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Abstract

This paper examines the role of agricultural diversity in the process of economic

development. Using data from US counties and exploiting exogenous variation in agri-

cultural production patterns induced by climatic features, I find a sizable positive

impact of mid-19th century agricultural diversity on contemporary income per capita.

The positive effects emerged over the course of the Second Industrial Revolution, when

early agricultural diversity boosted the relative size and productivity of the manu-

facturing sector. An assessment of mechanisms suggests that these effects operated

through increased manufacturing diversification, formation of novel skills, and tech-

nological progress. In line with these results, I find differential effects of agricultural

diversity on skill- and knowledge-intensive industrial activities. To sharpen the inter-

pretation of the findings, I propose a multi-sector growth model that highlights the

interconnected roles of complementarities and cross-sector spillovers in the mechanics

of structural change, and explains why agricultural diversity can have long-run effects

that unfold over time. (JEL O11, O41, N11, N51)
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1 Introduction

Differences in contemporary levels of development observed across countries and regions

are partly explained by variation in the timing and scope of transitions from agriculture

to industry. These structural transformations, in turn, are influenced by specific features

of economies at earlier stages of development. Identifying such features can advance our

understanding of comparative development and add to the burgeoning literature that un-

covers persistent effects of deeply-rooted factors (see Galor, 2011; Nunn, 2013; Spolaore and

Wacziarg, 2013).

Factors affecting long-run growth trajectories include production patterns at early stages

of development. The effects of particular specialization patterns have been extensively stud-

ied in the literature on economic development (Engerman and Sokoloff, 1997, 2002; Bruhn

and Gallego, 2012). Agricultural productivity and land abundance have also attracted con-

siderable interest (Matsuyama, 1992; Gollin et al., 2002; Galiani et al., 2008). Agricultural

diversity, in contrast, remains largely unexplored.1 This paper is the first to examine the

effects of diversity in early agricultural production on long-run development.

The impact of agricultural diversity does not have an obvious significance or even an

obvious direction. Diversity could affect development in various ways. It could harm devel-

opment insofar as it implies foregoing economies of scale or knowledge spillovers that operate

only at the level of products or narrowly defined sectors. On the other hand, under com-

plementarities between inputs or skills, diversity may yield productivity gains. Moreover, a

diverse economic environment may foster skill formation and technological progress. There

are also other channels that could account for positive effects of agricultural diversity, such

as increased agricultural productivity, reduced volatility, and lower land inequality (which

may in turn affect local institutions).

I use a rich dataset of U.S. counties spanning 140 years to assess the effects of agricultural

diversity on long-run development. The empirical analysis establishes a strong positive

relationship between agricultural diversity in 1860 and contemporary development (measured

by per capita income in recent decades). The relationship between diversity and income

emerged over the course of the development process. Agricultural diversity in the mid-19th

century is positively associated with the share of the population employed in manufacturing

and the level of manufacturing productivity around 1900, but not before. This suggests

that diversity affected patterns of structural change over the Second Industrial Revolution

1Two notable exceptions are the contributions of Michalopoulos (2012) and Fenske (2014), who study

the effects of different measures of diversity in geographical endowments on, respectively, ethnolinguistic

fragmentation and state centralization in Africa.
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(usually dated 1870-1920), during which the US was transformed from a predominantly

agricultural economy into the world’s leading industrial economy.

The positive association between agricultural diversity in the mid-19th century and later

development outcomes holds when controlling for state fixed effects, land productivity, the

dominance of specific agricultural products, a host of ecological conditions, distances to major

urban centers and waterways, and an extensive set of socio-economic variables. State fixed

effects allow me to abstract from the effects of state-level institutions and to mitigate concerns

about bias due to unobservable heterogeneity. Still, the correlation could be driven by

unobservable factors (e.g., preferences or technology) that vary across counties. To estimate

the causal effects of agricultural diversity, I propose an identification strategy that exploits

exogenous variation in agricultural production patterns generated by climatic features.

I construct an instrumental variable (IV) for agricultural diversity using climate-based

measures of potential productivity for different crops. To do this, I estimate a fractional

multinomial logit (FML) model of crop choice in which the shares of each product in total

agricultural output are the outcome variables, and the crop-specific productivity measures

are explanatory variables. With the predicted shares obtained from this estimation, I com-

pute an index of potential diversity. I then use this index as an IV for actual agricultural

diversity, and find positive and significant IV estimates of the effects of agricultural diversity

on development outcomes.

After establishing that agricultural diversity had long-term positive effects, I proceed to

examine the mechanisms that can potentially account for the observed empirical patterns.

The explanation offered in this paper, which emphasizes complementarities, cross-sector

spillovers and recombinant learning, is that agricultural diversity can foster broader diversi-

fication, skill formation, and technological progress. I find that, once the Second Industrial

Revolution was underway, agricultural diversity had positive effects on intermediate variables

capturing those channels. Moreover, cross-county cross-industry regressions show a positive

differential impact of agricultural diversity on skill-intensive and knowledge-intensive indus-

tries, lending further support to the proposed explanation.

To sharpen my interpretation of the findings, I propose a multi-sector endogenous growth

model that highlights the interconnected roles of complementarities and cross-sector spillovers

in the mechanics of structural change. I consider a small local economy, open to trade and

labor flows, with agricultural production and several industrial sectors, each of which may

be active or not. Industrial sectors are heterogeneous in their level of complexity, defined

as the number of sector-specific production capabilities they require. Capabilities within in

each sector are complementary. Within each local economy there are cross-sector spillovers:

efficiency in a sector depends on the set of established capabilties in other sectors. In the
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model, agricultural diversity is determined by exogenous climatic features, and it has a posi-

tive impact on industrialization as well as differentially positive effects on relatively complex

industrial sectors. These effects unfold over time as local economies go through critical junc-

tures in which the number of productive capabilities originated in agriculture determines

whether the process of structural change continues or ceases.

I also consider other channels that could account for the effects of agricultural diversity,

and find that the evidence does not support their relevance. First, I examine whether

agricultural diversity affected industrialization through an effect on agricultural productivity.

The evidence is not consistent with an agricultural productivity channel, thus underscoring

the cross-sectoral nature of the impact of agricultural diversity on industrialization. Next, I

assess whether agricultural diversification spurred growth by reducing volatility in the value

of agricultural production. To do this, I construct a measure of predicted volatility based on

the evolution of national prices for different agricultural products and on the product shares

predicted by the FML model used to construct the IV. Empirical patterns do not support

this mechanism. Finally, I consider political economy channels that may have operated at

the local level. I find a negative effect of early agricultural diversity on land concentration,

but no evidence of impacts on financial development or education provision.

The results presented in this paper complement recent quantitative studies of US history

showing persistent effects of geographical features that are no longer directly relevant (e.g.,

Bleakley and Lin, 2012; Hornbeck, 2012; Glaeser et al., 2012). More broadly, the findings

add to the evidence on how geographic factors have influenced contemporary outcomes by

shaping historical trajectories of economic, social, and political development (Diamond, 1997;

Acemoglu et al., 2001; Engerman and Sokoloff, 1997, 2002). While highlighting the long-run

impact of climate through its influence on agricultural production patterns, my research

goes beyond the role of particular crops to uncover the effects of diversity. This focus on

diversity provides a distinct addition to the literature on the role of agriculture in the process

of development.

This paper also contributes to the literature on diversification and growth (Acemoglu and

Zilibotti, 1997; Imbs and Wacziarg, 2003; Koren and Tenreyro, 2013), offering an analysis of

different channels in historical perspective and a focus on agriculture that permits a novel

identification strategy. The empirical findings provide strong support for the relevance of

a set of mechanisms that have attracted considerable attention in urban economics (e.g.,

Glaeser et al., 1992; Henderson et al., 1995; Combes, 2000). The importance of diversity

has implications for the literature on growth and structural change (e.g. Alvarez-Cuadrado

and Poschke, 2011; Herrendorf et al., 2013), suggesting that the analysis of linkages and

complementarities in models with finer levels of aggregation than standard two- or three-
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sector frameworks may yield new insights about the development process.

The paper is organized as follows. The next section discusses the literature on diversity

and development. The third section presents the data as well as the estimating equation

and baseline results from ordinary least squares (OLS) estimation. Section four outlines the

instrumental variable strategy and discusses the IV estimates. Section five offers evidence on

the mechanisms that account for the long-term effects of agricultural diversity, and section

six presents a model capturing those mechanisms. Section seven examines other potential

channels. Section eight concludes.

2 Diversity and Development: Theories and Evidence

The relationship between diversity and development has been addressed by a number of

theories with contrasting implications about the sign and direction of causality. The ideas

discussed in this section, which refer to the relationship between diversity and development

for the economy as a whole, are relevant here despite my focus on agricultural diversity.

Section 5 elaborates on this at length. For the moment, note that the focus on agriculture is

not a narrow one—this was the main sector of the US economy in the mid-nineteenth cen-

tury. Moreover, under the presence of linkages between different agricultural and industrial

products, agricultural diversity may be the root of economy-wide diversification.

Long-standing pieces of economic wisdom suggest that specialization, as opposed to di-

versification, is good for growth. First, any form of increasing returns to scale that operate

only within a single sector or product would imply that specialization yields productivity

gains. Within urban economics, the idea of localization externalities points to the benefits

that firms derive from being co-located with other firms in the same sector. Also promi-

nent among the theoretical underpinnings of arguments for specialization is the principle of

comparative advantage. Trade theory posits that increased trade openness or reduced trans-

port costs foster specialization and also increase income.2 Finally, a cursory consideration

of modern portfolio theory might also suggest that growth is diminished by diversification

insofar as—with the purpose of attenuating risk—it reduces expected returns.

2This prediction arises from models in the Hecksher-Ohlin tradition as well as from Ricardian models with

a continuum of goods (Dornbusch et al., 1977; Eaton and Kortum, 2002), where a reduction in trade costs

shrinks the range of goods produced and simultaneously increases income. But note that in trade theory it

is not specialization which has a causal effect on income but a third variable (e.g., transport costs) which

determines both. Moreover, diversification at the macroeconomic level would only be detrimental insofar

as there are deviations from the comparative advantage of production units, which may be heterogeneous

in their relative productivities for different products. These nuances are not always considered in policy

discussions.
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In contrast, there are theories that imply a positive relationship between diversity and

development. A basic idea pointing in this direction is that under imperfect substitutabil-

ity between inputs (or skills, or technologies), increasing the diversity of inputs employed

in production leads to efficiency gains. This property—analogous to “love of variety” in

consumption—can be captured by CES (constant elasticity of substitution) production func-

tions, as in endogenous growth models with expanding varieties à la Romer (1990) and New

Economic Geography models à la Krugman (1991). Strong complementarities between pro-

duction tasks are the essential element of the O-ring theory of development proposed by

Kremer (1993), which higlights that a chain is only as strong as its weakest link. In a re-

cent contribution, Jones (2011) provides insights about the properties of CES productions

functions in connection with the role of linkages and complementarities in development.

The relationship between diversity and productivity may go beyond the static relationship

implied by production functions with imperfect substitutability. In this paper, I emphasize

the dynamic effects of diversity. Going back to Jacobs (1969), the idea of “Jacobs external-

ities” (connected with urbanization economies, specially those operating through increased

flows of knowledge) is that diversity can foster innovation and adoption of new technologies.

A set of related ideas sheds light on the nature of this effect. Schmookler (1966) hints at the

importance of cross-sector technological spillovers (later documented by Scherer, 1982) and

recombinant technological progress (the generation of new ideas as recombinations of older

ones, already noted by Usher, 1929, and Schumpeter, 1934). Rosenberg (1979) emphasizes

interdepencies between technologies and discusses a number of cases that illustrate their

importance in American economic history.

Recombinant technological progress was incorporated in a growth model in a seminal

contribution by Weitzman (1998). Van den Bergh (2008) and Zeppini and Van den Bergh

(2013) develop a simple framework in which increasing returns to scale in each investment

option tend to induce specialization, but on the other hand diversity facilitates recombinant

innovations and can thus be efficient in the long-run. Berliant and Fujita (2008, 2011) build

an endogenous growth model with expanding varieties that captures the role of knowledge

diversity within R&D teams in the dynamics of knowledge creation. Akcigit et al. (2013)

advance a novel model of recombinant growth that matches a number of stylized facts doc-

umented with a newly-compiled large database of US patents.

While the literature usually emphasizes innovation, the positive impact of diversity could

operate through enhanced technology adoption and adaptation (Cohen and Levinthal, 1990).

Duranton and Puga (2001) build a model in which diversified cities, characterized by a broad

range of intermediate inputs and skills, allow an entrepreneur with a new project to find the

ideal productive process. In a model developed by Helsley and Strange (2002), the diversity
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of input suppliers reduces the cost of bringing new ideas to fruition. Hausmann and Hidalgo

(2011) emphasize diversity in productive capabilities (e.g., specific skills): if each product

requires a set of capabilities and there are overlaps between capability sets for different

products, then diversification would entail a higher return to acquiring new capabilities

(that complement previously existing ones) and thus induce faster growth.

Besides all the contributions pointing to the positive effects of diversity arising from com-

plementarities, cross-fertilization and recombination of ideas, there are theories pointing to

a substantive role of risk and volatility. In the model advanced by Acemoglu and Zilibotti

(1997), risky projects with high returns are only carried out when economies can enter a

wide array of projects (sectors); thus, higher diversification goes hand in hand with a higher

expected rate of return. A somewhat related theory is proposed by Koren and Tenreyro

(2013), who emphasize that diversification dampens the adverse effects of product-specific

negative shocks by limiting the direct impact of negative product-specific shocks and facili-

tating substitution away from negatively affected products.

Finally, in addition to theories that predict a causal effect of diversity on development or

a relationship between the two driven by a third factor, there are reasons to expect causality

going from development to diversification. If increases in income change the composition

of consumption bundles (e.g., Engel’s law) and the composition of demand affects produc-

tion patterns, then diversification and development would be connected through an entirely

different channel, with a direction of causality opposite to that of theories discussed above.

Given the multiple forces that may be involved in the relationship between diversity and

development, it may not be not surprising that empirical studies have not produced con-

clusive evidence. The effects of diversity have been most extensively studied in the urban

economics literature.3 Although many studies find positive and significant correlations be-

tween diversity and economic performance, this empirical pattern is not fully robust, and

there is no clear evidence of the relevance of Jacobs externalities vis a vis localization ex-

ternalities.4 Moreover, identification challenges have not been adequately addressed. While

recent contributions have made significant progress in the identification of agglomeration

economies (see Combes et al., 2011), advances focusing on the causal effects of diversity

have been less auspicious.

3Within the macro-development literature, Imbs and Wacziarg (2003) show that at the country-level

diversification follows an inverted U-shaped curve in relation to income. Imbs et al. (2012) confirm this

pattern and interpret it as driven by increases in trade in two distinct stages of integration (first between

regions and then between countries, with opposite effects on country-level diversification).
4A comprehensive review of 67 studies is provided by Beaudry and Schiffauerova (2009). An interesting

observation in this review, to which I return in section 5.3, is that the positive effects of diversity appear to

be more relevant in high-tech sectors, where cross-fertilization and spillovers are more important.
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3 Agricultural Diversity and Development: A First Look

3.1 Data

Historical data on county-level agricultural production, manufacturing employment, value

added and wages, several socio-economic variables, employment microdata, as well as per-

sonal income and population data are compiled from various sources, including the US Census

Bureau, the Minnesota Population Center (2011), Haines and ICPSR (2010), and Ruggles

et al. (2010). Full details are provided in appendix A.

The units of observation throughout the paper are US counties as defined in 1860. I drop

from the sample all Western states (most of which were still territories and had only started

to be partitioned into counties), as well as Dakota Territory, Kansas Territory, Nebraska

Territory and Indian Territory (later Oklahoma). Some other counties are dropped because

of missing data. For the remaining 1,821 counties (which represented over 97% of national

population at the time), I adjust the data to take into account border changes in order to

have consistent units of observation across time periods, following a procedure explained in

appendix A.

In 1860, over 55% of the labor force was employed in agricultural production, which ac-

counted for around 45% of total output in the US economy (Weiss, 1992). Within my sample

of 1,821 counties, over 80% of the population lived in rural areas. Three out of four of these

counties did not have any urban population. Rural areas had some industrial production,

but the bulk of manufacturing employment was concentrated in major urban centers (25

counties accounted for over half of total manufacturing employment in the sample). As

discussed below, agricultural production patterns at this early stage of development had a

critical role in shaping the paths of structural change over the Second Industrial Revolution.

