
Basic Statistics Review for Economics
Students

John E. Floyd
University of Toronto

May 15, 2013

This document presents a review of basic statistics for use by students who
plan to study economics in graduate school or who have long-ago completed
their graduate study and need a quick review of these basics. The first section
deals with the nature and examination of data, proceeding partly with the
aid of the spreadsheet program Gnumeric, which is a free MS-Excel clone.
The second section discusses probability and examines the nature of some
important probability distributions. Section three deals with hypothesis tests
and section four with OLS regression analysis. Although the regression anal-
ysis will here be undertaken using Gnumeric, more convenient software for
statistical analysis will discused in a subsequent document entitled Statisti-
cal Analysis Using XLispStat, R and Gretl: A Beginning. An appropriate
background for understanding the material covered here can be obtained by
reading indicated chapters of the manuscript that I prepared for my intro-
ductory statistics class, J. E. Floyd, Statistical Analysis for Economists: A
Beginning, University of Toronto, 2010. Anyone who has difficulty under-
standing that material can examine one of the elementary textbooks there
recommended. Those who have a good grasp of the material presented here
and want a deeper review should work through a recent edition of either
James H. Stock and Mark W. Watson, Introduction to Econometrics, pub-
lished by Prentice Hall, or Jeffrey Wooldridge, Econometrics: A Modern
Approach, published by South Western.



1. The Examination of Data1

Before undertaking statistical analysis, one should first examine carefully the
data that are being analyzed. To illustrate this process, the unemployment
rates for twenty-three countries in the year 2004 were obtained from Interna-
tional Financial Statistics, which is published by the International Monetay
Fund. These data are presented below. They are also in the Excel spread-
sheet file datanal1.xls and in the spreadsheet file datanal1.gnumeric,
both produced using the Gnumeric spreadsheet program.

Luxembourg 3.86819
New Zealand 4.05
Switzerland 4.3
Norway 4.36667
Ireland 4.5
Japan 4.71667 <— 1st. Quartile
United Kingdom 4.75
Sweden 5.51667
United States 5.5325
Australia 5.53333
Singapore 5.8
Denmark 5.85 <— Median
Netherlands 6.49167
Portugal 6.65
Austria 7.075
Canada 7.19167
Italy 8.05
Finland 8.825 <— 3rd. Quartile
Germany 9.2
France 9.275
Greece 10.5
Spain 10.8075
Belgium 12.7917

These data are cross-sectional—that is, they contain observations for a num-
ber of entities, which are countries, for a specific year. Were we to have

1An appropriate background for the material covered in this section can be obtained
by reading the first chapter of my manuscript Statistical Analysis for Economists: A
Beginning, noted in the introductory remarks.
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obtained unemployment rates for a single country for a number of years, our
data would be time series. Alternatively, we could have obtained monthly
unemployment rates for all these countries for a 30 year period, in which case
be would have a panel data set—360 time-series observations for each of 23
countries.

The first statistic we need to calculate is the mean, which is one of the
two standard measures of central tendency. It equals

X̄ =

∑N
i=1 Xi

N
(1)

where X̄ is the arithmetic mean and Xi is the ith observation in the data
above. We can obtain the mean in Gnumeric by summing the observations for
the column using the command sum(B6:B28) in the cell B30 and then divid-
ing the resulting number by the number of observations using the command
B30/23 placed in the cell B32. Alternatively, we could have simply placed the
command average(B6:B28) in cell B32. Another standard measure of cen-
tral tendency is the median—the observation which half of the observations
are bigger than and half the observations smaller than. To find this median
observation, we copy the data to a new column and sort that column of data
in ascending order by highlighting it and then using the sort function in the
Tools item in the Gnumeric menu across the top of the screen. It is a sorted
version of the data set that is presented above. The median observation is
the 12th one down from the top, with 11 observations bigger and 11 smaller.
If there had been only 22 observations in the data set we would set the me-
dian equal to the average of the 11th and 12th biggest observations and would
again have 11 observations smaller than and 11 observations bigger than this
average.

Next, we need some measures of the variability of the data around its
mean and median values. The standard measures of variability around the
mean are the variance and standard deviation. The variance is defined alter-
natively as

σ2 =

∑N
i=1(Xi − µ)2

N
(2)

or

s2 =

∑N
i=1(Xi − X̄)2

N − 1
(3)
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depending upon whether we are looking at a population or a sample of that
population. A population has a fixed mean, denoted here as µ , so that the
deviations of all its elements from that mean are independent of each other.
By contrast, a sample has a mean that depends on the particular sample that
has been selected. As a result, only N − 1 deviations of the sample elements
from that mean are independent—if we know N − 1 deviations from the
sample mean X̄ we can calculate the remaining deviation. That is,

N∑
i=1

(Xi − X̄) =
N−1∑
i=1

(Xi − X̄) + (XN − X̄)

implies

(XN − X̄) =
N∑
i=1

(Xi − X̄)−
N−1∑
i=1

(Xi − X̄) . (4)

There are thus only N − 1 degrees of freedom for variation in case of devi-
ations from the sample mean while there are N degrees of freedom in the
case of deviations from the fixed population mean. Accordingly, if we treat
our data as a sample from some population, whose mean we do not know,
the variance can be calculated by setting up in Gnumeric a new column of
numbers equal to the squares of the deviations of the respective observations
from the sample mean and then summing the elements of that column and
dividing by 22 (= 23 - 1). To construct the column of numbers, all we have
to do is make the calculation for one element of the column and then copy
the code from that cell to the remaining cells in the column—Gnumeric au-
tomatically adjusts the code numbers to match the new row element as we
move down the column. Then, after calculating the variance, we simply take
the square root of it to obtain the sample standard-deviation, denoted by s ,

s =

√∑N
i=1(Xi − X̄)2

N − 1
, (5)

with the population standard deviation denoted by σ ,

σ =

√∑N
i=1(Xi − µ)2

N
. (6)

The problem with the variance and standard-deviation as measures of
variability is that they give no information about the pattern of variability—
that is, about how the elements are distributed among low and high values.
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To acquire this type of information, we need to look at the range—that is the
distance between the highest and lowest values—and then calculate the first
and third quartiles. The first quartile is the obsevation that 25 percent of the
observations are smaller than and the third quartile is the observation which
75 percent of the observations are smaller than. In the data above there are
11 observations below the median and 11 observations above it. The best
pick for the 1st quartile is the 6th observation from the bottom and the best
choice of the upper quartile is the 6th observation down from the top. As in
the case of the median, sometimes the first and third quartiles have to be
obtained by averaging two neighboring observations. The distance between
the first and third quartiles is the inter-quartile range. We can then examine
the pattern of variability by seeing where the mean and median lie relative
to the first and third quartiles.

In our data set above, the mean is above the median and the third-quartile
value is above the median by more than twice as much as the first-quartile
value is below it. About one half of the observed unemployment rates are
between 3 percent and 6 percent and about one-quarter are between 6 and
9 percent and the remaining quarter being between 9 and 13 percent. These
high values drag the mean above the median and skew the distribution to
the right. This can be seen from the simple but rather crude frequency
distribution constructed below.

x x
x x
x x
x x x x
x x x x
x x x x
x x x x x
— — — — —
7 7 4 4 1
— — — — —
3-5 5-7 7-9 9-11 11-13

Five equal intervals between the a minimum value of 3 and a maximum value
of 13 were constructed and written in order on a piece of paper. Then for
each of the 23 observations, an x was placed above the interval in which
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the value of the observation falls. The number of observations falling in
each interval is then counted to provide a frequency distribution. The left-
most two categories, 3 − 5 and 5 − 7 are tied as indicators of the mode or
modal class—that is, the category containing the largest number of occur-
rences. The same thing could be accomplished by drawing an appropriate
histogram—unfortunately, one cannot do that easily in Gnumeric although
one can obtain the mean, median, maximum, minimum, inter-quartile range,
variance, standard deviation and other statistics by simply highlighting the
relevant column and then clicking on the tools item on the menu and then
choosing Statistical Analysis and then Descriptive Statistics. You
can see from the pattern of x’s in the frequency distribution above that the
distribution is skewed to the right.
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This pattern can also be seen in the box-plot above that was constructed
in Gnumeric. The lower and upper borders of the box in the center of the
diagram give the first and third quartiles and the horizontal line in the box
just above its lower border is the median. Were it shown in the box, the mean
would be a horizontal line about one unit, measured on the vertical scale,
above the median. The vertical whiskers above and below the box extend to
the maximum and minimum values respectively. It is easy to see that there
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is a high concentration of values at the lower unemployment rates, with the
small number of extreme upper values pulling up the mean.

Another way of measuring the pattern of variation in data is to standard-
ize them—that is, to measure each data-value by the number of standard-
deviations it is above or below the mean. The standardized values can be
expressed as

Zi =
Xi − X̄

s
(7)

which, when applied to our unemployment rate data, yields the following.

