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Abstract

I study a financial market in which investors trade on private information or liquidity

needs. Investors can elect to trade through a visible limit order book, or through a

dark market where limit orders are hidden. Market makers are present in both markets.

The dark market accepts orders from investors and fills them with some probability

at a price better than the quote at the visible market—the so-called “trade-at rule”.

The impact of dark trading on visible market quality and social welfare depends on the

trade-at rule. There exists a non-zero trade-at rule (the benchmark) at which visible

orders weakly dominate dark orders. When introduced alongside a visible limit order

book, a dark market with a large trade-at rule (relative to the benchmark) improves

market quality and welfare; a small trade-at rule, however, impacts market quality and

social welfare negatively. The availability of dark trading leads to a decline in price

efficiency with any trade-at rule. When the trade-at rule is pegged to the midpoint of

the bid-ask spread, no liquidity is provided in the dark market, and hence, investors

do not use the dark market.
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In recent years, concern has arisen over the impact of dark trading on equity markets.

While dark markets are not new, this concern comes as they begin to match the electronic

organization of visible markets, and gain a significant share of global trading activity. The

CFA Institute estimates that dark markets in the U.S. generate approximately one third of

all volume1. Because dark markets benefit from visible market transparency, there is concern

from regulators that these benefits come at the expense of market quality (see Securities and

Exchange Commission (2010)).

Equity trading primarily conducts through two types of markets: visible limit order

markets, and dark markets. On visible limit order markets, investors submit limit orders

at pre-specified (limit) prices; a trade occurs when a subsequent investor submits a market

order. Limit orders are visible to all market participants. In dark markets, available limit

orders are hidden, and investors submit market orders to trade against limit orders that may

or may not be present in the market. Since investors do not know if a limit order is available

to trade against, an investor who submits a market order to the dark suffers execution risk.

As compensation for bearing this risk, a dark market order trades at a price better than is

offered by the visible market—the so-called “price improvement”.

Many dark markets permit orders improve only marginally on posted visible market

quotes. While marketplaces generally give first-fill priority to visible orders over dark orders

at the same price, marginal price improvement moves the dark order to the front of the queue,

according to price-visibility-time priority. Because marginal price improvement effectively

eliminates the priority given to visible orders—with minimal benefit to investors—some coun-

tries have chosen to require dark limit orders to provide “meaningful price improvement”.

This price improvement requirement is known as the “trade-at rule”. Canada and Aus-

tralia now have trade-at rules in place that require dark market orders to receive a price

improvement of at least one trading increment (i.e., one penny in most major markets).2

1CFA Institute (2012): “Dark Pools, Internalization, and Equity Market Quality”.
2The immediate impact of the trade-at rule in Canada was a 50% drop in dark trading volume. Rosenblatt

Securities Inc. (2013)
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For securities with bid-offer spreads of one or two trading increments, trades must be exe-

cuted at the midpoint of the spread (see Investment Industry Regulatory Organization of

Canada (2011) and Australian Securities and Investments Commission (2012)). By impos-

ing a trade-at rule, regulators suggest that dark markets may have a place in the financial

landscape, but only if they offer a significant discount. But how does the trade-at rule im-

pact investor trading decisions? Do dark markets that offer large discounts improve equity

market liquidity and investor welfare?

An investor’s order placement strategy has three components: their valuation, the price of

the order, and its probability of execution. For an investor, the choice of order type focuses on

the trade-off between price and execution risk. In a market where liquidity providers ensure

the limit order book is full, market orders face lower execution risk than visible limit orders

or dark market orders. As compensation, visible limit orders and dark market orders offer

better prices. The trade-off between dark market orders and visible limit orders, however, is

more complex, as both orders face execution uncertainty. To compensate for execution risk,

dark market orders receive price improvement on the prevailing quote, while visible limit

orders permit investors to set their own quote. Hence, a dark market’s trade-at rule plays a

key role in how dark orders compete with visible limit orders. In this paper, I analyze how

trade-at rules impact overall market quality and investor welfare. I then discuss my results

in the context of trade-at rule requirements by regulators.

I propose a dynamic trading model where investors trade for either informational or

liquidity reasons. They may trade at a visible market using either limit orders or market

orders, or at a dark market using market orders. Both markets are monitored by uninformed

liquidity providers that act as market makers. They possess a monitoring advantage towards

interpreting and reacting to market data that they use to ensure that the visible limit

order book always contains limit orders on either side of the book and moreover, that the

limit orders are priced competitively. Consequently, investors who submit market orders are

guaranteed execution at the available quote. Limit orders, however, are subject to execution

2



risk, as they may trade only if the subsequent investor submits the appropriate market order.