To study the role of early agricultural diversity I use detailed data on agricultural ac-

tivities. The 1860 Census provides production data for 36 products composing agricultural

output, which I use in combination with historical state-level price data from Atack and

Bateman (1987) and Craig (1993). Table 1 reports the sample average and maximum per-

centages of county-level agricultural production for each of these products, as well as the

percentage of counties in which each product was dominant and the percentage in which it

represented over 50% of agricultural output. As can be seen, even marginal products rep-

resent large percentages of agricultural output in some counties (e.g., rice represented less

0.3% of agricultural output in the sample but over 86% in Georgetown, South Carolina).

Using these data I calculate a measure of agricultural diversity as 1 minus a Hirschman-

Herfindahl index of the shares of each product in total agricultural output (designated as θi,
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with i = 1, 2, ..., 36), so the index for each county c is Agri.Diversityc = 1 −
∑

i θ
2
ic. As can

be seen in Figure 1, agricultural diversity in 1860 was high in the Northeast and Midwest,

but also in the Southeastern seaboard, along the Appalachian Mountains, and in Northern

Texas. Beyond regional disparities, agricultural diversity shows significant variation within

states, which is important for identification of its effects.

Table 1. Agricultural Production Data

Product % of Agri.Output % of Counties Product % of Agri.Output % of Counties

Mean Max Dominant >50% Mean Max Dominant >50%

Corn 23.80 98.89 43.73 11.28 Barley 0.44 10.54 0.00 0.00

Ginned cotton 16.03 94.11 20.08 13.86 Clover seed 0.30 12.93 0.00 0.00

Animals slaughtered 13.08 95.16 04.35 05.50 Rice 0.27 86.38 0.51 0.28

Hay 11.86 73.97 17.22 01.65 Dew-rotted hemp 0.26 64.86 0.55 0.55

Wheat 10.39 92.86 08.42 00.44 Cane molasses 0.25 19.58 0.00 0.00

Butter 04.22 25.36 00.66 00.00 Sorghum molasses 0.25 07.19 0.00 0.00

Oats 03.92 98.89 00.66 00.00 Honey 0.23 08.41 0.11 0.00

Irish potatoes 03.10 59.87 00.77 00.11 Maple sugar 0.22 36.26 0.00 0.00

Tobacco 02.34 57.27 02.59 01.65 Hops 0.17 19.51 0.00 0.00

Sweet potatoes 01.26 30.15 00.22 00.00 Grass seed 0.16 09.39 0.00 0.00

Orchards 01.18 24.18 00.00 00.00 Hemp (other) 0.09 22.04 0.00 0.00

Cane Sugar 01.15 88.43 00.77 00.66 Maple molasses 0.06 07.43 0.00 0.00

Wool 01.01 100.0 00.22 00.22 Flax 0.05 04.83 0.00 0.00

Rye 00.92 13.86 00.00 00.00 Flaxseed 0.04 03.35 0.00 0.00

Market gardens 00.88 94.36 00.66 00.11 Beeswax 0.02 01.03 0.00 0.00

Peas and beans 00.72 22.95 00.00 00.00 Wine 0.02 04.72 0.00 0.00

Cheese 00.70 35.70 00.22 00.00 Water-rotted hemp 0.02 07.17 0.00 0.00

Buckwheat 00.56 15.31 00.00 00.00 Silk cocoon 0.01 02.86 0.00 0.00

Notes: Based on county-level production data from the 1860 Census of Agriculture and state-level price data from

Atack and Bateman (1987) and Craig (1993). The statistics for the 36 products that comprise agricultural production

are for the sample of 1,821 counties considered in this paper. The first and second columns indicate the average and

the maximum of a each product’s share in agricultural output; the third column indicates the percentage of counties in

which each product had the largest share in agricultural output; the fourth column shows the percentage of counties in

which each product represented over 50% of agricultural output.

As this paper shows, mid-19th century agricultural diversity had long-run effects on

development that can be traced back to the timing and scope of counties’ structural trans-

formation during the Second Industrial Revolution. The average county-level share of popu-

lation in manufacturing more than doubled from 1860 to 1900, but there was wide variation

in industrial performance across counties. While the importance in manufacturing of large

industrial urban centers peaked by 1870 (their subsequent growth was led by services), small

local economies had an important role in the American industrial takeoff starting in the late

19th century (Meyer, 1989; Page and Walker, 1991). Some counties with little or no man-

ufacturing production in 1860 became thriving mid-sized industrial localities by the early

20th century. Among the counties with zero manufacturing production in 1860 (about 11%
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Figure 1. Agricultural Diversity, 1860

of the sample), about a third had a share of population in manufacturing above the median

value in 1900.

Figures 2a and 2b show the spatial distribution of the share of population in the indus-

trial sector in 1900 and personal income per capita in 2000. Not surprisingly, 1900 levels of

industrialization are higher in the North than in the South. Here again, beyond regional dis-

parities, there is significant variation within states. Figure 3b displays some similar patterns,

with its most salient feature being the concentration of high income levels in the Northeast

megalopolis.

Figure 2a. Figure 2b.
Share ofPopulation inManufacturing, 1900 Ln Income per capita, 2000
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3.2 Estimating Equation and OLS Results

This section presents the basic specification and OLS results. The estimating equation is

yc = β0 + β1Agri.Diversityc,1860 + β
′

2Xc + β
′

3Mc,1860 + δs + εc . (1)

where yc is a development outcome (such as income per capita or the share of population

in manufacturing, at different points in time), Xc is a vector of time-invariant controls, and

Mc,1860 is a vector of initial conditions (i.e. variables measured at the beginning of the period

under consideration), δs is a state fixed effect, and εc is an error term.

The vector of time-invariant controls, Xc, comprises a rich set of variables. First, I con-

trol for a host of ecological variables. I include a measure of land suitability for cultivation

(Ramankutty et al., 2002) as well as productivity measures based on product-specific poten-

tial yields (the max and average of attainable yields for the five major products).5 Including

these land productivity controls is crucial to avoid confounding the effects of agricultural di-

versity with the effects of agricultural resource abundance. To get unbiased estimates of the

effects of diversification, it is essential that the estimates do not pick up the effects of other

variables that may be significantly correlated with diversity and have an independent effect

on the outcome variable. With this in mind, I also control for mean annual temperature,

terrain elevation, latitude and longitude. The results are robust to controlling for flexible

polynomials of all these ecological variables.

In addition, the set of time-invariant controls includes distances to major urban centers

(New York, Chicago, Boston, Philadelphia and New Orleans) and waterways (the Coastline

or the Great Lakes) measured in logs. These distances, which might be correlated with initial

agricultural diversity in this sample, could affect the market access of industrial production

and the inflow of new ideas, and thus including them as controls is important to avoid

omitted variable bias.

Among the set of initial conditions, Mc,1860, I include crop-specific controls. Since the

Herfindahl index is a non-linear function of individual shares, and some particular agri-

cultural products (wheat, corn, hay, cotton, animals slaughtered) represent large shares of

agricultural output, these shares may be strongly correlated with diversfication at the county-

level; thus, the estimated coefficient for diversity could pick up the positive or negative effect

of being specialized in one of those particular products. To address that identification issue,

I include dummies for those 5 major agricultural products that take a value of 1 when the

5These data are explained in detail in section 4.1 and Appendix A. To make yields for different products

comparable, each product-specific attainable yield is normalized by the max attained in the sample before

computing the max and average.
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product has the largest share in a county’s agricultural production.6 I also control for the

extent of plantation crops (i.e., the combined share of cotton, tobacco, sugarcane, and rice),

which is emphasized by Engerman and Sokoloff (1997, 2002) to explain the US North-South

divide. Although this divide does not affect the estimated coefficient of diversity when state

fixed effects are included, the prevalance of plantations crops could remain relevant to explain

cross-county within state variation in development outcomes.

Within the set of initial conditions I also consider an array of socio-economic controls,

including the urbanization rate, population size (in logs), farm output (in logs), the shares

of people below 15 and above 65 years of age, the share of slaves in the population, access to

railroads, and a measure of “market potential,” all for 1860. Following the classic definition

of Harris (1954), market potential in county c is given by Marketc =
∑

k 6=c d
−1
c,kNk, where k is

the index spanning neighboring counties, dc,k is the distance between county c and county k,

and Nk is the population of county k (here, in 1860).7 Since trade theory posits that access

to market induces specialization and also enhances economic performance, including market

potential as a control may avoid a potentially sizeable (negative) bias in the estimated effect

of diversity.

All the controls included in Mc,1860 are predetermined with respect to the outcome vari-

able, but they are potentially endogenous and thus their inclusion may introduce bias in the

estimates. Because they are not predetermined with respect to the regressor of interest, they

may be “bad controls,” as explained by Angrist and Pischke (2008). If any of these vari-

ables reflect mechanisms through which diversification affects productivity, including them

as controls would mask the true effect. For these reason, my preferred specification does

not include these “initial conditions” as controls. However, if there is a correlation between

agricultural diversity and these variables that does not reflect casuality from the former to

the latter, then including these as controls would be necessary to avoid omitted variable bias.

Thus, even if it is hard to argue that they are exogenous, it may be considered reassuring

that the results remain robust when controlling for those variables.

Table 2 shows OLS estimates of the coefficient on agricultural diversity in 1860 when the

set of controls is expanded sequentially in regressions with income per capita in 2000 (Panel

6These dummy variables are meant to capture the idea of dominance reflected in terms such as “cotton

counties” or “wheat counties.” The results are not qualitatively affected if I consider alternative crop-specific

control variables (see Appendix B).
7Donaldson and Hornbeck (2012) show that Harris’ ad hoc measure is similar to a first-order approxima-

tion to market access derived from an Eaton-Kortum general equilibrium trade model, with the diferrence

that neighboring populations are not weighted by inverse distances but instead by the inverse of trade costs

elevated to the trade elasticity, for which they use a baseline value of 3.8. Measuring market potential as

Marketc =
∑
k 6=c d

−3.8
c,k Nk does not qualitatively affect the results presented in the paper.
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A) and the share of population in manufacturing in 1900 (Panel B) as outcome variables. The

OLS estimates of the coefficient on agricultural diversification are positive and significant in

all specifications and for both development outcomes.8

Table 2. Agricultural Diversity and Development: OLS Results

(1) (2) (3) (4) (5) (6)

Panel A. Dependent variable: Ln Income per capita 2000

Agri.Diversity1860 0.547*** 0.241** 0.290*** 0.333*** 0.310*** 0.287***

(0.0781) (0.105) (0.0869) (0.0564) (0.0612) (0.0609)

R2 0.102 0.297 0.355 0.410 0.420 0.492

Panel B. Dependent variable: Share of Population in Manufacturing 1900

Agri.Diversity1860 0.0985*** 0.0358** 0.0408*** 0.0423*** 0.0246*** 0.0289**

(0.0160) (0.0102) (0.0099) (0.0107) (0.0106) (0.0113)

R2 0.087 0.439 0.460 0.480 0.491 0.618

State FE N Y Y Y Y Y

Ecological controls N N Y Y Y Y

Distances to water and cities N N N Y Y Y

Crop-specific controls N N N N Y Y

Socio-economic controls N N N N N Y

Observations 1,821 1,821 1,821 1,821 1,821 1,821

Notes: See Appendix A for variable definitions and sources. Robust standard errors clustered at the state level are

reported in parentheses. *** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

The table reports robust standard errors clustered at the state level. Conley (1999)

standard errors adjusted for spatial dependence with cuttoffs of 50, 100 and 150 miles, are

lower than standard errors clustered at the state level for all specifications (the table only

reports the latter; a table including the former are available upon request).

Figure 3 shows estimates of the coefficient on Agri.Diversity1860 for different outcome

variables at different times (with the corresponding 95% confidence intervals) for my preferred

specification. The results show a robust association between early agricultural diversity and

recent income per capita levels. The share of population employed in the manufacturing

sector, which can be interpreted as a measure of the extent of the industrialization process,

shows correlations with initial agricultural diversity that increase over time and are significant

from 1900 onwards.
8The results remain qualitatively the same when considering alternative measures of agricultural diversifi-

cation (see Appendix C). The results are also robust to controlling for the (logarithm of) initial manufacturing

labor productivity; this variable does not appear to be significant, and its inclusion barely changes the esti-

mate for the coefficient of interest. In what follows this variable will not be taken into account, since it is

known that lagged dependent variables bias the estimations (see, e.g., Bond, 2002).

13



Figure 3. Agricultural Diversity and Development Outcomes
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Notes: The graphs display the estimated coefficients on agricultural diversity from regressions for different outcomes variables,

controlling for state fixed effects, ecological controls and distances to water and cities. Intervals reflect 95% confidence levels.

For income per capita and share of population in manufacturing, all regressions have 1,821 observations. For manufacturing

productivity and wages, sample size fluctuates between 1,616 and 1,821; the estimates of coefficients for agricultural diversifi-

cation 1860 are similar if regressions are performed with the largest possible stable sample for outcomes at different points in

time. Pre-1960 income per capita are not available; as proxies, I use the sum of manufacturing and agricultural output over

population for 1860-1940, and median family income over average family size for 1950.
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4 Instrumental Variable Strategy and Results

The estimations presented in the previous section uncover suggestive correlations, but cannot

be taken as evidence of a causal relationship. The positive correlation between agricultural

diversity and development could be driven by omitted variables that induced higher diversi-

fication in 1860 and also improved subsequent economic performance. For example, diversity

might reflect high propensity to adopt new ideas and/or higher human capital, which would

also boost industrial development.9

On the other hand, if there are omitted variables that are negatively correlated with

diversity and positively associated with subsequent economic perfomance, the OLS estimates

would be negatively biased. For instance, diversity might partly reflect a higher level of risk

aversion, which could in turn hamper productivity growth in the nascent manufacturing

sector if this activity was perceived as highly risky. Higher diversification could also reflect

the predominance of traditional agriculture (whereby farmers grow most of what they need

for their own subsistence), which may in turn be associated with poor economic outcomes.

Market access would also introduce a negative bias if not adequately captured by the controls:

the extent of potential gains from trade would induce both specialization and growth. In

addition, measurement error in agricultural production may introduce attenuation bias in

the OLS estimates.

With the aim of identifying the causal effects of agricultural diversity on economic devel-

opment, this section introduces an instrumental variable strategy that relies on exogenous

variation in agricultural diversity generated by climatic features.

4.1 Agricultural Productivity Data and IV Construction

The proposed identification strategy exploits variation in agricultural diversity created by

dispersion in product-specific productivities determined by climatic features. The FAO’s

Global Agro-Ecological Zones project (GAEZ) v3.0 provides measures of potential produc-

tivity for different crops based on climatic data and crop-specific characteristics. World

9For example, farmers’ education could drive both the adoption of crop rotation schemes and subsequent

growth (agricultural production data was collected for one-year periods, so diversity reflects to some extent

the prevalence of crop rotation). Another possibility implying the same type of bias would be that diversifi-

cation resulted from a more diversified local demand for agricultural goods due to higher purchasing power

(not fully captured by the control variables), which would in turn be correlated with long-run development.

A positive correlation between diversity in the demand for agricultural products and income levels could

arise if some goods (e.g. meat, cheese, fruits) are superior. However, the opposite implications about the

correlation of diversification with income (and thus with subsequent development) could be drawn from the

fact that some agricultural staples are inferior goods.
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maps with fine spatial resolution display crop-specific maximum attainable yields, measured

in tons per hectare per year.10 I also use a measure of grazing suitability from Erb et al.

(2007). Appendix A describes all these data in detail.

Figure 4 displays the county-level average values of land suitability and selected crop-

specific productivities (corn, wheat and cotton). Interestingly, the region in the Midwest

commonly known as the Corn Belt seems to correspond more closely to the region where

wheat productivity is highest, while corn productivity is high in the Corn Belt but highest

in a southeastern region overlapping with the Cotton Belt. As these broad regional patterns,

we need to think in terms of relative productivities.

The key of the identification strategy is that agricultural diversity is influenced by the

dispersion of potential productivities for different crops. Intuitively, a county that has sim-

ilar levels of productivity for many different crops is likely to be more diversified than a

county with productivity for one crop much higher than productivities for all other crops.

To construct an instrumental variable based on crop-specific productivities from GAEZ, I

estimate a fractional multinomial logit (FML) for the shares of specific agricultural products

in total agricultural output at the county level. The FML framework (due to Sivakumar

and Bhat, 2002) generalizes the fractional logit model (Papke and Wooldridge, 1996) to an

arbitrary number of choices, and can be readily applied in the context under consideration,

as explained below (see Mullahy, 2011; Ramalho et al., 2011, for recent discussions).