Luxembourg -1.1815
New Zealand -1.1074
Switzerland -1.0055
Norway -0.9783
Ireland -0.9240
Japan -0.8357
U.K. -0.8221
Sweden -0.5096
U.S. -0.5031
Australia -0.5028
Singapore -0.3941
Denmark -0.3737
Netherlands -0.1122
Portugal -0.0477
Austria 0.1255
Canada 0.1731
Italy 0.5229
Finland 0.8388
Germany 0.9916
France 1.0222
Greece 1.5214
Spain 1.6468
Belgium 2.4554

Luxembourg’s unemployment rate, the lowest in comparison with that in the
22 other countries, is about 1.2 standard deviations below the 22-country
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mean while the that of Belgium, the highest, is nearly two-and-one half
standard deviations above it. Only nine countries are above the mean, with
fourteen countries below it.

It turns out that the mean of such standardized values is zero and their
standard deviation and variance both equal unity. This follows from the facts
that

Z̄ =

∑N
i=1 Zi

N
=

∑N
i=1(Xi − X̄)

s N
=

∑N
i=1 Xi −NX̄

s N
=

1

s

(∑N
i=1 Xi

N
− X̄

)
= 0

and ∑N
i=1(Zi − Z̄)2

N − 1
=

∑N
i=1 Z

2
i

N − 1
=

∑N
i=1(Xi − X̄) 2

s2 (N − 1)
=

s2

s2
= 1 .

Some additional measurement issues arise in the case of time-series data.
As an example, we look at the year-over-year GDP growth rates for the
United States and Canada. Gross domestic product series and consumer
price indexes, with year 2000 base, were obtained for the two countries from
the IMF International Financial Statistics and, using the Gnumeric spread-
sheet program, the GDP series were divided by the corresponding CPI series
and multiplied by 100 to obtain the two countries’ real GDP’s in year 2000
domestic dollars. Then the percentage year-over-year GDP growth rates were
calculated on a quarterly basis by taking the percentage difference between
each quarter’s real GDP level and that of the same quarter of the previous
year. These data and the corresponding calculations can be found in the
MS-Excel spreadsheet file datanal2.xls which was created with Gnumeric
and in an equivalent Gnumeric spreadsheet file datanal2.gnumeric which
also contains the box-plot to be shown later. It turns out that Gnumeric will
not read an .xls file in which a box-plot was created—such files have to be
saved in Gnumeric format.

The first measurement device for time-series data is a time-series plot,
shown below. The two series show little trend and seem to be somewhat
related to each other, with the Canadian series showing greater variability
than the U.S. series. You can also see from the figure that each of the series is
somewhat serially correlated—that is, correlated with itself through time—in
that high (low) values in any period tend more often than not to be followed
by high (low) values in the next period.
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U.S. and Canadian Real GDP Growth

Quarterly Data
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The means and standard-deviations for each of the growth rates are calcu-
lated in the above-noted spreadsheet files—the means are 3.66 for Canada
and 2.89 for the U.S. and the corresponding standard-deviations are 3.10
and 2.75. Indeed, a box-plot of the two series, shown below with the Cana-
dian series on the left, is very instructive in helping us visualize the relative
variability of the two countries’ real GDP growth rates.

As you can see, the maximum and minimum values of the two series are not
too different, but the inter-quartile range—that is the difference between the
first-quartile and third-quartile—is much bigger for the Canadian series on
the left than the U.S. series on the right, and a somewhat higher median for
Canadian real GDP growth is also apparent. But the coefficients of variation,
which are the standard deviations taken as percentages of the respective
means, given by the formula

CV =
100 s

X̄
, (8)
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are 100 × 3.10/3.66 = 86 for Canada and 100 × 2.75/2.89 = 95 for the
United States. The reason for this apparent greater variability of U.S. real
GDP growth is the fact that the mean is 100 × (3.66 − 2.89)/2.89 = 27
percent higher in the Canadian than U.S. case while the standard deviation
is only 100× (3.10− 2.75)/2.75 = 13 percent higher. As calculated in the
spreadsheet file datanal2.xls, the median is 100× (3.88−3.07)/3.07 = 26
percent higher in the Canadian than U.S. case.

Finally, it is worth examining the correlation between GDP growth in
Canada and the United States. The covariance between two variables X and
Y is

sxy = syx =

∑N
i=1(Xi − X̄)(Yi − Ȳ )

N − 1
(9)

and the coefficient of correlation is

rxy = ryx =
sxy
sx sy

(10)

where sx and sy are the standard deviations of the two variables. As cal-
culated in the above spreadsheet file, the coefficient of correlation of the
Canadian and U.S. real GDP growth is 4.7559/(3.1019 × 2.7499 = 0.5575 .
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The correlation coefficient can also be calculated more easily in Gnumeric by
clicking on Tools, then Statistical Analysis and then Correlation.2

So are we to believe that Canadian and United States year-over-year real
GDP growth are correlated to a degree about half-way between zero corre-
lation (rxy = 0) and perfect correlation (rxy = 1) ? How likely is it that the
observed correlation coefficient of 0.5575 could have arisen entirely on the
basis of pure random chance? More specifically, what proportion of the ob-
served 0.5575 coefficient could be the result of random noise in the data and
what proportion is the result of a real underlying relationship between real
GDP growth in the two countries? These questions can only be answered
through a proper understanding of probability and hypotheses testing, the
topics to which we now turn.

2Suppose, for example, that you want to calculate the correlation between the row
elements 16 to 26 in the M column with the row elements 16 to 26 in the N column. The
appropriate entry in the correlation window would be M16:M26,N16:N26.
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Exercises

Before proceeding, it would be useful for you to examine carefully the Gnu-
meric (Excel) worksheets in which the material referred to above was pro-
duced. They are datanal1.xls or datanal1.gnumeric, and datanal2.xls

or datanal2.gnumeric, with the .gnumeric versions including the box-plots.

Then to proceed, access the worksheet datanalq.xls which contain United
States monthly M1 and M2 series, both seasonally adjusted and unadjusted,
for the period January 1959 through May 2010. Then perform the following
calculations:

1. Calculate the year-over-year percentage growth rate, monthly, for versons
of the two series that are not seasonally adjusted, and the month-over-month
percentage growth rate for the seasonally-adjusted series. Why should one
use the non-seasonally-adjusted series for the year-over-year calculations and
the seasonally-adjusted series for the month-over-month calculations?

2. Make indexed versions of the two seasonally adjusted series, starting with
January 1960, on the base of 1960 = 100. Then plot these two series on the
same plot. [To do the plot, highlight the two series and then click on the
graph item on the tool bar and pick the item line. In the window that then
appears, click on insert, then put the cursor where you want the upper-left
corner of the graph to be placed and, holding down the left mouse-button,
drag the cursor to where you want the bottom-right corner of the graph to be
placed. Usually, it takes a lot of down-to-the-right dragging to get the cursor
in an appropriate place to locate the bottom-right corner.] Which series has
grown the most?

3. Calculate the means of the year-over-year and month-over-month growth
rates of the two series and verify by observation that they are consistent with
the results of the above plot. Then make plots of the growth rates, beginning
in 1960, with both year-over-year growth rates on one plot and both month-
over-month growth rates on a second plot. Which of the two series appears
to have the most variable growth rate?

4. Calculate the squared deviations of the month-over-month growth rates of
M1 and M2 from their means, then sum them and calculate their variances,
treating the growth rates as a sample of population growth rates having
measurement errors. Then obtain the standard-deviations. Are the standard-
deviations consistent with your conclusion above about the relative variability
of the two growth rates.
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5. Calculate the product of the deviations of the month-over-month growth
rates of M1 and M2 from their means and then calculate their covariance
and the correlation rate between them. Why does it make sense to use the
month-over-month growth rates rather than the year-over-year growth rates
for the variance and covariance calculations?

6. Finally, calculate the standard deviations of the means of the two month-
over-month growth rates.

After doing the above exercises, access the spreadsheet datanala.xls to
check your answers.
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2. Probability Theory and Probability Distributions 3

We now carefully review the concept of probability. A classic example is
the toss of a coin. If the coin is a fair one, there is a 50 percent chance of
obtaining a head and a 50 percent chance of obtaining a tail on any given
toss, and there is a 100 percent chance that the coin, even if not a fair one,
will come up either heads or tails. Accordingly, we say that the probability
of receiving a head is .5 and the probability of receiving a tail is .5 and the
probability of receiving either a head or tail is .5+.5 = 1 . Half of the unitary
probability mass falls on head and half on tail.

Consider now an individual with expertise in stock-market analysis who
assigns the following probabilities to the possibilities that the prices of each
of two particular stocks, A and B, will increase by more than 1

2
a percentage

point (50 basis points), fall by more than 1
2
a percentage point, or remain

within 1
2
of a percentage point of its current market value over the next year.

The assigned probabilities are presented in the following two tables.

Stock A Probability
Increase more than 1/2 percent .40
Remain within 1/2 percent .20
Fall more than 1/2 percent .40
Do one of the above 1.00

Stock B Probability
Increase more than 1/2 percent .30
Remain within 1/2 percent .40
Fall more than 1/2 percent .30
Do one of the above 1.00

You should note that the probability of a major change in the price of stock
A is greater than the probability of a major change in the price of stock B.

3An appropriate background for the material covered in this section can be obtained
by reading chapters 2 and 3 of my manuscript, Statistical Analysis for Economists: A
Beginning.
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The individual could assign these probabilities subjectively on the basis
of a general understanding of the functioning of the two firms involved and
her expectations of future demand for the products they produce, or more
objectively on the basis of historical data regarding the fractions of the time
these stock prices rose, fell, or remained roughly the same over the previous
few years.

