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This document presents some details on how to perform OLS-regression anal-
ysis and do other statistical work using three freely available computer pro-
grams. It is important in learning statistics and econometrics to program
things for yourself as a first step—this helps you grasp the details as to why
a statistical technique should be used and the details regarding the nature
of that technique. The best program for doing this is XLispStat, a very
sophisticated program developed by Luke Tierney, then of the University
of Minnesota, in which it is possible to do programming operations quite
easily. Another free program commonly used by really sophisticated statisti-
cians and econometricians is R, which is a clone of the commercial statistical
program S. This program is much more difficult to program things in than
XLispStat in that it is very difficult to figure out how to use, but it contains
many sophisticated functions programmed by a variety of statisticians and
econometricians that one can eventually figure out how to access. Finally,
the easiest program to use is Gretl, which is in my view the best program for
day-to-day work, although you may sometimes have to use R to accomplish
more sophisticated tasks that cannot be performed in Gretl, and sometimes
have to write functions in XLispStat to figure out how things really work.

My own experience has taught me that I need to use two programs to per-
form many tasks. This is because it is very easy to make typo’s and other
procedural mistakes—putting the wrong variable in a regression by acciden-
tally entering the incorrect name, deflating a variable second time having
forgotten one’s earlier action, and so forth—in any one program. But it is
very unlikely that one will make the same mechanical mistakes a second time
in another program. So it is always worthwhile to perform a few operations
again in a second program to make sure that one gets the same results.

Above all, working through this material should help you improve your under-
standing of how to do statistical and econometric analysis. The programming
in XLispStat starts on he next page. Go to page 45 for statistical analysis
using R and the directions on how to use Gretl begin on page 62.



1. XLispStat

Although the XLispStat is no longer being developed, a satisfactory version
for our purposes is easy to obtain. Simply download the self extracting zip-file
http://www.economics.utoronto.ca/jfloyd/stats/wxls32zp.exe, and
place it in a directory you create for it called xlispstat in the Program

Files directory on your MS-Windows computer. Then click on wxls32zp.exe
and all the program files will be extracted into that directory. Finally, right-
click on the wxls32.exe icon in the directory and drag it to your desktop to
create a desk-top icon.

Everything you need to know to use XLispStat will be developed as we
move along. To learn more you can obtain a manuscript I wrote called Statis-
tics and Econometrics Using XlispStat, University of Toronto, 2007, by down-
loading http://www.economics.utoronto.ca/jfloyd/stats/stemlisp.pdf.
And to really get to the bottom of this beautifully sophisticated piece of soft-
ware you would need to obtain Luke Tierney’s book.1

XLispStat is basically a list processing program. A list is a collec-
tion of numbers or of words surrounded by quotation marks, or a collection
of lists with each list denoted by a word giving its name not surrounded by
quotation marks. These lists can be converted to vectors or collected together
in matrices. Variables are denoted by words not surrounded by quotation
marks.

We load the program by clicking on the XLispStat icon on our desktop
and thereby obtain a Listener Window containing the following

XLISP-PLUS version 3.03

Portions Copyright (c) 1988, by David Betz.

Modified by Thomas Almy and others.

XLISP-STAT Release 3.52.8 (Beta).

Copyright (c) 1989-1998, by Luke Tierney.

>

1Luke Tierney, Lisp-Stat: An Object-Oriented Environment for Statistical Computing
and Dynamic Graphics, Wiley Series in Probability and Mathematical Statistics, John
Wiley & Sons, 1990.
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We then type in commands at the > prompt. Or alternatively, we can put
the code we want XLispStat to execute in a text file having the suffix .lsp

and then load that file by clicking on File and then Load and then accessing
the file from the directory in which it resides.

Our first task is to load the data to be analyzed. The normal place to
put newly obtained data is in an Excel file which will usually include data
descriptions generated by the source from which the data are downloaded.
Then we copy the relevant series to a separate .xls file, taking nothing
above the line giving the series names and including the left-most column
giving the dates or observation names. In the case at hand, this file is named
statcomp.xls. Since the data here are quarterly time series, we change
the dates column by naming the first-quarter of 1959 in cell A2 as the
number 1959.00 and then change the rest of the column by entering the code
A2+(1/4) in the next cell below and copying the code in that cell to the
rest of the cells in the column. This procedure sets the date in each quarter
equal to the fraction of the year that has passed when the quarter begins.
In the case of monthly data we add 1/12 to the previous cell and in the
case of annual data we use simply increase by one the four-digit number
representing the previous year. Finally, we place the character ; at the
beginning of the word used to denote the date-column and thereby to the
first row of the spreadsheet—it turns out that XLispStat will not read any
line starting with that character. We will want R to read that line of variable
names, but not XLispStat. The Gretl program, which can read the Excel file
directly, will ask you to tell it the beginning date, and the R program requires
additional code to attach dates to the data series—the datelist column will
become superfluous in these cases and can then be deleted. For reading by
XLispStat and R we save the material in our .xls file from Gnumeric as
a configurable text file with spaces separating the columns. In the present
case, this file is named statcomp.tab.

To load the data into XLispStat we use the code in the file setqdata.lsp.
You should keep a copy of this file because it can be easily modified to load
in a different data set. The code in the file is as follows:

3



; XLISPSTAT BATCH FILE FOR SETTING UP QUARTERLY LISP DATA SET

;

(def datalists (read-data-columns "statcomp.tab" 7))

(def datesq59 (select datalists 0))

(def usgdpsa (select datalists 1))

(def us3mtbr (select datalists 2))

(def usipdsa (select datalists 3))

(def uscpisa (select datalists 4))

(def usm1sa (select datalists 5))

(def usm2sa (select datalists 6))

;

(def NOTES (QUOTE "All series but the three-month treasury bill rate

(us3mtbr) are seasonally adjusted. The CPI and the implicit GDP

deflator (usipdsa) are indexes with base 2005 = 100. All series

were obtained from the St. Louis Federal Reserve Bank data base

FRED and run from 1959Q1 to 2010Q1."))

;

(savevar ’(datesq59 usgdpsa us3mtbr usipdsa uscpisa usm1sa usm2sa

NOTES) "stcmpdata")

;

(exit)

All functions in XLispStat are applied by enclosing in brackets ( ) the
function name and then a series of words denoting the arguments the function
needs to do its job. The first function used above is the function def which
defines the list of lists named datalists, denoted as its first argument, as
one generated by its second argument, the function read-data-columns,
which takes as its first argument the name of the file containing our data,
"statcomp.tab", and as its second argument the number of columns of data
in that file. The names of files to to be read in or saved are always surrounded
by quotation marks. The next seven lines of code use def to give names to
the individual lists in datalists which are selected one-by-one using the
select function which takes datalists as its first argument and, as its
second argument, the number of the list in datalists to be assigned the
chosen name. After the columns are extracted and named, the function def

is used again to define an object (actually, a list with one element) called
NOTES which is a paragraph of words that is surrounded by quotation marks
processed by the function QUOTE which tells XLispStat to simply quote what
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follows and not treat it as code to be executed. We create the NOTES object
to contain readily accessible information about details regarding the data
that one might forget. The next function used is the savevar function which
takes as its first argument the list of objects to be saved—this list is preceded
by a ’ character which again tells XLispStat to simply quote what follows
and not to interpret it as a function. All the variables including the NOTES

object are saved. The second, and last, argument required by the savevar

function is a word in quotation marks denoting the name of the file in which
the data is to be saved. The program automatically adds the suffix .lsp to
this name. The final function is the exit function which takes no arguments
and simply ends the current XLispStat session.

When when writing Lisp code, it is useful to use a text editor like the one
I use, called the Crimson Editor, which automatically highlights the bracket
combinations that surround the functions we use—this helps us make sure
we use the correct inclusion of brackets when we embed functions in other
functions.

To subsequently work with the data above, all we need to do is include in
our code the line (load "stcmpdata.lsp") and the variables in the file will
be loaded into the workspace. To recall what these variables are, we simply
use the function variables, which takes no arguments, by entering the code

(variables)

and the XLispStat Listener, which might be better referred to as the
Interpreter, will produce a list of the variables in the workspace. In re-
sponse to these actions, the Listener will produce the following output.
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XLISP-PLUS version 3.03

Portions Copyright (c) 1988, by David Betz.

Modified by Thomas Almy and others.

XLISP-STAT Release 3.52.8 (Beta).

Copyright (c) 1989-1998, by Luke Tierney.

>

; loading E:\DSLMHTML\STATCOMP\stcmpdata.lsp

(variables)

(DATESQ59 NOTES US3MTBR USCPISA USGDPSA USIPDSA USM1SA USM2SA)

>

The objects and variables can be printed to the screen by simply typing their
names at the prompt. It is useful to print out the NOTES object because it
reminds us of the characteristics of the data.

> NOTES

"All series but the three-month treasury bill rate

(us3mtbr) are seasonally adjusted. The CPI and the implicit gdp

deflator (usipdsa) are indexes with base 2005 = 100. All series

were obtained from the St. Louis Federal Reserve Bank data base

FRED and run from 1959Q1 to 2010Q1."

>

Of course, if you choose, you need not bother making a notes object and
simply use as your reference a printout of descriptions in the spreadsheet file
in which you originally set up your data, or from descriptors you write in
the data file produced by the Gretl program, into which you will likely also
want to load these data.

We now need to be able to look at our data without printing out entire
lists representing individual variables. Suppose that we want to print the first
five elements of a list on the screen. We could enter code using the select

function, feeding it the series name and then a list of numbers as its second
argument. For example, to print out the first five quarters’ observations of
the variable US3MTBR, we would enter the command
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> (select us3mtbr (list 0 1 2 3 4))

(2.7733333333 3 3.54 4.23 3.8733333333)

where the second line represents the answer given by the Listener. For
frequent use, this process can be made easier by simply creating the following
function.

(defun first-five (x)

"Args: (x)

Prints the first five elements of list x on screen."

(select x (list 0 1 2 3 4))

) ; end of function

This involves using the defun function and feeding it four arguments. First
we tell it the name we want to give to the function, first-five. Then we
give it a list of its arguments (one in this case) surrounded by ( ) brackets.
Then we write a description of the function enclosed in quotation marks.
Finally we insert our line of code. The last line gives the right bracket of the
function to match the initial bracket placed before the word defun. Writing
a comment line ; end of function after that bracket reminds us to make
sure the closing bracket is in place. Recall that the Listener does not bother
to read any material to the right of the character ;. To use this function, we
simply enter a command like

(first-five US3MTBR)

where the argument passed to the function is the series that we want to
observe the first five elements of.

Using the same type of commands, we can create two additional functions
called last-five and chosen-five to read the last five elements of a list or
any five elements starting with some chosen initial element. Consider these
two functions in turn.

(defun last-five (x)

"Args: (x)

Prints the last five elements of list x on screen."

(select x (list (- (length x) 5)(- (length x) 4)(- (length x) 3)

(- (length x) 2)(- (length x) 1)))

) ; end of function
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Here we use the fact that the last observation of the list equals the length
of the list, which we obtain using the length function (which takes as its
only argument the list in question), minus one observation. The observation
number assigned by XLispStat to the last observation is one less than the
length of the series because the first element of all lists is called element
zero, so that the last element of, say, a 10-element list is be element number
9. We then embed the length function in five separate applications of the
subtract (- ) function which takes as the first of its two arguments the
number we want to subtract from and as its second argument the number to
subtract from that first number.2 And these five subtract functions are then
embedded in a list function, taking the place of the numbers 1 2 3 4 5

that were used in our first-five function.

(defun chosen-five (x y)

"Args: (x y)

Prints the five elements of list x on screen starting with element y."

(if (> y (- (length x) 5))(error "Less than five elements remaining")

(select x (list y (+ y 1)(+ y 2)(+ y 3)(+ y 4)))

) ; end of if

) ; end of function

Our chosen-five function, unlike the other two, takes two arguments and
uses the if and error functions because we want to send ourselves an error
message if we mistakenly ask for the five elements of list x starting at element
y when that latter element is within the last five elements of the list. The
error function takes a single argument consisting of a statement in quotation
marks while the if function takes three arguments. Its first argument is an
inequality statement stating that y is greater than the the length of the list
minus five elements. If that inequality holds, the error function is instructed
to print the error message to the screen. If the inequality does not hold, the
the select function, which is the third argument to the if function, is
used and the Listener prints out the element y and the four elements that
follow. In this case, the list function embedded in the select function has
embedded in it four applications of the add (+ ) function which sequentially
adds the numbers 1, 2, 3 and 4 to the number selected as the first of the

2Actually, additional numerical arguments can be included in the subtract function.
The function then produces a number obtained by sequentially subtracting each number
from what remains after the number to the left of it was subtracted.
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chosen five.3 In interpreting the results, we must keep in mind that counting
begins with 0 so asking for the five observations starting with the thirtieth
observation will give us the numbers for observations twenty-nine through
thirty-four. In this respect, it might be useful to incorporate the zeroth

observation into our thinking.

Another task we need to be able to perform in looking at time-series data
is to access the value of particular series at specific dates of interest. To do
this we can construct a date-to-observation date2obs function that will tell
us the observation associated with any chosen date in a date list. Reasonable
coding for this function is the following, where x is the date list and y is a
particular date.

(defun date2obs (x y)

"Args: (x y)

Finds the observation number (first observation zero) associated

with a given date y in the specified date list x."