The FML model estimates by quasi-maximum-likelihood a system of equations in which

the outcome variables are the shares of each product in total agricultural output in county

c (that is, θic for i = 1, 2, ..., 36) as functions of the vector of product-specific productivities

Ac.
11 The functional form considered is

θ̂ic = E[θic|Ac] =
eβ
′
iAc

1 +
∑I−1

j=1 e
β′jAc

. (2)

By construction,
∑I

i=1 θ̂ic = 1 , i.e. the predicted shares for each county add up to 1.

This econometric framework can be motivated by a simple optimal crop choice model.

Recasting the conditional logit framework of choice behavior due to McFadden (1974) in

10Crop yields are constructed for alternative levels of inputs/technology (low, medium, high) and irriga-

tion conditions – I consider the medium level of inputs/technology and rain-fed conditions in my baseline

estimations, as these correspond most closely to the context under consideration.
11In the empirical estimation, the vector of productivities includes 22 relevant crop-specific productivities

available from FAO (barley, buckwheat, cotton, maize, oats, pasture grasses, pasture legumes, alfalfa, potato,

sweet potato, rye, cane sugar, tobacco, rice, wheat, tomato, carrot, cabagge, onion, pulses, sorghum, flax), the

measure of grazing suitability, and the general measure of land suitability for agriculture from Ramankutty

et al. (2002), to help to predict the shares of the products for which there is no productivity data available.
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Figure 4. Land Suitability and Selected Crop-specific Productivities

Land Suitability Corn Productivity

Wheat Productivity Cotton Productivity

terms of profit maximization rather than utility maximization, assume that profits obtained

when choosing crop i for a unit of farm resources j are πij = β′iAj + µij. The relative

magnitudes of the βi’s reflect the price and cost differentials among agricultural products,

as well as any other factors that affect profits for different crops; farmers are assumed to be

price-takers. If the error term µij is assumed to be iid with type I extreme value distribution,

then choice i is optimal (i.e. πij ≥ πi′j for all i′) with probability eβ
′
iAj

1+
∑I−1
j=1 e

β′
j
Aj

.

Figure 5 plots actual against predicted shares for selected agricultural products. The

estimation of the multinomial fractional logit model for US counties in 1860 produces a
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reasonably good fit for most agricultural products. For major crops, like wheat, corn and

cotton, the fit is remarkably good. The fit is not as good for marginal crops, like rice or cane

sugar, for which most observations lie close to the origin, with very low predicted shares and

zero actual shares. But the linear fit shows a positive slope in all 36 agricultural products.

Figure 5. Actual and Predicted Shares of Selected Crops

Wheat Share Corn Share

Predicted Wheat Share Predicted Corn Share

Potato Share Tobacco Share

Predicted Potato Share Predicted Tobacco Share

Once the coefficients of the fractional multinomial logit have been estimated and used

to calculate predicted shares for each agricultural product, I can calculate a measure of

potential agricultural diversity based on those estimates and the crop-specific productivities

for each county. This measure is obtained by simply taking the formula for diversity and

substituting predicted shares for actual shares, i.e. Potential Agri.Diversityc = 1 −
∑

i θ̂
2
ic.

Insofar as the predicted shares calculated earlier are good predictors of the actual shares, the

measure of potential diversity can be a good predictor of actual diversity. The scatterplot
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of the latter variable against the former in Figure 6 seems to indicate high predictive power

in this sample. Figure 7 shows the spatial distribution of potential diversity.

A possible concern regarding the exclusion restriction is that the measures of land pro-

ductivity could capture actual agricultural production conditions rather than exogenous

geographic characteristics. However, these measures are calculated from climate data and

expert knowledge of production processes for different crops, and not from statistical analysis

of actual production patterns around the world.

Figure 6. Actual and Potential Agricultural Diversity

Agri.Diversity

Potential Agri.Diversity

4.2 IV Estimates

I estimate the effect of agricultural diversity using potential agricultural diversity (contructed

as explained above) as an IV. Table 3 reports the IV estimates of the effects of diversity on

development outcomes for the three specifications corresponding to columns (1), (4) and

(6) of Table 2, respectively including: no controls; state fixed effects, land productivity

controls, and distances to water and cities; the previous controls plus crop-specific controls

and socio-economic controls. In each case, the corresponding OLS estimates from Table 2

are reproduced to facilitate comparison.12

12A sufficient condition for the standard errors to be correct when using the generated IV is that the

expectation of the error term in the estimating equation conditional on the measures of potential productivity

used in the IV construction is equal to zero, E(εc|Ac)=0 (see Wooldridge, 2010). Insofar as the estimating

equation adequately controls for measures of overall land productivity and climatic variables that may affect
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Panel A shows the effects on income per capita in 2000, and Panel B of Table 3 shows

results with the share of population in manufacturing in 1900 as the outcome variable. Panel

C displays the results of the first stage. The IV estimates indicate positive and significant

effects of agricultural diversity in 1860 on the size of the manufacturing sector in 1900 and

on income per capita in 2000. IV estimates from specification 2 indicate that an increase of

one standard deviation in agricultural diversity in 1860 (approximately 0.125 in the index)

led to an increase of 0.65 percentage points in the share of population in manufacturing in

1900 and a 5% gain in income per capita in 2000.

Figure 7. Potential Agricultural Diversity

Results from the first stage displayed in Panel C show that the IV has very high predictive

power in all specifications, though the magnitude of the estimated coefficient goes down when

additional controls are included. In all cases, the F-statistics for the significance of the IV in

the first stage are large, and the p-values from the rank test for weak instruments developed

by Kleibergen and Paap (2006) indicate rejection of the null hypothesis of weak instruments.

The IV estimates are larger in magnitude than the OLS estimates. This difference may be

due to measurement error in agricultural diversity – the IV estimates could be correcting for

development outcomes, the sufficient condition is satisfied. In any case, bootstrapped standard errors are

similar to the ones reported in this section and the significance levels of the estimated coefficients remain

unchanged (results are available on request).
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attenuation bias generated by measurement error. A negative bias in the OLS estimates could

also be explained by omitted variables that are negatively correlated with diversification and

positively associated with subsequent economic perfomance, as discussed above. In any case,

for specifications 2 and 3, a Hausman test cannot reject the null hypothesis that the OLS

estimates are consistent.

Table 3. Agricultural Diversity and Development: IV Estimates

Specification 1 Specification 2 Specification 3

OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6)

Panel A. Second Stage. Dependent variable: Ln Personal Income per capita 2000

Agri.Diversity1860 0.547*** 0.866*** 0.333*** 0.395*** 0.287*** 0.417**

(0.0781) (0.117) (0.0564) (0.0918) (0.0609) (0.197)

R2 0.102 0.067 0.410 0.409 0.492 0.489

Panel B. Second Stage. Dependent variable: Share of Population in Manufacturing 1900

Agri.Diversity1860 0.0985*** 0.161*** 0.0423*** 0.0519** 0.0289** 0.110**

(0.0160) (0.0350) (0.0107) (0.0201) (0.0113) (0.0459)

R2 0.087 0.052 0.480 0.082 0.618 0.292

Panel C. First Stage. Dependent variable: Agricultural Diversity 1860

Potential Agri.Diversity 0.956*** 0.703*** 0.489***

(0.0858) (0.0892) (0.108)

R2 0.436 0.555 0.624

F-stat 124.16 62.12 20.54

Kleibergen-Paap p-value 0.000 0.000 0.000

State FE N N Y Y Y Y

Ecological controls N N Y Y Y Y

Distances to water and cities N N Y Y Y Y

Crop-specific controls N N N N Y Y

Socio-economic controls N N N N Y Y

Observations 1,821 1,821 1,821 1,821 1,821 1,821

Notes: See Appendix A for variable definitions and sources. Robust standard errors clustered at the state level are

reported in parentheses. *** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

Figure 8 shows estimated effects of agricultural diversity in 1860 on income per capita and

the extent of the industrialization at different times (with the corresponding 95% confidence

intervals) for my preferred specification. The results indicate that early agricultural diversity

shaped the process of industrialization and had a positive impact on development outcomes

that emerged around the turn of the century.
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Figure 8. Effects of Agricultural Diversity on Development Outcomes
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Notes: The graphs display the estimated coefficients on agricultural diversity from regressions for different outcomes variables,

controlling for state fixed effects, ecological controls and distances to water and cities. Intervals reflect 95% confidence levels.

For income per capita and share of population in manufacturing, all regressions have 1,821 observations. For manufacturing

productivity and wages, sample size fluctuates between 1,616 and 1,821; the estimates of coefficients for agricultural diversifi-

cation 1860 are similar if regressions are performed with the largest possible stable sample for outcomes at different points in

time. Pre-1960 income per capita are not available; as proxies, I use the sum of manufacturing and agricultural output over

population for 1860-1940, and median family income over average family size for 1950

22



5 Mechanisms: Diversity, Skills, and Technical Progress

in the Second Industrial Revolution

Having established the significant positive effects of agricultural diversity on long-run devel-

opment, I proceed to examine the channels that may explain these effects. Various mecha-

nisms proposed by growth theory and urban economics (discussed in section 2) could generate

the observed relationships. This section suggests that the impact of early agricultural di-

versity on the process of industrialization operated through increased variety of industrial

products and skills, formation of novel productive capabilities, and technological progress.

Although these channels are distinct, they are tightly connected and largely complementary

(as emphasized by the model proposed in section 6). The analysis below provides evidence

regarding their plausibility without attempting to disentangle quantitatively the contribution

of each channel.

My approach consists in estimating the impact of early agricultural diversity on interme-

diate variables that capture those channels in order to estabish their plausibility. Following

the results of previous sections indicating that the impact of early agricultural diversity

emerged over the course of the Second Industrial Revolution, I focus on outcomes at the

culmination of that historical period (Appendix D shows how the effects emerged over the

period).

Other channels that may explain the effects of agricultural diversity on development are

examined in Section 7. Overall, the evidence does not support their relevance. Of particular

note is the absence of evidence that the impact of agricultural diversity operated through

agricultural productivity, which highlights the cross-sectoral nature of the effects of early

agricultural diversity. Elucidating the workings of these cross-sectoral effects is the main

purpose of this section.

While the channels considered here have been proposed by theories that refer to economy-

wide diversity, they also shed light on the effects of agricultural diversity in the context

studied here. These mechanisms could have been activated by diversity in agricultural ac-

tivities, as suggested by some illustrative examples mentioned below. They could also have

been activated by manufacturing diversification induced by initial agricultural diversity—as

shown in section 5.1, diversity in agriculture can be the root of industrial diversity.

5.1 Diversity, from Agriculture to Manufacturing

Diversity in agricultural production may foster diversity in the manufacturing sector insofar

as linkages between agricultural and non-agricultural products influence local patterns of
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production. As Hirschman (1981) put it, “development is essentially the record of how one

thing leads to another, and the linkages are that record.” Thus, producing a wider range

of (agricultural) things at early stages of development could lead to a more diverse set of

(industrial) things later on.

Page and Walker (1991) document a number of linkages between different agricultural

products and industrial sectors in the late nineteenth century US, with a focus on the “agro-

industrial revolution” in the American Midwest. Flour milling, the nation’s largest industrial

sector in production value between 1850 and 1880, was the main source of demand for wheat.

Rye, barley, and corn were used by distilling industries to make spirits. Breweries made beer

using hops and barley, and sometimes other grains as well. Cattle raisers were suppliers of

the rising meatpacking industry and leather industries.

In turn, agro-processing industries—which at those times were technologically progres-

sive and accounted for a large share of GDP—had multiple forward and backward linkages.

Grain processing supplied bakeries, confectionery establishments, and other food industries.

Meatpacking establishments produced not only meat products and leather, but also lard,

candles, glue and fertilizer. Agro-processing industries also induced some paradigmatic in-

novations of the nineteenth century, such as the grain elevator and railroads’ refrigerator

cars (Cronon, 2009).

Linkages between different products can be generated by input-output relationships as

well as by common labor skills or knowledge spillovers, as emphasized by Ellison et al. (2010)

in their study of industry co-agglomeration patterns. Going back to Marshall (1895), the

costs of moving goods, people and ideas can all be reduced by agglomeration, thus providing

different sources of industry co-location. Looking at plant-level data from the 1987 US

Census of Manufactures (at the state, PMSA, and county levels), Ellison et al. (2010) find

that input-output dependencies, correlations in labor skills, and technology flows are all

important in explaining industry co-agglomeration patterns.

For illustration purposes, Figure 9 shows the network structure of industrial and agricul-

tural production. The network graph displays pairwise positive and significant correlations

between sectoral employment shares across counties in the sample in 1860 (see notes for

details). The links in this network thus capture any type of linkage (as well as, possibly,

sample noise); Appendix E provides a network representation of the structure of production

based exclusively on input-output linkages, with the same broad implications. The figure

advances two main insights: (1) the network displays a clustered structure and heterogene-

ity in nodes’ connectivity;13 (2) agricultural products are scattered throughout the network.

13Network heterogeneity –associated with the presence of hubs–, measured by the coefficient of variation

of nodes’ connectivity (i.e., nodes’ number of neighbors), is 0.78; the network clustering coefficient, measured
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The implication is that various agricultural products provided different “entry points” into

the industrial sectoral network of production.

Figure 9. Agricultural Products in the Production Network

Notes: The network is defined by the collection of (statistically significant at the 5% confidence level) pairwise correlations

between sectoral employment shares across counties in the sample in 1860 (represented by the links between nodes). The visual

arrangement relies on a spring-embedded type of algorithm. I consider pairwise correlations between agricultural products

and industrial sectors as well as between two industrial sectors, but not those between two agricultural products. Only 50

(out of 59) industrial sectors and 26 (out of 36) agricultural products have at least one positive and significant correlation; the

remaining sectors/products do not appear in this network graph. Employment shares for agricultural products are calculated by

multiplying the employment share of agriculture in the county by the product’s share in the county’s agriculutural production

value.

Consistent with the idea that early agricultural diversity can lead to higher economy-

wide diversity due to the various linkages of agricultural products, Panel A of Table 4 shows

positive and significant impacts on a measure of diversity across manufacturing sectors in

1920.14 I report OLS and IV estimates for the same three specifications used before.

by the average local clustering coefficients (actual over potential connections among the neighbors of a node),

is 0.184.
14Like other outcome variables considered in this section, the index sectoral diversification (see details in

Table 4’s notes) is computed with employment data from the 1-in-100 sample of the 1920 Census, which

reports employment microdata with at least one manufacturing worker for 1,676 counties; the remaining 145

counties in the sample have missing data for these indexes. The main results presented in paper so far (i.e.

those reported in Tables 2 and 3) are qualitative the same if the estimating equations are run for the reduced

sample of 1,676 counties with dissaggregated manufacturing employment data.
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Table 4. From Agricultural Diversity to Industrial Diversity

Specification 1 Specification 2 Specification 3

OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6)

Panel A. Dependent variable: Industrial Sectoral Diversification 1920

Agri.Diversity1860 0.615*** 0.905*** 0.268*** 0.394** 0.188* 0.481*

(0.111) (0.205) (0.0711) (0.188) (0.0925) (0.286)

R2 0.067 0.052 0.266 0.265 0.320 0.314

Panel B. Dependent variable: Industrial Skills Diversification, 1920

Agri.Diversity1860 0.378*** 0.651*** 0.233*** 0.378** 0.175** 0.483**

(0.0847) (0.175) (0.0867) (0.171) (0.0768) (0.220)

R2 0.034 0.016 0.211 0.208 0.269 0.260

State FE N N Y Y Y Y

Ecological controls N N Y Y Y Y

Distances to water and cities N N Y Y Y Y

Crop-specific controls N N N N Y Y

Socio-economic controls N N N N Y Y

Observations 1,676 1,676 1,676 1,676 1,676 1,676

Notes: Industrial sectoral diversification is measured as 1 minus the Herfindahl index of manufacturing employment

shares across 59 different sectors in total manufacturing employment. Industrial skill diversity is calculated as 1 minus

the Herfindahl index of manufacturing employment shares in each of 75 different white collar and blue collar occupations

and a 76th category for all unskilled workers. See Appendix A for other variable definitions and sources. Robust standard

errors clustered at the state level are reported in parentheses. *** Significant at the 1% level; ** Significant at the 5%

level; * Significant at the 10% level.