In the dark market, the price of an order is derived from the visible market: the prevailing

quote, improved by a percentage of the bid-ask spread.3 Because the price of a dark market

order is predetermined, liquidity providers set the frequency at which they submit limit

orders to the dark market such that they earn zero expected profits in equilibrium. Moreover,

because the quote from the dark market is better than the visible market, liquidity providers

do not have the incentive to ensure that the dark market always contains one buy and one sell

limit order. As a result, dark market orders are also subject to execution risk. In equilibrium,

an investor’s order placement strategy depends on their valuation, and the trade-off between

an order’s price and probability of execution.

I analyze the impact of introducing a dark market alongside a visible limit order market,

by first solving the case where all investors are indifferent between visible limit orders and

dark market orders. I assume that when indifferent, investors use visible limit orders. In

this way, this setting serves as the “visible market only” benchmark. I find that there exists

a non-trivial trade-at rule where investors are indifferent to visible limit orders and dark

market orders, which I refer to as the “benchmark” trade-at rule. I subsequently solve the

model for the cases where both markets are used in equilibrium. Investors use dark market

orders in equilibrium when the trade-at rule is above or below the benchmark level. I refer

to these trade-at rules as a “large trade-at rule” and a “small trade-at rule”, respectively.

I find that when the dark market competes with the visible market by setting a large

trade-at rule, market liquidity improves and visible market volume increases. By offering a

trading opportunity at a “discount price”, investors who would otherwise be pushed out of

the market by the costs of visible orders can afford to participate. To offer this discount,

liquidity providers set the execution risk of dark market orders higher than the execution

risk of visible limit orders. The dark market then attracts investors who submit visible limit

orders, but not market orders. This leads to an increase in the relative attractiveness of

3For instance, prior to minimum price improvement regulation in Canada, the dark pools MatchNow and
Alpha IntraSpread used trade-at rules of λ = 0.2 and λ = 0.1, respectively.
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visible market orders, thereby increasing volume on the visible market. Thus, dark markets

with large trade-at rules result in net volume creation in the visible market instead of net

volume migration. However, if the trade-at rule is at the midquote (or better), then no

liquidity is provided to the dark market.

Conversely, a dark market that sets a small trade-at rule incentivizes liquidity providers

to provide dark limit orders with a greater frequency than in the benchmark case. As a

result, dark market orders have lower execution risk than visible limit orders. The result

is an increase in quoted spreads, price impact and visible market volume. Because dark

market orders have lower execution risk than visible limit orders, the dark market attracts

investors away from both visible order types: the visible market order submitters with the

lowest valuations, and the visible limit order submitters with the highest valuations. Hence,

investors who submit visible market orders have higher average valuations, which, because

some investors are informed, implies that visible market order submitters are now more

informed on average. This leads to an increase in the trading costs of visible market orders,

thus negatively impacting liquidity.

By modelling both informed investors, and uninformed investors with private values, I can

study price efficiency and social welfare, respectively. I study price efficiency by measuring

the difference between the change in the fundamental value of the security and the price

impact of an investor’s order placement. I measure welfare in the sense of allocative efficiency,

similar to Bessembinder, Hao, and Lemmon (2012): the expected private valuation realized

by trade counterparties, discounted by the probability of a trade. I find that price efficiency

declines regardless of the level of the trade-at rule offered by the dark market. Social welfare

increases with a large trade-at rule, but falls with a small trade-at rule.

My model suggests that the impact of dark market trade-at rules on equity markets is

dichotomous: a large trade-at rule impacts investors and visible markets positively, whereas

a small trade-at rule has a negative impact. These results suggest that there may be a role

for minimum trade-at rule requirements. By restricting the entry of dark markets with a
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small trade-at rule, (e.g., setting a minimum trade-at rule equal to the benchmark level)

dark markets with a negative impact would be eliminated.

Related Literature. The prevalence of dark trading generates a need to understand

the impact of dark trading on market quality, price efficiency and investor welfare. Several

papers examine the impact of introducing crossing networks alongside visible markets. In

these models, dark orders fill at the prevailing visible market quote, or midquote of the

spread: Zhu (2013), Hendershott and Mendelson (2000) and Degryse, van Achter, and Wuyts

(2009) fill orders at the midquote, whereas Ye (2011) assumes orders fill at the prevailing

quote. Buti, Rindi, and Werner (2014) examine both periodic and continuous crossing

networks where trades occur at the midquote. The literature on continuous dark pools,

however, is relatively new. Malinova (2012) investigates a market where a broker may

competitively internalize orders. I contribute to the dark trading literature by studying

an increasing common dark pool setup: continuous dark pools where orders may be priced

away from the midquote, depending on the pricing rule set by the dark pool. In particular,

I investigate how the pricing mechanism (the “trade-at rule”) affects visible market quality

and price efficiency.

My work is most closely related to Buti, Rindi, and Werner (2014), who also study the

impact of competition between a dark pool and a visible limit order book. They model the

dark pool as a crossing network that executes trades at the midquote of the visible market

spread. In their model, uninformed traders trade either a large (institutional) or a small

(retail) order, at a visible limit order book or a dark pool. Buti, Rindi, and Werner (2014)

find that exchange orders migrate to the dark pool, but that there is volume creation overall.