If the probability assignment is based on an analysis of past data, she
might be able to assign joint probabilities to the behaviour of the two stock
prices in relation to each other as follows.

Stock A
Stock B Increase No Change Decrease

A1 A2 A3 Sum
Increase B1 .20 .05 .05 .30
No Change B2 .15 .10 .15 .40
Decrease B3 .05 .05 .20 .30

Sum .40 .20 .40 1.00

The nine probabilities in the center are called joint probabilities and
the three probabilities in the right-most column and the three in the bottom
row are called marginal probabilities, which are the probabilities that
the price of the given stock will increase, remain roughly the same, or de-
cline, regardless of what happens to the price of the other stock. The joint
probabilities sum to unity, as does each set of marginal probabilities. Mathe-
matically, letting i and j take the values 1, 2, or 3, the marginal probabilities
in the table can be denoted as P (Ai) and P (Bj) and the joint probabilities
as P (Ai ∩ Bj).

4 Notice that the marginal probabilities are the sums of the
joint probabilities in the associated row or column.

If the price of stock B rises, what is the probability that the price of stock
A will also rise? To calculate this we take the joint probability that both
prices will rise as a fraction of the probability that the price of stock B will
rise. This is a conditional probability— that is, the probability of a rise

4For example, there is a 40 percent chance that the price of stock A will increase and
a 30 percent chance that the price of stock B will increase, and a 20 percent chance that
they will both increase.
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in the price of stock A conditional upon a rise in the price of stock B. In the
above table, it equals

P (A1|B1) = P (A1 ∩B1)/P (B1) = 0.20/0.30 = 0.66666666

which says that the price of stock A will rise two-thirds of the time when
the price of stock B rises. And you can calculate from the above table that
the price of stock A will remain roughly unchanged one-sixth of the time
and fall one-sixth of the time, given that the price of stock B increases. By
rearrangement of the above equation we can see that the joint probability of
an increase in the price of stock A and the price of stock B is equal to

P (A1 ∩B1) = P (A1|B1)P (B1) . (1)

That is, the probability that the prices of both stocks will rise equals the
probability that the price of stock A rises conditional upon the price of stock
B rising, times the probability that the price of stock B will rise.

Consider now the probability that either the price of stock A or the price
of stock B will rise. This will equal the probability that the price of stock
A will rise plus the probability that the price of stock B will rise minus the
probability that both stock prices will increase—that is,

P (A1 ∪B1) = P (A1) + P (B1)− P (A1 ∩B1) (2)

which implies that P (A1 ∪ B1) = 0.30 + 0.40 − 0.20 = 0.50 . The joint
probability has to be deducted to avoid double counting—the sum of the two
probabilities P (A1) + P (B1) gives the probability that either or both stock
prices will increase. The probability that either one of the stock prices will
will rise gives the probability of the union of the two events, denoted by
the symbol ∪ , while the symbol ∩ denotes the intersection of the two

events.

Suppose, alternatively, that the joint probabilities are those given in the table
below.

Stock A
Stock B Increase No Change Decrease

A1 A2 A3 Sum
Increase B1 .12 .06 .12 .30
No Change B2 .16 .08 .16 .40
Decrease B3 .12 .06 .12 .30

Sum .40 .20 .40 1.00
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Under these conditions, the probability that the price of stock A will rise
given that the price of stock B rises is simply equal to the probability that
the price of stock A will rise independently of what happens to the price of
stock B—that is,

P (A1|B1) = P (A1 ∩B1)/P (B1) = 0.12/0.30 = 0.40 = P (A1) ,

and an equivalent result holds for all the other conditional probabilities. You
can see from the table that the first and third rows are the same and the
elements of the second row are one-quarter larger than the corresponding
elements of the other two rows. And the marginal probabilities along the
bottom row are 21

2
times the joint probabilities in the second row and 31

3
times

the probabilities in the first and third rows. Similarly, the joint probabilities
in the first and third columns are, respectively, the same and twice as large
as the joint probabilities in the second column. And the probabilities in
the middle column are 1

5
the size of the marginal probabilities in the right-

most column. Also, each joint probability is equal to the product of the
corresponding marginal probabilities. When this condition

P (Ai ∩Bj) = P (Ai)P (Bj) (3)

holds, the change in the price of stock A and the change in the price of stock
B are statistically independent—that is the change in the price of one
stock is in unrelated to the change in the price of the other stock. The fact
that the joint probabilities are non-zero is strictly the result of the random
variability of the two stocks.

Notice now that, when the two sets of events are not statistically inde-
pendent, the joint probability can be obtained in two ways.

P (Ai ∩Bj) = P (Ai|Bj)P (Bj)

and
P (Ai ∩Bj) = P (Bj|Ai)P (Ai) .

It therefore follows that

P (Ai|Bj)P (Bj) = P (Bj|Ai)P (Ai) . (4)

which implies that

P (Ai|Bj) = P (Bj|Ai)
P (Ai)

P (Bj)
=

P (Bj|Ai)P (Ai)∑
i [P (Bj|Ai)P (Ai)]

. (5)
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The above equation represents Bayes Theorem. Given an initial probability
P (Ai) , called the prior probability, together with subsequent evidence re-
garding the probability of Bj given Ai from the conditional probability

P (Bj|Ai) , one can upgrade that prior probability to obtain the posterior

probability P (Ai|Bj) .

Consider the following (artificially constructed) example. You know that
the probability of a randomly selected person in your community being a
carrier of the AIDS virus is P (A1) = .001 and the probability that the
person is not a carrier of the virus is therefore P (A0) = .999 . Your prior
probability of being a carrier is therefore .001 and the odds of you being a
carrier are thus

P (A1)

P (A0)
=

.001

.999
=

1

999

or one to nine hundred and ninety nine. You then take an AIDS test and test
positive! And you learn that empirical studies have established that carriers
of the virus test positive 90 percent of the time and non-carriers test positive
1 percent of the time—that is

P (T1|A1) = .90 and P (T1|A0) = .01 .

Your joint probability of both being a carrier and testing positive is thus

P (T1 ∩ A1) = P (T1|A1)P (A1) = .90× .001 = 0.0009

and the joint probability of testing positive and not being a carrier is

P (T1 ∩ A0) = P (T1|A0)P (A0) = .01× .999 = 0.0099 .

Since a person testing positive must either be a carrier or not be a carrier,
the marginal probability of testing positive is equal to the sum of the two
joint probabilities

P (T1) = P (T1 ∩ A1) + P (T1 ∩ A0) = .0009 + .0099 = 0.0108

and can be entered, along with the prior probabilities and two joint proba-
bilities in the table below.

Test Result Prior
An HIV Positive Negative Probability
Carrier? (T1) (T0) Distribution

No (A0) 0.0099 0.999
Yes (A1) 0.0009 0.001

Total 0.0108 1.000
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The conditional probability of you being a carrier given that you tested
positive—that is your posterior probability is thus

P (A1|T1) =
P (T1 ∩ A0)

P (A1 ∩ T1) + P (A0 ∩ T0)
=

P (T1 ∩ A0)

P (T1

=
0.009

0.0108
= 0.0833 .

The results of the test and the evidence on its reliability has caused you to re-
vise the probability that you are a carrier upward from a prior probability

of 0.001 to the posterior probability of 0.0833 . Finally, the other two
joint probabilities,

P (T0 ∩ A0) = P (A0)− P (T1 ∩ A0)

and
P (T0 ∩ A1) = P (A1)− P (T1 ∩ A1)

and the marginal probability P (T0) can be calculated from the numbers
already in the table above to produce the following filled-out version.

Test Result Prior
An HIV Positive Negative Probability
Carrier? (T1) (T0) Distribution

No (A0) 0.0099 .9891 0.999
Yes (A1) 0.0009 .0001 0.001

Total 0.0108 .9892 1.000

The most common form of probability analysis in economics deals with
probability distributions of random variables that can take a wide range of
values, not just two as in the cases above. Suppose that we have a random
variable X that can take integer values in the range zero through ten. The
associated probabilities of occurrence of these values form a discrete probabil-
ity distribution represented by the probability function P (Xi) mapped out
in the bottom panel of Figure 1 below. The vertical bars measure the proba-
bilities that X will take the eleven specific values. The top panel graphs the
cumulative probabilities—that is, the probability P (

∑ i
0 Xi) that X will be

equal to or less than the each of the eleven integer values. The vertical bars
in that panel thus measure the cumulative probability which runs from zero
to unity, and are the vertical sums of the current and all previous vertical
bars in the bottom panel.
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Figure 1: Probability function and cumulative probability func-
tion for a discrete variable. The vertical lines in the top panel
are the sums of the current and previous probabilities in the
bottom panel.
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More common in economic analysis are probability distributions of the
levels of continuous variables like GDP and the CPI which can take a value
equal to any of a range of real numbers. The probability density function
for a continuous variable, in this case the year-over-year percentage change
in the market value of shares of a particular company, ranging from −10 to
+20 is presented in the upper panel of Figure 2 below, with the lower panel
graphing the cumulative density function. We use the term density because
the distance from the horizontal axis to the curve (or density function) in
the upper panel measures the probability that the variable will take a value
within a range of the value on the quantity axis as the size of that range
approaches zero. And the probability that the percent change in value will
be between 5 and 10 percent is given by the area A in the top panel. Since
the bottom panel gives the cumulative probability—that is, the probability
that the percentage change will be equal to or below a given level—the area
A in the top panel is represented by the distance A in the bottom panel.
In mathematical terms, the distance of the curve from the horizontal axis in
the top panel equals

P (v) = f(v)

where P (v) is the probability that the percentage change will be in the im-
mediate neighborhood of v and f(v) is the probability density function. The
distance of the curve from the horizontal axis in the bottom panel—that is,
the cumulative probability—is

P (v ≤ vo) = F (vo) =
∫ vo

0
f(v) dv (6)

and the probability that the market value will be increase between 5% and
10%, given by the area A in the top panel and the distance A in the bottom
panel, is

P (a ≤ v ≤ b) = F (b)− F (a) =
∫ b

a
f(v) dv , (7)

where a = 5 and b = 10 .