(if (< y (select x 0))

(error "Date passed to date2obs function is not in the date list")

) ; end of if

(if (> y (select x (- (length x) 1)))

(error "Date passed to date2obs function is not in the date list")

) ; end of if

(def obsnum 0)

(dotimes (i (length x)) (if (< (select x i)(- y .001))

(def obsnum (+ obsnum 1))

) ; end of if

) ; end of dotimes

obsnum

) ; end of function

The function begins with two applications of the if and error functions to
tell us if we are selecting a date that is not in the date list. Note that, unlike
the previous case, only two arguments are passed to the if function. When
the third argument is missing, the function does nothing if the first argu-
ment passed to the function—that is, the equality or inequality statement—
is false. Then comes the main part of the function which initially sets an

3Additional numbers can also be included in the plus function, in which case it returns
the sum of all its arguments.
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integer obsnum representing the observation number we are looking for as
equal to zero. Then we use the dotimes function to go through the date
list from observation zero to the final observation—that is, to let i alterna-
tively take values from zero to the length of the date list. At each value of
i from 0 to length x we increase obsnum by one unit if the date-element
of the date list x is less than y by an amount exceeding a rounding-error of
.001 in the specification of the date in the date list. Note again that when
the inequality fails to hold, the if function gives no command. Once the
date-elements become greater than (- y .001) the magnitude of obsnum is
no longer increased. Then the function prints out the magnitude of obsnum
and leaves this number in the work space for us to use later. Notice that
the dotimes function takes two arguments: first, the number-of-times spec-
ification (i (length x)) which says that i is to take values sequentially
from 0 to (length x), and second, the if command that specifies on each
element of the date list from 0 onward whether the number obsnum should
be increased by one unit. We can give the resulting value of obsnum left in
memory a different name using the def function as shown below.

To find the level of USCPISA in the last quarter of 2004, we enter the first
line of code below

(def num1 (date2obs DATESQ59 2004.75))

NUM1

> num1

183

> obsnum

183

>

and then type the object names num1 and obsnum to show that the latter
object is in the workspace. Now let’s have a look at the values of USCPISA
for the five quarters starting at the last quarter of 2004.

(chosen-five USCPISA num1)

(98.0181287448149 98.5131697990987 99.17891466518149 100.681108209146

101.619979174118)

>

You can see that the last four of the above observations—those of the year
2005—are in the neighborhood of 100. Indeed, since the base-period of the
series is 2005, the average of these four numbers should be 100.
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It is a matter of interest whether the two measures of the price level, USIPDSA
and USCPISA are equivalent measurements. One way to investigate this is to
look at a plot of the two series. This is done using the plot-lines function
along with the def function as follows:

(def plot1 (plot-lines (- DATESQ59 1900) USCPISA

:title "Consumer Price Index and Implicit GDP Deflator"))

(send plot1 :add-lines (- DATESQ59 1900) USIPDSA)

(send plot1 :add-points (- DATESQ59 1900) USIPDSA)

(send plot1 :adjust-to-data)

The plot-lines function takes two arguments, the variable on the horizontal
axis, (- DATESQ59 1900) which is the date list, scaled so that XLispStat

will not print it specified in scientific notation, and the variable USCPISA on
the vertical axis, and it gives us an opportunity to send the resulting plot-
object a message telling it to add a title. The def function is to give the
object produced by the plot-lines function the name plot1. This object
is a special object that contains a lot of information about the plot. We can
access that information and give the plot-object instructions by sending it
messages. We send three such messages above—asking it to add-lines and
telling it the variables for the horizontal and vertical axes, (- DATESQ59

1900) and USIPDSA then asking it to add points (which will lie on top of the
lines) for the latter variable and finally to :adjust-to-data, which instructs
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it to adjust the vertical axis to ensure that no series ranges outside the plot.
We put points on top of one of the two series plotted as lines to enable
us to distinguish between those series when looking at the graph. Keep in
mind also that we have to put an adjusted version of the date list on the
horizontal axis, using the subtract function, to ensure that the scale on the
horizontal axis will not be expressed in scientific notation. Better plots for
incorporation into documents for publication can be produced using Gretl,
and even better ones can be produced with R. If you want to print out an
XLispStat plot for subsequent viewing, simply draw a square around it by
holding down both mouse buttons and dragging the cursor, then copy it by
clicking on Edit and then Copy and then paste it into a WordPad document
for subsequent printing. Alternatively, it can be pasted into the Windows
Paint program and resized and properly titled—which is what I did here.
It turns out that the title which appears in the plot in XLispStat is on the
frame of the window in which the plot appears and therefore cannot be copied
in the above fashion.

The two price level series move closely together on the plot with the CPI
series increasing a bit faster than the GDP deflator. To more closely exam-
ine the relationship between them it is useful to obtain the year-over-year
percentage changes of the two series. To do this, we copy each series under
a new name, removing the first four observations in the process, and then
obtain one-year-lagged versions of both series by again copying the original
series to additional new names while removing the last four observations.
The two new versions of each series will have the same number of elements
with each element in one version having as its counter-part in the other ver-
sion the four-quarter-earlier value of that same series. It is useful to define
the new current-period versions of two series as CPIL0 and IPDL0 and the
lagged versions as CPIL4 and IPDL4. We then make a new date list called
DATESQ60 by removing the first-four observations of DATESQ59.
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To perform these tasks, it is useful to create two new functions which we
call remove-first and remove-last that take as their two arguments the
number of observations to remove and the series from which to remove them.
The first of these functions uses the function copy-list to copy the original
series list y to a new name temp. Then it applies to that new list the function
rest which retains all but the first element of a series, doing so x times
using the dotimes function. Our function leaves the new series temp in the
workspace, but it is necessary to use the def function to give that series a
unique name when running the remove-first function.

(defun remove-first (x y)

"Args: (x y)

Removes the first x observations from series y."

(def temp (copy-list y))

(dotimes (i x)(def temp (rest temp)))

temp

) ; end of function

The remove-last function also copies the original series to the new name
temp. It then utilizes the function remove which takes as its second argument
a list of numbers and as its first argument the number in that list to remove.
The list of numbers is obtained by using the iseq function which creates a
list of integers starting with 0 and ending with the number given as its only
argument.

(defun remove-last (x y)

"Args: (x y)

Removes the last x observations from series y."

(def temp (copy-list y))

(dotimes (i x)

(def temp (select temp (remove (- (length temp) 1)

(iseq (length temp)))))

) ; end of dotimes

temp

) ; end of function
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The main line of the function above uses the function select to grab all
elements of temp but the last, which it does by taking as its second argument
the sequence of element numbers of temp with the last element removed. This
sequence of element-numbers
(remove (- (length temp) 1)(iseq (length temp)))

is created using the iseq function which generates a sequence of integers
running from 0 to the length of temp minus one (keep in mind that the first
element is element-number 0). Removal of the last element is thus removal
of element-number (- (length temp) 1). This process is repeated x times
using the dotimes function, leaving a final series temp equivalent to the initial
series minus the last x elements.

We can now use these functions to create the year-over-year percentage
growth rates of the CPI and GDP deflators. First, we lag the CPI and
IPD variables and make a new date list

> (def CPIL0 (remove-first 4 USCPISA))

CPIL0

> (def CPIL4 (remove-last 4 USCPISA))

CPIL4

> (def IPDL0 (remove-first 4 USIPDSA))

IPDL0

> (def IPDL4 (remove-last 4 USIPDSA))

IPDL4

> (def DATESQ60 (remove-first 4 DATESQ59))

DATESQ60

>

Then we calculate the year-over-year difference in the series by subtracting
the lagged series from the unlagged ones.

> (def YYDCPI (- CPIL0 CPIL4))

> YYDCPI

> (def YYDIPD (- IPDL0 IPDL4))

> YYDIPD

>

Next we divide the year-over-year differences by their respected lagged values
to get the year-over-year rate of growth—here we use the divide function
which is represented by the backslash character (/ ).
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> (def YYGCPI (/ YYDCPI CPIL4))

> YYGCPI

> (def YYGIPD (/ YYDIPD IPDL4))

> YYGIPD

>

Finally, we use the multiply function (* ) to multiply the above two series
by 100 to put the growth rates in percentage terms.

> (def YYGCPI (* 100 YYGCPI))

YYGCPI

> (def YYGIPD (* 100 YYGIPD))

YYGIPD

>

Notice that the functions + - * / can be used to add, subtract, multiply or
divide the elements of the first list given as an argument by the corresponding
elements of the second list given, implying that the two lists must have the
same length. And these functions can also be used to add, subtract, multiply
or divide all elements of the list given as the first argument by a single number
given as the second argument. In the cases of addition and multiplication it
does not matter whether the single number or the list is the first argument—
in the cases of subtraction, the second argument is subtracted from the first
and in the case of division the elements or element of the first argument are
divided by the element or elements of the second argument. An additional
function not shown is the (̂ ) function which takes the first argument, which
can be either a number or a list, to the power given by the second argument
which must be a number.

Now we can plot our two percentage growth rate series using the similar
code to that used in the first plot—we simply change the plot name and the
variables involved.

> (def plot2 (plot-lines (- DATESQ60 1900) YYGCPI

:title "Year-Over-Year Percentage Growth of CPI and IPD"))

> (send plot2 :add-lines (- DATESQ60 1900) YYGIPD)

> (send plot2 :add-points (- DATESQ60 1900) YYGIPD)

> (send plot2 :adjust-to-data)
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I modified this plot after copying it into the Windows Paint program, cleaning
up the presentation of the dates and adding labels for the lines as well as
adding a title.

It turns out that the two growth rates vary together within the range of 0
to 15 percent, showing little overall trend, with the CPI series being more
variable than the implicit GDP deflator series. This is also evident from a
boxplot of the two series which we can produce using the code

> (def plot3 (boxplot (list YYGCPI YYGIPD)

:title "CPI (Left) and IPD Growth"))

which produces the plot on the next page. Notice how we send the boxplot
function a list containing the two growth series using the list function. And
note also that we can put brackets around any word in a group surrounded
by quotation marks without thereby defining a function. I added the labels
across the top of the plot using the Windows Paint program.
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A more thorough analysis requires that we examine the characteristics of the
two series in detail using the functions mean, median, standard deviation,
max and min, which each take a series list as their only argument, and the
quantile function which takes as its two arguments the list in question and
the quantile to be calculated (which ranges between 0 and 1). The best way
to do this is to make our own function, called stats, using the following
code.
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(defun stats (x n)

"Args: (x n)

Calculates and prints to screen summary statistics for the list x

named n."

(terpri)

(princ n)(terpri)

(terpri)

(princ "Mean = ")(princ (mean x))(terpri)

(princ "Standard-deviation = ")(princ (standard-deviation x))(terpri)

(terpri)

(princ "Minimum = ")(princ (min x))(terpri)

(princ "First Quartile = ")(princ (quantile x .25))(terpri)

(princ "Median = ")(princ (median x))(terpri)

(princ "Third Quartile = ")(princ (quantile x .75))(terpri)

(princ "Maximum = ")(princ (max x))(terpri)

(terpri)

) ; end of function

Here we also use the princ and the terpri functions. The princ function
prints to the screen whatever is given to it as a single argument, and the
terpri function produces, in effect, a hard-return by moving to the next
line.

In order to calculate the correlation between the two series, we need to make
a correlation function which requires as a prelude a covariance function.
These use coding that has been previously used and explained.

(defun covariance (x y)

"Args: (x y)

Computes the covariance of the elements in two lists."

(/ (sum(* (- x (mean x))(- y (mean y))))

(- (length x) 1))

) ; end of function

The sum function sums the elements in the list obtained by multiplying the
deviations of x and y from their means. This sum is then divided by the
number of elements minus one in whichever of the two lists we choose, both
lists necessarily being of the same length. Our correlation function has
to divide the covariance of the two lists by the product of their standard-
deviations.
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(defun correlation (x y)

"Args: (x y)

Computes the coefficient of correlation between the elements

of two lists."

(/ ( covariance x y )(* (standard-deviation x)

(standard-deviation y)))

) ; end of function

Now let us use these new functions.

> (stats YYGCPI "CPI Growth")

CPI Growth

Mean = 4.104037396541741

Standard-deviation = 2.9098164819346595

Minimum = -1.595183386704363

First Quartile = 2.253521126760548

Median = 3.2997568599502767

Third Quartile = 5.16019279835407

Maximum = 14.42577030812341

> (stats YYGIPD "IPD Growth")

IPD Growth

Mean = 3.6539651250012435

Standard-deviation = 2.366958780965972

Minimum = 0.4868220729139052

First Quartile = 1.99169753051885

Median = 2.992597758721814

Third Quartile = 4.714921148402751

Maximum = 11.085089773614358

> (princ "Correlation Coefficient of YYGCPI and YYGIPD = ")

(princ (correlation YYGCPI YYGIPD))(terpri)

Correlation Coefficient of YYGCPI and YYGIPD = 0.9425269296362888
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We are now ready to put together a function what will compute OLS regres-
sions. The basic regression model can be described in matrix terms as



Y1

Y2

Y3
...
...
...
...
Yn


=



1 X11 X21 X31 · · · · · · XK1

1 X12 X22 X32 · · · · · · XK2

1 X13 X23 X33 · · · · · · XK3
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 X1n X2n X3n · · · · · · XKn





β0

β1

β2
...
...
βK


+



ϵ1
ϵ2
ϵ3
...
...
...
...
ϵn



which can be written more simply as

Y = XB + E (1)

where Y is an n by 1 column vector, X is an n by K+1 matrix (i.e., a matrix
with n rows and K + 1 columns), B is a K + 1 by 1 column vector and E is
an n by 1 column vector. The first column of the matrix X is a column of
elements all equal to unity, representing the constant term in the regression.