A broader array of productive activities could yield efficiency gains under imperfect sub-

stitutability between inputs, as in endogenous growth models with expanding varieties or

New Economic Geography models. For industrial products requiring a variety of raw ma-

terials, agricultural diversity could have direct positive effects on productivity. Even if no

single industrial product required more than one agricultural input, shortages of particular

agricultural products could affect particular industrial activities and have significant aggre-

gate effects by propagating through inter-industry input-output linkages. Thus, the positive

effects of agricultural diversity may have operated simply through increased variety of in-

dustrial inputs, insofar as agricultural diversity fostered industrial diversification (as shown

on Panel A of Table 4).

The positive effects of diversity may also have to do with variety in skills. A broader

array of agricultural products, each associated with different production processes, can induce

the development of a wider range of specific skills, either directly required in agricultural
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production or in sectors connected through intersectoral input-output linkages. Consistent

with this idea, Panel B of Table 4 shows positive and significant impacts on agricultural

diversity in 1860 and on an index of skill diversity in the manufacturing sector in 1920. In

turn, variety of skills could yield direct productivity gains in a similar way than input variety

(e.g., a CES production function where specific skills are complements).

5.2 Novel Skills and Technology Flows

Beyond its possible direct impact on productivity, diversity may have triggered dynamic

forces that favored the acquisition of new skills and boosted technology flows. Again, these

mechanisms could have been activated more or less directly by agricultural diversity, or by

manufacturing diversity induced by early agricultural diversification.

The dynamic effects of variety in skills are emphasized by Hausmann and Hidalgo (2011).

Under the assumption that skills are complementary, higher levels of diversity may reflect

a wider range of available skills (or more broadly, productive capabilities), entailing higher

returns to acquiring new skills and thus implying not only a positive effect of diversity on

the level of productivity but also on subsequent growth.

To assess the dynamic effect of diversity in the acquisition of new skills, I focus on the

formation of skills that had a leading role in the Second Industrial Revolution. Using Census

employment data, I identify a subset of occupations that were marginal or non-existent in

1860 but rose to prominence by 1920, such as electricians, tool makers, and auto mechanics.15

Considering each of these 26 occupations as a specific skill, I compute a county-level measure

of new skills formation as the count of these ocuppational categories that represented non-

zero shares of the manufacuring labor force in 1920. Panel A of Table 5 reports estimates

of the effects of initial agricultural diversity on the formation of new skills from Poisson

regressions with the same sets of controls used in the baseline estimating equation. The

results for all specifications, including IV estimates, are positive and significant.

Besides fostering the acquisition of new specific skills, diversity may favor general human

capital formation. Education favors flexibility and adaptability to change, and facilitates the

adoption of new technologies. A local economy using a wide set of production techniques

may be characterized by high returns to education and thus favor human capital formation.

Panel B of Table 5 reports regression results that assess the effect of agricultural diversity

on literacy rates in 1920. Overall, the evidence is consistent with a positive and significant

15This subset of consists of 26 occupations for which the number of respondents in the Census microdata

samples is either zero in 1860 or increased by over a factor of 50 from 1860 to 1920. Full details are provided

in Appendix A.
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effect of diversification on human capital formation in the long run.16

In addition to the effects on the acquisitions of new specific skills and general human

capital, a more diversified economy may be more conducive to technological progress, as

suggested by Jacobs (1969) and others. This effect can be explained by the role of cross-

sector spillovers, recombination and complementarities in the dynamics of technology. Classic

examples include windmills (which combine the principles of watermills and sails), the cotton

spinning mule (which relied on the moving carriage from Hargreaves’ spinning jenny and

the rollers of Arkwright’s water frame), and incandescent light bulbs (which reinvented

candles on the basis of electricity). Well-known historical examples of cross-product spillovers

include the origins of the bow in the bow drill, and more recently, baking soda, which

in addition to its cooking uses has many applications in cleaning and personal hygiene

products. An important case of complementarity from the Second Industrial Revolution

were the correlative improvements in power generation and transmission networks.17

Some examples of complementarities and recombinant innovations from the American

Second Industrial Revolution involve agro-processing industries and agricultural machinery

producers, thus suggesting a direct link between agricultural diversity and technological

dynamism. A salient illustration comes from the history of Ford Motors Company, which

reveals that the concept of the production chain incorporated insights from flour mills, meat-

packing establishments, breweries and canning factories (Hounshell, 1985). Other examples

appear in the production of agricultural implements, which in the mid-nineteenth century was

still characterized by small and medium establishments serving local markets, and was highly

specialized by crop type (Pudup, 1987; Page and Walker, 1991). For example, corn, wheat,

beans, and potatoes all used different types of mechanical planters. While improvements

in tools and machines were often specific to one crop or group of crops, the enlargement

of producers’ know-how presumably yielded cross-product spillovers and higher potential

for later recombinations. In addition, the agricultural machinery sector had technological

complementarities with other industries; the development of the plow, for instance, relied

heavily on advances in iron metallurgy (Pudup, 1987).

16Literacy rates are a limited measure of human capital formation. The results (not shown) are qualita-

tively the same considering as the outcome variable the average number of years education in 1940 (the first

year for which this information is available in the Census data).
17The examples in this paragraph and some others are discussed by Rosenberg (1979), Desrochers (2001),

and Akcigit et al. (2013).
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Table 5. Effects of Agricultural Diversity on Innovation and Human Capital

Specification 1 Specification 2 Specification 3

(1) (2) (3) (4) (5) (6)

Panel A. Dependent variable: New Skills, 1920

Poisson IV-Poisson Poisson IV-Poisson Poisson IV-Poisson

Agri.Diversity1860 4.808*** 9.047*** 2.098*** 2.220* 1.327*** 3.854*

(0.246) (0.923) (0.313) (1.321) (0.333) (2.303)

Panel B. Dependent variable: Literacy rate of people 21+ years, 1920

OLS IV OLS IV OLS IV

Agri.Diversity1860 0.346*** 0.524*** 0.171*** 0.299*** 0.0972*** 0.145*

(0.0739) (0.109) (0.0393) (0.0933) (0.0209) (0.0838)

Panel C. Dependent variable: Patents per 1,000 inhabitants, 1910-1920

Tobit IV-Tobit Tobit IV-Tobit Tobit IV-Tobit

Agri.Diversity1860 0.864*** 1.760*** 0.303*** 0.549** 0.156 1.043***

(0.0783) (0.124) (0.0844) (0.215) (0.0974) (0.400)

State FE N N Y Y Y Y

Ecological controls N N Y Y Y Y

Distances to water and cities N N Y Y Y Y

Crop-specific controls N N N N Y Y

Socio-economic controls N N N N Y Y

Observations 1,821 1,821 1,821 1,821 1,821 1,821

Notes: See Appendix A for variable definitions and sources. Robust standard errors clustered at the state level are

reported in parentheses. *** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

To assess the relevance of the technological progress channel, I study the effects of early

agricultural diversity on a proxy for technological dynamism –patent counts by county per

1,000 inhabitants– between 1910 and 1920.18 I interpret this variable as a proxy for local

technological progress broadly defined, capturing not only innovation but also adoption and

adaptation to local environments (most probrably, only a small fraction of patents led to

actual shifts in the technology frontier, but counts of patents including unsuccessful ones

can be interpreted as an indicator of technological dynamism). The estimates of the effects

of early agricultural diversity from Tobit models, reported in Panel C of Table 5, appear as

positive and significant across specifications (except for the Tobit estimation of specification

2, which yields a positive point estimate but with a large standard error).

18The patents data, which reports the location of each innovator, comes from Akcigit et al. (2013); I am

very grateful to the authors for sharing their data. To calculate patents per 1,000 inhabitants, 1910-1920,

I consider the location (latitude and longitude) given for each patent in the dataset and the boundaries of

1860 counties, and use 1910 population levels.
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5.3 Testing Cross-County Cross-Industry Implications

The mechanisms emphasized above, which point to the role of complementarities, cross-

fertilization, and recombination in the dynamics of skill formation and technology flows,

suggest that the positive effects of diversity should be higher in skill-intensive and knowledge-

intensive activities. In a study of industrial development in the US between 1970 and 1987,

Henderson et al. (1995) find that young high-tech industries of the period (electronic com-

ponents, medical equipment, and computers) were more likely to locate in cities with higher

levels of industrial diversity. Beaudry and Schiffauerova (2009) discuss further evidence

indicating that Jacobs externalities can be particularly important for the development of

high-tech industries.

I study whether early agricultural diversity was conducive to the development of skill-

intensive and knowledge-intensive industrial sectors following the approach of Rajan and

Zingales (1998). I estimate cross-county cross-industry regressions where the outcome vari-

able (ϑs,c) is the percentage of manufacturing workers in county c employed in industrial

sector s, and the key regressor is the interaction between early agricultural diversity at the

county-level and an industry-level measure of complexity (Agri.Diversityc,1860×Complexitys).

The estimating equation is

ϑs,c = αs + αc + γAgri.Diversityc,1860 × Complexitys + εs,c (3)

where αs is an industry fixed effect and αc is a county fixed effect. Skill-intensity is a measure

of average educational levels of the industry’s workers, while the measure of knowledge-

intensity is the percentage of engineers and scientists in total industry employment in the

US economy in 1950; the results are robust to considering the fraction of non-production

workers in total industry employment, another standard measure of knowledge-intensity.

Table 6 shows regression OLS and IV estimates using the two different measures of

sectoral complexity. The results indicate positive and significant effects of early agricultural

diversity on the development of skill-intensive and knowledge-intensive industries.19

19Although estimates from probit and tobit models that explicitly take into account “corner solutions”

could provide insight into the differential effects of early agricultural diversification on entry into skill-

intensive and knowledge-intensive sectors, I refrain from adopting these specifications due to the issues

presented by non-linear models under the presence of interaction terms (Greene, 2010).
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Table 6. Differential Effects on Skill- and Knowledge-intensive Sectors

Dependent variable: percentage of industrial
workers in county c employed in sector s

OLS IV OLS IV

(1) (2) (3) (4)

Agri.Diversityc,1860×Skill-Intensitys 0.409*** 0.711***

(0.0735) (0.106)

Agri.Diversityc,1860×Knowledge-Intensitys 0.467*** 0.937***

(0.010) (0.131)

County fixed effects Y Y Y Y

Sector fixed effects Y Y Y Y

Observations 98,884 98,884 98,884 98,884

Counties 1,676 1,676 1,676 1,676

Industrial sectors 59 59 59 59

R2 0.141 0.141 0.141 0.141

Notes: Observations are at the county-industry level. See Appendix A for definitions and sources of control variables

and the measures of skill-intensity and knowledge-intensity. Robust standard errors are reported in parentheses. ***

Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

6 A Model of Agricultural Diversity, Structural Change

and Long-run Development

In this section I propose a simple multi-sector model of growth and structural change that

explains the long-run effects of agricultural diversity. The framework highlights the inter-

connected roles of complementarities between sector-specific capabilities and cross-sectoral

spillovers in the mechanics of structural change. These features of the model explain not

only the positive effect of agricultural diversity on industrialization, but also its differential

effect on relatively complex industrial sectors. The effects of agricultural diversity unfold

over time as local economies go through critical junctures in which the number of capabilities

originated in agriculture determines whether the process of structural change continues or

ceases.

I consider a small local economy, open to trade and labor flows. Free trade implies

perfectly elastic demands for all goods. This setup allows me to abstract from the demand

side to focus only on the production side. Consumption decisions play no role in the model. In
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turn, under the simplest form of regional equilibrium (with no amenities or congestion costs),

free labor mobility implies that wages are equalized across locations. National wage levels

–to which local wages are equalized– are taken as given. The key assumption underlying the

persistent nature of the effects of diversity is that productivity depends on local productive

capabilities that are not mobile across locations.

6.1 The Structure of Production

Production in the local economy comprises agricultural production and industrial production.

Producers of all goods can sell as much as they want in the national market at a price equal

to one (units of each good are defined to conform to this price normalization), and can hire

as much unskilled and skilled labor as they want at wage levels w̄u,t and w̄s,t, which are taken

as given in the local economy.

Agricultural Production

Agricultural production in a plot of land p is given by Yp = (Apxp)
1−σLσp , where σ ∈ (0, 1),

Ap is land productivity, xp is land size, and Lp is (unskilled) labor hired in plot p (to keep

notation simpler, a time subindex t and a local economy subindex c are dropped whenever

this does not give rise to confusion). To maximize profits (Πp = Yp − w̄uLp), the owner of

plot p hires L∗p =
(

σ
w̄u

) 1
1−σ

Apxp.

Total agricultural employment in the local economy is L∗a =
(

σ
w̄u

) 1
1−σ

ĀaX, where X =∑
p

xp is total land, Āa =
∑
p

xp
X
Ap is the average land productivity in the local economy. The

distribution of land ownership does not affect total agricultural employment and production

levels.

Agricultural output comprises a number of agricultural varieties, determined by exoge-

nous climatic features. For simplicity, agricultural diversity is defined in the context of the

model as the number of agricultural varieties and it is taken as a primitive rather than

explicitly modeled as the outcome of optimal crop choice. In the analysis of comparative

economic performance, land size and average land productivity will be kept constant across

local economies, while disparities in agricultural diversity will be shown to drive disparities

in long-run development.

Manufacturing Production

There are several industrial sectors (indexed by i), each of which may be active or not.

For an active sector i, production is

Yi = A1−α
i

(
L1−γi
u,i Lγis,i

)α
(4)
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where Ai reflects sectoral productivity, Lu,i and Ls,i are, respectively, unskilled and skilled

labor employed in sector i, and α ∈ (0, 1). Decreasing returns to labor reflect limited

entrepreneurial ability.

An active producer in sector i solves the optimization problem Max Πi = Yi − w̄uLu,i −
w̄sLs,i, which determines the optimal quantities of unskilled and skilled labor (and thus total

sectoral labor, L∗i ), as well as equilibrium output and profits:

L∗u,i =
[

(1−γi)α
wu

(
γi

1−γi
wu
ws

)γiα] 1
1−α

Ai ; L∗s,i = γi
1−γi

wu
ws
L∗u,i ;

L∗i ≡ L∗u,i + L∗s,i =
(

1 + γi
1−γi

wu
ws

) [
(1−γi)α
wu

(
γi

1−γi
wu
ws

)γiα] 1
1−α

Ai ;

Y ∗i =
[

(1−γi)α
wu

(
γi

1−γi
wu
ws

)γi] α
1−α

Ai ; Π∗i = (1− α)Y ∗i .

There is heterogeneity across sectors in γi and Ai,t. Heterogeneity in γi implies variation

in skill-intensity and average output per worker across sectors. Defining skill-intensity as the

share of sector’s workers that are skilled in equilibrium, we have that h∗i =
L∗s,i

L∗u,i+L
∗
s,i

= ws−wu
ws

+

1
1−γi

wu
ws

, and thus
∂h∗i
∂γi
> 0. Equilibrium output per worker is y∗i = Y ∗i /L

∗
i =

1
α
wuws

γiwu+(1−γi)ws , and

thus
∂y∗i
∂γi
> 0. The next subsection explains the source of heteregeneity in productivity across

sectors.

6.2 Productivity and Local Capabilities

Productivity in sector i in local economy c at time t depends on the level of technology (Tt)

and on the level of efficiency (Ei,c,t):

Ai,c,t = Tt × Ei,c,t (5)

Technology levels are the same for all local economies –the technology frontier is freely

accessible. For simplicity, technology levels are the same for all sectors as well.20 Thus, the

source of heterogeneity in productivity across sectors and locations is Ei,c,t (in the rest of

this section and the next, which focus on a single local economy, I drop the subindex c to

simplify notation).

Efficiency levels in the different sectors of the local economy are determined by local

capabilities, under the presence of complementarities and cross-sector spillovers. These dif-

ferent elements, explained below, underlie the role of diversity captured in this model. A

20I will assume that the technological frontier moves at a constant rate gT after industrial technologies

become available at time zero (the onset of the “Second Industrial Revolution”). I will also assume gw̄u=

gw̄s=gT 1−α , ensuring that wages and output per worker grow at the same rate in the steady state.
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key assumption is that capabilities are not mobile across locations because the knowledge

embedded in capabilities cannot be codified.21

Sector i requires a set of sector-specific capabilities indexed by ji=1, ..., Ji, each of which

has its own efficiency level ejit∈ [0, ē]. Each capability can be thought of as a segment of the

production process involving the application of a particular piece of knowledge. While some

sectors may require only one or two capabilities, others may require several: Ji captures the

level of complexity of sector i (as explained later, Ji is assumed to be positively related with

skill-intensity).