21



Figure 2: Probability density and cumulative probability func-
tions for the year-over-year change in the market value of shares
of a particular company, a continuous variable. The area A be-
tween the two vertical lines in the top panel equals the distance
between the two horizontal lines in the bottom panel.
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We can now look at a group of specifically defined probability distribu-
tions. Before doing so, however, it is important to understand the possible
functional relationships between random variables of the sort just considered.
Consider first a linear function of a random variable X .

Y = a+ bX (8)

A number of relationships hold. First, the expected value or mean of a linear
function of a random variable is the sum of the means of its components—
that is,

E{Y } = E{a}+ E{bX} = a+ bE{X} . (9)

The the mean of a constant is that constant itself (E{a} = a ) and the
mean or expected value of a constant times a random variable is equal to
that constant times the mean of the random variable (E{bX} = bE{X}) .
The variance of a linear function of a random variable, representing either a
population or a sample, is

σ2{Y } = σ2{a+ bX} = σ2{a}+ σ2{bX} = 0 + σ2{bX} = b2σ2{X} (10)

where the variance of a constant is obviously zero and the variance of a
constant times a random variable is equal to the product of the constant
squared and the variance of the random variable. This relationship

σ2{bX} = b2 σ2{X} (11)

also implies that the standard deviation of a constant times a random variable
equals

σ{bX} = |b|σ{X} . (12)

Finally, consider the mean and variance of sums and differences of random
variables.

E{X + Y } = E{X}+ E{Y }
E{X − Y } = E{X} − E{Y } (13)

σ2{X + Y } = σ2{X}+ σ2{Y }+ 2σ{X, Y }
σ2{X − Y } = σ2{X}+ σ2{Y } − 2σ{X,Y } (14)
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The two relationships immediately above can be derived from the definitions
of variance and covariance.

The first of the specific probability distributions that need to be discussed
is is the binomial distribution plotted in Figure 3 below. The binomial dis-
tribution gives the probabilities of each of the n + 1 possible results in a
sequence of n random trials. An example of such a distribution would be
the probabilities of observing zero through ten unfavorable results in next 10
legal situations a company is involved in. The probability p that the result
of a particular legal event will be unfavourable is set at 0.2 in the top panel
and 0.8 in the bottom panel. A situation where p = 0.5 would produce a
distribution quite similar to that in the bottom panel of Figure 1 above.

Mathematically, the binomial probability function, which gives the probabil-
ities that X will take values (0, 1, 2, ....n) , is

P (x) =

(
n

x

)
px(1− p)n−x (15)

where P (x) = P (X = x), x = 0, 1, 2, ....n , and 0 ≤ p ≤ 1 , and the binomial
coefficient is (

n

x

)
=

n!

x!(n− 1)!
(16)

where a! = (a)(a − 1)(a − 2)(a − 3).....(1) and 0! = 1 . The probabilities
can be calculated by substituting the value of p and the alternative values
of x into the equation above. Or you can use one of the free statistical
programs that will be discussed later—Gretl, R, or XLispStat—to make the
calculations. The mean and variance of the binomial probability function
are, respectively

E{X} = n p (17)

and

σ2{X} = n p (1− p) . (18)

If we have two independent binomial random variables V and W with
common probability parameter p and based on nv and nw random trials,
the sum V + W is a binomial random variable with parameters p and
n = nv + nw .
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Figure 3: Binomial probability distributions with p = 0.2 (top
panel) and p = 0.8 (bottom panel).
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Next, consider the poisson probability distribution, examples of which
are plotted in Figure 4 below. A poisson random variable is a discrete vari-
able that can take any integer value from zero to infinity. The value gives
the number of occurrences of the circumstance of interest during a particu-
lar period of time or within a particular spatial area. For example, a firm
might be interested in the number of customer complaints occurring during
a particular month. The poisson probability function is

P{x} =
λx e−λ

x!
(19)

where P{x} = P{X = x} with x = 0, 1, 2, 3, 4, ...,∞ , and 0 ≤ λ ≤ ∞ is the
only parameter. The mean and variance of a poisson probability distribution
are, respectively,

E{X} = λ and σ2{X} = λ .

In the Figure below, λ = 0.5 in the top panel and 5.0 in the bottom
one—you can see that the poisson probability distribution becomes more
symmetric as λ increases.

Another distribution is the exponential probability distribution

which is closely related to the poisson probability distribution. While the
poisson probability distribution applies to the number of occurrences over an
interval of time, the exponential distribution applies to the amount of time
between occurrences. It is a continuous distribution because time is mea-
sured along a continuum. An exponential random variable X is the time
between occurrences of a random event. The probability density function is

f(x) = λe−λx, (x > 0). (20)

where λ is, as in the case of the poisson distribution, the average number
of occurrences over the period in which time-between-occurrences is being
analysed. It turns out that the cumulative probability that X ≥ x is

P (X ≥ x) = e−λx. (21)
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Figure 4: Poisson probability distributions with λ = 0.5 (top
panel) and λ = 5.0 (bottom panel).
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The mean and variance of an exponential distribution are

E{X} =
1

λ

and

σ2{X} =
1

λ2
.

The shape of the exponential distribution is governed by the single parameter
λ. As indicated in the plots of some exponential distributions in Figure 5,
the exponential probability density function declines as x increases from zero,
with the decline being sharper the greater the value of λ. The probability
density function intersects the y-axis at λ .

Figure 5: Two exponential probability density functions with
λ = 0.5 and λ = 2 respectively.

Notice that the probability density at X = 0 is equal to λ and in the case
where λ = 2 the probability density exceeds unity. This does not mean that
the probability that X = 0 is greater than unity—that would be contrary to
the definition of probability. The probability of X as it approaches zero is
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the distance 2 , multiplied by the infinitesimal deviation of X from zero—
this product will clearly be less than unity.

A uniform probability distribution occurs when the probabilities of
all occurrences in a sample space are the same. A discrete uniform random
variable has a discrete uniform probability distribution of the sort
shown in the top panel of Figure 6 below. The discrete uniform probability
function is

P (x) =
1

s
(22)

where P (x) = P (X = x) , with x = a, a + 1, a + 2, . . . , a + (s − 1) , and
the parameters a and s are integers with s > 0 . Parameter a denotes the
smallest outcome and parameter s denotes the number of distinct outcomes.

The mean and variance of a discrete uniform probability distribution are,
respectively,

E{X} = a+
s− 1

2
and

σ2 =
s2 − 1

12
.

The continuous uniform or rectangular probability distribution, an ex-
ample of which is plotted in the bottom panel of the Figure below, is the
continuous analog to the discrete uniform probability distribution. A con-
tinuous uniform random variable has uniform probability density over an
interval. The continuous uniform probability density function is

f(x) =
1

b− a
(23)

where the interval is a ≤ x ≤ b . Its mean and variance are

E{X} =
b+ a

2

and

σ2{X} =
(b− a)2

12
and the cumulative continuous uniform probability function is

F (x) = P (X ≤ x) =
x− a

b− a
. (24)
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Figure 6: Uniform probability distribution for a discrete random
variable (top panel) and continuous random variable (bottom
panel).
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Figure 7: Normal probability distributions with mean= 0 and
standard deviation = 1 (standard normal) and with mean= 1
and standard deviation = 4 .

The family of normal probability distributions, two members of which are
plotted in Figure 7 above, is the most important of all. It is an excellent
model for a wide variety of phenomena. The normal random variable is a
continuous one and the normal probability density function is

f(x) =
1

σ
√
2π

e−(1/2)[(x−µ)/σ]2 (25)

where −∞ ≤ x ≤ +∞, −∞ ≤ µ ≤ +∞, σ > 0, π = 3.14159 and
e = 2.71828. The mean and variance of a normal probability distribution
are denoted respectively as

E{X} = µ

and
σ2{X} = σ2.
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Each parameter pair (µ , σ) corresponds to a different member of the family
of normal probability distributions. Every normal distribution is bell shaped
and symmetrical, as shown in the Figure above, with each centred at the
value of µ and spread out according to the value of σ. Normal distributions
are referred to using the compact notation N(µ , σ2) .