Our problem is now make an estimate (1) of the form

Y = Xb+ e , (2)

choosing the b vector that will minimize the sum of the squared regression
residuals

e′e =
n∑

i=1

e2i .

It turns out that the formula for b is 4

b̂ = (X′X)−1X′Y . (3)

To do this in XLispStat we need to first construct the Y vector and the X
matrix.

4The theoretical basis for this formula is worked out in Chapter 9 of my document
Statistics for Economists: A Beginning, pages 235-236.
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We proceed to estimate the demand function for U.S. M1. To begin, we have
to get our data in the proper form. First, we must obtain real GDP and real
M1 series from the nominal series USGDPSA and USM1SA by dividing both of
them by the implicit GDP deflator USIPDSA (which from the graphs above
seemed more stable than the CPI series) and then multiplying the results by
100. Then we take the natural logarithms of both series.

> (def USRGDP (* 100 (/ USGDPSA USIPDSA)))

> (def USRM1 (* 100 (/ USM1SA USIPDSA)))

> (def LUSRGDP (log USRGDP))

> (def LUSRM1 (log USRM1))

Next we construct a constant term using the repeat function which forms a
list consisting of the number of repetitions, given by its second argument, of
the number given by its first argument. The list of ones must be as long as
the list representing dependent variable.

> (def CONST (repeat 1 (length USRM1)))

We can now construct theY vector and theXmatrix using the bind-columns
function, which binds together a specified sequence of lists into a matrix. This
matrix is a column vector if only one list is fed to the function.

> (def Yvec (bind-columns LUSRM1))

(def Xmat (bind-columns CONST US3MTBR LUSRGDP))

To calculate the b vector using equation (3) we enter the code, using the
matrix functions matmult, transpose and inverse,

> (def XPX (matmult (transpose Xmat) Xmat)) ; X prime times X

> (def XPXINV (inverse XPX))

> (def XPY (matmult (transpose Xmat) Yvec)) ; X prime times Y

> (def coefs (matmult XPXINV XPY)) ; coefficient vector

The fitted values,

Ŷ = bX (4)

are then calculated using the code

> (def fitted (matmult Xmat coefs))
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and the regression residuals

ê = Y − Ŷ , (5)

are calculated using the rather obvious code line

> (def resids (- Yvec fitted))

The degrees of freedom, which is equal to the number of observations minus
the number of parameters estimated, can be extracted from Xmat using the
array-dimensions function, which takes as its sole argument the matrix
being examined and produces a list containing two numbers—first, (num-
ber 0) the number of rows and second, (number 1) the number of columns.
Subtraction of the number of columns from the number of rows gives us the
degrees of freedom.

> (def df (- (select (array-dimensions Xmat) 0)

(select (array-dimensions Xmat) 1)))

The sum of squared residuals e′e can then be obtained along with the mean
squared error s2 .

s 2 =
e′e

df

> (def SSE (matmult (transpose resids) resids))

> (def MSE (/ SSE df))

Next, we need the total sum of squares and the sum of squares explained
by the regression, which requires that we first calculate the deviations of Y
from its mean.

> (def devYvec (- Yvec (mean Yvec)))

> (def SST (matmult (transpose devYvec) devYvec))

> (def SSR (- SST SSE))

Calculation of the R 2 is now a simple matter and, after obtaining the number
of observations, the degrees-of-freedom adjusted R 2, called R̄ 2 can also be
calculated.5

5Using equation (9.7) in Statistics for Economists: A Beginning on page 228.
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> (def RSQ (aref (/ SSR SST) 0 0))

> (def nobs (select (array-dimensions Xmat) 0))

> (def RBSQ (aref (- 1 (/ (* (- nobs 1) SSE) (* df SST))) 0 0 ))

where, you must note, we use the function aref to select the element asso-
ciated with a particular row and column number of a matrix. The matrices
SSR and SST both have a single element—that is, one row and one column.

The variance-covariance matrix of the coefficients is

E{(b̂− B)(b̂− B)′} = σ2(X′X)−1

and is estimated by replacing σ2 on the right side of the equality by s2 ,
which equals MSE.

> (def vcvcoefs (* (aref MSE 0 0) XPXINV))

It turns out that MSE is a 1 × 1 matrix which cannot be multiplied by the
matrix XPXINV because it is not of the same dimension. A matrix can be
multiplied by an ordinary number, however, so we have to extract that num-
ber from the 1×1 matrix using the function aref. The vector of variances of
the individual coefficients can then be extracted from the variance-covariance
matrix of the coefficients using the diagonal function, which takes as its sole
argument the matrix we want it to return the diagonal of, and the standard-
errors of the coefficients are simply the square roots of the elements of this
vector. And the vector of t-ratios is the coefficients vector divided by the
vector containing their standard-errors.

> (def varcoefs (diagonal vcvcoefs))

> (def stdcoefs (sqrt varcoefs))

> (def trats (/ coefs stdcoefs))

To obtain the P -Values for the coefficients, we use the cumulative density
function for the t-statistic, t-cdf, which takes as the first of its two arguments
the value of the t-statistic and then as its second argument the number of
degrees of freedom. To get a little area at either tail of the distribution, we
have to subtract the cumulative density from unity.

> (def Pvals (- 1 (t-cdf (abs trats) df)))
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Here the abs function takes the absolute values of the elements of the t-
ratios vector—what matters is the absolute magnitude of each t-statistic
independent of its sign. Finally, we need to calculate the F -statistic. The
numerator is the sum of squares explained by the regression divided by the
number of coefficients estimated and the denominator is the mean-squared-
error.

> (def numF (/ SSR (select (array-dimensions Xmat) 1)))

> (def F-Stat (aref (/ numF MSE) 0 0 ))

All the above code is embedded in the run-regession function runOLS below.
This function leaves many variables in the workspace without printing things
out—this is because our next job will be to embed it in another function that
will perform that task.

(defun runOLS (y x)

"Args: (x y)

Runs an OLS regression of the column vector y on the matrix x

and does not print out the results."

(def Yvec y)

(def Xmat x)

(def XPX (matmult (transpose Xmat) Xmat))

(def XPXINV (inverse XPX))

(def XPY (matmult (transpose Xmat) Yvec))

(def coefs (matmult XPXINV XPY))

(def fitted (matmult Xmat coefs))

(def resids (- Yvec fitted))

(def df (- (select (array-dimensions Xmat) 0)

(select (array-dimensions Xmat) 1)))

(def SSE (matmult (transpose resids) resids))

(def MSE (/ SSE df))

(def devYvec (- Yvec (mean Yvec)))

(def nobs (select (array-dimensions Xmat) 0))

(def SST (matmult (transpose devYvec) devYvec))

(def SSR (- SST SSE))

(def RSQ (aref (/ SSR SST) 0 0))

(def RBSQ (aref (- 1 (/ (* (- nobs 1) SSE) (* df SST))) 0 0 ))

(def vcvcoefs (* (aref MSE 0 0) XPXINV))

(def varcoefs (diagonal vcvcoefs))
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(def stdcoefs (sqrt varcoefs))

(def trats (/ coefs stdcoefs))

(def Pvals (- 1 (t-cdf (abs trats) df)))

(def numF (/ SSR (select (array-dimensions Xmat) 1)))

(def F-Stat (aref (/ numF MSE) 0 0 ))

) ; end of function

We now construct the following function to print out the regression results
and save the coefficients, the number of observations, the fitted values and
the regression residuals under new names that will not be overwritten when
the runOLS function is run again. Since we may sometimes want to not
include a constant term in a regression, we specify three arguments in our
new OLSreg function, the third being the integer 1 if a constant is to be
included and the integer 0 if a constant is not to be included. It follows that
the X matrix passed to the function must not contain a constant, thereby
leaving it to OLSreg to create one if instructed to do so by the unitary third
argument.

(defun OLSreg (y x z)

"Args: (y x)

Runs an OLS regression of the column vector y on the matrix x,

incorporating a constant term if z is equal to unity, and

prints the results."

(def conlist (repeat 1 (select (array-dimensions y) 0)))

(if (= z 1)(def x (bind-columns conlist x))

) ;end if

(runOLS y x)

(terpri)

(princ "ORDINARY LEAST SQUARES REGRESSION")(terpri)(terpri)

(princ "Dependent Variable: ")(princ regressand)(terpri)(terpri)

(format t "~20a ~12a ~12a ~12a ~12a" " "

"Coefficient" "Std. Error" "T-stat" "P-Val")

(terpri)(terpri)

(dotimes (i (- nobs df))

(format t "~17a ~12,3f ~11,3f ~10,3f ~11,3f" (select regressors i)

(aref coefs i 0)(select stdcoefs i)(aref trats i 0)

(aref Pvals i 0))

(terpri)

) ; end dotimes i
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(terpri)(terpri)

(princ "Number of Observations: ")(princ NOBS)(terpri)

(princ "Degrees of Freedom: ")(princ df)(terpri)

(princ "R-Squared: ")(princ RSQ)(terpri)

(princ "Adjusted R-Squared: ")(princ RBSQ)(terpri)

(princ "Sum of Squared Errors: ")(princ (aref SSE 0 0))(terpri)

(princ "F-Statistic: ")(princ F-Stat)(terpri)

(princ " P-Value ")(princ (- 1 (f-cdf F-Stat (- nobs df) df)))

(terpri)(terpri)

(def OLSresids (repeat 0 nobs))

(def OLSfitted (repeat 0 nobs))

(def OLScoefs (repeat 0 (- nobs df)))

(dotimes (i (- nobs df))

(setf (select OLScoefs i)(aref coefs i 0))

); end dotimes

(dotimes (i nobs)

(setf (select OLSresids i)(aref resids i 0))

(setf (select OLSfitted i)(aref fitted i 0))

)

(def RXmat Xmat)

(def OLSnobs nobs)

) ; end of function

Before we call this function, we must write two lists to reside in the workspace.
The first, regressand is a text specification of the name of the dependent
variable, and the second regressors is a list specifying the names of the
independent variables.

> (def regressand "Log of Real M1")

> (def regressors (list "Constant" "T-Bill Rate" "Log of Real GDP"))

If so instructed by its third argument, the first thing the OLSreg function
above does is to add a constant term as the new left-most column of the
matrix fed to it as its second argument x. Then it calls the runOLS function,
feeding it the y-vector y and that matrix. Then it uses the ‘hard-return’
terpri function and the princ function to print details about the regression.
A new printing function called format is then used.

The format function takes a complex set of arguments. The initial argument
is the letter t which specifies that the material is to be printed to the screen
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rather than to a file. The next argument is a set of width-specified columns,
surrounded by a single set of quotation marks. In the first use of the function,
this code is

"~20a ~12a ~12a ~12a ~12a"

which specifies five columns, the first being 20 characters wide and the other
four being 12 characters wide, with the trailing a character specifying that
the entries in all columns should be text surrounded by quotation marks.
This is followed by one additional argument for each column, representing
text that is to be inserted. For the first column, nothing is to be inserted,
so the specification is " ", which means print nothing. For the other four
columns, column headings are specified indicating the particular statistics
that will be printed below.

" " "Coefficient" "Std. Error" "T-stat" "P-Val"

Then, following a couple of ‘hard-returns’, a dotimes loop is constructed to
print the rows of statistics that follow. The format function is used again in
each loop.

(format t "~17a ~12,3f ~11,3f ~10,3f ~11,3f" (select regressors i)

(aref coefs i 0)(select stdcoefs i)(aref trats i 0)

(aref Pvals i 0))

After specifying that the printing is to be to the screen rather than to file,
the entry for the first column is specified as text, like above, but in this case
with a width of only 17 characters. The other columns are 12, 11, 10, and
11 characters in width, respectively, with characters ,3f specifying that real
numbers must be printed, with three-decimal places. Then the contents of
the five columns for that row are specified as members of the regressors

vector, the vector of coefficient estimates, the list of coefficient standard
errors, the t-ratios vector and the P -Values vector. This line is repeated for
the constant, if one is being included, and each of the remaining independent
variables.

Then a series of lines is printed to write to screen the various statistics of
interest. The new piece of code here is the F-cdf function which takes as
its three arguments the F -statistic, the number of degrees of freedom in the
numerator and the number of degrees of freedom in the denominator. The
cumulative density is subtracted from unity to capture the appropriate area
in the right tail of the distribution.
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Finally, the code fragments

(def OLSresids (repeat 0 nobs))

(def OLSfitted (repeat 0 nobs))

(def OLScoefs (repeat 0 (- nobs df)))

(dotimes (i (- nobs df))

(setf (select OLScoefs i)(aref coefs i 0))

); end dotimes

(dotimes (i nobs)

(setf (select OLSresids i)(aref resids i 0))

(setf (select OLSfitted i)(aref fitted i 0))

)

(def RXmat Xmat)

(def OLSnobs nobs)

copy the (nobs - df) elements of the coefficients vector and the nobs ele-
ments of the resids and fitted vectors to lists entitled OLScoefs, OLSresids
and OLSfitted and save the matrix Xmat under the new name RXmat. And
the last line of code saves the nobs list to a new name, OLSnobs. These
new names ensure that these objects will not be overwritten by calling the
runOLS function again to conduct Breusch-Pagan heteroskedasticity tests and
LM-based tests that will enable us to determine whether the residuals are se-
rially correlated and by making the bootstrapped estimates of the regression
coefficients discussed later below.
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The XLispStat output below is produced by just five lines of code.

> (def regressand "Log of Real M1")

> (def regressors (list "Constant" "T-Bill Rate" "Log of Real GDP"))

> (OLSreg (bind-columns LUSRM1)(bind-columns US3MTBY LUSRGDP) 1)

> (BRPG)

> (LMSC 4)

where the Breusch-Pagan test function BRPG and the LM-test for serial corre-
lation in the residuals LMSC remain to be discussed, a task to which we next
turn.