There are complementarities across capabilities within each sector. Featuring an “O-ring”

property (Kremer, 1993), overall efficiency in sector i is given by

Eit =

Ji∏
j=1

ejit . (6)

There are cross-sectoral spillovers within each local economy.22 In particular, the effi-

ciency of the local economy for a particular capability is given by the proximity of that

capability to a previously established capability in some other sector of the economy – where

“proximity” captures a notion of similarity in the knowledge space. The local economy

will be inefficient at performing operations that are far from any operation that is already

performed in the economy, but highly efficient at doing things that are close to something

already done in the economy.

I use the following definitions and notation. The set of established capabilities at time t

is denoted by Ωt (and its cardinality by Ωt), while the set of capabilities in sectors other than

i is denoted by Ω
i′6=i
t (and its cardinality by Ω

i′6=i
t ). Incorporating the notion of cross-sector

spillovers, local efficiency for capability j required by sector i is given by ejit = ē−d(ji,Ω
i′6=i
t−1),

where d(ji,Ω
i′6=i
t−1) is the minimum distance between that capability and an element of the set

of previously established capabilities in other sectors.

I assume that the positions of capabilities in the knowledge space are independent draws

from a uniform distribution on a circle with radius ē/π. Thus, the pdf of the minimum

distance d(ji,Ω
i′6=i
t−1) of a capability and a previously existing one in some other sector is

f(d) = Ω
i′6=i
t−1ē

−Ω
i′6=i
t−1 (ē − d)Ω

i′6=i
t−1−1, and thus E

[
d(ji,Ω

i′6=i
t−1)
]

= ē

Ω
i′6=i
t−1+1

. Distances between any

two locations in the circle are between zero and ē, ensuring that ejit ∈ [0, ē].

21To make capabilites inmobile one also needs to assume that individual workers cannot take capabilities

with them to different locations and that hiring groups of workers is not possible due to coordination

problems.
22Scherer (1984) provides evidence on cross-industry technology flows, while Rosenthal and Stange (2004)

review evidence pointing to the localized nature of knowledge spillovers.
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Since the draws for the minimum distances corresponding to different capabilities required

by a sector are independent, expected efficiency in sector i is given by

E(Eit) = E

(
Ji∏
j

ejit

)
= [E(ejit)]

Ji = ēJi

[
1− 1

Ω
i′6=i
t−1 + 1

]Ji
. (7)

The elasticity of expected efficiency in sector i with respect to the number of previously

existing capabilities in other sectors is

η
E(Eit),Ω

i′6=i
t−1

=
∆E(Eit)/E(Eit)

∆Ω
i′6=i
t−1/Ω

i′6=i
t−1

.

The following two lemmas characterize how expected efficiency in a manufacturing sector

depends on the number of established capabilities in other sectors.

Lemma 1. Expected efficiency in sector i is increasing in the number of previously existing

capabilities in other sectors: η
E(Eit),Ω

i′6=i
t−1

> 0 .

Proof. See Appendix F.

The intuition behind Lemma 1 is that in a more diverse economic environment (i.e.,

one with a broader range of established capabilities) there is a higher likelihood of finding

existing pieces of knowledge that are close to the ones required by any given sector. Lemma 2

captures the differential impact of diversity on expected efficiency in complex sectors, which

have production chains with more links and thus are more sensitive to the links’ average

weakness.

Lemma 2. The elasticity of expected efficiency in sector i with respect to the number

of previously existing capabilities in other sectors is increasing in the sector’s complexity:

∆η
E(Eit),Ω

i′6=i
t−1

/∆Ji > 0 .

Proof. See Appendix F.

Sectoral complexity (Ji) and skill-intensity (γi) are assumed to be positively related; for-

mally, set γi = G(Ji) with ∆G/∆Ji > 0. We can think of the skill that defines skilled workers

as general human capital that facilitates the understanding of connections between differ-

ent segments of a productive process, which is more important in sectors where production

involves a large number of segments. Consistent with this logic, each agricultural product,

characterized by a simple production process that does not involve skilled labor, is assumed
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to require a single capability. Thus, the (exogenously determined) number of agricultural

varieties in the local economy determines one-to-one the number of capabilities generated

by agriculture, denoted by ΩA.

6.3 The Mechanics of Entry and Structural Change

There is one potential entrant in each sector per period, and entrants that become producers

retire after one period.23 Setting up production is costly, as it requires learning a blueprint

prescribed by the technology frontier and implementing it in the local economy.

The setup cost, Ft = ψT 1−α
t , increases in a lock-step fashion with the level of technology,

reflecting that more advanced blueprints are costlier to implement. The minimum distances

of required capabilities with respect to previously established ones become known only after

the entrepreneur incurs the setup cost. In making the entry decision, the potential entrant

–assumed to be risk neutral– only knows the expected level of efficiency.

A sector will be active if expected benefits are larger than the setup cost, which defines

a threshold in expected efficiency above which entry takes place:

E(Πit) > Ft ⇐⇒ E(Eit) > Ẽit =
ψ
(
wu,t
T 1−α
t

) α
1−α

(1− α)
[
(1− γi)α

(
γi

1−γi
wu,t
ws,t

)γi] α
1−α

.

Assuming that gw̄u= gw̄s= gT 1−α , which ensures that wages and output per worker grow

at the same rate in the steady state, the threshold in expected efficency is time-invariant:

Ẽit = Ẽi.

The threshold for entry into sector i can be expressed as a threshold in the number of

established capabilities in other sectors:

Ω̃i =
1

1− Ẽ
1/Ji
i

ē

− 1 .

If the number of previously established operations in other sectors is below the threshold,

expected labor employed in sector i will be zero; if it is above the threshold, expected

employment will be the optimal quantity derived before for active sectors. Thus,

E(Li,t) = E(L∗i,t)× 1[
Ω
i′6=i
t−1>Ω̃i

] .
where E(L∗i,t) = E(L∗u,i,t + L∗s,i,t) =

(
1 + γi

1−γi
wu
ws

) [
(1−γi)α
wu

(
γi

1−γi
wu
ws

)γiα] 1
1−α
E(Ai) is the expected

optimal employment in an active sector, and 1[
Ω
i′6=i
t−1>Ω̃i

] is an indicator function that takes a

23While these simplifying assumptions allow me to get a simple, closed-form solution to the model, the

qualitatively results would hold under alternative assumptions.
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value of one when the number of previously established operations in other sectors is above

the threshold (i.e., the sector is active) and zero otherwise.

The following propositions describe how the set of established capabilities affects the

expected composition of production in the local economy.

Proposition 1. The expected value of employment in active sector i is non-decreasing in

the number of previously established capabilities in other sectors: η
E(L∗

it
),Ω

i′6=i
t−1

≥ 0.

Proof. Since E(L∗it) is a linear function of E(Eit), we have that η
E(L∗

it
),Ω

i′6=i
t−1

= η
E(Eit),Ω

i′6=i
t−1

.

Thus, Proposition 1 follows directly from Lemma 1. �

Proposition 2. (Differential effect on complex sectors). The elasticity of expected em-

ployment in active sector i with respect to the number of previously existing capabilities in

other sectors is increasing in the sector’s complexity: ∆η
E(L∗

it
),Ω

i′6=i
t−1

/∆Ji > 0

Proof. Since η
E(L∗

it
),Ω

i′6=i
t−1

= η
E(Eit),Ω

i′6=i
t−1

, Proposition 2 follows directly from Lemma 2. �

Propositions 1 and 2 (which describe the effects of diversity on sectoral employment

levels) are straightforward implications of Lemmas 1 and 2 (which characterize the effects on

sectoral efficiency levels). Beyond describing the impact on the composition of production,

Proposition 2 suggests that under some conditions diversity can lead to higher average skill-

intensity and output per worker in the local economy, since complex sectors have high values

of γi (recall that
∂h∗i
∂γi
> 0 and

∂y∗i
∂γi
> 0).

While Propositions 1 and 2 characterize the effects of diversity in the set of established

capabilities through the intensive margin (i.e., the volume of employment in active sectors),

Proposition 3 refers to the the effects of diversity across all industrial sectors on the extensive

margin (i.e., entry) (part a), and the intensive and extensive margins combined (part b).

Proposition 3. (Industrialization). (a) The number of active industrial sectors is increas-

ing in the number of previously existing capabilities: ∆
∑I

i=1 1
[
Ω
i′6=i
t−1>Ω̃i

]/∆Ωt−1 ≥ 0 ; (b) The

expected value of total industrial employment is non-decreasing in the number of previously

existing operations: ∆E
(∑I

i=1 Lit

)
/∆Ωt−1 ≥ 0.

Proof. See Appendix F.
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6.4 The Evolution of Local Economies

The number of capabilities in period t is determined by the set of capabilities established in

period t− 1:

Ωt =
I∑
i=1

Ji × 1[
Ω
i′6=i
t−1>Ω̃i

] + ΩA (8)

To characterize the evolution of capabilities more precisely, start by noting that the

collection of sector-specific thresholds can be arranged in increasing order. This increasing

sequence defines a ranking of industrial sectors by their timing of entry. We can then use

this ranking to define a new index spanning industrial sectors, q = 1, ..., I, where sectors

with high q have high entry thresholds and thus enter production relatively late (if they

do enter eventually). If there are sectors with the same entry threshold Ω̃i, in the q-index

they are assigned contiguous integers in arbitrary order. A sector with a high q never enters

production before a sector with low q, though the two sectors may enter production in the

same period even if they have different entry thresholds.24

By providing a timing-of-entry ordering of industrial sectors, the q-index helps to identify

which sectors are rest points and characterize the evolution of the local economy.

Definition 1. (Rest point). Industrial sector q = m (with m ≥ m′ for any m′ such that

Ω̃m′ = Ω̃m) is a rest point of the local economy if
∑m

q=1 Jq + ΩA < Ω̃m+1. Industrial sector

q = I is also defined as a rest point.

Let us empashize the intuition behind the definition. If the economy has entered produc-

tion in all sectors with q ≤ m (with sector m having the highest arbitrarily assigned q-index

value among sectors with the same entry threshold), then the number of established capa-

bilities is
∑m

q=1 Jq + ΩA. If this is below the threshold required to enter production in sector

m + 1 (denoted by Ω̃m+1), then the process of structural change cannot go beyond sector

m. Likewise, the process of structural change cannot go beyond sector q = I (the one with

the highest entry threshold), since if that sector becomes active there are no more inactive

sectors to enter. When the local economy reaches a rest point, the process of structural

change reaches an end.

A local economy may have more than one rest point, but it is the first one (the rest point

with lowest q) that matters, as it defines the steady state of the economy.

Definition 2. (Steady state). The rest point with the lowest q defines the steady state of

24The number of capabilities may go from below the threshold of the low q sector to above the threshold

of the high q sector in just one period as other sectors with lower q-index values become active.
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the local economy. The sector defining the steady state is denoted by q∗, and the number of

capabilities in the steady state is Ω∗ =
∑q∗

q=1 Jq + ΩA.

The process of structural change takes the economy to enter production in sector q∗, and

that is the last sector to become active—the culmination of the local economy’s development

path. While the economy will continue to grow at a rate given by (exogenous) technological

progress in the frontier, endogenous growth through diversification is shut down. Thus,

the steady state is characterized by a constant growth rate and a stable composition of

production.

The set of sector-specific entry thresholds with the ordering captured in the q-index,

together with the number of agricultural capabilities, provide sufficient information to de-

termine the steady state of the local economy. In turn, the equation for the number of

capabilities at time t can be recasted using the q-index and discarding all sectors with

q > q∗. This revised version of equation (5), which may labelled as the capability formation

function, together with the initial condition (the number of capabilities before the onset of

industrialization), provide a full characterization of the evolution of the local economy:

Ωt =

q∗∑
q=1

Jq × 1[
Ω
q′6=q
t−1 >Ω̃q

] + ΩA

Ω0 = ΩA

(9)

To establish the effects of agricultural diversity on comparative economic development,

consider N local economies that are identical in all respects but for their levels of agricultural

diversity, i.e. they have different values of ΩA
c , where the c subindex spans all the local

economies under consideration.

Proposition 4. (Comparative economic performance). If a sector m is a rest point for

a local economy s, then it is also a rest point for any local economy z with ΩA
z < ΩA

s . In

the steady state, economy s has a (weakly) higher number of active industrial sectors and a

higher number of established capabilities than any economy with lower agricultural diversity:

q∗s ≥ q∗z and Ω∗s > Ω∗z.

Proof. If m is a rest point for economy s, this means that
∑m

q=1 Jq + ΩA
s < Ω̃m+1. And

since ΩA
z < ΩA

s , then
∑m

q=1 Jq + ΩA
z < Ω̃m+1, which means that m is a rest point for economy

z. Since any rest point for economy s is also a rest point for economy z (which may have

additional rest points), then the sector defining the steady state of economy s (the rest point

with lower q) must be at least as high (in terms of q) as the one for economy z, i.e. q∗s ≥ q∗z ;

and thus we have that Ω∗s =
∑q∗s

q=0 Jq + ΩA
s >

∑q∗z
q=0 Jq + ΩA

z = Ω∗z �
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6.5 Numerical Illustration

I present a numerical illustration of the long-run effects of agricultural diversity by consider-

ing two economies that are identical in all respects but for their levels of ΩA
c . A time period is

one decade. The parameter values used in the simulation –intended to be reasonable without

aiming for empirical accuracy– are displayed in Table 7 (growth rates are annualized). I as-

sume that the technological frontier moves at a constant rate gT after industrial technologies

become available at time zero (the onset of the “Second Industrial Revolution”).

Table 7. Parameter Values

Parameter Value

Total Agricultural Land, X 1

Agricultural technology, Aa0 10

Industrial technology term, T 1−α
0 10

Wage of unskilled workers, wu0 1

Wage of unskilled workers, ws0 1.5

Industrial returns to scale, α 0.65

Land returns to scale, σ 0.65

Growth rates, gT 1−α , gAa , gws , gwu 0.02

Entry cost parameter, ψ 2.5

Max operation efficiency, ē 1.01

Distribution of Ji 1 sector for each Ji = 1, ..., 20

γi 1− 1
Ji+1

Consider first local economy b, with ΩA
b = 5. The capability formation function corre-

sponding to this initial level of diversity, given the parameter values, is displayed in Figure

10. The step function describing established capabilities crosses the 45o line for Ω∗b = 40;

this is the steady state number of capabilities. The dotted line for numbers of capabilities

Ω∗b = 40 corresponds to sectors beyond the steady state (q∗b = 8), which cannot be reached.
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The capabality formation function and the initial condition fully describe the evolution

of the local economy over time:

Ωb,t =
8∑
q=1

Jq × 1[
Ω
q′6=q
b,t−1>Ω̃q

] + 5

Ωb,0 = 5

(10)

Figure 10. Capability Formation in Economy b (with ΩA
b = 5)
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Consider now another local economy, r, for which the number of agricultural capabilities

is ΩA
r = 10; for this local economy

∑7
q=1 Jq + ΩA

r < Ω̃8, and so sector q = 8 is not a rest

point. For economy r the capabilities formation function reaches all the way up to sector

q = I, since there is no rest point before that last industrial sector. Figure 11 displays

thecapabilities formation functions for the two local economies, capturing the divergence in

their patterns of development that emerges in the critical juncture in which b reaches a rest

point while r continues the process of structural change.

A full picture of comparative economic performance is displayed in Figures 12a to 12d. At

time zero, at the onset of the industrialization process, the two economies exhibit only slight

disparities; economy b enters production in two industrial sectors, while economy r takes its
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first step into industrialization with three sectors. They both acquire additional capabilities

and go through a process of structural change in the following periods with only moderate

differences of total capabilities, active industrial sectors, and overall industrialization (i.e.

the share of workers employed in manufacturing). The gap in output per worker between

the two economies (displayed in Figure 12d) opens up at time zero, but tends to be closed

in the following decades.

Figure 11. Capability Formation in Economies b (with ΩA
b = 5) and r (with ΩA

r = 10)
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A few decades into the industrialization process, a critical juncture is reached. Economy

b reaches a rest point in sector q∗b = 8, while economy r gets there with enough capabilities to

enter production in sector q = 9, which induces the formation of new capabilites and enables

a continued process of structural change. The gap in number of capabilities and active

industrial sectors, as well as in overall industrialization and output per worker, drastically

opens up subsequently, and it stabilizes only several decades after, when economy r reaches

its steady state.
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Figure 12a. Number of Established Capabilities
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Figure 12b. Number of Active Industrial Sectors
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Figure 12c. Share ofworkers in manufacturing
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Figure 12d. Output per Worker in r relative to b
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7 Other mechanisms

7.1 Agricultural Productivity

The literature on structural change has devoted considerable attention to the relative impor-

tance of manufacturing productivity growth and agricultural productivity growth as drivers

of industrialization (e.g., Alvarez-Cuadrado and Poschke, 2011). Section 4 shows that early

agricultural diversity was conducive to productivity growth in the manufacturing sector,

which would pull labor out of agriculture. Was industrialization also fostered by a positive

effect of agricultural diversity on agricultural productivity that pushed labor out of agricul-

ture? Or maybe diversity negatively affected productivity, and agricultural productivity was

actually bad for industrialization?