The standardised normal distribution is the most important mem-
ber of the family of normal probability distributions—the one with µ = 0 and
σ = 1. The normal random variable distributed according to the standard
normal distribution is called the standard normal variable and denoted
by Z. It is expressed as

Z =
X − µ

σ
, (26)

so that Z is measured as number of standard-deviations. A basic feature of
normal distributions is that any linear function of a normal random variable
is also a normal random variable. Thus

Z = − µ

σ
+

1

σ
X (27)

and

X = µ+ σ Z (28)

If V and W are two independent normal random variables with means µv

and µw and variances σ2
v and σ2

w respectively, the sum V + W is a normal
random variable with mean µ = µv + µw and variance σ2 = σ2

v + σ2
w.
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Exercises

1. Under what circumstances does P (A1 ∩ B1) = P (A1)P (B1)? And under
what circumstances does P (A1 ∪B1) = P (A1) + P (B1)?

2. Use the relationship between joint and conditional probabilities to derive
Bayes Theorem.

3. On a fresh spreadsheet, construct the probability distribution of a poisson
random variable with λ = 2 and then obtain the cumulative probabilies.
[Start with a colunm of X values ranging from 0 to 12 and then use the
mathematical probability function to calculate the probabilities of observing
the X’s under the specified value of λ .] Then plot the probability function
and the cumulative probability function on separate graphs.

4. How does one standardize a variable? On the spreadsheet above, con-
struct and plot the standard normal probability density function and then
the cumulatitive probability distribution. [In this case create a column of
Z’s ranging from 3.0 to -3.0 in increments of .01. Then use the probability
density equation to obtain the densities for each X value.] Finally calculate
the cumulative probabilities, keeping in mind that the width of each vertical
slice is 0.1 , and plot both the density and the cumulative probabilities on
separate graphs.

To check your answers to the first three questions, simply consult the
relevant parts of the main document. To check your construction and plots
of the poisson and standard normal distributions, consult the spreadsheet
file probdans.xls.
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3. Hypotheses Tests 5

You should already understand that a population is a finite or infinite set
of elements of interest, with infinite populations normally resulting from
processes. Our task is to infer information about the parameters of the prob-
ability distributions of populations by examining sample statistics obtained
from samples of those populations. The two most important of these sample
statistics are the sample mean

X̄ =

∑n
i=1 Xi

n
(1)

and sample variance

s2 =

∑n
i=1(Xi − X̄)2

n− 1
(2)

from which we try to infer information about the population mean and vari-
ance.

Most important in this process is the Central Limit Theorem which
states that when the sample size is sufficiently large the sample mean X̄ will
become approximately normally distributed with mean equal to the popu-
lation mean and variance equal to the population variance divided by the
sample size. And the larger the sample size, the closer the approximation of
the sampling distribution of X̄ to a normal distribution. This holds true re-
gardless of the distribution of the population provided it has a finite standard
deviation.

The true standard deviation of the sample mean is σx̄ = σ/
√
n but, since

the population standard deviation is usually not known, we use

s =

√∑n
i=1(Xi − X̄)2

n− 1

to provide an estimate of σ. The standard deviation of the sample mean is
thus estimated as

sx̄ =
s√
n

(3)

5Background for the material covered in this section can be obtained by reading chap-
ters 4 through 7 of Statistical Analysis for Economists: A Beginning.
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which becomes closer to σ/
√
n as the sample size gets larger.

The sample mean is thus a point estimator of the population mean.
When picking point estimators of a population parameter, it is important
to keep in mind the desirable properties of such estimators. They should be
unbiased in that they are no more likely to be on one side of the population
parameter than on the other, consistent in that the larger the sample
size the closer they become to the population parameter, and relatively

efficient in the sense that they have a smaller variance than that of other
unbiased estimators that could have been chosen.

To obtain an estimate of how far the sample mean is likely to deviate
from the population mean—that is, how tightly it is distributed around the
population mean—we use our estimate of the variance of the sample mean

s2x̄ =
s2

n
.

Given the characteristics of normal distributions, we can say that if the
sample is large enough, and X̄ is therefore normally distributed, the sample
mean will lie within a distance of ± 2 sx̄ of µ with probability near .95 ,
and within a distance of ± sx̄ of the population mean with probability near
.68 . When the random sample is reasonably large we can set confidence
limits U and L for the location of the population mean µ with approximate
confidence coefficient (1 − α) , which is the probability that U and L will
bracket the fixed population mean. These limits will be a distance from the
sample mean equal to some multiple z of the standard deviation of that
sample mean

X̄ ± z
s√
n

where z = z (1−α/2) is the 100 (1−α/2) percentile of the standard normal
distribution. The 100 (1− α) percent confidence interval for µ is

X̄ − z
s√
n
≤ µ ≤ X̄ + z

s√
n
.

The limits −z (1− α/2) and z (1− α/2) are given by the innermost edges of
the areas beyond the vertical black lines on the left and right sides of Figure
1 below. These areas each contain a probability weight equal to α/2. So
for a 95% confidence interval each of these areas represents the probability
weight (1 − .95)/2 = .05/2 = .025 and the sum of these areas represents
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the probability weight .05. The area under the probability density function
between the two areas is equal to the probability weight .95. If the confidence
interval actually brackets µ that confidence interval is said to be correct.

Figure 1: The areas (1 − α) and α/2 for a standard normal
probability distribution with α = .05.

We have been standardized the sampling distribution of X̄, obtaining

z =
(X̄ − µ)

s/
√
n

using s as an estimator of σ and then calculated limits for µ based on values
for z obtained from the standard normal probability distribution. Had we
known σ , the standardized value would have been

z =
(X̄ − µ)

σ/
√
n

.

It turns out that when we use the random variable s/
√
n instead of the

constant σ/
√
n , the random variable

z =
(X̄ − µ)

s/
√
n
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is distributed according to the t-distribution rather than the standard normal
distribution.

The t-distribution is symmetrical about zero like the standardized normal
distribution but it is flatter, being less peaked in the middle and extending
out beyond the standard normal distribution in the tails. The distribution
has one parameter, v , equal to the degrees of freedom, which equals the
sample size minus unity in the case at hand. It has mean zero and variance
v/(v − 2) with v > 2. As the degrees of freedom gets larger and larger
the t-distribution becomes a closer and closer approximation to the standard
normal distribution. An example is presented in Figure 2 below, where v
is alternatively set at 5 and 1000 . In the case where v = 1000 , the plot is
virtually indistinguishable from a plot of the standard normal distribution
since the variance is 1000/98 = 1.002 .

Figure 2: Two t-probability distributions with zero means and degrees
of freedom equal to 5 and 1000 respectively.

Suppose our economic analysis leads to the conclusion that the population
mean µ is above some level µ0 , and we want to use our sample mean, which
happens to be above µ0 , as evidence of this. We attempt to avoid the worst
mistake we could make—namely, to conclude that µ bigger µ0 when in truth
it is smaller—by setting our null hypothesis as

H0 : µ ≤ µ0
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and then determining whether it is reasonable to reject that null-hypothesis
in favour of the alternative hypothesis

H1 : µ > µ0

on the basis of our sample evidence. Had X̄ been less than µ0 , we would
have no basis for rejecting the null-hypothesis. The fact that X̄ is above µ0

casts doubt upon the null hypothesis but, since X̄ is a random variable, the
question arises as to the probability of observing a sample mean that high
if the null hypothesis is really true. We impose on ourselves the decision
rule that we will not reject the null hypothesis in favour of the alternative
hypothesis unless the probability of observing the sample mean when the
null hypothesis is in fact true is less than 0.01 . Alternatively, we could have
chosen 0.025 or 0.05 as our decision rule. We then calculate the critical
value that X̄ would have to exceed to enable us to reject the null hypothesis
and conclude that the alternative hypothesis is correct without violating
our decision rule. The risk that we will incorrectly conclude that the null-
hypothesis is false then it is in fact true is called the α risk (= 0.01) and the
risk that we will incorrectly conclude that the null-hypothesis is true when
it is in fact false and the alternative hypothesis is true is called the β risk.
Our critical value will be

A = µ0 + z (1− α) sx̄ = µ0 + z(0.99)
s√
n

and we will conclude that the null hypothesis is false and µ > µ0 if X̄ > A .

Alternatively, we can calculate the probability that X̄ would be as large
as it is or larger if µ = µ0 . This will equal one minus the cumulative
probability of observing a magnitude of z equal to or greater than

z∗ =
X̄ − µ0

sx̄
.

If this probability, which is called the P -Value, is less than α, we reject the
null hypothesis. The P -Value is the probability of observing a sample mean
as large as the one observed if µ is less than µ0 . Our decision rule simply
involves choosing a P -Value below which we reject the null hypothesis and
conclude that the alternative hypotheses is correct. In all cases, of course, we
use the t-distribution as the distribution of our sample mean—if the sample
size is large enough this distribution will approximate the normal distribution
and thereby be an appropriate substitute for it.
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Now suppose we have independent random samples of n1 and n2, both
reasonably large, from two populations and want to make inferences about
the difference in the respective population means µ2 − µ1 . We know that

E{Ȳ − X̄} = E{Ȳ } − E{X̄} = µ2 − µ1

and, since the samples are independent,

σ2{Ȳ − X̄} = σ2{Ȳ }+ σ2{X̄} .