ORDINARY LEAST SQUARES REGRESSION

Dependent Variable: Log of Real M1

Coefficient Std. Error T-stat P-Val

Constant 3.348 0.093 35.983 0.000

T-Bill Rate -0.019 0.002 -11.281 0.000

Log of Real GDP 0.419 0.010 40.479 0.000

Number of Observations: 205

Degrees of Freedom: 202

R-Squared: 0.9064457850619718

Adjusted R-Squared: 0.9055195057061498

Sum of Squared Errors: 0.9473691950417262

F-Statistic: 978.5879166631256

P-Value 0.0

Breusch-Pagan ChiSquare Statistic: = 14.352166650006135

P-Value = 7.646568973018741E-4

LM-Test for Serial Correlation of Residuals:

Number of Lags = 4

Chisquare Statistic = 3249.5072912374058

P-Value = 0.0
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The Breusch-Pagan test for heterskedasticity of the residuals involves re-
gressing the squared residuals on some or all of the independent variables
in the regression whose residuals are being tested. The number of observa-
tions in this Breusch-Pagan regression times its R2 is distributed under the
null-hypothesis of no heteroskedasticity as Chi-square with degrees of free-
dom equal to the number of independent variables included other than the
constant term. The function developed here for doing this, which takes no ar-
guments, consists of the following code, which includes in the Breusch-Pagan
regression all the independent variables in the original regression including a
constant term.

(defun BRPG ( )

"Args: ( )

Performs a Breusch-Pagan test on the residuals

from the previous regression whose results were

printed out."

(def residsq (^ OLSresids 2))

(runOLS (bind-columns residsq) Xmat)

(def bpchisq (* (length residsq) RSQ))

(def bppv (- 1 (chisq-cdf bpchisq (- (select (array-dimensions Xmat) 1) 1))))

(princ "Breusch-Pagan ChiSquare Statistic: = ")(princ bpchisq)(terpri)

(princ " P-Value = ")(princ bppv)(terpri)

) ; end of function

The first line of code sets up the variable residsq, which is the square of
the residuals list OLSresids created in the last lines of code in the OLSreg

function. Then the runOLS function is called, with the independent variables
being the same as in the call to OLSreg. The task is then to multiply the
resulting R 2 statistic by the number of observations (which equals the length
of residsq) to produce a Chi-Square statistic with degrees of freedom equal
to the number of regressors apart from the constant. The P -Value of that
statistic is then calculated using the chisq-cdf function which takes as its
two arguments the Chi-Square statistic and the degrees of freedom, which
equal the number of columns of the matrix Xmat minus one. The results are
then printed in the usual fashion.

The LM-based test for the presence of serial correlation in the residuals in-
volves regressing those residuals on the independent variables in the original
regression, including a constant, with one or more lags of those residuals
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added. In the approach adopted here, an F -statistic measuring the contri-
bution of those lagged residuals to the regression is then calculated and mul-
tiplied by the number of lagged residuals included to obtain a statistic that
has a Chi-square distribution with degrees of freedom equal to the number
of included lagged residuals. As a prelude to setting up our LMSC function,
we need to make two new functions that our subsequently constructed LMSC

function will need to use. First, we need to be able to create the number of
lags of the residuals variable to be specified when running our LMSC function.
To do this we write the following makelags function.

(defun makelags (x y)

"Args: (x y)

Constructs x lagged values of the list y starting with an adjusted

level of the list y called lag 0, leaving in the workspace a list

of lags called lagslist containing lags 0 through lag x and a matrix

called lagmat containing lags 1 through x."

(def nlags x)

(def lagnum (iseq 0 nlags))

(def nextlag (remove-first nlags y))

(def lagslist (list nextlag))

(dotimes (i nlags)

(def nextlag (remove-first (- nlags (+ i 1)) y))

(def nextlag (remove-last (+ i 1) nextlag))

(def nextlag (list nextlag))

(def lagslist (append lagslist nextlag))

) ; end of dotimes

(def lagmat (bind-columns (select lagslist 1)))

(dotimes (i (- nlags 1))

(def lagmat (bind-columns lagmat (select lagslist (+ i 2))))

) ; end of dotimes

) ; end of function

First we use the iseq function to make a list of lag numbers having a length
equal to the number of lags. Then we make a list of lags called lagslist,
the first element of which is the new current level of the series being lagged,
obtained by removing a number of elements from the beginning equal to the
number of lags, x. Then we construct a dotimes loop to create the remaining
lagged series by removing elements from the beginning and the end of the
original series—a lag of (x - 1) requires that (x - 1) elements be removed
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from the beginning of the series and one element be removed from the end,
and a lag of (x - 2) requires that (x - 2) elements be removed from the
beginning of the original series and two elements be removed from the end,
and so forth. After creating each lag of the original series, we add it to
lagslist. When we are finished, that list contains (x + 1) series having
lags from 0 to x respectively. Finally, we bind all lagged series with lags
greater than zero into columns of a matrix called lagmat.

The next function we need is one with which to remove a selected number
of rows from the begining of a matrix. This is necessary because in our
function LMSC we will be using our original matrix, saved in that original
regression under the name of RXmat, along with the matrix of lagged residuals
in a regression that uses the residuals as the dependent variable. Since the
lagged residuals series and the dependent variable are x elements shorter than
RXmat we must remove the first x rows of that matrix. The function to do
this is our remove-first-rows function below.

(defun remove-first-rows (n x)

"Args: (n x)

Removes the first n rows of the matrix x."

(def xdim (array-dimensions x))

(def oldnumr (select xdim 0))

(def newnumr (- oldnumr n))

(def oldnumc (select xdim 1))

(def newnumc oldnumc)

(def newdimlist (list newnumr newnumc))

(def newx (make-array newdimlist :initial-element 0))

(dotimes (i newnumr)

(dotimes (j newnumc)

(setf (aref newx i j)(aref x (+ i n) j))

); end dotimes j

); end dotimes i

newx

) ; end of function

In this function we obtain the number of rows and columns of the original
matrix using the array-dimensions function and then, using the def func-
tion, set the number of rows of the new matrix equal to the original number
minus the number of rows to be removed, specified in the first argument in
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the function we are creating. We then set the number of columns in the
new matrix equal to the number columns in the original one. Next, we make
a new matrix newx using the make array function, which takes as its first
argument a list we constructed called newdimlist in the previous line of
code, giving the row and column dimensions of the new matrix, and as its
second argument a code segment :initial-element 0 where the character
0 specifies that all elements of the new matrix be set equal to zero (we could
have used another number). Then we construct two dotimes loops, one em-
bedded in the other, to change the elements of this new matrix to equal the
appropriate elements of the old matrix—the ith row of the new matrix is the
(i + n)th row of the original matrix.

We are now ready to set up our LMSC function to test for serial correlation in
the residuals OLSresids. It takes as its sole argument the number of lags.

(defun LMSC (x)

"Args: (x)

Performs a LM-based test, using x lags, for serial correlation

in residuals of the previous regression whose results were

printed out."

(def numlags x)

(makelags numlags OLSresids)

(def LMXmat (remove-first-rows numlags RXmat))

(runOLS (bind-columns (select lagslist 0)) LMXmat)

(def SSER (aref SSE 0 0))

(runOLS (bind-columns (select lagslist 0))(bind-columns lagmat LMXmat))

(def SSEU (aref SSE 0 0))

(def numF (/ (- SSER SSEU) numlags))

(def denF (/ SSEU df))

(def LMF-stat (/ numF denF))

(def LMChisq (* numlags LMF-stat))

(def LMpv (- 1 (chisq-cdf LMchisq numlags)))

(terpri)

(princ "LM-Test for Serial Correlation of Residuals:")(terpri)

(princ " Number of Lags = ")(princ numlags)(terpri)

(princ " Chisquare Statistic = ")(princ LMChisq)(terpri)

(princ " P-Value = ")(princ LMpv)(terpri)

(terpri)

) ; end of function
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This function, which follows the specification in G.S. Maddala’s textbook,6

uses our makelags function to make the specified number of lags of OLSresids
and our remove-first-rows function to appropriately adjust the RXmat ma-
trix to remove a number of rows equal to the number of lags. Then two
regressions with the previous regression residuals as the dependent variable
are run using the runOLS function. The first is a restricted regression that
excludes the lagged residuals and the sum of squared residuals are saved as
SEER, the restricted sum of squares. The second regression is the unrestricted
regression that includes the lagged residuals and here the resulting sum of
squared residuals is saved as SEEU, the unrestricted sum of squares. The F-
statistic to test whether the restriction leads to a significant increase in the
sum of squared residuals is then constructed as the ratio of (SSER - SSEU)
divided by the number of restrictions (which equals the number of lagged
residuals) over the unrestricted sum of squares SSEU divided by the degrees
of freedom of the unrestricted regression. This F-statistic is then multiplied
by the number of restrictions, which equals the number of lags, to obtain
a Chi-Square statistic with degrees of freedom equal to the number of re-
strictions, and the P -Value is calculated using the chisq-cdf function in
the usual fashion. Finally these results are printed out using the princ and
terpri functions.

To perform the Breusch-Pagan and LM test we write the following two
commands after running the regression whose residuals we are testing.

> (BRPG)

> (LMSC 4)

where we specify that the serial correlation test is to test for up to four lags of
the residuals. Normally, we would run only the LMSC test in the case of time-
series regressions and only the BRPG test when the data are cross-sectional.

It is obvious that there is very substantial serial correlation in the re-
gression residuals. Methods for dealing with this are discussed in detail in
the Lesson entitled Econometrics Basics: Dealing with Serial Correlation in
Regression Residuals. A rather simple and seemingly unsophisticated ap-
proach to handling this problem is to make Bootstrapped estimates of the
regression coefficients. This procedure assumes that the residuals from our
regression are a sample from a large population of error terms, and takes

6G.S. Maddala, Introduction to Econometrics, MacMillan, 1988, page 206.
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repeated samples of those residuals, where each sample has the same number
of elements as in the original residuals and is thus simply an inter-temporally
reorganized collection of original residuals. It adds these resampled residuals
to the fitted values of the original regression, rerunning the regression using
each of these reconstructed values of the dependent variable. The samples of
the residuals are taken with replacement, so the new residuals added to the
fitted values are the same as the original ones except that the distribution of
those residuals through time is different for each sample, with some of the
original residuals possibly appearing more than once and some others there-
fore appearing not at all. New coefficients are obtained for each sample of
the original residuals, and the quantiles of these new coefficients (that is, the
magnitudes below which specific fractions of the total number of estimates
of the coefficients lie) are calculated. This enables us to get a sense of the
likely probability distributions of those individual coefficients—for example,
if 20% of the bootstrap estimates of a particular coefficient are negative, the
fact that the P -Value for rejection of the null hypothesis of negativity was
.01 in the original regression should interpreted with great caution.

Accordingly, we construct a bootstrap function called OLSBS, where the last
two letters of the function might be viewed with humour by those econome-
tricians who don’t like bootstrapping. Despite such objections, the technique
is one which every budding econometrician should understand and know how
to use. The function presented below takes two arguments. The first is the
number of bootstrap runs, which I usually set at 1000. The second is a list
of the coefficient names, where each name is surrounded by quotation marks
with the distance between the left and right quotation marks being 12 spaces
and with the names entered next to the right-most quotation mark. The call
to the function in the case of the regression we have been analyzing is

(OLSBS 1000 (list " Constant" " TBill-Rate" " Log-RGDP"))

and the code in the function is as follows.
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(defun OLSBS (x y)

"Args: (x)

Bootstraps the coefficient values of the previous printed regression

and writes the percentiles to the screen. The first argument is

the number of bootstrap runs and the second is a list of words

defining the names of the variables, each being at the right side

of a 12 space gap between the quotation marks defining the word."

