measures we are often interested in whether
a particular observation is high or low relative to others in the set. One
measure of this is the percentile in which the observation falls—if an ob-
servation is at the 90th percentile, only 10% of the values lie above it and
90% percent of the values lie below it. Another measure of relative position
is the standardised value. The standardised value of an observation is its
distance from the mean divided by the standard deviation of the sample or
population in which the observation is located. The standardised values of
the set of observations X1, X2, X3 . . . XN are given by

Zi =
Xi − µ

σ
(1.10)
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for members of a population whose mean µ and standard deviation σ are
known and

Zi =
Xi − X̄

s
(1.11)

for members of a sample with mean X̄ and sample standard deviation s. The
standardised value or z-value of an observation is the number of standard
deviations it is away from the mean.

It turns out that for a distribution that is hump-shaped—that is, not
bimodal—roughly 68% of the observations will lie within plus or minus one
standard deviation from the mean, about 95% of the values will lie within
plus or minus two standard deviations from the mean, and roughly 99.7%
of the observations will lie within plus or minus three standard deviations
from the mean. Thus, if you obtain a grade of 52% percent on a statistics
test for which the class average was 40% percent and the standard deviation
10% percent, and the distribution is hump-shaped rather than bimodal, you
are probably in the top 16 percent of the class. This calculation is made
by noting that about 68 percent of the class will score within one standard
deviation from 40—that is, between 30 and 50—and 32 percent will score
outside that range. If the two tails of the distribution are equally populated
then you must be in the top 16% percent of the class. Relatively speaking,
52% was a pretty good grade.

The above percentages hold almost exactly for normal distributions,
which you will learn about in due course, and only approximately for hump-
shaped distributions that do not satisfy the criteria for normality. They
do not hold for distributions that are bimodal. It turns out that there is
a rule developed by the Russian mathematician P. L. Chebyshev, called
Chebyshev’s Inequality, which states that a fraction no bigger than (1/k)2

(or 100 × (1/k)2 percent) of any set of observations, no matter what the
shape of their distribution, will lie beyond plus or minus k standard devia-
tions from the mean of those observations. So if the standard deviation is 2
at least 75% of the distribution must lie within plus or minus two standard
deviations from the mean and no more than 25% percent of the distribution
can lie outside that range in one or other of the tails. You should note espe-
cially that the rule does not imply here that no more than 12.5% percent of
a distribution will lie two standard deviations above the mean because the
distribution need not be symmetrical.
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1.10 Bivariate Data: Covariance and Correlation

A data set that contains only one variable of interest, as would be the case
with the wage data above if the gender of each wage earner was not recorded,
is called a univariate data set. Data sets that contain two variables, such
as wage and gender in the wage data above, are said to be bivariate. And
the consumer price index and inflation rate data presented in Table 1.6
and Table 1.7 above are multivariate, with each data set containing four
variables—consumer price indexes or inflation rates for four countries.

In the case of bivariate or multivariate data sets we are often interested
in whether elements that have high values of one of the variables also have
high values of other variables. For example, as students of economics we
might be interested in whether people with more years of schooling earn
higher incomes. From Canadian Government census data we might obtain
for the population of all Canadian households two quantitative variables,
household income (measured in $) and number of years of education of the
head of each household.6 Let Xi be the value of annual household income
for household i and Yi be the number of years of schooling of the head of
the ith household. Now consider a random sample of N households which
yields the paired observations (Xi, Yi) for i = 1, 2, 3, . . . , N .

You already know how to create summary statistical measures for single
variables. The sample mean value for household incomes, for example, can
be obtained by summing up all the Xi and dividing the resulting sum by
N . And the sample mean value for years of education per household can
similarly be obtained by summing all the Yi and dividing by N . We can also
calculate the sample variances of X and Y by applying equation (1.6).

Notice that the fact that the sample consists of paired observations
(Xi, Yi) is irrelevant when we calculate summary measures for the individual
variables X and/or Y . Nevertheless, we may also be interested in whether
the variables X and Y are related to one another in a systematic way. Since
education is a form of investment that yields its return in the form of higher
lifetime earnings, we might expect, for example, that household income will
tend to be higher the greater the number of years of education completed
by the head of household. That is, we might expect high values of X to
be paired with high values of Y—when Xi is high, the Yi associated with it
should also be high, and vice versa.

Another example is the consumer price indexes and inflation rates for

6This example and most of the prose in this section draws on the expositional efforts
of Prof. Greg Jump, my colleague at the University of Toronto.
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pairs of countries. We might ask whether high prices and high inflation rates
in the United States are associated with high prices and inflation rates in
Canada. One way to do this is to construct scatter plots with the Canadian
consumer price index and the Canadian inflation rate on the horizontal axes
and the U.S. consumer price index and the U.S. inflation rate on the respec-
tive vertical axes. This is done in Figure 1.8 for the consumer price indexes
and Figure 1.9 for the inflation rates. You can see from the figures that both
the price levels and inflation rates in the two countries are positively related
with the relationship being ‘tighter’ in the case of the price levels than in
the case of the inflation rates.