We can thus use
s2{Ȳ − X̄} = s2{Ȳ }+ s2{X̄}

as an unbiased point estimator of σ2{Ȳ − X̄}. The standard error of the
difference between the sample means is thus

s{Ȳ − X̄} =

√
s21
n1

+
s22
n2

. (4)

Using this standard error, we can calculate confidence limits and P -Values
in the same way as we previously did. Again it is appropriate to use the
t-distribution although we need large samples to obtain reasonable results.

In some cases it may be reasonable to assume that both populations are
normally distributed with the same variance. In this case

σ2{Ȳ − X̄} =
σ2

n1

+
σ2

n2

= σ2
[
1

n1

+
1

n2

]
. (5)

To calculate confidence intervals we can then use the pooled or combined

estimator

s2c =
(n1 − 1)s21 + (n2 − 1)s22
(n1 − 1) + (n2 − 1)

=
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(6)

as an unbiased estimator of σ2. Then

s2{Ȳ − X̄} = s2c

[
1

n1

+
1

n2

]
(7)

is our unbiased estimator of σ2{Ȳ − X̄}.
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An interesting situation arises when we want to use samples to make
inferences about a population before and after an event—for example, a
shipping company might want to determine the weight loss of bananas as a
result of shipment. Instead of comparing the weights of a random sample
of banana bunches before shipment with a the weights of a random sample
after shipment, it would be better to compare the weights of the same sample
before and after shipment, analyzing these paired differences. This is the
case because the correlation between the before and after weights is positive
so that

σ2{Ȳ − X̄} = σ2{Ȳ }+ σ2{X̄} − 2σ{Ȳ X̄} < σ2{Ȳ }+ σ2{X̄}.

So the best procedure is to obtain

Di = Yi −Xi ,

where Yi is the weight of the ith bunch before shipment and Xi is the weight
of that same bunch after shipment, and then calculate

D̄ =

∑n
i=1 Di

n

and

s2D =
n∑

i=1

(Di − D̄)2

n− 1

from whence

sD̄ =

√
s2D
n
.

Confidence intervals and P -Values are then calculated in the same fashion
as we would do to make inferences about a single mean.

Suppose now that we need to make inferences about the magnitude of the
variance of a population. This requires an understanding of the chi-square
(χ2 ) distribution. It turns out that the sum of n squared standardized
independent normal random variates,

Z2
1 + Z2

2 + Z2
3 + . . .+ Z2

n,

is distributed as a chi-square distribution. Accordingly,

n∑
i=1

Z2
i =

n∑
i=1

(
Xi − µ

σ

)2

=
n∑

i=1

(Xi − µ)2

σ2
= χ2(n) (8)
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where χ2(n) is a random variable distributed according to the chi-square
distribution, with parameter n equal to the number of independent normal
variates summed and thereby to the degrees of freedom. When we replace µ
in the numerator with X̄ we obtain the χ2 statistic

n∑
i=1

Z2
i =

n∑
i=1

(Xi − X̄)2

σ2
= χ2(n− 1) (9)

where the degrees of freedom parameter is now n− 1.

Notice now that the standard expression for s2 ,

s2 =
n∑

i=1

(Xi − X̄)2

n− 1
,

can be rewritten as
n∑

i=1

(Xi − X̄)2 = (n− 1) s2.

and substituted into (9), to yield

(n− 1) s2

σ2
= χ2(n− 1). (10)

The sampling distribution for this statistic is skewed to the right, with the
skew being smaller the greater the degrees of freedom. Figure 3 shows a χ2

distribution with 12 degrees of freedom. The middle vertical line gives the
mean and the other two vertical lines the critical values for (1 − α) = .95 .
The mean of the χ2 distribution is the number of degrees of freedom, which
in the the example above equals n − 1. The variance of the χ2 distribution
is twice the number of degrees of freedom. The fractions of the probability
weight below given values of χ2 for the family of chi-square distributions can
be obtained from tables at the back of any standard textbook in statistics or
from the free statistical software noted earlier. Rearranging (10) to put σ2

on the right side
(n− 1) s2

χ2(n− 1)
= σ2

and then choosing the lower and upper values of the χ2 statistic that delin-
eate a (1− α) confidence interval—namely,

χ2(α/2;n− 1) and χ2(1− α/2;n− 1) ,
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Figure 3: A chi-square distribution with 12 degrees of freedom. The
middle vertical line represents the mean and probability weight equal
to .025 lies beyond each of the other two vertical lines.

we obtain upper and lower critical values equal to

(n− 1) s2

χ2(α/2;n− 1)
= U

and
(n− 1) s2

χ2(1− α/2;n− 1)
= L .

Furthermore, if we want to obtain the P -Value for the null-hypothesis that
σ2 < σ2

0 we simply calculate the cumulative probability associated with the
χ2 statistic

(n− 1) s2

σ2
0

.
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We are often interested in comparing the variability of two populations.
To do this we need a statistic based on the two values of both si and ni that
is distributed according to an analytically tractable distribution. It turns out
that the ratio of two chi-square variables, each divided by their respective
degrees of freedom, is distributed according to the F-distribution. That
is,

χ2(v1)/v1
χ2(v2)/v2

= F (v1, v2) (11)

is distributed according to the F -distribution with parameters v1 and v2,
which are the degrees of freedom of the respective chi-square distributions—
v1 is referred to as the degrees of freedom in the numerator and v2 is the
degrees of freedom in the denominator. The mean and variance of the F -
distribution are

E{F (v1, v2)} =
v2

(v2 − 2)

when v2 > 2, and

σ2{F (v1, v2)} =
2 v22 (v1 + v2 − 2)

v1 (v2 − 2)2 (v2 − 4)

when v2 > 4. The probability density function for an F -distribution with
40 degrees of freedom in the numerator and 60 degrees of freedom in the
denominator is plotted in Figure 4. The mean is 60/58 , which is close to
unity, and the two thick vertical lines give the critical values for (1−α) = .90.
The percentiles for this distribution can be found in the F -tables at the back
of any textbook in statistics or calculated using one of the freely available
statistical programs previously noted. The tables give only the percentiles
above 50 percent. To obtain the percentiles below 50 percent we must utilize
the fact that the lower tail for the F -value

χ2(v1)/v1
χ2(v2)/v2

= F (v1, v2)

is the same as the upper tail for the F -value

χ2(v2)/v2
χ2(v1)/v1

= F (v2, v1).
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Figure 4: An F-distribution with 40 degrees of freedom in the numer-
ator and 60 degrees of freedom in the denominator. The thick vertical
lines give the extremes beyond which 5 percent of the probability mass
lies, with 90 percent of the probability mass lying between these ex-
tremes.

This implies that

F (α/2; v1, v2) =
1

F (1− α/2; v2, v1)
.

Equation (10) can be written more generally as

v s2

σ2
= χ2(v) (12)

which implies that
s2

σ2
=

χ2(v)

v
.
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This expression can be substituted appropriately into the numerator and
denominator of equation (11) to yield

s21/σ
2
1

s22/σ
2
2

= F (v1, v2) = F (n1 − 1, n2 − 1). (13)

To establish confidence intervals in a particular case, we manipulate (13) to
yield

σ2
2

σ2
1

= F (n1 − 1, n2 − 1)
s22
s21

. (14)

To calculate a 90 percent confidence interval we obtain the values of the
statistic F (n1 − 1, n2 − 1) at α/2 = .05 and 1 − α/2 = .95 respectively
and plug them, in turn, into the equation above. Note that this confidence
interval is based on the assumption that the two populations of measurements
from which the sample variances are obtained are normally distributed or
approximately so.

Finally, it should be noted that in many applications involving F-statistics
beyond the comparison of the variances of two samples, the degrees of free-
dom in the numerator will be much lower relative to the degrees of freedom
in the denominator than in Figure 4. Accordingly, a better impression of the
range of distributions of F-statistics is provided in Figure 5 below. The F-
distribution is skewed to the right by a larger amount, the lower the degrees
of freedom in the numerator. Situations with low degrees of freedom in the
numerator are encountered in regression analysis, to which we now turn.
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Figure 5: Three F-distributions with 60 degrees of freedom in the de-
nominators and 2, 3 and 40 degrees of freedom in the respective nu-
merators.

Exercises

For these exercises, make your calculations on the answer worksheet for the
exercises in the first section, datanala.xls.

1. Keeping in mind that the two growth rates are positively correlated, what
is the P -Value of the null-hypothesis that the means of the month-over-month
growth rates of M1 and M2 are the same. [This involves some adaptation of
the technique presented above in this section.]

2. Impose an assumption (albeit incorrect) that the month-over-month growth
rates of M1 and M2 are statistically independent. Given the data, what is
the P -Value of the null-hypothesis that the variances of M1 and M2 are the
same.

Answers are calculated in the spreadsheet file hyptesta.xls which should
be consulted along with the material presented in this section above.