(def runnums x)

(def numspicked (sample (iseq 0 (- OLSnobs 1)) OLSnobs t))

(def bootedres (repeat 0 OLSnobs))

(dotimes (i OLSnobs)

(setf (select bootedres i)(select OLSresids (select numspicked i)))

) ; end dotimes i

(def newyval (bind-columns (+ OLSfitted bootedres)))

(def coefmat (bind-rows OLScoefs))

;

(dotimes (i runnums)

(runOLS newyval RXmat)

(def coefmat (bind-rows coefmat (transpose coefs)))

(def numspicked (sample (iseq 0 (- nobs 1)) nobs t))

(dotimes (i (- nobs 1))

(setf (select bootedres i)(select OLSresids (select numspicked i)))

) ; end dotimes i

(def newyval (bind-columns (+ OLSfitted bootedres)))

) ; end dotimes i (runnums)

(def coefmat (remove-first-rows 1 coefmat))

;

(def coeflist (column-list coefmat))

(def qlist01 (quantile (select coeflist 0) .01))

(def qlist025 (quantile (select coeflist 0) .025))

(def qlist05 (quantile (select coeflist 0) .05))

(def qlist1 (quantile (select coeflist 0) .1))

(def qlist25 (quantile (select coeflist 0) .25))

(def medlist (quantile (select coeflist 0) .50))

(def qlist75 (quantile (select coeflist 0) .75))

(def qlist9 (quantile (select coeflist 0) .9))

(def qlist95 (quantile (select coeflist 0) .95))

(def qlist975 (quantile (select coeflist 0) .975))
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(def qlist99 (quantile (select coeflist 0) .975))

(def meanlist (mean (select coeflist 0)))

;

(dotimes (i (- (length coeflist) 1))

(def qlist01 (combine qlist01 (quantile

(select coeflist (+ i 1)) .01)))

(def qlist025 (combine qlist025 (quantile

(select coeflist (+ i 1)) .025)))

(def qlist05 (combine qlist05 (quantile

(select coeflist (+ i 1)) .05)))

(def qlist1 (combine qlist1 (quantile

(select coeflist (+ i 1)) .1)))

(def qlist25 (combine qlist25 (quantile

(select coeflist (+ i 1)) .25)))

(def medlist (combine medlist (quantile

(select coeflist (+ i 1)) .50)))

(def qlist75 (combine qlist75 (quantile

(select coeflist (+ i 1)) .75)))

(def qlist9 (combine qlist9 (quantile

(select coeflist (+ i 1)) .9)))

(def qlist95 (combine qlist95 (quantile

(select coeflist (+ i 1)) .95)))

(def qlist975 (combine qlist975 (quantile

(select coeflist (+ i 1)) .975)))

(def qlist99 (combine qlist99 (quantile

(select coeflist (+ i 1)) .99)))

(def meanlist (combine meanlist (mean

(select coeflist (+ i 1)))))

) ; end dotimes

;

(def nummat (bind-rows qlist01 qlist025 qlist05 qlist1 qlist25

qlist75 qlist9 qlist95 qlist975 qlist99 medlist meanlist))

;

(def qnames (list ".01" ".025" ".05" ".10" ".25" ".75" ".9" ".95"

".975" ".99" "median" "mean"))

(def widemat (bind-columns qnames nummat))

(def fullmat (bind-rows (combine "Quantiles" y) widemat))

(terpri)

37



(princ "BOOTSTRAPPED COEFFICIENTS")(terpri)(terpri)

(def rcnum (array-dimensions fullmat))(dotimes (j (select rcnum 0))

(dotimes (i (select rcnum 1))(format t "~12,4f" (aref fullmat j i)))

(terpri))

) ; end of function

The code uses the variables OLSnobs, OLSresids, OLSfitted and OLScoefs

which are the special names attached to the corresponding variables at the
end of the OLSreg function—this was done because variables with the original
names are written over by the LMSC function. Most of the coding in the above
function is standard, but there are a number of segments of this code that
need to be explained. The lines of code

(def numspicked (sample (iseq 0 (- OLSnobs 1)) OLSnobs t))

(def bootedres (repeat 0 OLSnobs))

(dotimes (i OLSnobs)

(setf (select bootedres i)(select OLSresids (select numspicked i)))

) ; end dotimes i

(def newyval (bind-columns (+ OLSfitted bootedres)))

(def coefmat (bind-rows OLScoefs))

first create a list called numspicked using the sample function which produces
an ordering of a list of integers starting at 0 of length equal to OLSnobs.
This ordering of the elements of OLSresids is then copied to a new series
of residuals called bootedres. These residuals are then added to OLSfitted

to obtain a new version of the dependent variable of the original regression.
Also a row vector of the original coefficients is constructed and given the
name coefmat.

Then a dotimes loop is constructed in which a second dotimes loop is em-
bedded.

(dotimes (i runnums)

(runOLS newyval RXmat)

(def coefmat (bind-rows coefmat (transpose coefs)))

(def numspicked (sample (iseq 0 (- nobs 1)) nobs t))

(dotimes (i (- nobs 1))

(setf (select bootedres i)(select OLSresids (select numspicked i)))

) ; end dotimes i

(def newyval (bind-columns (+ OLSfitted bootedres)))

) ; end dotimes i (runnums)
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The first of these does runnums = 1000 loops, running a regression using the
previously constructed new dependent variable vector, adding its coefficient
vector to the bottom of coefmat, then creating a new numspicked list and
a corresponding new bootedres list which it adds to the OLSfitted list to
create a new dependent variable vector which it uses in the next regression,
repeating this process 1000 times. At this point, all the bootstrapped co-
efficients are in the matrix coefmat from which, after the first row giving
the coefficients of the original regression is removed, a list of three lists of
bootstrapped values for the three coefficients, called coeflist is extracted
using the column-list function. Then the quantiles for the first of the three
lists in coeflists, representing the constant term, are extracted one by one
and placed in separate lists called qlist01, qlist025, qlist05, etc. A list
meanlist is also created in this process. At this point, all these lists have
only one element. Then a dotimes loop is created which adds the relevant
quantiles and means for the remaining coefficient lists in coeflist. It does
this by using the function combine which takes as its first argument a partic-
ular quantile list and as its second argument the new element to be added to
that list. These quantile lists are then bound together as rows in a numerical
matrix, to which a column of quantile names is then bound. The list of vari-
able names given in the second argument of the function is then bound to
the word “Quantiles” and added as a first row to the matrix of bootstrapped
results. Finally, this matrix is written, along with a heading, to the screen
using embedded dotimes i and dotimes j loops in the code segment

(princ "BOOTSTRAPPED COEFFICIENTS")(terpri)(terpri)

(def rcnum (array-dimensions fullmat))

(dotimes (j (select rcnum 0))

(dotimes (i (select rcnum 1))(format t "~12,4f" (aref fullmat j i))

) ; end dotimes i

(terpri)

) ; end dotimes j

In the present case, the output of the function is as follows.
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BOOTSTRAPPED COEFFICIENTS

Quantiles Constant TBill-Rate Log-RGDP

.01 3.1248 -0.0232 0.3954

.025 3.1656 -0.0226 0.3998

.05 3.1988 -0.0222 0.4036

.10 3.2262 -0.0216 0.4073

.25 3.2793 -0.0206 0.4130

.75 3.4070 -0.0183 0.4270

.9 3.4619 -0.0172 0.4330

.95 3.4957 -0.0166 0.4363

.975 3.5290 -0.0162 0.4398

.99 3.5290 -0.0154 0.4438

median 3.3431 -0.0194 0.4199

mean 3.3439 -0.0194 0.4199

Comparing these quantiles and the mean with the coefficients of the origi-
nal regression indicates that the mean and median values of each coefficient
are almost equal and differ very little from the coefficients of the original
regression. And the ranges between the .01 quantiles and the .99 quantiles
are not of a major magnitude, giving us no reason at this point to question
the original regression results although that might happen upon subsequent
further analysis.

All the statistical analysis of the demand for M1 regression in this section is
programmed in theXLispStat batch file xlspsect.lsp and the output from
running this batch file is in the file xlspsect.lou.

Our Function File

All the functions we created above are collected together in the file ourfuncs.lsp
which we now load into XLispStat every time we do statistical work using
that program.

It is useful to add a few additional functions to our ourfuncs.lsp file so
that we can do basic day-to-day work with XLispStat. You can examine
the code for these functions by accessing and reading the ourfuncs.lsp file
with your text editor. Except where noted below, the code in these added
functions uses XLispStat functions that were used above.
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The first function added is one which enables us to construct a date list
for series read in using the read-data-columns function when the text file
being read by that function does not have an appropriate date list as its first
column. Our new function, called setdates, takes three arguments—first, a
series for which the date list is being constructed, then the date of the first
observation in that series, and finally the frequency of the series for which the
date list is being created. Additional functions added enable us to remove
n last rows, n first columns, n last columns (where n is a positive integer),
or a selected row or column from a matrix and to write any selected row or
column of a matrix as a list. These functions are

(remove-last-rows n x) —removes the last n rows of matrix x

(remove-first-columns n x) —removes the first n columns of matrix x

(remove-last-columns n x) —removes the last n columns of matrix x

(remove-selected-row n x) —removes row n of matrix x

(remove-selected-column n x) —removes column n of matrix x

(copy-matrix-row (n x) —copies row n of matrix x to a list
(copy-matrix-column (n x) —copies column n of matrix x to a list

Keep in mind that numbering starts at 0 and that the result produced by
these functions must be assigned a name using the function def.

XLispStat has a function print-matrix which takes as its only argument the
matrix to be printed and prints that matrix to the screen. Often the numbers
will be in scientific notation and the result looks rather messy. Accordingly, it
is useful for us to construct a write-matrix function to print a more orderly
presentation of the matrix to the screen. The code for our function, which
uses functions already used frequently above, is as follows.

(defun write-matrix (x)

"Args: (x)

Prints a matrix on screen with format 12,3f."

(def rcnum (array-dimensions x))(dotimes (j (select rcnum 0))

(dotimes (i (select rcnum 1))(format t " 12,3f" (aref x j i))

) ;end dotimes

(terpri))

) ; end of function

The matrix prints all the numbers to three decimal places in columns which
are twelve characters wide.
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Also it is useful to be able to write a matrix to a file that can be loaded into
another program to plot the variables it contains in a better way than can be
done with XLispStat. This function, which we call write-matrix-to-file
involves only a slight addition to and modification of the one above.

(defun write-matrix-to-file (x y)

"Args: (x y)

Writes the matrix x to the file y."

(setf f (open y :direction :output))

(def rcnum (array-dimensions x))(dotimes (j (select rcnum 0))

(dotimes (i (select rcnum 1))(format f " 12,3f" (aref x j i)))

(terpri f))

(close f)

) ; end of function

Notice the addition of the line
(setf f (open y :direction :output))

which sets up the second argument we give to the function as a file f into
which output is to be printed. Then notice that the format function, two
lines below, takes as its first argument the file denoted by f instead of the
screen denoted by t.

Of course, as you might expect, XLispStat has a built-in OLS regression
function of its own. The function is called regression-model, which takes
as its first argument the matrix of independent variables (excluding the con-
stant term) or a list of those same variables and as its second argument a list
representing the dependent variable. Like the plot functions discussed previ-
ously, the regression-model function produces an object which we can send
instructions to and ask questions. If we do not want to include a constant
we add a key-word :intercept nil as the third argument to the function.
If we do not want to print the results, we add the key-word :print nil as
an argument.

To do our demand for U.S. M1 regression using the regression-model func-
tion we can enter either of the following two lines of code

(def M1REG (regression-model (list US3MTBR LUSRGDP) LUSRM1))

or
(def M1REG (regression-model (bind-columns US3MTBR LUSRGDP) LUSRM1))
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which will produce the following output.

Least Squares Estimates:

Constant 3.34776 (9.303677E-2)

Variable 0 -1.941507E-2 (1.720993E-3)

Variable 1 0.419451 (1.036210E-2)

R Squared: 0.906446

Sigma hat: 6.848318E-2

Number of cases: 205

Degrees of freedom: 202

M1REG}

We can send the regression object M1REG a request for help as follows:

> (send M1REG :help)

loading in help file information - this will take a minute ...done

REGRESSION-MODEL-PROTO

Normal Linear Regression Model

Help is available on the following:

:ADD-METHOD :ADD-SLOT :BASIS :CASE-LABELS :COEF-ESTIMATES

:COEF-STANDARD-ERRORS :COMPUTE :COOKS-DISTANCES :DELETE-DOCUMENTATION

:DELETE-METHOD :DELETE-SLOT :DF :DISPLAY :DOC-TOPICS :DOCUMENTATION

:EXTERNALLY-STUDENTIZED-RESIDUALS :FIT-VALUES :GET-METHOD :HAS-METHOD

:HAS-SLOT :HELP :INCLUDED :INTERCEPT :INTERNAL-DOC :ISNEW :LEVERAGES

:METHOD-SELECTORS :NEW :NUM-CASES :NUM-COEFS :NUM-INCLUDED :OWN-METHODS

:OWN-SLOTS :PARENTS :PLOT-BAYES-RESIDUALS :PLOT-RESIDUALS :PRECEDENCE-LIST

:PREDICTOR-NAMES :PRINT :PROTO R-SQUARED :RAW-RESIDUALS :REPARENT

:RESIDUAL-SUM-OF-SQUARES :RESIDUALS :RESPONSE-NAME :RETYPE :SAVE :SHOW

:SIGMA-HAT :SLOT-NAMES :SLOT-VALUE :STUDENTIZED-RESIDUALS :SUM-OF-SQUARES

:SWEEP-MATRIX :TOTAL-SUM-OF-SQUARES :WEIGHTS :X :X-MATRIX :XTXINV :Y

NIL
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We can ask our regression object M1REG for information on many of the topics
listed above. For example:

> (send M1REG :COEF-ESTIMATES)

(3.347763684601947 -0.019415067242538744 0.41945052715781467)

> (send M1REG :COEF-STANDARD-ERRORS)

(0.09303677467363122 0.0017209927145427299 0.010362096755322637)

>

Or, more appropriately, we can obtain and assign names to a whole range of
elements generated by the regression.

> (def OLSresids (send M1REG :RESIDUALS))

> (def OLSfitted (send M1REG :FIT-VALUES))

> (def OLScoefs (send M1REG :COEF-ESTIMATES))

> (def OLSnobs (send M1REG :NUM-CASES))

> (def OLSdf (send M1REG :DF))

> (def RXMat (send M1REG :X-MATRIX))

> (def RSSQ (send M1REG :RESIDUAL-SUM-OF-SQUARES))

> (def TSSQ (send M1REG :TOTAL-SUM-OF-SQUARES))

> (def RSQ (send M1REG :R-SQUARED))

> (def DEPVAR (send M1REG :Y))

When doing more sophisticated tasks with XLispStat than we did in this
section it will be convenient to use the regression-model instead of the
runOLS function we developed earlier because we can give the regression
objects names and the results produced by the regressions will remain inside
those objects until we request them and therefore will not be overwritten in
subsequent code. Obviously, however, we can produce a much better print-
out of the results than that done by the regression-model function.

The above U.S M1 results are produced using the script xlspsect.lsp,
with the results saved in the output file xlspsect.lou which is created by
naming xlspsect.lou as the dribble file before the xlspsect.lsp batch
file is loaded.