They predict that this order migration to the dark pool intensifies for stocks with narrower

spreads or greater market depth at the prevailing quotes. For periodic-crossing dark pools,

they find that all traders benefit from the availability of a periodic-crossing dark pool when

stocks are liquid. When stocks are illiquid, however, institutional traders see welfare gains,

while retail traders suffer reduced welfare. For dark pools with continuous crossing, welfare
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effects are amplified.

Complementing their work, I model dark pools as venues with liquidity provision, in-

formed trading, and pricing at discounts of the bid/ask prices according to a trade-at rule.

Liquidity in the dark pool is supplied by competitive liquidity providers that submit to both

the visible and dark market, and investors submit only market orders to the dark pool. Sim-

ilarly to Buti, Rindi, and Werner (2014), I find that volume migrates to the dark pool, but

in my model additional volume is only created when the trade-at rule demands sufficient

improvements over the visible market prevailing quotes. If the trade-at-rule is too loose,

volume declines.

Zhu (2013) models traders with correlated information who choose between a visible

market and a dark pool. He finds that access to a dark pool improves price discovery, because

informed traders concentrate their orders on the visible market. The increased adverse

selection on the visible exchange then leads to worsening exchange liquidity. Malinova (2012)

studies a model where informed traders submit to an exchange (via a broker), or to a broker

who may potentially internalize orders. All brokers are competitive. Malinova (2012) finds

that informed trading is concentrated on the visible exchange, but that the size of a trader’s

order affects the impact of internalization on price efficiency. Ye (2011) models informed

trading in the sense of Kyle (1985), and contrary to Zhu (2013), finds that the availability of

a dark pool harms price discovery. My model predicts that a dark market negatively impacts

price efficiency, regardless of the trade-at rule.

I also contribute to a wider theoretical literature on dark trading. Recent works by

Boulatov and George (2013), Buti and Rindi (2012) and Moinas (2011) study dark trading

within a limit order market via the use of hidden orders. Boulatov and George (2013)

examine the differences in market quality between a fully-displayed limit order book, and a

fully-hidden limit order book, where informed trading is modelled in the tradition of Kyle

(1985). They find that a fully-hidden limit order book entices informed traders to limit

orders, and moreover, the increased competition in liquidity provision lowers transaction
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costs for uninformed traders, in turn improving market quality. Buti and Rindi (2012) and

Moinas (2011) consider a limit order market that permits both visible and hidden orders.

Both studies find that traders choose to hide their orders to reduce exposure costs.

My predictions may also explain some of the seemingly contradictory results in the empir-

ical literature. Comerton-Forde and Putniņs̆ (2013) analyze Australian exchange and dark

pool data. They find that dark trades contain information, but that those who migrate to

the dark are less informed than those traders that remain on the exchange. The increase

in informed trading on the exchange worsens liquidity. In the context of my model, their

results are consistent, with a dark pool that sets a small trade-at rule. Comerton-Forde and

Putniņs̆ (2013) state that a large majority of dark trades execute at the bid-offer quotes,

where liquidity providers trade against incoming investor and institutional orders. Similar to

Comerton-Forde and Putniņs̆ (2013), Nimalendran and Ray (2012) study U.S crossing net-

works data and find that dark trades have an informational impact on visible market prices.

Consistent with my prediction for a minimum trade-at rule, Larrymore and Murphy (2009)

find that the implementation of a minimum trade-at rule for internalized orders improves

the quoted spread.4

Degryse, de Jong, and van Kervel (2011), Weaver (2011) and Foley, Malinova, and Park

(2012) analyze Dutch, U.S. and Canadian data, respectively, and conclude that dark trading

negatively impacts market quality. Using U.S. data, Buti, Rindi, and Werner (2012) find

that dark trading improves liquidity. In a labratory experiment, Bloomfield, O’Hara, and

Saar (2013) conclude that dark trading has no impact on liquidity and price efficiency.

1 Model

I model a financial market where risk-neutral investors enter a market sequentially to trade

for either informational or liquidity reasons (as in Glosten and Milgrom (1985)). Investors

4Larrymore and Murphy (2009) study the Toronto Stock Exchange Price Improvement Rule, implemented
on October 26th, 1998.
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have access to a visible limit order book and a dark market, at which (uninformed) profes-

sional liquidity providers compete to supply limit orders, similar to Brolley and Malinova

(2014). The price at which investors trade in the dark market is given by a “trade-at rule”

that improves the prevailing quote at the visible market.5 The dark market in my model

mirrors several types of continuous dark pools. The market effectively operates similar to a

dark limit order market where liquidity is provided solely by professional liquidity providers

(e.g., Alpha Intraspread). It also reflects the setup of ping destinations (dark pools of liquid-

ity that accept immediate-or-cancel orders; e.g., Citadel, Getco), and internalization pools

that procure liquidity from outside liquidity partners (e.g., Sigma X, Crossfinder).