46



4. Ordinary Least Squares Regression Analysis6

We now turn to the analysis of relationships between variables, the area of
statistics of most relevance to economics. For example, it might be argued
that the aggregate quantity of money people choose to hold will be deter-
mined by the volume of transactions they need to make which will, in turn,
be directly related to the flow of output being produced in the economy.
This would suggest a possible linear relationship that can be expressed in
statistical terms as

Yi = β0 + β1Xi + ϵi (1)

where Yi is the real stock of money, which is the nominal stock measured
in currency units of some base period, in the ith period, Xi is the level
of output in the ith period and β0 and β1 are parameters. In addition,
an error ϵi has been added in each period to the deterministic relationship
Y = α+βX to allow for the possibilities that Yi and Xi are measured with
error, that the deterministic relationship between the two variables may not
be exactly linear, and that there may be additional variables affecting Y
that could not be measured well enough to include or are not known about
at all. Often a relationship may not be linear in the actual levels of X and
Y but may be linear in the logarithms of those variables—when the variables
are in logarithms, β represents the elasticity of Y with respect to X rather
than the slope of a straight-line relationship.

The standard method of statistically estimating the parameters in the
above relationship is to use ordinary least squares (OLS). This involves fitting
a linear relationship of the form

Yi = b0 + b1Xi + ei (2)

to the data in such a way as to minimize the sum of the squared deviations
of the actual level of Yi from the predicted level which we can call Ŷi . That
is, we choose the magnitudes of b0 and b1 (the estimates of β0 and β1 )
that minimize

n∑
i=1

e 2
i ,

where n is the number of observations and ei is the measured residual as
compared to the true one ϵi .

6An appropriate background for the material covered in this section can be obtained
by reading chapters 8 and 9 of Statistical Analysis for Economists: A Beginning.
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It turns out that under three conditions,

1. The errors are unbiased—that is, E(ϵi) = 0 , given the level of Xi (and
the ith-period levels of any other explanatory variables that might be
added to the regression),

2. The variance of ϵi equals a constant σ2 , again conditional on all ex-
planatory variables,

and

3. The errors ϵi and ϵj are independent of each other, which means that
E(ϵi, ϵj) = 0 for all i and j where i ̸= j ,

the OLS estimator of β1 has the lowest variance of all possible unbiased
estimators that one could use—this is the Gauss-Markov Theorem. There
is no requirement that the errors be normally distributed, although that
is often assumed. The second and third of these conditions specify that
errors are homoskedastic. Violations of these conditions where the vari-
ance of the errors is related to one or more of the X variables are called
heteroskedasticity. And violations where the ϵi and ϵj are related to
each other, which occurs often in time-series analysis, are called serial

correlation. The major effort involved in OLS-regression analysis is dealing
with violations of these conditions.

In the case where there is a single explanatory variable, estimation in-
volves minimization of

n∑
i=1

e 2
i =

n∑
i=1

(Yi − b0 − b1Xi)
2

which leads to the estimators

b1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
(3)

and

b0 = Ȳ − b1X̄ . (4)

As an example, the worksheet olssect.xls contains measures of U.S. real
M1 and U.S. real GDP from the first quarter of 1959 through the first quar-
ter of 2010, in columns C and K respectively. The means are calculated by
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placing the code average(C20:C224) in cell C231 and, using a more in-
direct method, by placing the code sum(K20:K224) in cell K228, then the
number of observations (= 205) in cell K229 and then the code K228/K229

in cell K231. The resulting means for U.S. real GDP and U.S. real M1
are 7279.37 and 1049.98 respectively. Next, the squared deviation of real
GDP from its mean for 1959Q1 is placed in cell O20 by entering the code
(C20-7279.37)2 in that cell and the code (K20 - 1049.98)2, delineating
the squared deviation of real M1 in 1959Q1 from its mean, is placed in cell
P20. And the product of the deviation of real GDP from its mean and the
deviation of real M1 from its mean is placed in cell Q20 by entering the code
(C20-7279.37)*(K20-1049.98). The code in the adjacent cells O20, P20
and Q20 is then copied to the corresponding cells immediately below all the
way down to row 224. Then the sums of these columns are placed in O228,
P228 and Q228 by simply copying the code in K28 to these three cells. You
should keep in mind that when you copy code from one cell to another, Gnu-
meric automatically changes that cell-numbers in that code to apply the same
operation to the current row or column as was applied to the original row or
column. If that automatic adjustment of row and column in the code is not
what you want, then such copying cannot be undertaken without producing
incorrect calculations.

Now the value of b1 is obtained by entering the code Q228/O228 in cell
O234. [Note that copying this cell to another place on the worksheet will
usually produce nonsense—for example, if you copied it to the next cell to
the right the code in that cell would turn out to be R228/P228 which would
yield a value of 0.0000.] The magnitude of b0 is then obtained by entering
the code K231-O234*C231 in cell O235. The resulting values for the two
regression coefficients are b1 = 0.0665654 and b0 = 563.97 .

The R2 is the fraction of the variability of Y explained by X . The sum
of squared deviations of U.S. real M1, which represents the variability that
we are trying to explain, has already been placed in cell P228. To obtain
the unexplained variability we need to obtain the regression residuals—that
is the difference between the actual and predicted levels of real M1. We put
the predicted, or fitted, level of M1 for 1959Q1 in cell R20 by entering the
code 563.97 + 0.0665654*C20. Then we place the residual for that quarter
in cell S20 by entering the code K20-R20, which subtracts the fitted from the
actual, in that cell. The fitted and residuals for the remaining quarters are
now obtained by copying the contents of these cells to the cells below down
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to row 224—the row entry codes in the cells are automatically adjusted by
Gnumeric. The squared residuals are then placed in column T by a coding
process that should by now be obvious to you, and the sum of squared errors
are then obtained by summing that column using the code sum(T20:T224)

placed in cell T228. The sum of squared residuals (errors) is usually denoted
as

SSE =
n∑

i=1

e 2
i

and the total sum of squares to be explained as

SST =
n∑

i=1

(Yi − Ȳ )2 .

The sum of squares explained by the regression, denoted as SSR, is thus equal
to

SSR = SST − SSE

and the fraction of the variations in U.S. real M1 explained by the regression
is therefore

R 2 =
SST − SSE

SST
=

∑n
i=1 (Yi − Ȳ )2 − ∑n

i=1 e
2
i∑n

i=1 e
2
i

. (5)

Calculating the R 2 and placing it in cell O236 simply involves entering the
code T229/P228 in that cell—the R 2 is 0.84.

Next we need to obtain the standard-errors of b0 and b1 . This first
involves obtaining the mean squared error (MSE), which is our estimate of
σ 2 .

σ 2 = MSE =
SSE

df
=

∑n
i=1 e 2

i

n− 2
(6)

where df is the degrees of freedom, which is equal to the number of obser-
vations minus the number of regressors including the constant. The mean
square error in the regression we are studying is obtained by placing the code
T228/(205-2) in cell T231. The standard-deviation of b1 is then

σ{b1} =

√
MSE∑n

i=1(Xi − X̄)2
(7)
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and that of b0 is

σ{b0} =

√√√√MSE

[
1

n
+

X̄ 2∑n
i=1(Xi − X̄)2

]
. (8)

In the equation for the standard-error of b0 , the term on the left in the
square brackets multiplied by MSE measures the effect of random vari-
ations in the level of the regression line and the term on the right mul-
tiplied by MSE measures the effect of random variations in the slope of
the regression line at the mean level of X . The standard-errors are cal-
culated by entering the code sqrt(T231/O228) in cell O237 and the code
sqrt(T31*((1/205)+(C2312/O228))) in cell O238. The calculated standard-
errors of b0 and b1 are, respectively, 16.215 and .002035. The t-statistics—
which equal the coefficients divided by their respective standard-errors—are
calculated by entering O234/O237 in cell P234 and O235/O238 in cell P235
[or, in the latter case, by simply copying the code from cell P234 to cell
P235]. These t-statistics are both larger than 30, which indicates P -Values
of virtually zero for the null hypotheses that the coefficients are zero. In the
case of b0 , this essentially rules out the possibility that the ratio of real M1
to real GDP is constant. Another measure of the statistical significance of
the regression is an F -test using the F -statistic

F =
SST − SSE/[(n− 1)− (n− 2)]

SSE/(n− 2)
=

SSR

MSE
(9)

where the degrees of freedom in the numerator [(n − 1) − (n − 2)] = 1 is
the excess of the degrees of freedom used in calculating the standard-error of
the dependent variable over the degrees of freedom used in calculating the
standard-error of the regression. This statistic is calculated by entering the
code T229/T231 in cell O239 and has a magnitude in excess of 1000, clearly
indicating statistical significance of the regression. This calculation of the F -
statistic was not really necessary here because when there is a single regressor
other than the constant the F -statistic is the square of the t-statistic for b1 ,
as can be seen by squaring the number in cell P234.

Finally, it is absolutely essential to determine whether the residuals are
homoskedastic. The crudest way of doing this is to plot them. In Gnu-
meric, this is done in the present case by high-lighting the cells S20 through
S224, then clicking on the insert a chart icon, selecting type line, then
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insert, and then placing the cursor at the point where you want the upper
left corner of the chart to be and holding down the left mouse-button while
dragging the the cursor to the point where you want the bottom right corner
of the chart to be. You can move the chart simply by placing the cursor
on it, holding the left mouse-button and dragging the cursor. And you can
change the chart’s size by holding cursor at the bottom-left corner so that
a double-sided arrow appears and then holding down the left mouse-button
while you move the cursor. In the present example, it is obvious from looking
at the chart that there is very substantial serial correlation in the residuals.