Exercise

Write an XLispStat batch file to do the same analysis of the demand for
U.S. M2 as was done for U.S. M1 in the analysis above.
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2. The Statistical Program R

Now we outline the process of doing basic statistical analysis using the freely
available program R. To obtain this program over the internet, just go to
www.r-project.org and download and set it up. Two manuals, An Intro-
duction to R and R Reference Manual, along with other options, are made
available in PDF form when you click on (help) after loading the program.
Also, you should download the paper Econometrics in R, written by Grant
V. Farnsworth, which will provide valuable help, from
cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf.

The first thing you should do after clicking on the R icon and loading
the program is to click on File and then on Change dir... and follow the
prompts to to focus the program’s attention on the directory in Windows
that you will be working out of. Then the same data file we used in the case
of XLispStat can be loaded, with the group of series being called usqdata,
using the command

> usqdata <- read.table("statcomp.tab",header=TRUE)

The group of series loaded can then be checked by issuing the command

> names(usqdata)

which will prompt the response

[1] "X.YEAR" "USGDP" "US3MTBR" "USIPD" "USCPI" "USM1" "USM2"

Actually, the best procedure for accomplishing this is to write a text file
using any text editor (the one provided by MS-Windows will be sufficient)
containing the two code-lines

usqdata <- read.table("statcomp.tab",header=TRUE)

names(usqdata)

and then, after pointing R to the directory you are working in, click on the
left-most icon above the R Console to load that text file into the text editor
provided by the R program. You can then write all subsequent code using
that editor and run that code in R simply by highlighting text in that file
from the bottom to the top and then clicking on the third icon from the left
above the R Console. The results will appear in the Console and necessary
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corrections to your script can be made in the R Editor and the script re-run
until you get things right. At any point, your script can be saved by clicking
on the second icon from the left above the R Console when the focus is on
the R Editor. And you can print your script and your results by clicking
on the printer icon when the focus is on the material you want printed. To
save your results in a text file, you must copy the material in the console and
paste that material into a blank file in your text editor and then save that
file under an appropriate name—I find it convenient to use the same name
as my script file except for the suffix which I call .Rou.

To bring all of the individual series into the workspace so that they can
be accessed by simply typing their names, we enter the code line

attach(usqdata)

When working with time-series data, we then have to set up the variables we
will want to later use in time-series form using the code

USGDP <- ts(usqdata\$USGDP,start=c(1959,1),end=c(2010,1),frequency=4)

US3MTBR <- ts(usqdata\$US3MTBR,start=c(1959,1),end=c(2010,1),frequency=4)

USIPD <- ts(usqdata\$USIPD,start=c(1959,1),end=c(2010,1),frequency=4)

USCPI <- ts(usqdata\$USCPI,start=c(1959,1),end=c(2010,1),frequency=4)

USM1 <- ts(usqdata\$USM1,start=c(1959,1),end=c(2010,1),frequency=4)

USM2 <- ts(usqdata\$USM2,start=c(1959,1),end=c(2010,1),frequency=4)

Now that our data have been loaded and set up, we can begin our analysis.
The first item of interest is whether the U.S. inflation rate can be best ap-
proximated by movements in the consumer price index or the implicit GDP
deflator. We can plot the two series by entering the following code

plot(USCPI,type="l",

xlab="Quarterly Data",

ylab="Index -- 2005 = 100",

main="United States Price Level")

lines(USIPD,lty=2)

legend(1960,110,c("CPI","GDP Deflator"),lty=c(1,2))

and when the code is run obtain the exact figure below.
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It makes better sense to look at the year-over-year inflation rates calcu-
lated from these two alternative price level estimates. To obtain these, we
add the code

USCPIL4 <- lag(USCPI, -4)

USIPDL4 <- lag(USIPD, -4)

# Set the time-series properties of these new series

USCPIL4 <- ts(USCPIL4,start=c(1960,1),end=c(2010,1),frequency=4)

USIPDL4 <- ts(USIPDL4,start=c(1960,1),end=c(2010,1),frequency=4)

#

YYGCPI <- 100*(USCPI - USCPIL4)/USCPIL4

YYGIPD <- 100*(USIPD - USIPDL4)/USIPDL4

and then the appropriate code for plotting these year-over-year inflation
rates.

plot(YYGCPI,type="l",

xlab="Quarterly Data",

ylab="Year-Over-Year Percentage Change",
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main="United States Year-Over-Year Inflation")

lines(YYGIPD,lty=2)

legend(1990,14,c("CPI","GDP Deflator"),lty=c(1,2))

which produces the figure below.
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It is also useful in visualizing the relationship between the two series to
construct and plot their kernel densities, which are fitted smooth functions
approximating the probability distributions of the two inflation rates. This
is done using the code

DENYYGCPI <- density(YYGCPI)

DENYYGIPD <- density(YYGIPD)

plot(DENYYGCPI,

ylim=c(0,.25),

main="Kernel Density Estimates of U.S. Inflation",

sub="Year-over-Year")

lines(DENYYGIPD,lty=2)

legend(7,.22,c("CPI","GDP Deflator"),lty=c(1,2))
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which produces the figure below.
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It is clear that the GDP-deflator based inflation rate is more concentrated
around a lower modal value and less variable than the CPI based inflation
rate. Specific details about the nature of these two inflation rate series can
be obtained using the code lines that are presented, along with the program’s
response, below.

# Functions to give details of YYGCPI and YYGIPD

> summary(YYGCPI)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.595 2.254 3.300 4.104 5.160 14.430

> summary(YYGIPD)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.4868 1.9920 2.9930 3.6540 4.7150 11.0900

The information presented above plus additional features of the two series can
be obtained by applying the individual functions as follows. The results are
also presented along with my comments included to the right of # characters
(delineating material which the program will ignore).
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> mean(YYGCPI)

[1] 4.104037

> median(YYGCPI)

[1] 3.299757

> var(YYGCPI)

[1] 8.467032

> sd(YYGCPI)

[1] 2.909816

> mean(YYGIPD)

[1] 3.653965

> median(YYGIPD)

[1] 2.992598

> var(YYGIPD)

[1] 5.602494

> sd(YYGIPD)

[1] 2.366959

> quantile(YYGCPI, .25)

25%

2.253521

> quantile(YYGCPI, .75)

75%

5.160193

> quantile(YYGCPI, .75) - quantile(YYGCPI, .25) # inter-quartile range

75%

2.906672

> max(YYGCPI)

[1] 14.42577

> min(YYGCPI)

[1] -1.595183

> max(YYGCPI) - min(YYGCPI)

[1] 16.02095

> range(YYGCPI)

[1] -1.595183 14.425770

> #

It is not clear why the first number, 75%, is produced by my inter-quartile
range calculation, although the number resulting from the calculation, 2.906672,
is is correct. While I was able to find a range function in R, it was impossible
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to find one giving the inter-quartile range.

Since the GDP deflator more or less directly estimates the price of output,
it would seem best to use it in calculating real M1 and real GDP for use in a
regression that attempts to estimate the demand function for money. Also,
these real variables are converted to natural logarithms before running the
regression. The code required is as follows.

> USRGDP <- 100*USGDP/USIPD # Calculate real GDP

> USRM1 <- 100*USM1/USIPD # Calculate real M1

> LUSRGDP <- log(USRGDP) # Natural logarithm of real GDP

> LUSRM1 <- log(USRM1) # Natural logarithm of real M1

# Demand for Money Regression -- 1959:Q1 through 2010:Q1

dmreg <- lm(LUSRM1 ~ US3MTBR + LUSRGDP)

#

# Present basic regression results

#

summary(dmreg)

This code produces the regression results below.

Call:

lm(formula = LUSRM1 ~ US3MTBR + LUSRGDP)

Residuals:

Min 1Q Median 3Q Max

-0.14142 -0.04701 -0.00664 0.03474 0.20066

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.347764 0.093037 35.98 <2e-16 ***

US3MTBR -0.019415 0.001721 -11.28 <2e-16 ***

LUSRGDP 0.419451 0.010362 40.48 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.06848 on 202 degrees of freedom

Multiple R-squared: 0.9064, Adjusted R-squared: 0.9055

F-statistic: 978.6 on 2 and 202 DF, p-value: < 2.2e-16
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The next step is to retrieve various important statistics produced by the
regression, among them the regression residuals which will ultimately be
plotted.

> dmoutput <- summary(dmreg)

> SSR <- deviance(dmreg)

> DMCOEF <- dmreg$coefficients # regression coeficients

> DF <- dmreg$df

> DMFIT <- dmreg$fitted.values

> DMRES <- dmreg$residuals

> s <- dmoutput$sigma # standard error of regression residuals

> dmRSQ <- dmoutput$r.squared

> dmCovMat <- s^2*dmoutput$cov # variance-covariance matrix of coefficients

The plots of the actual and fitted values and the residuals from this regression
are presented below and on the next page.
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Demand for Money Regression Residuals

Quarterly Data
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Next we need to know how to conduct a Breusch-Pagan test for het-
eroskedasticity of the residuals. Recall from our XLispStat programming
that this involves regressing the squared residuals on the some or all of the
independent variables in the original regression and multiplying the R 2 by
the number of observations to obtain a Chi-square statistic having degrees
of freedom equal to the number of regressors other than the constant term.
This test is performed by entering the code line

bptest(dmreg)

and produces the result

studentized Breusch-Pagan test

data: dmreg

BP = 14.3522, df = 2, p-value = 0.0007647
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The next issue is that of testing for serial correlation in the regression
residuals. The three most common of these tests are all provided by R.
Consider first the Breusch-Godfrey LM test which obtains the relevant Chi-
square statistic by regressing the residuals from the original regresson on
the lagged values of these residuals of some desired order as well as on the
independent variables in the original regression, and then multiplying the R 2

from that regression by the number of observations in the original regression.
The code for a specification of 4 lags of the residuals, and the result, are as
follows.

> bgtest(dmreg,order=4,type="Chisq")

Breusch-Godfrey test for serial correlation of order 4

data: dmreg

LM test = 193.2608, df = 4, p-value < 2.2e-16

where the Chi-square value with 4 degrees of freedom is 193.2608.

Next consider an alternative version of the Breusch-Godfrey LM test which
obtains the F-statistic for the null-hypothesis that the lagged residuals ex-
plain none of the movements in the current residual. This involves running
a second regression, called the restricted regression, of the residuals on the
variables other than the lagged residuals and calculating the restricted sum
of squared residuals, SSER, of this restricted regression. The F-statistic for
testing the restriction is equal to

F =
(SSER− SSEU)/4

SSEU/198

where SSEU is the sum of squared residuals of the regression that included the
four lagged residuals, the number of restrictions imposed is 4, and the degrees
of freedom of the unrestricted regression is 198 —the number of observations
(which equals 205) minus the number of coefficients (which equals 7) being
estimated in the unrestricted regression. The number of observations in the
unrestricted regression is the same as in the original demand-for-money re-
gression because, following Davidson and MacKinnon,7 all unavailable values

7Russell Davidson and James MacKinnon, Estimation and Inference in Econometrics,
Oxford University Press, 1993, pages 358 and 359.
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of the lagged residuals are set equal to zero. The code for this version of the
LM-test, and the resulting response by R, are as follows.

> bgtest(dmreg,order=4,type="F")

Breusch-Godfrey test for serial correlation of order 4

data: dmreg

LM test = 814.915, df1 = 4, df2 = 198, p-value < 2.2e-16

The F-statistic is 814.915 with 4 degrees of freedom in the numerator and
198 degrees of freedom in the denominator.

This test differs from the one proposed by G.S. Maddala in two ways.8

First, Maddala uses an approximation by which unavailable residuals retain
their NA values and the restricted and unrestricted regressions are therefore
based on 201 rather than 205 observations. Second, the procedure followed by
Maddala imposes the condition of sufficient data under the null-hypothesis
to generate a normally distributed standard error of the regression, with
the result that the denominator of the F-statistic under the null-hypothesis
equals unity and the numerator becomes a Chi-square statistic divided by
the number of restrictions. Thus, multiplication of the F-statistic by the
number of restrictions yields a Chi-square statistic with 4 degrees of freedom.
The value of this statistic would be 4 × 814.915 = 3259.66 under the above
conditions where the unavailable residuals are assigned zero values. Both
the F-statistic and the resulting Chi-square statistic differ by small amounts
from the values that would arise where the missing residuals are not replaced
by zeros and the regression that generates the F-statistic starts later than
the original demand-for-money regression by the number of periods, equal
to the number of lags, for which lagged residuals are missing. This accounts
for the difference between the numbers obtained here and those that resulted
under our LMSC function programmed in XLispStat.

The practice of multiplying the F-statistic by the number of restrictions
and treating the resulting statistic as Chi-square with degrees of freedom
equal to that number of restrictions makes it much more likely that the
null-hypothesis of no autocorrelation in the residuals will be rejected in any
given case, adding power to the test by increasing the likelihood that the

8G.S. Maddala, Introduction to Econometrics, Macmillan, 1988, page 206.
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alternative hypothesis of serial correlated residuals will be accepted when
it is true. Since OLS regression results depend in important ways on the
assumption of independently and identically distributed residuals, this is the
more conservative approach.