Security. There is a single risky security with an unknown fundamental value. The

fundamental value follows a random walk, and at each period t an innovation δt to the

fundamental value occurs, which is independently and identically distributed by the density

f on [−1, 1]. f is symmetric around zero. The fundamental value in period t is given by,

Vt =
∑

τ≤t

δτ (1)

Market Organization. Trading is organized as a market where traders can access a

visible limit order book, or a dark market. A trader in period t chooses between submitting

an order to the visible market, or the dark market. Traders have the choice between three

types of words: a market order on the visible market, a limit order on the visible market,

and a market order on the dark market. In period t, I denote the price of the best-priced buy

limit order (submitted in period t−1) as bidt; for the analogous sell limit order, I denote the

best price as askt. Limit orders remain in the book for one period, after which any unfilled

limit orders are cancelled.

An order submitted to the dark market fills with some probability, at a pre-specified

price. The probability that an order is filled in the dark is determined endogenously by the

probability that liquidity is provided to the dark market in the previous period. The dark

5Figure 2 in the Appendix diagrammatically illustrates the timing of the model.
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market sets the price based on an exogenous trade-at rule, λ ∈ [0, 1], measured as a fraction

of the spread, askt − bidt, in the visible market in period t. For example, a buy order in the

dark trades at: askt−λ× (askt−bidt). By modelling the trade-at rule as an improvement on

the visible spread, the model effectively imposes price-visibility-time priority, as is common

in industry.

Similar to Foucault (1999), I assume that the security is traded throughout a “trading

day” where the trading process ends after period t with probability (1−ρ) > 0, at which point

the payoff to the asset is realized. Investors and professional liquidity providers observe the

history of all transactions on both markets, as well as quotes and cancellations on the visible

market. I denote this history up to (but not including) period t asHt. The public expectation

of the security’s fundamental value at period t conditional on the public history is denoted

by vt. The structure of the model is common knowledge among all market participants.

Investors. At each period t, a single investor randomly arrives at the market from

a continuum of risk-neutral investors. With probability µ ∈ (0, 1) the investor privately

learns the period t innovation δt. Uninformed investors are endowed with liquidity needs,

yt, independently and identically distributed by g on [−1, 1]. g is symmetric around zero.6

Informed investors have no liquidity needs (i.e., yt = 0). All investors observe the history, Ht.

Upon arriving at the market in period t and only then, an investor may submit an order

for a single unit (round lot) of the security. I assume that, if an investor is indifferent to

submitting an order to the visible market, or an order to the dark market, the investor

chooses the visible market.7 IAn investor leaves the market forever upon the execution or

cancellation of their order.

Professional Liquidity Providers. There is a continuum of professional liquidity

providers that are always present in the market. They are risk-neutral, do not receive

6Assuming that some investors have liquidity needs is common practice in the literature on trading with
asymmetric information, to avoid the no-trade result of Milgrom and Stokey (1982).

7As dark trading has been historically popular for executing large orders, trading in a single unit may
seem unnatural. The CFA Institute notes, however, that order and transaction sizes in today’s dark pools
are similar to those on visible markets (CFA, 2012). Data from FINRA from July 21-27 2014 finds that for
41 ATSs, the average trade size is 209 shares.
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information about the security’s fundamental value, and have no liquidity needs. Within

any period t, they update their orders in response to market information (i.e. changes to the

public history) before the arrival of the next investor.8 I assume that professional liquidity

providers act competitively, and thus earn zero expected profits, conditional on execution.

When they post limit orders to the visible market, professional liquidity providers compete

in price in the sense of Bertrand. Professional liquidity providers maintain a “full” limit

order book at any period t by submitting limit orders to fill any vacancies on either side of

the limit order book, at prices bidLPt and askLPt for buy and sell limit orders, respectively.

Professional liquidity providers also post limit orders to the dark market. However,

because prices for dark limit orders are derived from the visible market prices and the

trade-at rule, λ, professional liquidity providers do not compete in price in the dark market.

Instead, professional liquidity providers compete by choosing the probability with which they

provide liquidity to the dark market after observing the period t investors action, such that

their expected payoffs are zero. Because the prices in the dark market are set at a discount

from the prices they would offer in the visible market, professional liquidity providers submit

limit orders to the dark market with a probability less than one. That is, orders sent to the

dark market are cheaper for investors than market orders sent to the visible market, but, as

a trade-off, they are not guaranteed execution.