For an agricultural productivity channel to be operative, two links in the causal chain

have to be in place—the effect of agricultural diversity on agricultural productivity and the

effect of the latter on industrialization have to be significant, and they need to have the

same sign. This subsection discusses how those links may operate and examines each of

them empirically in the context under examination. Overall, the evidence does not support

the relevance of this channel.

How would agricultural diversity affect agricultural productivity? A positive effect could

operate through economies of scope in agricultural production (Paul and Nehring, 2005;

Kim et al., 2012). Complementarities or positive externalities across products may arise

from the beneficial use of byproducts (e.g. manure from livestock used as fertilizer) or from

more efficient use of labor (e.g., if labor requirements for different crops have heterogeneous

seasonal patterns). Diversity may also help to preserve soil quality over time (Russelle

et al., 2007). Moreover, it could broaden the knowledge base and thus foster innovation and

adoption of new techniques. On the other hand, diversity may imply foregoing gains from

specialization due to product-specific economies of scale.

Panel A of Table 8 shows IV estimates of the effects of agricultural diversity on agri-

cultural productivity in 1920 (as measured by the natural log of farm output per acre).

Although the point estimates are positive, the estimates do not indicate a significant effect

of agricultural diversity on productivity levels in 1920.

How would agricultural productivity, in turn, affect industrialization? Agricultural pro-

ductivity growth may be a necessary condition for a successful take-off. Higher agricultural

productivity can release labor to be employed in manufacturing; it means cheaper food for

workers and cheaper inputs for firms; it creates resources for investment, which can be chan-

neled towards industrial capital formation; it also means higher purchasing power and thus

44



higher demand for local manufacturing production.25 On the other hand, Matsuyama (1992)

demonstrates that in open economies agricultural productivity can have a negative effect on

industrial growth by shifting comparative advantage in favor of agriculture; naturally, high

transport costs could hold back that effect.

Panel B of Table 8 shows IV estimates of the effects of agricultural productivity in

1860 on the share of population employed in manufacturing in 1920. The IV estimates

use the max and average of (normalized) attainable yields for the five major agricultural

products as instruments for actual agricultural productivity. The results are not robust

across specifications.

Table 8. Agricultural diversity, agricultural productivity, and industrialization

Specification 1 Specification 2 Specification 3

OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6)

Panel A. Dependent variable: Ln Farm Productivity, 1920

Agri.Diversity1860 0.579 0.648 0.270 0.669 0.421* 1.216

(0.387) (0.442) (0.222) (0.608) (0.241) (1.080)

R2 0.018 0.017 0.464 0.460 0.506 0.489

Panel B. Dependent variable: Share of population in manufacturing, 1920

Ln Farm Productivity1860 0.0156*** -0.0141 0.0135** -0.0180 0.00587 0.00480

(0.00522) (0.0177) (0.00512) (0.0218) (0.00479) (0.0357)

R2 0.383 0.03 0.413 0.08 0.519 0.237

State FE N N Y Y Y Y

Ecological controls N N Y Y Y Y

Distances to water and cities N N Y Y Y Y

Crop-specific controls N N N N Y Y

Socio-economic controls N N N N Y Y

Observations 1,821 1,821 1,821 1,821 1,821 1,821

Notes: See Appendix A for variable definitions and sources. Robust standard errors clustered at the state level are

reported in parentheses. *** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

Overall, the results presented in Table 8 do not support the relevance of the agricultural

productivity channel, since none of the two links in the causal chain receives strong empirical

support.

25See, e.g., Johnston and Mellor (1961). An early proponent of the complementarity between agricultural

and industrial activities was Alexander Hamilton, who wrote in his 1791 Report on Manufactures that “the

aggregate prosperity of manufactures, and the aggregate prosperity of Agriculture are intimately connected”

(quoted by Olmstead and Rhode, 2009).
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7.2 Volatility, Risk and Local Financial Development

The basic idea that diversification dampens the effects of negative sector-specific shocks

goes back to Marshall (1895), who noted that “a district which is dependent chiefly on one

industry is liable to extreme depression, in case of a falling-off in the demand for its produce,

or of a failure in the supply of the raw material which it uses.” A positive relationship

between diversity and income levels operating through reduced risk and volatility appears

in some recent theoretical contributions reviewed in section 2 (see Acemoglu and Zilibotti,

1997; Koren and Tenreyro, 2013).

Through its relationship with risk, diversity could affect the development of local finan-

cial institutions, which may in turn affect development through channels other than risk

management (e.g., the channeling of savings to investment). Diversity may increase credit

supply insofar as it allows local banks to reduce risk exposure by funding a wide array

of imperfectly correlated projects (see Ramcharan, 2010b, who calls this the “production

structure hypothesis”).

On the other hand, places that were not well-suited to limit volatility through diversi-

fication may have had higher demand for financial intermediation. Higher volatility could

also foster mutual insurance arrangements and social trust (Durante, 2009). Thus, volatil-

ity could have positive effects through endogenous financial development and social norms,

especially in an epoch of rapid change like the Second Industrial Revolution.

I begin by assessing the idea that under incomplete financial markets volatility may

hinder the emerging industrial sector. I construct a measure of predicted volatility using the

mix of agricultural products of each county predicted by the FML model and the year-to-

year evolution prices at the country level from 1866 to 1919 for 16 products that account

for over 93% of total agricultural output in 1860 in my sample. Keeping the predicted

shares of products fixed, I calculate the value of counties’ agricultural output in each year

as ya
ct =

∑
i θ̂icpit, and then calculate the average annual growth rate Gya

ct and its standard

deviation, St.Dev.(Gya
ct).

Constructed in that way, Std.Dev.(Gya
ct) is an exogenous predictor of the volatility of

agricultural output value growth induced by the volatility of macro prices. This indicator

of agricultural volatility is negatively correlated with initial diversity (the correlation in this

sample is -0.34), but it also depends on the particular mix of agricultural products of each

country and on the covariances of price changes.26

26The main result (that the possitive effects of diversification are not accounted for by volatility reduction)

also holds for other measures of volatility. In particular, I consider alternative measures to address different

concerns: (1) if changes in prices reflect supply shocks rather than demand shocks, the baseline measure of

volatility may not be exogenous; to capture for macro supply shocks, I combine the price data with national
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To assess the relevance of the mechanism under consideration, I include the county-level

mean and standard deviation of Gya
ct in the same specifications considered before. Table

9 reports the results of these estimations. To facilitate comparison, the results without

including these additional regressors are reproduced in the same table.

Table 9. Assessing the Risk and Volatility Channel

Dependent variable: Ln Manufacturing labor productivity 1920

Specification 1 Specification 2 Specification 3

(1) (2) (3) (4) (5) (6)

Panel A. OLS estimates

Agri.Diversity1860 0.470*** 0.778*** 0.275*** 0.365*** 0.277*** 0.362***

(0.113) (0.185) (0.0910) (0.112) (0.0845) (0.125)

St.Dev.(Gya
ct) 0.574** 0.167 0.249

(0.246) (0.126) (0.153)

R2 0.029 0.066 0.255 0.259 0.277 0.280

Panel B. IV estimates

Agri.Diversity1860 0.877*** 1.583*** 0.414** 0.770** 0.568** 0.882**

(0.214) (0.328) (0.206) (0.380) (0.253) (0.449)

St.Dev.(Gya
ct) 1.353*** 0.500 0.653

(0.390) (0.323) (0.404)

R2 0.007 0.038 0.255 0.255 0.268 0.271

State FE N N Y Y Y Y

Ecological controls N N Y Y Y Y

Distances to water and cities N N Y Y Y Y

Crop-specific controls N N N N Y Y

Socio-economic controls N N N N Y Y

Observations 1,821 1,821 1,821 1,821 1,821 1,821

Notes: Gya
ct is the mean annual growth of ya

ct =
∑
i θ̂icpit, a predictor of the value of agricultural output constructed

with predicted shares for 1860 and subsequent national prices. St.Dev.(Gya
ct) is its standard deviation. See Appendix A

for other variable definitions and sources. Robust standard errors clustered at the state level are reported in parentheses.

*** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

The theories suggesting that diversity has positive effects by reducing volatility would

predict a negative effect of St.Dev.(Gya
ct) on manufacturing productivity and a reduction

data on yields per acre, and construct a measure with macro prices times productivities for 11 crops that

cover around 70% of agricultural production; (2) I construct adjusted volatility measures to avoid bias due

to heterogeneity in the percentage of production for which data is unavailable by making some assumptions

about the mean, standard deviation and correlation of price changes for products with missing data; (3) I

consider alternative price deflators.
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of the magnitude of the coefficient on agricultural diversification when St.Dev.(Gya
ct) is

included as control. If that was the only channel through which agricultural diversity affects

development, the coefficient on agricultural diversity should drop to zero.

The results are not in line with those predictions. The estimated effect of volatility is

not negative and the estimated coefficient on initial diversification is not reduced, so this

channel does not seem to account for the positive effects of agricultural diversity. The

estimated effect of volatility is actually positive (though not consistently significant) and the

estimated coefficients on diversity actually increase when including the measure of predicted

volatility (though this is not always the case when alternative measures of volatility are

considered; see footnote 25). Although not fully robust for all specifications and volatility

measures, these results suggest that volatility may actually have positive effects.

The idea that diversity may affect financial development (either negatively through credit

demand or positively through credit supply) is not supported by the evidence. Table 10

presents estimates of the effects of volatility on county-level bank density (number of banks

per capita) in 1920, the measure considered by Rajan and Ramcharan (2011) in their study

of local financial development in this period (see section 7.3).

Table 10. Effects of Agricultural Diversity on Local Financial Development

Dependent variable: Bank density, 1920

Specification 1 Specification 2 Specification 3

OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6)

Agri.Diversity1860 0.00801 0.0321 -0.0400 0.110 -0.0618 -0.111

(0.157) (0.333) (0.0696) (0.159) (0.0530) (0.0922)

State FE N N Y Y Y Y

Ecological controls N N Y Y Y Y

Distances to water and cities N N Y Y Y Y

Crop-specific controls N N N N Y Y

Socio-economic controls N N N N Y Y

Observations 1,821 1,821 1,821 1,821 1,821 1,821

R2 0.000 0.000 0.658 0.090 0.705 0.219

Notes: See Appendix A for variable definitions and sources. Robust standard errors clustered at the state level are

reported in parentheses. *** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.
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7.3 Land Concentration and Local Institutions

Agricultural diversity may have affected the manufacturing sector by molding the distribu-

tion of land ownership. If there are product-specific fixed costs (e.g., crop-specific skills or

capital) or other sources of increasing returns to scale, then places with low potential diver-

sity (high relative productivity for one or a few products) would tend to have larger farm

sizes than places with low potential diversity. In addition, if economies of scope decline with

size, the benefits of farm-level diversification are higher for small farms (Chavas and Aliber,

1993), and thus places with high potential diversity may be more conducive to small farms.

In turn, the presence of large landowners may retard the emergence of human capital

promoting institutions (Galor et al., 2009) and/or hinder local financial development (Rajan

and Ramcharan, 2011), thus negatively affecting the dynamics of industrialization. Galor

et al. (2009) provide a panel data analysis at the US state-level from 1880 to 1940 showing

that concentration in land ownership had a significant adverse effect on educational expen-

ditures. This was a period characterized by a massive expansion of secondary education,

which—as suggested by the model presented in their paper—was key for the transition from

agriculture to modern industry. Ramcharan (2010a) and Vollrath (2013) provide evidence

to the same effect from US county-level data during the same period.

Rajan and Ramcharan (2011) argue that landed elites can hinder the development of

local banks to mantain their power. Their paper shows, also for the early 20th century US,

that in counties with higher land inequality there were fewer banks per capita and credit

was costlier and more limited. Even if large landowners did not operate against financial

develpoment, high land inequality could imply that many prospective borrowers had limited

access to credit due to insufficient collateral (e.g., Chakraborty and Ray, 2007).27

Did agricultural diversity lower land concentration? Panel A of Table 11 shows estimates

of the effects of agricultural diversity in 1860 on the share of farmland corresponding to

farms larger than 500 acres in 1920.28 On average, farms this large represented around 1.5%

of farms and 10% of farmland, but these figures were much larger in some counties; farms

over 500 acres accounted for more than 50% of farmland for 20 counties in the sample, most

of them in Texas, Louisiana and Georgia, which had very large predicted and actual shares

of production in wool, cane sugar, and rice, respectively. The results show that higher levels

27Adamopoulos (2008) also argues that land concentration can hinder industrialization insofar as landed

elites can influence policies to protect their rents. In his model, which is used to explain the divergence

between Argentina and Canada, the policy that blocks industrialization is an import tariff on intermediate

inputs required by manufacturing. Naturally, this mechanism cannot explain divergence across US counties.
28Results are similar, but not robust across specifications, if the outcome variable is the share of land

corresponding to other size thresholds, or the share corresponding to the largest 5%, 10% or 20% of farms.
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of diversity are associated with lower levels of land concentration.

Given its negative effect on land concentration, agricultural diversity may have favored

local school expenditures and/or financial development through the mechanisms discussed

above. However, section 7.1 shows no significant effects of early agricultural diversity on

bank density in 1920. Likewise, the evidence does not support the idea that it may have

positively affected educational investments.29 Panels B and C of Table 11 show results from

regressions of school expenditures per capita in 1890 and 1932, respectively, on agricultural

diversity in 1860. The sign and significance of the estimates are not robust.

Table 11. Effects of Agri.Diversity on Land Inequality and Public Schooling

Specification 1 Specification 2 Specification 3

OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6)

Panel A. Dependent variable: Share of farmland in farms over 500 acres 1920

Agri.Diversity1860 -0.319*** -0.304*** -0.169*** -0.158*** -0.141** -0.179

(0.0715) (0.0741) (0.0336) (0.0534) (0.0535) (0.116)

R2 0.152 0.152 0.564 0.564 0.636 0.634

Panel B. Dependent variable: School expenditures per capita, 1890

Agri.Diversity1860 1.058*** 2.100*** 0.0212 -0.186 0.112* -0.269

(0.255) (0.458) (0.0774) (0.151) (0.0656) (0.250)

R2 0.106 0.003 0.866 0.137 0.879 0.203

Panel C. Dependent variable: School expenditures per capita, 1932

Agri.Diversity1860 -0.494* -0.283 -0.461 -0.291 -0.167 -0.272

(0.256) (0.444) (0.272) (0.622) (0.248) (1.078)

R2 0.009 0.007 0.237 0.038 0.294 0.109

State FE N N Y Y Y Y

Ecological controls N N Y Y Y Y

Distances to water and cities N N Y Y Y Y

Crop-specific controls N N N N Y Y

Socio-economic controls N N N N Y Y

Observations 1,821 1,821 1,821 1,821 1,821 1,821

Notes: See Appendix A for variable definitions and sources. Robust standard errors clustered at the state level are

reported in parentheses. *** Significant at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.

29The absence of robust evidence regarding an effect of agricultural diversity on school expenditures may

seem to contradict the previously established effects of diversity on the formation of specific skills and literacy.

However, formation of specific skills may have taken place outside public schools; moreover, higher demand

for general human capital may have been satisfied without increasing local school expenditures. In accordance

with the model proposed in section 6, skill formation may have been attained through immigration.
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8 Conclusion

This paper shows that agricultural production patterns preceding the onset of the Second

Industrial Revolution had long-run effects on development across US counties. According

to IV estimates, a one-standard-deviation increase in agricultural diversity in 1860 led to

gains of around 5% in income per capita in recent decades. The positive effect of diversity

in 1860 can be traced back to the advance of the industrialization process over the Second

Industrial Revolution. Thus, the evidence suggests that early agricultural diversity affected

long-run development by shaping local patterns of structural change during a period of rapid

transformation in the US economy.