An additional test for the presence of serial correlation in the regression
residuals is the Ljung-Box Q test. This statistic is equal to

Q = T (T + 2)
s∑

k=1

r2k
T − k

where T is the number of observations, rk is the estimate of the kth order serial
correlation coefficient ρk and s is the order of serial correlation being tested.
Recall that first-order serial correlation of the residuals is the correlation
between the current residual and that residual once lagged, second order
serial correlation is the correlation between the current residual and that
residual twice lagged, and so forth. The statistic Q is distributed according
the the Chi-square distribution with s degrees of freedom. If it exceeds the
critical value, at least one of the rk is significantly different from zero at the
specified significance level. To run this test in R in the current situation, we
insert the code

Box.test(DMRES, lag = 4, type = "Ljung")

and receive the response

Box-Ljung test

data: DMRES

X-squared = 664.5834, df = 4, p-value < 2.2e-16

where the X in the last line is a text-font representation of the Greek symbol
χ .

In the case at hand, the residuals of our demand for money regression are
most certainly highly serially correlated, a conclusion that is clearly substan-
tiated by all four of the above alternative tests—in every case the P -Value
is less than 0.00000000000000022.
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A final issue is the bootstrapping of the regression coefficients. The code
for doing this in R for the problem at hand is presented below. What is
presented is a set of calculations, not a bootstrap function—accordingly, the
calculations have to be adjusted to suit each different regression for which
the bootstrapped coefficient estimates are to be obtained.

dmreg <- lm(LUSRM1 ~ US3MTBR + LUSRGDP)

summary(dmreg)

ORIGFITTED <- dmreg$fitted.values

ORIGRESID <- dmreg$residuals

#

COEFSCON <- c(1:1000)-c(1:1000)

COEFSTBR <- c(1:1000)-c(1:1000)

COEFSGDP <- c(1:1000)-c(1:1000)

for (i in 1:1000)

{

NEWRESID <- sample(ORIGRESID)

NEWLRM1 <- ORIGFITTED + NEWRESID

newdmreg <- lm(NEWLRM1 ~ US3MTBR + LUSRGDP)

NEWCOEFS <- newdmreg$coefficients

COEFSCON[i] <- NEWCOEFS[1]

COEFSTBR[i] <- NEWCOEFS[2]

COEFSGDP[i] <- NEWCOEFS[3]

}

The first line of code runs the regression and saves the results in the object
dmreg. The second line tells R to print out the basic regression results. The
third and fourth lines extract the fitted values and the residuals from this
regression and save them under the new names ORIGFITTED and ORIGRESID.
The three lines of code that follow construct three vectors, each containing
1000 zeros into which the bootstrapped estimates of the three coefficients will
ultimately be placed—COEFSCON is for the constant term, COEFSTBR is for the
T-Bill rate variable and COEFSGDP is for the real GDP variable. Next we begin
a loop that will be passed through 1000 times with the index i taking values
from 1 to 1000. In each loop we use the sample function to sample the
original residuals. Then we add that new set of residuals to the fitted values
to obtain NEWLRM1 a new measure of the logarithm of real M1. Then we run
a new regression with this as the dependent variable where the independent
variables are the original ones. Then we extract the coefficients from this
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new regression and replace the ith observations of each the three coefficient
vectors with the appropriate coefficient estimate. After 1000 passes through
the loop, we end up with three lists of bootstrapped coefficient estimates,
one for each independent variable in the original regression.

There are many different ways to analyse these bootstrapped coefficient vec-
tors. One can take various quantiles, as we did in the XLispStat function
we wrote in that section. Here, we simply use the summarize function to
extract the basics, obtaining the following results.

> summary(COEFSCON)

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.058 3.283 3.349 3.348 3.411 3.630

> summary(COEFSTBR)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.02383 -0.02059 -0.01948 -0.01943 -0.01823 -0.01386

> summary(COEFSGDP)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.3875 0.4125 0.4192 0.4195 0.4266 0.4514

The medians and means compare quite favorably with our original coefficient
estimates, which are 3.347764 for the Constant Term, -0.019415 for the T-
Bill Rate coefficient and .419451 for the coefficient of log real GDP, and the
maxima and minima suggest that the basic conclusions we can draw from
our regression concerning the range of magnitudes of the coefficients are not
reversed in any important way by the bootstrap evidence. Another inter-
esting view of the bootstrapped coefficient estimates is their kernel density
plots, the code for which is presented below, along with the plots that follow.

> DENCOEFSCON <- density(COEFSCON)

> DENCOEFSTBR <- density(COEFSTBR)

> DENCOEFSGDP <- density(COEFSGDP)

> #

> plot(DENCOEFSCON,

+ main="Kernel Density: Constant Term Coefficient")

> #

> plot(DENCOEFSTBR,

+ main="Kernel Density: TBill Rate Coefficient")

> #
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> plot(DENCOEFSGDP,

+ main="Kernel Density: Log Real GDP Coefficient")

> #

In looking at the graphs below, it is important to understand that the prob-
ability density associated with any particular point on the horizontal axis is
equal to the distance of the density curve from that axis multiplied by the
bandwidth shown at the bottom.
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Exercise

Write an R batch file to do the same analysis of the demand for U.S. M2 as
was done for U.S. M1 in the analysis above. You will find the R code for the
material in this section in the script file Rsect.R and the resulting output in
the file Rsect.Rou.
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3. Gretl (Gnu Regression, Econometrics and
Time-series)

Now we turn to Gretl, the easiest program of the three to use. First, of
course, you have to download the latest version of Gretl from the Web and
set it up. At the time of this writing, you should go to

http://gretl.sourceforge.net/win32/

and obain the self-extracting zip file gretl-1.9.5.exe. Simply run this file
and follow the prompts, making sure that you end up with a Gretl icon on
your desktop.

The next task is to load your data into Gretl. As in the case of XLispStat
and R, take the spreadsheet file into which you obtained your data off the web
or from elsewhere, and copy a version that has as its first row the variable
names along the top of the data columns, and a left-most column providing
some sort of identification of the observations—for time-series data this will
indicate the dates of the observations. Make sure that the observation column
has a variable name in the upper-left cell of the spreadsheet, without the ;

character that you would put in front of it before saving it as a text file
to be read by XlispStat. After saving this spreadsheet as an .xls file,
load Gretl by clicking on its icon. Click on File, then Open data, and
then Import and then choose Excel. In the window that appears, go to the
directory you are working in and click on the Excel spreadsheet file—in the
case at hand it is called statcomp.xls. Follow the prompts and you will
see another window with a list of variables in it and, most likely, be given
a little window telling you that the imported data has been interpreted as
undated (cross-sectional) and asking if you would like to give it a time-series
or panel interpretation. Answer yes, choose Time series, and then click
on Forward. Choose quarterly in the present case, click on Forward again
and set the date as 1959:1 in the window that appears. Then click again
on Forward and choose Yes if the beginning and ending dates that appear
are the correct ones. Now delete the variable that has the name of your
column of observations by clicking on it and then pressing the right mouse
button and selecting Delete. You can examine the remaining variables by
double-clicking on them with the left mouse button.

At this point it would be desirable for you to add descriptions to the data
series in the data file. Do this by highlighting each variable in turn using the
left mouse button, then clicking on Variable, choosing Edit Attributes
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and typing the appropriate descriptive material in the window that will be
presented to you. You can also plot any variable by highlighting it and choos-
ing Variable and then Time-series plot. Alternatively, you can plot two
or more variables together by clicking on View and then Graph specified

vars, selecting the type of plot, and then specifiying in the resulting window
the variables you want to plot. By this point, it should be obvious how you
can perform many statistical operations by pointing and clicking. Before
going further, however, you should save your data file by clicking on File,
then Save data and giving your data file a name with the suffix .gdt. You
should probably choose the name Gretl suggests, which will be the same
name as your Excel file with the suffix .gdt instead of .xls.

It turns out that the fastest way to work in Gretl is probably by feeding it
prepared script files, so this is the way we will begin. To do this, exit Gretl,
ignoring any prompt to save things (assuming that you have already saved
your data file), and then load Gretl again. When you click on the Gretl icon,
a screen will appear on which you should select File and then Open data

and you will be prompted to load the data set that you had previously saved.
Click on that name and the data window will again appear. Next, click on
Tools and then Command log and and a window will appear containing the
following information.

# Log started 2010-08-19 15:57

# Record of session commands. Please note that this will

# likely require editing if it is to be run as a script.

open E:\DSLMHTML\STATCOMP\statcomp.gdt

which you should highlight, then Copy by selecting the third-icon from the
right along the command line. Now open up your text editor and save this
material in a new file, here named gretsect.inc. From now on, you can
add commands to this file and execute it by clicking on File, then on Script

files, and then on the name of the file. A script window will appear contain-
ing the material in the file. From this point forward, you can add material
to the file in the script window and then click on the sixth icon from the left
along the top of the window to execute the commands it contains. You have
no choice but run the whole file unless you do as I do and insert your favorite
single-word profanity in the file where you want the processing to stop—the
program, being clean minded, will object to the profanity and processing will
cease.
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At this point we can write our script for subsequent processing. The
script, presented below in its entirety, contains code lines which will do every-
thing we did in R except bootstrap the regression coefficients. The meaning
of the code should be obvious, although I have provided prompts by making
comments to the right of the code lines. Gretl, like R ignores all material on
a line to the right of the character #. At any time in Gretl you can click on
help along the top of the data file to access detailed information about the
program.

Also, when you want to find the code for a particular procedure it is
often useful to click on that procedure in the data window and then check he
command log. You can then copy he code from the command log into your
script file. And, of course, the best way to figure out what coding to use is
to steal the code from previously written script files.

# GRETL SCRIPT FOR STATISTICAL COMPUTING ANALYSIS

#

open E:\DSLMHTML\STATCOMP\statcomp.gdt

#

lags 4; USIPD USCPI # Generate lags of 1 through 4 periods.

# Lags are denoted by the characters _1, _2, _3, and _4 added

# to the variable names.

#

genr YYGCPI = 100*(USCPI - USCPI_4)/USCPI_4 # Generate year-over-year

genr YYGIPD = 100*(USIPD-USIPD_4)/USIPD_4 # inflation rates.

#

summary YYGCPI # Provide information about the

summary YYGIPD # two series.

QCPI05 = quantile(YYGCPI,0.05) # Calculate various quantiles

QCPI25 = quantile(YYGCPI,0.25) # and print them to screen.

QCPI50 = quantile(YYGCPI,0.50)

QCPI75 = quantile(YYGCPI,0.75)

QCPI95 = quantile(YYGCPI,0.95)

#

QIPD05 = quantile(YYGIPD,0.05)

QIPD25 = quantile(YYGIPD,0.25)

QIPD50 = quantile(YYGIPD,0.50)

QIPD75 = quantile(YYGIPD,0.75)

QIPD95 = quantile(YYGIPD,0.95)

#
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# RUN DEMAND FOR MONEY REGRESSION

# after putting M1 and GDP in real terms

# and taking the logarithms

#

genr USRM1 = 100*(USM1/USIPD) # Calculate real values by deflating

genr USRGDP = 100*(USGDP/USIPD) # the series by the GDP deflator.

genr LUSRM1 = log(USRM1) # Generate logarithms of the

genr LUSRGDP = log(USRGDP) # two series.

#

ols LUSRM1 const US3MTBR LUSRGDP # Run the regression

RESIDS = $uhat # Extract regression residuals and

FITTED = $yhat # fitted values for subsequent plotting

#

modtest --breusch-pagan # test for heteroskedaticity

modtest 4 --autocorr # tests for autocorrelation in residuals

#

The last two commands use the function modtest, giving it the instruction
to first run a Breusch-Pagan test and then do tests for autocorrelation in the
residuals using 4 lags.

Let us now have a look at the results, which Gretl presents in a very clear
way.

gretl version 1.9.1

Current session: 2010-08-20 11:22

GRETL SCRIPT FOR STATISTICAL COMPUTING ANALYSIS

#

? open E:\DSLMHTML\STATCOMP\statcomp.gdt

Read datafile E:\DSLMHTML\STATCOMP\statcomp.gdt

periodicity: 4, maxobs: 205

observations range: 1959:1-2010:1

Listing 7 variables:

0) const 1) USGDP 2) US3MTBR 3) USIPD 4) USCPI

5) USM1 6) USM2
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#

? lags 4; USIPD USCPI # Generate lags of 1 through 4 periods.

Listing 15 variables:

0) const 1) USGDP 2) US3MTBR 3) USIPD 4) USCPI

5) USM1 6) USM2 7) USIPD_1 8) USIPD_2 9) USIPD_3

10) USIPD_4 11) USCPI_1 12) USCPI_2 13) USCPI_3 14) USCPI_4

# Lags are denoted by the characters _1, _2, _3, and _4 added

# to the variable names.

#

? genr YYGCPI = 100*(USCPI - USCPI_4)/USCPI_4 # Generate year-over-year

Generated series YYGCPI (ID 15)

? genr YYGIPD = 100*(USIPD-USIPD_4)/USIPD_4 # inflation rates.

Generated series YYGIPD (ID 16)

#

? summary YYGCPI # Provide information.

Summary statistics, using the observations 1959:1 - 2010:1

for the variable ’YYGCPI’ (201 valid observations)

Mean 4.1040

Median 3.2998

Minimum -1.5952

Maximum 14.426

Standard deviation 2.9098

C.V. 0.70901

Skewness 1.4524

Ex. kurtosis 1.9968
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#

? summary YYGIPD # Provide information.

Summary statistics, using the observations 1959:1 - 2010:1

for the variable ’YYGIPD’ (201 valid observations)

Mean 3.6540

Median 2.9926

Minimum 0.48682

Maximum 11.085

Standard deviation 2.3670

C.V. 0.64778

Skewness 1.2175

Ex. kurtosis 0.77655

? QCPI05 = quantile(YYGCPI,0.05) # Calculate various quantiles

Generated scalar QCPI05 = 1.20246

? QCPI25 = quantile(YYGCPI,0.25) # and print them to screen.