Investor Payoffs. I focus on the payoff to an investor who buys at period t. As

notational shorthand, period t visible market and limit buy orders are denoted MBt and LBt,

respectively. Period t dark buy orders are denoted DBt. An investor’s payoff to any order

type is the difference between their valuation (their private value yt, plus their assessment of

the security’s value) and the price paid, discounted by the execution probability. Investors

who abstain from trading receive a payoff of zero. The payoffs to each order type given

8See Brolley and Malinova (2014) for a justification of this assumption.
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below,

πMB
t,inv = yt + E[Vt | infot, Ht]− askt (2)

πLB
t,inv = ρ · Pr(fill | infot, Ht, bid

inv
t+1)×

(
yt + E[Vt+1 | infot, Ht, fill at bid

inv
t+1]− bidinvt+1

)
(3)

πDB
t,inv = Pr(fill | infot, Ht)×

(
yt + E[Vt | infot, Ht]− askDLP

t

)
(4)

where infot is the period t investor’s information about the innovation δt; Pr(fill | infot, Ht, bid
inv
t+1)

and Pr(fill | infot, Ht) are the respective probabilities that a limit order is filled in the visible

market, and that a dark market order is filled in the dark market; E[Vt+1 | infot, Ht, fill at bid
inv
t+1]

is the period t investor’s expectation of the fundamental value, conditional on the fill of their

limit order. Payoffs from sell orders are analogous.

Professional Liquidity Provider Payoffs. In any period t, professional liquidity

providers observe the period t investor’s action, and then submit limit orders (if any) to

both markets. At period t, a visible buy limit order at price bidLPt+1 earns the payoff,

πLB
t,LP = ρ · Pr(fill | investor action at t, Ht, bid

LP
t+1)

×
(
yt + E[Vt+1 | investor action at t, Ht, fill at bid

LP
t+1]− bidLPt+1

)
(5)

Sell order payoffs are similarly defined. Their period t dark limit orders are defined in short-

hand as DLBt for buy orders, and DLSt for sell orders. Given a trade-at rule λ, professional

liquidity providers choose Pr(DLSt) such that πDLS = 0. This yields the condition,

askDLP
t+1 = E[Vt+1 | investor action at t, Ht, fill at ask

DLP
t+1 ] (6)

The zero profit condition for dark limit buy orders is similar.

2 Equilibrium

I search for a symmetric, stationary perfect Bayesian equilibrium in which the best bid and

ask prices at the visible market in period t are competitive with respect to information that

11



is available to professional liquidity providers just prior to the arrival of the period t investor.

2.1 Order Pricing Rules

In equilibrium, professional liquidity providers post competitive limit orders to the visible

market. I use ∗ to denote equilibrium prices and orders. Equilibrium bid and ask prices are

given by bid∗t and ask∗t , respectively. An equilibrium order is an order submitted at or against

an equilibrium price: an equilibrium market buy order in period t trades against a limit sell

order priced at ask∗t . Similarly, an equilibrium limit buy order submitted in period t is priced

at bid∗t+1. The competitive pricing assumption implies that bid∗t and ask∗t are given by:

bid∗t = E[Vt | Ht,MS∗
t ] = vt + E[δt | MS∗

t ] (7)

ask∗t = E[Vt | Ht,MB∗
t ] = vt + E[δt | MB∗

t ] (8)

where Ht represents the quote and transaction history up to and including period t− 1.

To post a competitive limit order in period t for execution in period t + 1, an investor

must compensate the period t+1 investor for the fact that the investor who submitted the

period t limit order may be informed. Thus, they incorporate their expected price impact,

E[δt | LB
∗
t ], into the limit price they set. Hence, limit orders posted by investors have the

following quotes,

bid∗t+1 = E[Vt+1 | Ht,MS∗
t+1,LB

∗
t ] = vt + E[δt | LB

∗
t ] + E[δt+1 | MS∗

t+1] (9)

ask∗t+1 = E[Vt+1 | Ht,MB∗
t+1,LS

∗
t ] = vt + E[δt | LS

∗
t ] + E[δt+1 | MB∗

t+1] (10)

Prices in the dark market are derived from (a) the quote in the visible market, and, (b)

the trade-at rule, λ. Hence, professional liquidity providers do not choose the price of their

dark limit orders, and their prices, bidDLP
t (λ) and askDLP

t (λ) are given by,

bidDLP∗
t (λ) = bid∗t + λ× (ask∗t − bid∗t ) (11)

askDLP∗
t (λ) = ask∗t − λ× (ask∗t − bid∗t ) (12)
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where equations 11 simplify to (1 + 2λ)× bid∗t and (1− 2λ)× ask∗t , respectively.