Figure 1.8: Scatterplot of the Canadian consumer price index (hori-
zontal axis) vs. the U.S. consumer price index (vertical axis).

We can also construct numerical measures of covariability. One such
measure is the covariance between the two variables, denoted in the case of
sample data as sx,y or sy,x and defined by

sx,y =

∑N
i=1(Xi − X̄)(Yi − Ȳ )

N − 1

=

∑N
i=1(Yi − Ȳ )(Xi − X̄)

N − 1
= sy,x. (1.12)

When X and Y represent a population we denote the covariance between
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Figure 1.9: Scatterplot of the Canadian year-over-year inflation rate
(horizontal axis) against the U.S. year-over-year inflation rate (ver-
tical axis).

them by σx,y or σy,x. It can be calculated using (1.12) with the N − 1 in
the denominator replaced by N in the case where an entire finite population
is used in the calculation. In an infinite population generated by a process,
the covariance can only be obtained from knowledge of the mathematics
of the data generation process. Notice that the value of the covariance is
independent of the order of the multiplicative terms within the summation
sign. Note also that sx,y is measured in units of X times units of Y—in our
annual household income and years of schooling of household head example,
sx,y would be expressed in terms of “dollar-years” (whatever those might
be).

For any sample of paired variables X and Y , sx,y has a single numerical
value that may be positive, negative or zero. A positive value indicates that
the observed values for X and Y are positively related—that is, they tend
to rise and fall together. To put it somewhat differently, a positive value for
sx,y indicates that Xi tends to be above (below) its mean value X̄ whenever
Yi is above (below) its mean value Ȳ . Similarly, the variables X and Y
are negatively related whenever sx,y is negative in sign. This means that Xi

tends to be below (above) its mean value X̄ whenever Yi is above (below)
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its mean value Ȳ . When there is no relationship between the variables X
and Y , sx,y is zero.

In our household income and education example we would expect that
a random sample would yield a positive value for sx,y and this is indeed
what is found in actual samples drawn from the population of all Canadian
households.

Note that equation (1.12) could be used to compute sx,x—the covariance
of the variable X with itself. It is easy to see from equations (1.12) and (1.6)
that this will yield the sample variance of X which we can denote by s2x. It
might be thus said that the concept of variance is just a special case of the
more general concept of covariance.

The concept of covariance is important in the study of financial eco-
nomics because it is critical to an understanding of ‘risk’ in securities and
other asset markets. Unfortunately, it is a concept that yields numbers that
are not very ‘intuitive’. For example, suppose we were to find that a sam-
ple of N Canadian households yields a covariance of +1, 000 dollar-years
between annual household income and years of education of head of house-
hold. The covariance is positive in sign, so we know that this implies that
households with highly educated heads tend to have high annual incomes.
But is there any intuitive interpretation of the magnitude 1000 dollar-years?
The answer is no, at least not without further information regarding the in-
dividual sample variances of household income and age of head.

A more intuitive concept, closely related to covariance, is the correlation
between two variables. The coefficient of correlation between two variables
X and Y , denoted by rx,y or, equivalently, ry,x is defined as

rx,y =
sx,y
sxsy

= ry,x (1.13)

where sx and sy are the sample standard deviations of X and Y calculated
by using equation (1.6) above and taking square roots.

It should be obvious from (1.13) that the sign of the correlation coeffi-
cient is the same as the sign of the covariance between the two variables since
standard deviations cannot be negative. Positive covariance implies positive
correlation, negative covariance implies negative correlation and zero covari-
ance implies that X and Y are uncorrelated. It is also apparent from (1.13)
that rx,y is independent of the units in which X and Y are measured—it is
a unit-free number. What is not apparent (and will not be proved at this
time) is that for any two variables X and Y ,

−1 ≤ rx,y ≤ +1.
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That is, the correlation coefficient between any two variables must lie in the
interval [−1,+1]. A value of plus unity means that the two variables are
perfectly positively correlated; a value of minus unity means that they are
perfectly negatively correlated. Perfect correlation can only happen when
the variables satisfy an exact linear relationship of the form

Y = a+ bX

where b is positive when they are perfectly positively correlated and negative
when they are perfectly negatively correlated. If rx,y is zero, X and Y
are said to be perfectly uncorrelated. Consider the relationships between
the Canadian and U.S. price levels and inflation rates. The coefficient of
correlation between the Canadian and U.S. consumer price indexes plotted
in Figure 1.8 is .99624, which is very close to +1 and consistent with the
fact that the points in the figure are almost in a straight line. There is less
correlation between the inflation rates of the two countries, as is evident
from the greater ‘scatter’ of the points in Figure 1.9 around an imaginary
straight line one might draw through them. Here the correlation coefficient
is .83924, considerably below the coefficient of correlation of the two price
levels.