Generated scalar QCPI25 = 2.23928

? QCPI50 = quantile(YYGCPI,0.50)

Generated scalar QCPI50 = 3.29976

? QCPI75 = quantile(YYGCPI,0.75)

Generated scalar QCPI75 = 5.17358

? QCPI95 = quantile(YYGCPI,0.95)

Generated scalar QCPI95 = 11.1064

#

? QIPD05 = quantile(YYGIPD,0.05)

Generated scalar QIPD05 = 1.11431

? QIPD25 = quantile(YYGIPD,0.25)

Generated scalar QIPD25 = 1.97793

? QIPD50 = quantile(YYGIPD,0.50)

Generated scalar QIPD50 = 2.9926

? QIPD75 = quantile(YYGIPD,0.75)

Generated scalar QIPD75 = 4.73358

? QIPD95 = quantile(YYGIPD,0.95)

Generated scalar QIPD95 = 8.93689

#
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# RUN DEMAND FOR MONEY REGRESSION

# after putting M1 and GDP in real terms

# and taking the logarithms

#

? genr USRM1 = 100*(USM1/USIPD) # Calculate real values by deflating

Generated series USRM1 (ID 17)

? genr USRGDP = 100*(USGDP/USIPD) # the series by the GDP deflator.

Generated series USRGDP (ID 18)

? genr LUSRM1 = log(USRM1) # Generate logarithms of the

Generated series LUSRM1 (ID 19)

? genr LUSRGDP = log(USRGDP) # two series.

Generated series LUSRGDP (ID 20)

#

? ols LUSRM1 const US3MTBR LUSRGDP # Run the regression

Model 1: OLS, using observations 1959:1-2010:1 (T = 205)

Dependent variable: LUSRM1

coefficient std. error t-ratio p-value

---------------------------------------------------------

const 3.34776 0.0930368 35.98 8.49e-090 ***

US3MTBR -0.0194151 0.00172099 -11.28 3.31e-023 ***

LUSRGDP 0.419451 0.0103621 40.48 7.14e-099 ***

Mean dependent var 6.931613 S.D. dependent var 0.222799

Sum squared resid 0.947369 S.E. of regression 0.068483

R-squared 0.906446 Adjusted R-squared 0.905520

F(2, 202) 978.5879 P-value(F) 1.2e-104

Log-likelihood 260.2679 Akaike criterion -514.5359

Schwarz criterion -504.5668 Hannan-Quinn -510.5036

rho 0.965846 Durbin-Watson 0.067818

Log-likelihood for USRM1 = -1160.71

? RESIDS = $uhat

Generated series RESIDS (ID 21)

? FITTED = $yhat

Generated series FITTED (ID 22)
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? modtest --breusch-pagan # test for heteroskedaticity

Breusch-Pagan test for heteroskedasticity

OLS, using observations 1959:1-2010:1 (T = 205)

Dependent variable: scaled uhat^2

coefficient std. error t-ratio p-value

-------------------------------------------------------

const -7.19539 2.19599 -3.277 0.0012 ***

US3MTBR -0.00569001 0.0406214 -0.1401 0.8887

LUSRGDP 0.935988 0.244581 3.827 0.0002 ***

Explained sum of squares = 39.7335

Test statistic: LM = 19.866746,

with p-value = P(Chi-square(2) > 19.866746) = 0.000049

? modtest 4 --autocorr # tests for autocorrelation in residuals

Breusch-Godfrey test for autocorrelation up to order 4

OLS, using observations 1959:1-2010:1 (T = 205)

Dependent variable: uhat

coefficient std. error t-ratio p-value

------------------------------------------------------------

const 0.00429298 0.0224893 0.1909 0.8488

US3MTBR -0.000431786 0.000416595 -1.036 0.3012

LUSRGDP -0.000220610 0.00250467 -0.08808 0.9299

uhat_1 1.25031 0.0679086 18.41 9.02e-045 ***

uhat_2 -0.440575 0.107538 -4.097 6.10e-05 ***

uhat_3 0.429152 0.107642 3.987 9.41e-05 ***

uhat_4 -0.289821 0.0680998 -4.256 3.21e-05 ***

Unadjusted R-squared = 0.942736

Test statistic: LMF = 814.914971,

with p-value = P(F(4,198) > 814.915) = 1.01e-121
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Alternative statistic: TR^2 = 193.260847,

with p-value = P(Chi-square(4) > 193.261) = 1.06e-040

Ljung-Box Q’ = 664.583,

with p-value = P(Chi-square(4) > 664.583) = 1.62e-142

All of the summary statistics and regression results are consistent with the
results produced by XLispStat and R except for the Breusch-Pagan test for
heteroskedasticity which uses the non-studentized approach, and the tests for
serial correlation in the regression residuals which use only a straight F -test
like was used in R as well as the Chi-square test with a statistic obtained by
multiplying the R2 by the number of observations. The test procedure noted
by Maddala, involving the multiplication of the F -statistic by the number of
lagged residuals to obtain a Chi-square statistic, which we used in XLispStat,
was not performed by either Gretl or R. Note that the Breusch-Godfrey serial
correlation tests above follow the Davidson-MacKinnon procedure of replac-
ing missing lagged values of the residuals by zero—the regression presented
immediately above uses 205 observations.

You will notice that there are no commands in our script file that deal
directly with the plotting of particular variables of interest. This is because
the easiest way to create plots is to do so from the data-file page after the
script file has been executed. All series produced by the execution of the
script will appear among the variables in the modified data file. To plot
these, we just click on View, then on Graph specific vars and then choose
the type of graph and the series to be included by following the prompts.
When a graph appears, we can add a title, change the labels, and so forth
by holding town the right-mouse button and choosing Edit. And we can
save each of the plots by clicking on one of the Save commands. The five
plots of special interest are presented below without editing the raw graphs.
Kernel densities of the two inflation rate measures are not plotted because
both could not be plotted on the same chart.
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Finally, we need to produce bootstrapped values for the regression co-
efficients. To do this, we must first run the script, and then run the main
regression again by clicking in the data page on Model, then Ordinary Least

Squares, and selecting the appropriate variables in the window that results.
After clicking on OK to run the regression a window will appear containing the
regression results alone. Click on Analysis along the top of that window and
then on Bootstrap and select the options Confidence interval, Resample
residuals and Save bootstrap data to file. Then, after selecting the
coefficient you want bootstrapped estimates of, click on OK. A window will
appear with print delineating a 95% confidence interval for the coefficient, on
top of which will be pasted another window asking you for the file name in
which to save the bootstrap results. After choosing a directory and file name
for the bootstrap results for that coefficient, leaving off the suffix because
Gretl will add .gdt, the top window will disappear and you can make note
of or cut and paste the confidence interval material somewhere. Now go back
to the regression model window and proceed to obtain bootstrap results for
the coefficient of the next variable, following the same procedure as in the
case of the first coefficient and saving its bootstrap results in a different file
to which Gretl will again attach the suffix .gdt. Repeat this process for all
remaining coefficients you want obtain bootstrap estimates of. The final step
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is to restart Gretl and access one of the bootstrap coefficient files. In the
data window that appears, select File and then Append data and sequen-
tially append the other bootstrap coefficient files to the first one. Then save
all the bootstrapped coefficients in the resulting file in standard format under
a more general name—here, I used bootres.gdt. The individual coefficient
files can then be deleted, and you can load bootres.gdt and save summary
statistics and plot and save kernel density estimates of the bootstrapped co-
efficients. Plots of the kernel density estimates of the bootstrapped treasury
bill and log real GDP coefficients are presented below.
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We end this section with some guidelines to an alternative way of using
the Gretl statisical program by working with session files. Exit Gretl and
then load the program again and access the minimal Gretl data file you
worked with in the script approach to analysis above. After highlighting the
two price level series USCPI and USIPD by clicking on them while holding
down the Ctrl key, go to Add and then to Lags of selected variables

and on the prompt screen choose the number of lags to equal 4 and then click
OK. Plus signs will appear to the left of the numbers assigned to the variables
in the data window. Clicking on those signs will cause the lagged series for
those variables to be exposed.

Now click on File, then Session files and then Save session. At the
prompt, type in the directory path and add a file name with no suffix. I
suggest the name statcomp to which the program will automatically add the
suffix .gretl. Now click again on File and then Session files and load
the session file you just saved. A new data window will appear along with an
icon view window which will display a group of icons that you can click on.
You can edit your data by clicking on the Data set icon. You can add notes
by clicking on the Notes icon. Clicking on the Summary icon will provide
you with summary statistics for all variables in your data set. And clicking
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on the Correlations icon will result in the calculation and presentation of
cross-correlations between all the series in the data set.

To create the two year-over-year inflation rate series, click on Add in the
data window and then on Define new variable. A window will appear
in which you can write the formula for new data series you want to create.
Simply type in the following formula, which you should have seen before,

YYGIPD = 100*(USIPD - USIPD_4)/USIPD_4

and click OK. Then create in the same fashion the year-over-year growth rate
of the consumer price index.

YYGCPI = 100*(USCPI - USCPI_4)/USCPI_4

Now back up your work by clicking on File, then Session file and then
Save session.

You can now plot the price level and inflation rate series by clicking on
View, then Graph specified variables and then Time series plot. A
window will appear in which you can select the variables to appear in the
plot. After following the prompts a plot will appear. Edit it if you wish by
clicking on the right mouse button and choosing Edit. Then click on the
right mouse button again and chose Save to session as an icon and a
graph icon will appear in the icon window. By clicking on that icon you can
view the graph. A box plot of the two inflation rate series can be created
and saved as an icon by following the same procedure.

In preparation for running the demand for money regression, use the
Define new variable procedure and enter the following formulae.

USRGDP = 100*USGDP/USIPD

USRM1 = 100*USM1/USIPD

Now highlight these two new series, which will have appeared in the data
window and click on Add and then Logs of selected variables and new
series representing the logarithms of the two series will appear with the names
l USRM1 and l USRGDP.

You are now ready to run the demand for money regression. In the main
data window, click on Model and then on Ordinary Least Squares and a
window will appear in which you can select the dependent variable and the
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independent variables. After clicking on OK a model window will appear con-
taining the regression results. Click on File and then Save to session as

an icon and the window will be copied as an icon to the icon view win-
dow. To graph the residuals and the actual and fitted values, simply click
on Graphs along the top of the model window and follow the prompts. Save
these graphs as icons in the usual fashion. You should also click on Graphs

and then Residual correlogram to produce a plot of the autocorrelations
and partial autocorrelations of the regression residuals and a window con-
taining the numerical measures of these autocorrelations. Again, you should
save both the table and the graph as session icons.

Further details about your regression can be obtained by clicking on Tests

along the top of the regression model window. Select Heteroskedasticity
and then Breusch-Pagan. A new window will appear with the details, which
you can save as an icon, and a summary of the test results will be added
to the bottom of the material in the regression model window. Now choose
Test and autocorrelation and, after indicating the maximum number of
lags, you will be presented with another window containing the results of the
residuals regression and the three alternative serial correlation tests noted
before. Only the first of these will be summarized in the regression model
window but the detailed results can and should be saved as an icon. Another
interesting test is the test for normality of the residuals which, again produces
a plot and a window of detailed results, both of which can be saved as icons.

Now click on Analysis along the top of the regression model window. By
clicking on Confidence intervals for the coefficients you will be pre-
sented with a little window containing material that can be copied and pasted
in the Notes icon. Similarily, you can extract and save the Coefficient

covariance matrix. And, finally, you can click on Bootstrap. Here you
will end up following the same procedure as before. The data will be collected
separately for each coefficient in turn. The confidence interval is presented
in a window from which the details can be copied to the Notes icon. Kernel
density graphs of each coefficient’s bootstrap estimates can be obtained and
copied as icons, after editing to provide clear identification of the coefficient
involved. And the bootstrapped data for each coefficient can be saved to
separate data files which can later be merged into a single file.

As you work along, the session should be frequently saved so that a correct
record can be kept of everything. Also, you can copy as many as six of the
graphs (by drag and drop) to the Graph Page icon and later saved or printed
as a PDF file.
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You can find the Gretl code for the material in this section in the file
gretsect.inp and the corresponding output in the file gretsect.out. The
basic data file on which the analysis is based is statcomp.gdt. And a session
file that reflects the discussion immediately above is statcomp.gretl.

Exercises

1. Write a Gretl batch file to do the same analysis of the demand for U.S.
M2 as was done for U.S. M1 in the analysis above.

2. Read the section in the Gretl User’s Guide dealing with matrix manip-
ulation and then extend your batch file in Question 1 above to create the
relevant Y-vector and X-matrix for your basic demand for money regression.
Use this vector and matrix to calculate by matrix manipulation the regres-
sion coefficients, the standard error of the regression, the R 2, the coefficient
standard errors and t-ratios. Compare your results with those produced by
the basic demand for money regression you ran in Question 1.

3. Load the data file statcomp.gdt into Gretl and then set up the variables
and run the regression in question 1 above and save the result as a session file.
Then graph the actual and fitted and residuals and the autocorrelations of
the residuals and test the residuals for normality and graph the results, saving
all graphs and tests as icons. Test the residuals for autocorrelation. Do a
bootstrap test of the coefficient of the T-Bill Rate and graph the probability
density function. Then put all the graphs on a single graph page. Calculate
confidence intervals for the coefficients based first on the regression results
and then on bootstraps of the coefficients, saving all these confidence intervals
in the session notes. Make sure that everything above is represented directly
or indirectly in icon form.
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