Because quotes in the dark are predetermined, professional liquidity providers that submit

orders to the dark market choose the intensity with which they submit limit orders such that

they earn zero profits. Hence, liquidity providers choose this intensity such that the expected

price impact of selling to an investor in the dark, E[δt | DBt(ask
DLP*
t )], equals the price they

must sell for, askDLP*
t ; similarly for a dark buy limit order. Hence, the competitive prices in

the dark market are given by,

bidDLP∗
t (λ) = E[Vt | Ht,DS∗t ] = vt + E[δt | DS∗

t ] (13)

askDLP∗
t (λ) = E[Vt | Ht,DB∗

t ] = vt + E[δt | DB∗
t ] (14)

It is not immediate that dark market orders have a price impact, even post-trade. Be-

cause the market only reveals that a trade has occurred in the dark (and not which side is

active or passive), it would be intuitive that dark orders would have no price impact post-

trade. However, professional liquidity providers submit limit orders to both dark and visible

markets, and upon the fill of an order in the dark, they use this information to update their

limit orders on the visible market. In this way, trades in the dark have a post-trade price

impact.

Lastly, all investors form a common prior, vt from Ht. It does not, however, appear in

any expectations about future innovations, as they are independent of past price history.

2.2 Investor Decision Rules

An investor will submit an order (to either market) if, conditional on their information and

on the submission of the order, their expected profits are non-negative. Moreover, conditional

deciding to trade, an investor chooses the order type that maximizes their expected profits.

An investor abstains from trading if all order types yield negative expected profits. Similar

to Brolley and Malinova (2014), I restrict my attention to equilibria where investors submit

visible limit orders that cannot be improved upon by professional liquidity providers. That
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zt

visible market

dark market

no trade

market buy

limit buy

πD(zt | filled at t)

πD(zt | not filled) = 0

πNT (zt) = 0

πM (zt)

πL(zt | filled at t+ 1)

πL(zt | not filled) = 0

Pr(DLSt−1)

1− Pr(DLSt−1)

leaves market

order filled

go to t + 1

1− ρPr(MSt+1)

ρPr(MSt+1)

Figure 1: Investor Decision Tree: Given their valuation, zt, the period t investor chooses to submit
an order to the visible market, dark market, or abstain from trading. If the investor sends an order to the
visible market, the investor chooses either a market buy, or a limit buy (with the appropriate competitive
price). A market order is filled automatically in period t, while a limit order is filled in period t + 1 with
probability Pr(MSt+1). An order sent to the dark market, is filled with probability Pr(DLSt−1).

is, where bidinvt = bid∗t . Orders with non-competitive prices yield the investor negative profits,

or an execution probability of zero. I discuss the off-the-equilibrium-path beliefs about non-

competitive limit orders in the Appendix.

Investors choose their order based on available public information, plus: (a) their private

valuation yt (if uninformed), or; (b) their knowledge of δt, (if informed). Because these

valuations enter investor payoff functions identically, I can summarize investor decisions

in terms of an investor’s “valuation”, regardless of type. I denote the period t investor’s

valuation by, zt = yt + E[δt | infot]. zt is symmetrically distributed on the interval [−1, 1].

Using this notation, I depict the decision tree diagrammatically in Figure 1.

Because innovations δt are time-independent, I can decompose investors’ valuations into

two parts: the expected value of the security based on the public information, plus zt,

E[Vt | infot, Ht] = yt + E[δt | infot] + E[Vt−1 | Ht] = zt + E[Vt−1 | Ht] (15)

In addition, when submitting a limit buy order to the visible market, an investor incurs
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an adverse selection cost of trading with a potentially informed investor in period t + 1,

E[δt+1 | Ht,LB
∗
t ,MS∗

t+1]. This cost is identical for informed and uninformed investors, be-

cause information about period τ ≤ t innovations does not inform about future innovations.

Because, in equilibrium, limit orders are priced competitively by taking advantage of the

public information Ht, this adverse selection cost is “priced” into the limit order. I summa-

rize all the costs of submitting an order as “transaction costs”, which includes: order prices,

and, if trading in the following period (with a visible limit order), the expected adverse

selection associated with being picked off.

Hence, the payoff expressions (2)-(4) can be reduced to three components: (a) the in-

vestor’s valuation, (b) the order’s transaction costs, and (c) the order’s execution probability.

The payoff of any order type, k, can then be characterized by,

πk
t = execution probability × (zt − transaction costs) (16)

In a symmetric equilibrium, visible market buy orders are guaranteed execution. Limit

buy orders submitted at period t, however, are triggered by incoming market sell orders

submitted by investors, and thus, their execution probability is dependent on the likelihood

that a market sell order is submitted and that the market does not close, ρ × Pr(MSt+1).

Dark market buy orders at period t trade against limit sell orders posted at period t− 1 by

liquidity providers with probability Pr(DLSt−1).

2.3 Equilibrium Characterization

I begin by deriving order properties that must hold in equilibrium. These properties, in turn,

successively reduce the set of candidate equilibria. Proofs are in the appendix.

Lemma 1 (Buy, Sell or Abstain) In any symmetric, stationary equilibrium where in-

vestors use all order types, investors do not sell if zt ≥ 0 and do not buy if zt ≤ 0.