The correlations between agricultural diversity in 1860 and development outcomes are

robust to the inclusion of an extensive set of controls. State fixed effects allow me to control

for state-level institutions and policies as well as other sources of heterogeneity across coun-

ties that are constant within each state. Different measures of land productivity are included

to ensure that the coefficient on diversity does not pick up the effects of agricultural resource

abundance. I also control for specific specialization patterns with alternative sets of variables

capturing the dominance of particular agricultural products. The inclusion of distances to

major urban centers and waterways as well as access to railroads and a measure of market

potential aims to ensure that the estimated relationship between agricultural diversification

and development is not driven by the extent of potential gains from trade. A host of addi-

tional socio-economic controls capturing levels of development in 1860 are also included in

one of the specifications.

The empirical strategy proposed to identify the causal effect of diversity exploits exoge-

nous variation in agricultural diversity generated by climatic features. Using measures of

potential productivity for different crops based on climate data, I estimate a fractional multi-

nomial logit model and then construct an index of potential agricultural diversity. With an

IV strategy based on this index (which explains a large fraction of the variation in actual

diversity), I provide estimates of the causal effects of agricultural diversity on income per

capita as well as on different intermediate variables through which it may have affected the

process of development.

The evidence suggests that early agricultural diversity increased the relative size and

productivity of the industrial sector by fostering the diversity of manufacturing inputs and

skills, the formation of novel productive capabilities, and technological progress. The positive

and significant effects of agricultural diversity on intermediate variables capturing these

channels is consistent with the relevance of complementarities and cross-sector spillovers. I

provide further support for the plausibility of the proposed mechanisms by testing a cross-
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county cross-industry implication: diversity in agriculture had a positive differential impact

on skill-intensive and knowledge intensive industrial sectors.

To sharpen the interpretation of the findings, I propose a multi-sector endogenous growth

model that highlights the interconnected roles of complementarities and cross-sector spillovers

in the mechanics of structural change. The model generates not only a positive effect of di-

versity on industrialization, but also a differential effect on relatively complex industrial

sectors. In addition, it explains why agricultural diversity can have long-run effects that

unfold over time.

The evidence does not support the relevance of other mechanisms. The results regard-

ing the role of agricultural productivity make it an implausible channel, thus highlighting

the cross-sectoral character of the effects of agricultural diversity. To assess the possibility

that agricultural diversity may have boosted economic performance by reducing volatility,

I construct a measure of predicted volatility in the value of agricultural production based

on its predicted composition and the evolution of prices at the national level. The results

are not consistent with this channel. I also assess political economy mechanisms that may

have operated at the local level. I find a negative effect of early agricultural diversity on

land concentration, but no evidence of impacts on local financial development nor on local

educational expenditures.

This paper adds to the literature on the deeply-rooted determinants of comparative de-

velopment by showing that agricultural resource endowments and the composition of agricul-

tural production at early stages of development can affect long-run economic performance.

Beyond shedding new light on the role of agriculture in economic development, the paper

may inform future contributions in the literature on growth and structural change. The

evidence regarding the long-run effects of agricultural diversity suggests that the analysis

of complementarities and linkages in models with finer levels of aggregation than standard

two- or three-sector frameworks can yield new insights about the development process. The

insights obtained from the history of US counties going back to 1860 may be relevant for un-

derstanding the growth trajectories of developing countries. To further our understanding of

the role of diversity and establish policy implications, future research should attempt to pin

down as precisely as possible the mechanisms through which diversity affects development

in different contexts across space and time.
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Appendix A. Data

Definitions and Sources

Outcome variables

Share of Population in Manufacturing. Total manufacturing workers over total population. Digitized US

Census data are taken from NHGIS, for 1860-1940. Data for 1940 onwards are from digitized County Data

Books compiled by the U.S. Census Bureau and available from Haines and ICPSR (2010).

Income per capita. Ln (1+income/population). Data on personal income and population in 1970, 1980,

1990 and 2000 is obtained from the Bureau of Economic Analysis. Pre-1960 income date are not available;

as proxies, I use the sum of manufacturing and agricultural output for 1860-1940 (data taken from NHGIS),

and for income per capita in 1950 I use median family income over average family size (data from digitized

County Data Books compiled by the U.S. Census Bureau and available from Haines and ICPSR (2010)).

Manufacturing value added per worker. Ln (1+total manufacturing value added / total manufacturing

workers). Digitized US Census data are taken from NHGIS, for 1860-1940. Data for 1940 onwards are from

digitized County Data Books compiled by the U.S. Census Bureau and available from Haines and ICPSR

(2010).

Manufacturing average wage. Ln (1+total wages in manufacturing / total manufacturing workers). Digitized

US Census data are taken from NHGIS, for 1860-1940. Data for 1940 onwards are from digitized County

Data Books compiled by the U.S. Census Bureau and available from Haines and ICPSR (2010).

Industrial sectoral diversification. An index defined as 1 minus the Herfindahl index of manufacturing

employment shares across 59 different sectors in total manufacturing employment. County level employment

data is constructed from microdata from US censuses obtained from Ruggles et al. (2010). Data for 1860,

1870, 1900 and 1920 are from 1-in-100 samples; data for 1880 are from a 10-in-100 sample.

Industrial skill diversity. An index defined as 1 minus the Herfindahl index of manufacturing employment

shares in each of 75 different white collar and blue collar occupations and a 76th category for all unskilled

workers. County level employment data is constructed from microdata from US censuses obtained from

Ruggles et al. (2010). Data for 1860, 1870, 1900 and 1920 are from 1-in-100 samples; data for 1880 are from

a 10-in-100 sample.

New Skills. Number of occupations present (i.e., with strictly positive number of workers) at the county-level

among a subset of consists of 26 occupations for which the number of respondents in the Census microdata

samples is either zero in 1860 or increased by over a factor of 50 from 1860 to 1920. County level em-

ployment data is constructed from microdata from US censuses obtained from Ruggles et al. (2010). Data

for 1860, 1870, 1900 and 1920 are from 1-in-100 samples; data for 1880 are from a 10-in-100 sample. The

26 occupations are the following: aeronautrical engineers, chemical engineers, electrical engineers, indus-

trial engineers, metallurgical engineers, mining engineers, engineers (n.e.c.); cement and concrete finishers;

cranemen, derrickmen, and hoistmen; locomotive engineers; decorators and window dressers; electricians;

excavating, grading, and road machinery operators; heat treaters, annealers, temperers; metal job setters;

telegraph, telephone and power linemen and servicemen; loom fixers; airplane mechanics and repairmen; au-

tomobile mechanics and repairmen; office machine mechanics and repairmen; radio and television mechanics
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and repairmen; railroad and car mechanics and repairmen; motion picture projectionists; printing pressmen

and plate printers; tool makers, die makers, and setters.

Literacy. Population 21+ who can read and write / Population 21+. Digitized US Census data are taken

from NHGIS, for 1860-1940.

Patents per 1,000 inhabitants. 1000 * Patents filed county’s inhabitants / Population. Patent data, reporting

the location of each innovator, was compiled by Akcigit et al. (2013) from the US Trade and Patents Office. I

am very grateful to the authors for sharing their data. To calculate patents per 1,000 inhabitants, I consider

the location (latitude and longitude) given for each patent in the dataset and the boundaries of 1860 counties.

I construct these variable for each decade, 1860-1869, 1870-1879,..., 1910-1919, and population levels at the

beggining of each decade (US Census data taken from NHGIS).

Share of county’s manufacturing workers employed in industrial sector s. Workers in sector s/ Total man-

ufacuring workers in the county. County level employment data is constructed from microdata from US

censuses obtained from Ruggles et al. (2010). Data for 1860, 1870, 1900 and 1920 are from 1-in-100 samples;

data for 1880 is from a 10-in-100 sample.

Ln Farm Productivity. Ln (1+Total Farm Output/Total Acres). Source: digitized US Census data taken

from NHGIS.

Bank density. Total number of banks over total population. FDIC data obtained from NHGIS.

Share of farmland in farms over 500 acres. Farmland in farms of size greater than 500 acres over total

county farmland. Source: digitized US Census data taken from NHGIS.

School expenditures per capita. School government cost payments operations and maintenance over total

population. Source: Rhode and Strumpf (2003).

Ecological controls

Land suitability for cultivation. County-level average of an index of land suitability for cultivation, to be

interpreted as the probability that a given area is cultivated. Data source: Ramankutty et al. (2002).

Potential productivity measures for major products. Maximum and average of normalized attainable yields

corn, cotton, hay, and wheat, and for grazing suitability. The normalization consists in dividing all product

specific values for the the max attained in the sample before. Data sources: FAO-GAEZ and Erb et al.

(2007).

Mean annual temperature. County-level average annual temperature measured in Celsius degrees. Data

source: FAO-GAEZ.

Terrain elevation. County-level average terrain elevation measured in km. Data source: FAO-GAEZ.

Latitude. Absolute latitudinal distance from the equator in decimal degrees, calculated from the centroid of

each county using ArcGIS and NHGIS county shapefiles.

Longitude. Absolute longitudal distance from the Greenwhich meridian in decimal degrees, calculated from

the centroid of each county using ArcGIS and NHGIS county shapefiles.

Area. Surface area in 1000’s of sq. km, calculated with NHGIS county shapefiles using ArcGIS.
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Distances to water and cities

Distances to major urban centers: Distances in km (in logs) to New York, Chicago, Boston, Philadelphia

and New Orleans, calculated from the centroid of each county using ArcGIS and NHGIS county shapefiles.

Distance to waterways: Minimum distances to a point in the the Coastline or the Great Lakes in km (in

logs), calculated from the centroid of each county using ArcGIS and NHGIS county shapefiles.

Crop-specific controls

Dummies for dominance of major agricultural products: five dummies (for corn, cotton, animals slaughtered,

hay, wheat) that take a value of 1 when the product has the largest share in a county’s agricultural production.

The data on agricultural production comes from digitized US Census data taken from NHGIS.

Share of plantation crops. Share of cotton, sugar, rice, tobacco, coffee, combined, in total agricutural output.

Data source: digitized US Census data taken from NHGIS.

Socio-economic controls

Urbanization rate. Urban population / Total Population. Data source: digitized US Census data taken from

NHGIS.

Population size Ln (Total Population). Data source: digitized US Census data taken from NHGIS.

Farm output. Ln (1+Total Farm Output/Total Acres). Data source: digitized US Census data taken from

NHGIS.

Share of the population below 15 years. Population below 15 years / Total Population. Data source: digitized

US Census data taken from NHGIS.

Share of the population 65+ years. Population 65+ years / Total Population. Data source: digitized US

Census data taken from NHGIS.

Share of slaves in the population. Slave Population / Total Population. Data source: digitized US Census

data taken from NHGIS.

Access to railroads. A dummy variable indicating whether the was a railroad in the county. Source: Haines

and ICPSR (2010).

Market Potential. Following the classic definition of Harris (1954), market potential in county c is given by

Marketc =
∑
k 6=c d

−1
c,kNk, where k is the index spanning neighboring counties, dc,k is the distance between

county c and county k, and Nk is the population of county k (here, in 1860). Population data are taken

from NHGIS.

Measures of Complexity of Industrial Sectors

Skill-intensity. Average educational level of the industry’s workers as reflected by IPUMS EDSCOR50 vari-

able, which indicates the percentage of people in the respondent’s occupational category who had completed

one or more years of college. Constructed from microdata from US censuses obtained from Ruggles et al.

(2010).

Industry knowledge-intensity. Percentage of engineers and scientists in total industry employment in the US

economy in 1950. Constructed from microdata from US censuses obtained from Ruggles et al. (2010).
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FAO Potential Productivity Data for Agricultural Products

The FAO’s Global Agro-Ecological Zones project (GAEZ) v3.0 constructed crop-specific measures of attain-

able yields using climatic data (including precipitation, temperature, wind speed, sunshine hours and relative

humidity) –based on which thermal and moisture regimes are determined– together with crop-specific mea-

sures of cycle length (i.e. days from sowing to harvest), thermal suitability, water requirements, and growth

and development parameters (harvest index, maximum leaf area index, maximum rate of photosynthesis,

etc). Combining all these data, the GAEZ model determines the maximum attainable yield (measured in

tons per hectare per year) for each crop in each grid cell of 0.083x0.083 degrees. I use agro-climatic yields

for intermediate levels of inputs/technology and rain-fed conditions for barley, buckwheat, cotton, maize,

oats, pasture grasses, pasture legumes, alfalfa, potato, sweet potato, rye, cane sugar, tobacco, rice, wheat,

tomato, carrot, cabagge, onion, pulses, sorghum, and flax.

Data on grazing suitability comes from Erb et al. (2007), who provide a world map with grid cells of

0.083x0.083 degrees classified into four grazing suitability classes. To calculate mean county-level grazing

suitability, I assign to their four grazing suitability classes (which go from “least suitable class” to “best

suitable class”) consecutive integer values from 1 to 4, and a value of zero to the grid cells that they report

as not suitable. Finally, the general measure of land suitability for cultivation –to be interpreted as the

probability that each grid cell will be cultivated– is constructed by Ramankutty et al. (2002) for grid cells

of 0.5x0.5 degrees.

Adjustment for changes in county borders

The units of observation throughout the paper are US counties as defined in 1860. At that

time, most of the Western states were still territories and had only started to be partitioned

into counties. In most territories there were only a few large counties, and county boundaries

changed dramatically in the subsequent decades. To restrict the analysis to established

states and counties whose boundaries remained relatively stable (as discussed below), I drop

from the sample all of the Western US, plus Dakota Territory, Kansas Territory, Nebraska

Territory and Indian Territory (later Oklahoma). Some other counties are also dropped

because of missing data.30 Most of the empirical analysis is conducted on the sample of

1,821 counties displayed in gray in Figure A1.

Among the counties in the sample (defined in 1860), over 70% did not experience subse-

quent changes in boundaries, and only 10% have overlaps of less than 80% in terms of area

with a county defined in 2000. In this sense, boundaries were relatively stable for counties

in the sample.

30After dropping counties in the West and the territories mentioned before, there remain 1907 counties in

the sample, of which 85 are subsequently dropped for lack of data for key historical variables. Washington

D.C. is also dropped from the sample, as it has missing data for some control variables and would not have

any effects in any estimation that includes state fixed effects. Independent cities are considered as part of

their containing/adjacent county.
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Figure A1. Continental US counties, 1860

Boundary changes need to be taken into account to have consistent units of observation.

To accomplish this, I use geographic shapefiles of county boundaries obtained from NHGIS

and—with the help of GIS software—I determine the county defined in 1860 that contained

each county or county fragment defined in 2000, discarding all fragments with less than 1

square mile. Then I calculate the values of variables measured in 2000 corresponding to

counties defined with 1860 boundaries by assigning values from variables for 2000 in propor-

tion to the area of the county defined in 2000 that each county defined in 1860 represents.

I do exactly the same for all variables for periods after 1860 using the shapefiles of county

boundaries for the corresponding decade. This procedure would be fully accurate if the

quantities measured in aggregate variables were uniformly distributed over space.
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Appendix B. Agricultural specialization patterns and

development

The effects of particular specialization patterns have attracted considerable attention from

economic historians. Engerman and Sokoloff (1997, 2002) argued that climate and soil

quality historically affected crop choice, which in turn led to divergent paths of development;

their influential thesis was that some crops (cotton, sugar, rice, tobacco, coffee) favored slave

plantations and thus generated inequalities that were embodied in institutions harming long-

run performance (see also Nunn, 2008; Bruhn and Gallego, 2012).

The detrimental effects of the cotton slave economy in the U.S. South have been empha-

sized very often, but other contributions highlight the effects of specialization in other crops

through different mechanisms. Earle and Hoffman (1980) pointed out that wheat, corn and

livestock had highly seasonal labor requirements and thus specialization in those products

implied that there was cheap labor available for the nascent industrial sector. Somewhat

similarly, Goldin and Sokoloff (1984) argued that the relative productivity of women and

children in hay, wheat and dairy was much lower than in plantation crops, thus implying

that industries located in regions specialized in the former set of products could hire labor

at lower cost. Sokoloff and Dollar (1997) also emphasize the high seasonality of grains, but

they argue that the availability of cheap seasonal labor could hinder the adoption of more

efficient manufacturing technologies.

This paper highlights the effects of diversity in the agricultural production mix beyond

any particular specialization pattern. As discussed in section 3, the diversity index can be

highly correlated with the shares of dominant crops in production. To avoid confouding the

effects of agricultural diversification with those of specialization in particular crops, I include

crop-specific controls dummies for the 5 major agricultural products (these take a value of 1

when the product has the largest share in a county’s agricultural production). This appendix

shows that the qualitative results on the effects of diversity hold if I control for dominance

dummies differently defined or for the actual shares of those 5 products.