The pattern of the residuals suggests that it might be better to use the
logarithms of real M1 and real GDP instead of the raw values. This is
done in the Gnumeric spreadsheet using the same techniques that were used
previously—nothing further would gained by a detailed discussion of the
methods of doing this. The result is an elasticity of the response of real M1
to real GDP of around 0.44, with a slightly higher R2 and F -statistic. But
the plot of the residuals shows a quite similar pattern of serial correlation as
occurred in the case where logarithms were not used.

One important reason for the serially-correlated residuals might be the
fact that we have left out an important variable affecting the demand for
money. Since the interest rate represents the cost of holding money, it is es-
sential that it be included in the regression. To do this we use the regression-
running procedure provided by Gnumeric. The exact mathematical calcu-
lations involved will be worked through in the document entitled Statistical
Analysis Using XLispStat, R and Gretl: A Beginning. Here it is essential that
the explanatory variables be next to each other in the spreadsheet. We there-
fore copy the three variables, logarithm of real GDP, 3-month treasury-bill
interest rate and logarithm of real M1 to columns AC, AD and AE respectively.
When pasting the variables in the new places we use the Paste special

option and choose paste As Value on the Paste-type menu—this avoids
the re-orientation of any cells referred to in codes that were in the original
cell-entries. To run the regression, we click on Tools, then on Statistical

Analysis and then on Regression. When the regression window appears,
we click on the button that refers to X variables and enter AC20:AD142 in
the window that then appears. Then we click on the Y variable button

and enter AE20:AE142 in the window that then appears. Then we click on OK

and a new sheet containing the regression results will then be added to the
spreadsheet file. The results are in the sheet named Regression (2). I have
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taken the liberty of writing in the names of the variables in the appropriate
places. The R 2 is clearly higher as a result of adding the additional vari-
able, but we have to be careful because adding another variable reduces the
degrees of freedom—the R 2 could be increased to unity by adding variables
until the number of variables equaled the number of observations! Accord-
ingly, we must use an R 2 that takes account of this, an adjusted R 2 called
R̄ 2 which takes the form

R̄ 2 = 1− n− 1

n− k − 1

SSE

SST
(10)

where n is the number of observations and k is the number of regressors
including the constant term. The addition of a variable has a positive effect
on R̄ 2 in that it lowers the sum of squared errors, and a negative effect in
that it lowers the ratio of (n− 1) over (n− k − 1) . While R̄ 2 can thus go
in either direction, it will always be less than R 2 which, as can be seen from
equation (5), equals

R 2 = 1− SSE

SST
.

It turns out that the R̄ 2 in the regression with the interest rate added is
higher than the R 2 in the earlier regression, so the fit has clearly improved.
As you can see from the main spreadsheet, however, a plot of the residuals
indicates that serial correlation is clearly still present.

The sheet of the spreadsheet file named Regression (1) shows the re-
gression results when the actual levels rather than the logarithms of real
M1 and real GDP are used and the interest rate is included. The R̄ 2 and
F -statistic are clearly smaller in that case, indicating that the use of the
logarithms of real M1 and real GDP is the better approach.

Finally, the sheets Regression (3) and Regression (4) of the spread-
sheet file present the regression result when the real M2 monetary aggregate
is used as the dependent variable instead of real M1. In both cases the ad-
justed R 2 statistics are higher as are the levels of the F -statistics used in the
test for statistical significance of the regressions. While the P -Values for the
log of real M2 shown on the two sheets are clearly larger than 0.05, it must
be noted that Gnumeric makes two-tailed tests whereas we are interested
only in the lower-tail. Accordingly, the single-tailed P -Values are one-half
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the magnitudes of those shown and we can clearly reject the null-hypothesis
of a positive interest elasticity of demand for real M2 at the 5% level.

A problem that has arisen throughout the foregoing regression analysis
is the presence of serial correlation in the residuals. This indicates that the
Gauss-Markov conditions are not being met. While the issue of how to deal
with this problem are dealt with in documents dealing with the basics of
econometrics, the techniques for determining whether or not the observed
residuals are homoskedastic must be investigated now—clearly, situations
will arise where the heteroskedasticity and serial correlation in the residuals
may not be obvious from simply looking at a plot of those residuals.

A standard test for the presence of heteroskedasticity in regression residu-
als is the Breusch-Pagan test.7 To perform this test, we regress the squared
residuals of the regression we are testing on some or all of the independent
variables in that regression—this involves the OLS-estimation of

e2i = β0 + β1X1i + β2X2i + ....+ ui (11)

where the ei are the residuals from the regression whose residuals we are
testing, the X1i , X2i , etc., are some or all of the independent variables
used in that regression, β0 , β1 , β2 , etc., are the coefficients and ui is the
error term. From this regression, we obtain the statistic n × R 2 which is
distributed as chi-square with degrees of freedom, here denoted by k , equal to
the number of independent variables in the regression excluding the constant
term—that is,

nR 2 = χ 2(k) .

The null hypothesis that the residuals are homogeneous is rejected in favour
of the presence of heteroskedasticity if this chi-square statistic is large enough—
that is, if the P -Value is below some critical level. The test is performed in the
spreadsheet file on the regression of the log of real M1 on the 3-month treasury
bill rate and the log of real GDP. The squared residual from the regression
is calculated and presented in column AH of the spreadsheet and a regression
is calculated with the dependent variable AH20:AH224 and the independent
variables AC20:AD224. The results are shown in the Breusch-Pagan sheet in
the spreadsheet file. Not surprisingly, the chi-square statistic with 4 degrees

7T. S. Breusch and A. R. Pagan, ”A Simple Test for Heteroscedasticity and Random
Coefficient Variation,” Econometrica, Vol. 47, 1979, pages 1287-1294.
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of freedom is in excess of 14 and the P -Value for the test is less than .01,
leading us to reject the null-hypothesis of homoskedasticity of the residuals.

The reason for this heteroskedasticity is most certainly the presence of
serial correlation in those residuals. Traditionally, the Durbin-Watson statis-
tic has been used to test for serial correlation in the residuals. It turns out
that the test results for this statistic are difficult to establish precisely and, in
addition, it ignores the possible correlations between the current residual and
lags of that residual of order greater than one. The best test for serial cor-
relation seems to be one called a Lagrange Multiplier (LM) test.8 This test
involves regressing the regression residual on a series of lags of that residual
as well as the independent variables that were in the original regression—that
is, fitting the equation

et = β0 + β1et−1 + β2et−2 + ....+ et−p + γ1X1i + γ2X2i + ....+ vi . (12)

The number of lags of the residual, denoted above by p , that should included
in this regression is probably two or three for annual data, four or more for
quarterly data and perhaps as many as twelve in the case of monthly data
if the degrees of freedom are sufficient. An F-test is then performed to
determine the statistical significance of the group of lags of the residual. The
F-statistic is

F =
SSER − SSEU/p

SSEU/df
(13)

where SSER is the sum of squared residuals for the restricted regression
where the lagged residuals are dropped from (12), SSEU is the the sum of
squared residuals of the unrestricted regression where the lagged residuals
are included, and df is the degrees of freedom of the unrestricted regression.
The problem with this F-test is that it assumes that the residuals in question
are normally distributed (since F is the ratio of two Chi-square distributions
divided by their degrees of freedom), which is very unlikely to be the case.
Accordingly, the test is altered by multiplying the resulting F-statistic above
by the number of lagged errors, p , to obtain a statistic that has a Chi-square
distribution with degrees of freedom equal to p under the assumption that
the degrees of freedom in the denominator, df , are infinite. Thus, by simply

8See G. S. Maddala, Introduction to Econometrics, Macmillan Publishing Company,
1988, page 206, for a clear discussion of this test.
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using the statistic
pF = χ2(p)

which will have a lower P -Value than the original F-statistic, we make it
more likely that homoskedasticity will be rejected and thereby compensate
for the fact that the residuals are not likely to be normally distributed by
reducing any bias that would thereby result. The statistic is calculated for
the two regressions using the logarithms of real M1 and real M2 as the de-
pendent variables in the spreadsheet file olssect.xls. The lags of the two
residuals are calculated and placed in columns AI through AL and AN through
AV and the relevant X variables are copied as value to neighboring columns.
The restricted and unrestricted regressions are computed in the two cases,
now using rows 24 through 224 because four data observations are lost when
we compute the lagged residuals, and the results are placed in the sheets
Serial Corr. Test--LM1 and Serial Corr. Test--LM2. It is then easy to
calculate the relevant χ 2(4) statistics—not surprisingly, the null-hypothesis
of homoskedasticity can easily be rejected in favour of the alternative hy-
pothesis of serially correlated residuals.
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Exercise

The file olssectq.xls contains data on M1, M2, GDP, prices and govern-
ment bond yields for Japan for the period 1980Q1 through 2007Q4. Run
two-demand-for-money regressions for Japan, one for real M1 and one for
real M2, using natural logarithms of the real M1, real M2 and real GDP
variables. Plot the actual and fitted values and the residuals for the bet-
ter fitting of the two regressions. Then conduct a Breusch-Pagan test for
homoskedasticity and an LM-test for serial correlation in these residuals.
Explain how to run these tests and how to interpret the results.

An answer to this exercise can be found in the file olssecta.xls.
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