I describe the equilibrium in terms of the marginal investor who is indifferent between

two order types. Since, I focus only on investors with zt ≥ 0, the term ‘order’ will refer
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to a buy order, unless explicitly stated otherwise. Intuitively, investors do not trade in the

opposite direction of their valuation. However, some investors with non-zero valuations may

abstain from trading because transaction costs are too high.

Lemma 2 (Transaction Costs) In any symmetric, stationary equilibrium where investors

use all order types, an order’s transaction costs are equal to its price impact. Moreover, any

buy (sell) order used in equilibrium has a positive (negative) price impact.

When an investor submits an order, their payoff simplifies to expression (16), where the term

“transaction costs” aggregates the ask or bid price of the order, and all adverse selection

costs they expect to incur. In equilibrium, it is the competitive liquidity provision in the

visible and dark markets that results in transaction costs being equal to the price impact of

the order. On the visible market, professional liquidity providers compete in price. On the

dark market, because prices are predetermined, professional liquidity providers compete by

choosing the probability with which they submit orders to the dark market, such that the

investors who submit dark market orders have a price impact equal to the price they must

offer.

In any order placement strategy, an investor prefers lower execution risk, ceteris paribus.

However, to ensure that the investor’s payoff is positive, they must have a valuation greater

than the price impact of the order. Because investors with the most extreme valuations are

the most informed (on average), the price impact of the order with the lowest execution

risk will be large enough such that investors below a certain valuation threshold will opt

for an order with higher execution risk (but lower price impact). Lemma 3 formalizes this

intuition..

Lemma 3 (Execution Risk) In any symmetric, stationary equilibrium where investors

use all order types, investors use a threshold strategy where the indifference thresholds |zJ |

are decreasing with the order’s execution risk.
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Lemma 3 is similar to Hollifield, Miller, and Sand̊as (2004), who predict that the more

extreme an investor’s valuation, the higher the execution probability of the order they sub-

mit. They test this prediction empirically, as a monotonicity restriction on investors’ order

submission strategies, and find support when the choices of buy and sell orders are considered

separately.

2.4 Equilibrium Existence

Lemmas 1-3 reduce the set of candidate equilibria to symmetric and stationary equilibria in

threshold strategies that are decreasing in execution risk; investors with higher valuations

choose order types with lower execution risk. Lemma 3 further implies that investors with

the most extreme valuations submit visible market orders, because the execution risk for

visible market orders is zero; investors with valuations close to zero abstain from trading,

as not trading has the highest execution risk (an execution probability of zero). Thus, two

equilibrium candidates remain: (a) a dark order’s execution risk is greater than that of a

visible limit order, implying that the equilibrium thresholds are 0 ≤ zD ≤ zL ≤ zM ≤ 1,

and, (b) a dark order’s execution risk is smaller than a visible limit order, implying that the

equilibrium thresholds are 0 ≤ zL ≤ zD ≤ zM ≤ 1.

2.4.1 Benchmark Equilibrium

I begin by examining the model from the perspective of introducing a dark market alongside

a visible limit order market. In the absence of a dark market, there exists an equilibrium

with only a visible market, similar to Brolley and Malinova (2014), which I refer to as the

benchmark equilibrium.

Theorem 1 (Benchmark Equilibrium) If investors may only access the visible market,

there exist values zM and zL, where 0 < zL < zM < 1 that constitute an equilibrium in sym-

metric, stationary threshold strategies.
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If we introduce a dark market with a trade-at rule λ such that dark market orders are

identical in every payoff-relevant aspect to visible limit orders, investors have no incentive to

submit dark market orders, in equilibrium, by the assumption that investors choose to send

orders to the visible market when they are indifferent between a visible order and a dark

order. Thus, the benchmark equilibrium can occur in a financial market with dark orders,

if there exists a trade-at rule λ such that dark orders are payoff-equivalent to visible limit

orders.

Given that the price offered by the dark market to a buy order in period t is equal to,

askDLP∗
t = ask∗t − λ× (ask∗t − bid∗t ) = (1− 2λ)askt (17)

where the second equality follows by symmetry. Hence, the range of prices for dark limit

buy orders is (−askt, askt). By Lemma 2, however, in any equilibrium, a dark order has a

price impact. If λ ≥ 1/2, then the trade-at rule is set to the midquote or better, implying

a price below the public value, vt. Moreover, liquidity providers face an expected positive

adverse selection cost of E[δt | DB∗
t ] when trading with an investor in the dark market (by

Lemma 2). Thus, liquidity providers would expect to earn a loss when submitting a dark

limit order.

Proposition 1 (No Dark Liquidity Provision) If λ ≥ 1/2, then in equilibrium,

Pr(DLSt−1) = Pr(DLBt−1) = 0.