Table B1 shows OLS and IV estimates of the effects of agricultural diversity on income

per capita 2000 with alternative sets of crop-specific controls.31 To facilitate comparison,

columns 1-2 do not include any crop-specific controls, while columns 3-4 include the dom-

inance dummies as defined before. Columns 5-6 include dominance dummies that take a

value of 1 when the share for the corresponding crop in the county’s agricultural output is

31Only agricultural diversification is instrumented in these IV regressions; the results are qualitively the

same if the actual dominance dummies or shares are replaced by the corresponding values based on predicted

shares based on the FML model estimates.
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above 25%. Columns 7-8 include dominance dummies that take a value of 1 when the share

for the corresponding crop is above the 75th percentile of the distribution of that share in

the whole sample. Finally, columns 9-10 include the actual shares of each of the 5 major

agricultural products.

The results confirm that agricultural diversity had positive effect on economic develop-

ment. There is no compelling evidence of significant effects of specialization in any of the

major agricultural products. The coefficients for all the variables capturing specialization

in cotton get negative point estimates, but they never appear as significant at usual confi-

dence levels. Specialization in wheat seems to have had positive effects on income per capita

in 2000, although not robust for different specifications of the crop-specific controls. The

absence of robust significant effects of specific specialization patterns in these cross-county

regressions with state fixed effects should not be seen as contradicting the contributions men-

tioned above, which advance explanations about comparative development for larger regions.

For the purposes of this paper, the important feature of this set of results is that the esti-

mated coefficients for agricultural diversification remain consistently positive and significant

across specifications with different crop-specific controls.
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Table B1. The Effects of Agricultural Diversity versus Specific Specialization Patterns

Dependent variable: Ln Income per capita, 2000

No crop-specific controls Largest share dummies > 25% dummies > 75th percentile dummies Exact shares

OLS IV OLS IV OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Agri.Diversity1860 0.333*** 0.395*** 0.323*** 0.342** 0.294*** 0.331** 0.328*** 0.341** 0.264*** 0.284*

(0.0564) (0.0918) (0.0607) (0.140) (0.0621) (0.144) (0.0680) (0.142) (0.0796) (0.168)

Corn -0.0249 -0.0261 -0.0358* -0.0335 -0.0122 -0.0125 -0.130 -0.110

(0.0317) (0.0304) (0.0184) (0.0224) (0.0183) (0.0167) (0.108) (0.104)

Cotton -0.0507 -0.0506 -0.0395 -0.0397 -0.0366 -0.0361 -0.130 -0.110

(0.0546) (0.0534) (0.0339) (0.0326) (0.0324) (0.0328) (0.118) (0.141)

Animals Slaughtered -0.0665 -0.0685 -0.0304** -0.0331** -0.0292 -0.0299 0.170 0.198

(0.0460) (0.0469) (0.0134) (0.0157) (0.0228) (0.0253) (0.125) (0.127)

Hay 0.0455 0.0444 0.00895 0.00816 0.0305 0.0309 -0.0780 -0.0578

(0.0319) (0.0319) (0.0197) (0.0200) (0.0200) (0.0196) (0.137) (0.145)

Wheat 0.00251 0.000919 0.0455*** 0.0440** 0.0227 0.0225 0.276** 0.299***

(0.0406) (0.0408) (0.0162) (0.0183) (0.0175) (0.0174) (0.108) (0.104)

Tobacco+Cane+Rice 0.0248 0.0229 0.0111 0.0101 0.0185 0.0182 0.0195 0.0348

(0.0690) (0.0656) (0.0243) (0.0226) (0.0208) (0.0196) (0.104) (0.106)

State FE Y Y Y Y Y Y Y Y Y Y

Ecological controls Y Y Y Y Y Y Y Y Y Y

Distances to water and cities Y Y Y Y Y Y Y Y Y Y

Crop-specific controls N N Y Y Y Y Y Y Y Y

Socio-economic controls N N N N N N N N N N

Observations 1821 1821 1821 1821 1821 1821 1821 1821 1821 1821

R2 0.410 0.409 0.438 0.438 0.443 0.443 0.435 0.435 0.447 0.450

Notes: See Appendix A for variable definitions and sources. Robust standard errors clustered at the state level are reported in parentheses. *** Significant

at the 1% level; ** Significant at the 5% level; * Significant at the 10% level.
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Appendix C. Alternative Measures of Diversity

The degree of diversity in production can be captured by different measures. In the baseline

estimates of the paper I consider a commonly used measure of diversity (e.g., Imbs and

Wacziarg, 2003; Imbs et al., 2012) and define Agri.Diversityc = 1 −
∑

i θ
2
ic, where θic is the

share of total agricultural output in county c corresponding to product i (with i = 1, 2, ..., 36).

In this appendix I check the robustness of the main results (the positive significant impact

of early agricultural diversity on contemporary income per capita) to considering alternative

measures of diversity.

Most standard measures are constructed as measures of specialization, i.e. higher values

represent lower diversity. I consider Krugman’s Index of Specialization, which is defined as∑
i |θic − θi|, where θi is the share of product i in total agricultural output in the sample;

an index of Inequality in Production Structure proposed by Cuadrado-Roura et al. (1999),

defined as
∑

i (θic − θi)
2; an entropy index, E(α)c = 1

Nα(α−1)

∑
i

[(
θic/θ̄ic

)2 − 1
]
, where θ̄ic

is the average product share in county c (which is always equal to 1/36), and α, the weight

given to distances between product shares at different parts of the distribution, is set equal to

2; the coefficient of variation of product shares, defined as σθic/θ̄ic, where σθic is the standard

devation of products shares in county c; and finally, the Gini coefficient of product shares.

Table C1 provides estimates of the effects of agricultural specialization in 1860 as captured

by these alternative measures. To facilitate comparison, the first columns report estimates

of the effects of agricultural specialization as captured by a Hirschman-Herfindahl index, i.e.

one minus the baseline measure of Agri.Diversityc as defined above. By construction, the

estimates are equal to one minus the estimates reported in Table 3. In all cases, the results

indicate negative significant effects of agricultural specialization, i.e. positive significant

effects of agricultural diversity.
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Table C1. Effects of Agricultural Diversity as Captured by Alternative Measures of Specialization

Dependent variable: Ln Income per capita, 2000

OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Hirschman-Hirfendahl Index -0.333*** -0.395***

(0.0564) (0.0918)

Krugman Index -0.119*** -0.0957*

(0.0284) (0.0558)

Index of Inequality -0.237*** -0.228**
in Production Structure (0.0626) (0.110)

Entropy Index -0.647*** -0.743***

(0.107) (0.221)

Coefficient of Variation -0.383*** -0.417***

(0.0582) (0.129)

Gini -0.896*** -0.825*

(0.176) (0.440)

State FE Y Y Y Y Y Y Y Y Y Y Y Y

Ecological controls Y Y Y Y Y Y Y Y Y Y Y Y

Distances to water and cities Y Y Y Y Y Y Y Y Y Y Y Y

Crop-specific controls N N N N N N N N N N N N

Socio-economic controls N N N N N N N N N N N N

Observations 1,821 1,821 1,821 1,821 1,821 1,821 1,821 1,821 1,821 1,821 1,821 1,821

R2 0.410 0.409 0.419 0.419 0.421 0.421 0.430 0.429 0.431 0.431 0.421 0.421

Robust standard errors clustered by state in parentheses; * p<0.10, ** p<0.05, *** p<0.01; See pages 11-13 for an explanation of control variables.
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Appendix D. Effects of Agricultural Diversity over Time

Figure D1 displays IV estimates of the effects of agricultural diversity in 1860 on intermediate

variables capturing channels through it may have affected development between 1860 and

1920. Overall, the results confirm the patterns established before: the effects of mid-19th

century agricultural diversity emerged over the course of the Second Industrial Revolution.

Figure D1. Effects of Agri.Diversity1860 on Intermediate Variables (IV estimates)

Effects of Agri.Diversity1860 on Industrial Sectoral Diversification
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Effects of Agri.Diversity1860 on Industrial Skills Diversification
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Effects of Agri.Diversity1860 on New Skills
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Effects of Agri.Diversity1860 on Literacy Rates
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Differential Effects of Agri.Diversity1860 on Skill-Intensive Sectors
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Differential Effects of Agri.Diversity1860 on Knowledge-Intensive Sectors
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Notes: The graphs display the estimated coefficients on agricultural diversity from regressions for different

outcomes variables, controlling for state fixed effects, ecological controls and distances to water and cities.

Intervals reflect 95% confidence levels (calculated with robust standard errors clustered at the state-level).

See Appendix A for variable definitions and sources. For new skills, literacy rates, agricultural productivity,

and farmland share in largest farms, all regressions have 1,821 observations. For industrial sectoral and skill

diversification, sample size fluctuates between 1,010 and 1,676 observations; county-industry level observa-

tions in cross-county cross-industry regressions have observations for the same number of counties and for

59 industrial sectors.
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Appendix E. Input-Ouput Linkages of Agricultural Products

Figure E1 shows the network structure of production based on the input-output table of the US economy in 1963. There are 308

production sectors represented as nodes, and links between pairs of nodes indicate that one of the two sectors represents above 5% of

total inputs of the other. The visual arrangement relies on a spring-embedded type of algorithm. Nodes corresponding to agricultural

products, textile industries, food-processing industries, leather industries and tobacco industries are displayed in different colors, and

the links of agricultural products are displayed in red to bring attention to the key implications of the network representation for the

purposes of this paper: various agricultural products provided different “entry points” into the sectoral network of production.

Figure E1. Agricultural Products in the Input-Output Network of Production
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Appendix F. Proofs

This appendix contains the proofs of Lemma 1, Lemma 2, and Proposition 3 of the model

proposed in Section 6. For convenience, I repeat their statements before presenting the

corresponding proofs.

Lemma 1. Expected efficiency in sector i is increasing in the number of previously existing

capabilities in other sectors: η
E(Eit),Ω

i′6=i
t−1

> 0 .

Proof. Using the definition of η
E(Eit),Ω

i′6=i
t−1

and equation (4), we have that

η
E(Eit),Ω

i′6=i
t−1

=

(
1+∆Ω

i′6=i
t−1/Ω

i′6=i
t−1

1+∆Ω
i′6=i
t−1/(Ω

i′6=i
t−1+1)

)Ji
− 1

∆Ω
i′6=i
t−1/Ω

i′6=i
t−1

.

Since ∆Ω
i′6=i
t−1/(Ω

i′6=i
t−1) > ∆Ω

i′6=i
t−1/(Ω

i′6=i
t−1 + 1) and Ji ≥ 1, we have

(
1+∆Ω

i′6=i
t−1/Ω

i′6=i
t−1

1+∆Ω
i′6=i
t−1/(Ω

i′6=i
t−1+1)

)Ji
> 1, and

thus η
E(Eit),Ω

i′6=i
t−1

> 0. �

Lemma 2. The elasticity of expected efficiency in sector i with respect to the number

of previously existing capabilities in other sectors is increasing in the sector’s complexity:
∆η

E(Eit),Ω
i′6=i
t−1

∆Ji
> 0 .

Proof. Using from the expression for η
E(Eit),Ω

i′6=i
t−1

from the proof of Lemma 1, we have that

∆η
E(Eit),Ω

i′6=i
t−1

∆Ji
=

(
1+∆Ω

i′6=i
t−1/Ω

i′6=i
t−1

1+∆Ω
i′6=i
t−1/(Ω

i′6=i
t−1+1)

)Ji+∆Ji

−
(

1+∆Ω
i′6=i
t−1/Ω

i′6=i
t−1

1+∆Ω
i′6=i
t−1/(Ω

i′6=i
t−1+1)

)Ji
∆Ω

i′6=i
t−1/Ω

i′6=i
t−1

.

Again noting that ∆Ω
i′6=i
t−1/(Ω

i′6=i
t−1) > ∆Ω

i′6=i
t−1/(Ω

i′6=i
t−1 + 1) and Ji ≥ 1, and also ∆Ji ≥ 1, we

have that

(
1+∆Ω

i′6=i
t−1/Ω

i′6=i
t−1

1+∆Ω
i′6=i
t−1/(Ω

i′6=i
t−1+1)

)Ji+∆Ji

>

(
1+∆Ω

i′6=i
t−1/Ω

i′6=i
t−1

1+∆Ω
i′6=i
t−1/(Ω

i′6=i
t−1+1)

)Ji
, and thus

∆η
E(Eit),Ω

i′6=i
t−1

∆Ji
> 0 . �

Proposition 3. (Industrialization). (a) The number of active industrial sectors is increas-

ing in the number of previously existing operations: ∆
∑I

i=1 1
[
Ω
i′6=i
t−1>Ω̃i

]/∆Ωt−1 ≥ 0 ; (b) The

expected value of total industrial employment is non-decreasing in the number of previously

existing operations:
∆E(

∑I
i=1 Lit)

∆Ωt−1
≥ 0.
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Proof. (a) Note first that ∆

(∑I
i=1 1

[
Ω
i′6=i
t−1>Ω̃i

]) /∆Ωt−1 =
∑I

i=1

(
∆1[

Ω
i′6=i
t−1>Ω̃i

]/∆Ωt−1

)
.

Given that expected employment in each sector depends on capabilities established in other

sectors, the sectors that account for the change ∆Ωt−1 need to be specified. For simplicity,

assume that the change in established capabilities under consideration corresponds to a single

sector, k.32 In this case, we have that ∆Ω
i′6=i
t−1 = ∆Ωt−1 for all i 6= k and ∆Ω

i′6=k
t−1 = 0, and

thus ∆

(∑I
i=1 1

[
Ω
i′6=i
t−1>Ω̃i

]) /∆Ωt−1 =
∑
i 6=k

(
∆1[

Ω
i′6=i
t−1>Ω̃i

]/∆Ω
i′6=i
t−1

)
. Next, note that for any

i 6= k we have ∆1[
Ω
i′6=i
t−1>Ω̃i

]/∆Ω
i′6=i
t−1 =

(
1[

Ω
i′6=i
t−1+∆Ω

i′6=i
t−1>Ω̃i

] − 1[
Ω
i′6=i
t−1>Ω̃i

]) /∆Ω
i′6=i
t−1 ≥ 0, because

1[
Ω
i′6=i
t−1+∆Ω

i′6=i
t−1>Ω̃i

] ≥ 1[
Ω
i′6=i
t−1>Ω̃i

]. Thus, ∆

(∑I
i=1 1

[
Ω
i′6=i
t−1>Ω̃i

]) /∆Ωt−1 ≥ 0 . �

(b) The proof is similar to that for part (a). Note first that
∆E(

∑I
i=1 Lit)

∆Ωt−1
=
∑I

i=1
∆E(Lit)
∆Ωt−1

.

Given that expected employment in each sector depends on capabilities established in other

sectors, the sectors that account for the change ∆Ωt−1 need to be specified. For simplicity,

assume that the change in established capabilities under consideration corresponds to a single

sector, k.33 In this case, we have that ∆Ω
i′6=i
t−1 = ∆Ωt−1 for all i 6= k and ∆Ω

i′6=k
t−1 = 0, and

thus
∆E(

∑I
i=1 Lit)

∆Ωt−1
=
∑
i 6=k

∆E(Lit)

∆Ω
i′6=i
t−1

. Recalling that E(Li,t) = E(L∗i,t) × 1[
Ω
i′6=i
t−1>Ω̃i

], note that

∆E(Lit)

∆Ω
i′6=i
t−1

=

∆

E(L∗i,t)×1[
Ω
i′6=i
t−1>Ω̃i

]


∆Ω
i′6=i
t−1

=

∆

(E(L∗i,t)+∆E(L∗i,t))×1[
Ω
i′6=i
t−1 +∆Ω

i′6=i
t−1>Ω̃i

]−E(L∗i,t)×1[
Ω
i′6=i
t−1>Ω̃i

]


∆Ω
i′6=i
t−1

≥ 0

for any i 6=k, because E(L∗i,t)+∆E(L∗i,t) ≥ E(L∗i,t) and 1[
Ω
i′6=i
t−1+∆Ω

i′6=i
t−1>Ω̃i

] ≥ 1[
Ω
i′6=i
t−1>Ω̃i

] . Thus,

∆E(
∑I
i=1 Lit)

∆Ωt−1
≥ 0 . �

32The results can be straightforwardly generalized to a change in established capabilites corresponding

to multiple sectors, since such a change can be considered as a sequence of changes corresponding to single

sectors.
33Idem previous footnote.
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