1.11 Exercises

1. Write down a sentence or two explaining the difference between:

a) Populations and samples.

b) Populations and processes.

c) Elements and observations.

d) Observations and variables.

e) Covariance and correlation.

2. You are tabulating data that classifies a sample of 100 incidents of do-
mestic violence according to the Canadian Province in which each incident
occurs. You number the provinces from west to east with British Columbia
being number 1 and Newfoundland being number 10. The entire Northern
Territory is treated for purposes of your analysis as a province and denoted
by number 11. In your tabulation you write down next to each incident
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the assigned number of the province in which it occurred. Is the resulting
column of province numbers a quantitative or qualitative variable?

3. Calculate the variance and standard deviation for samples where

a) n = 10, ΣX2 = 84, and ΣX = 20. (4.89, 2.21)

b) n = 40, ΣX2 = 380, and ΣX = 100.

c) n = 20, ΣX2 = 18, and ΣX = 17.

Hint: Modify equation (1.6) by expanding the numerator to obtain an equiv-
alent formula for the sample variance that directly uses the numbers given
above.

4. Explain how the relationship between the mean and the median provides
information about the symmetry or skewness of the data’s distribution.

5. What is the primary disadvantage of using the range rather than the
variance to compare the variability of two data sets?

6. Can standard deviation of a variable be negative?

7. A sample is drawn from the population of all adult females in Canada
and the height in centimetres is observed. One of the observations has a
sample z-score of 6. Describe in one sentence what this implies about that
particular member of the sample.

8. In archery practice, the mean distance of the points of impact from the
target centre is 5 inches. The standard deviation of these distances is 2
inches. At most, what proportion of the arrows hit within 1 inch or beyond
9 inches from the target centre? Hint: Use 1/k2.

a) 1/4

b) 1/8

c) 1/10

d) cannot be determined from the data given.

e) none of the above.
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9. Chebyshev’s rule states that 68% of the observations on a variable will
lie within plus or minus two standard deviations from the mean value for
that variable. True or False. Explain your answer fully.

10. A manufacturer of automobile batteries claims that the average length
of life for its grade A battery is 60 months. But the guarantee on this brand
is for just 36 months. Suppose that the frequency distribution of the life-
length data is unimodal and symmetrical and that the standard deviation is
known to be 10 months. Suppose further that your battery lasts 37 months.
What could you infer, if anything, about the manufacturer’s claim?

11. At one university, the students are given z-scores at the end of each
semester rather than the traditional GPA’s. The mean and standard de-
viations of all students’ cumulative GPA’s on which the z-scores are based
are 2.7 and 0.5 respectively. Students with z-scores below -1.6 are put on
probation. What is the corresponding probationary level of the GPA?

12. Two variables have identical standard deviations and a covariance equal
to half that common standard deviation. If the standard deviation of the
two variables is 2, what is the correlation coefficient between them?

13. Application of Chebyshev’s rule to a data set that is roughly symmetri-
cally distributed implies that at least one-half of all the observations lie in
the interval from 3.6 to 8.8. What are the approximate values of the mean
and standard deviation of this data set?

14. The number of defective items in 15 recent production lots of 100 items
each were as follows:

3, 1, 0, 2, 24, 4, 1, 0, 5, 8, 6, 3, 10, 4, 2

a) Calculate the mean number of defectives per lot. (4.87)

b) Array the observations in ascending order. Obtain the median of this
data set. Why does the median differ substantially from the mean
here? Obtain the range and the interquartile range. (3, 24, 4)

c) Calculate the variance and the standard deviation of the data set.
Which observation makes the largest contribution to the magnitude of
the variance through the sum of squared deviations? Which observa-
tion makes the smallest contribution? What general conclusions are
implied by these findings? (36.12, 6.01)
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d) Calculate the coefficient of variation for the number of defectives per
lot. (81)

e) Calculate the standardised values of the fifteen numbers of defective
items. Verify that, except for rounding effects, the mean and variance
of these standardised observations are 0 and 1 respectively. How many
standard deviations away from the mean is the largest observation?
The smallest?

15. The variables X and Y below represent the number of sick days taken
by the males and females respectively of seven married couples working for
a given firm. All couples have small children.

X 8 5 4 6 2 5 3

Y 1 3 6 3 7 2 5

Calculate the covariance and the correlation coefficient between these vari-
ables and suggest a possible explanation of the association between them.
(-3.88, -0.895)
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