The set of viable prices for dark orders to be used in equilibrium is then reduced to

(0, askt). Now consider the investor’s problem. There is another trade-at rule for which

investors are indifferent between the visible and dark market. This trade-at rule λ equates

the transaction costs of submitting a dark market order to that of submitting a visible limit

order,

(1− 2λ∗)× E[δt | MB∗
t ]− E[δt | LB

∗
t+1] = 0 (18)
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When the transaction costs of a dark market order and a visible limit order are equal, liquidity

providers can only earn zero expected profits on their dark limit orders if the execution risk for

dark market orders and visible limit orders are equal. Hence, professional liquidity providers

compete in the execution likelihood of dark market orders, Pr(DLS∗), so that, in equilibrium,

Pr(DLS∗) equals the execution likelihood of a visible limit order, Pr(MS∗). Then, because

investors use visible orders when they are indifferent to dark orders, the dark market is not

used in equilibrium for λ∗.

Proposition 2 (No Dark Market) Given the benchmark equilibrium threshold values zM

and zL, as determined in Theorem 1, there exists a unique λ∗ ∈ (0, 1/2) that solves (18).

Moreover, in equilibrium, Pr(DLS∗) = Pr(MS∗).

2.4.2 Dark Orders with a Large Trade-at Rule.

If the trade-at rule is λ∗ ≤ λ < 1/2 (referred to as a “large trade-at rule”), then dark orders

have lower transaction costs than visible limit orders, because expression (18) is negative.

Lemma 3 dictates that 0 ≤ zD ≤ zL ≤ zM ≤ 1 can be the only possible equilibrium, if any.

The equilibrium conditions for an equilibrium with a large trade-at rule are,

zM − E[δt | MB∗
t ] = ρ · Pr(MS∗

t+1)×
(
zM − E[δt | LB

∗
t ]
)
(19)

Pr(DLSt−1)×
(
zL − (1− 2λ)× E[δt | MB∗

t ]
)

= ρ · Pr(MS∗
t+1)×

(
zL − E[δt | LB

∗
t ]
)
(20)

zD = (1− 2λ)× E[δt | MB∗
t ] (21)

(1− 2λ)× E[δt | MB∗
t ] = E[δt | DB∗

t ] (22)

Conditions (19)-(21) represent the following indifference conditions, respectively: i) visible

market orders and limit orders; ii) limit orders and dark orders, and; iii) dark orders and

abstaining from trade. Finally, condition (22) describes the liquidity provider’s zero expected

profit condition for dark limit orders. For λ ∈ (λ∗, 1/2), there exist zM , zL and zD such that

0 ≤ zD ≤ zL ≤ zM ≤ 1, that solve the system (19)-(22), yielding the following equilibrium.
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Theorem 2 (Large Trade-at Rule) There exist values zM , zL and zD, where

0 ≤ zD ≤ zL ≤ zM ≤ 1, that constitute an equilibrium in symmetric, stationary threshold

strategies, if and only if λ ∈ (λ∗, 1/2).

When the trade-at rule is large, dark orders provide substantial price improvement over

posted prices, making them attractive relative to limit orders in terms of transaction costs.

Because the transaction costs of visible limit orders are determined in equilibrium to ensure

that professional liquidity providers break even, professional liquidity providers can only

break even with dark orders if they dis-incentivize moderate-valuation investors (who are,

on average, more-informed) from trading in the dark, instead attracting only low-valuation

investors. To do so, professional liquidity providers offer a lower fill rate (Pr(DLS∗)) for dark

orders relative to limit orders, Pr(MS∗).

2.4.3 Dark Orders with a Small Trade-at Rule.

If the dark market has a trade-at rule λ ≤ λ∗, (which I refer to as a “small trade-at rule”)

dark orders have higher transaction costs than visible limit orders, because expression (18)

is positive. Lemma 3 dictates that 0 ≤ zL ≤ zD ≤ zM ≤ 1 can be the only equilibrium that

exists, if any. The equilibrium conditions for an equilibrium with a small trade-at rule are,

Pr(DLSt−1)×
(
zM − (1− 2λ)× E[δt | MB∗

t ]
)

= zM − E[δt | MB∗
t ] (23)

Pr(DLSt−1)×
(
zD − (1− 2λ)× E[δt | MB∗

t ]
)

= ρ · Pr(MS∗
t+1)×

(
zD − E[δt | LB

∗
t ]
)
(24)

zL = E[δt | LB
∗
t ] (25)

(1− 2λ)× E[δt | MB∗
t ] = E[δt | DB∗

t ] (26)

Similar to the previous section, conditions (23)-(25) represent the following indifference con-

ditions, respectively: i) visible market orders and dark orders; ii) dark orders and limit

orders, and; iii) limit orders and abstaining from trade. Condition (26) describes the liq-

uidity provider’s zero expected profit condition for dark limit orders. For all λ ∈ (0, λ∗),
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there exist zM , zL and zD such that 0 ≤ zL ≤ zD ≤ zM ≤ 1, that solve the system (23)-(26),

yielding the following equilibrium.

Theorem 3 (Small Trade-at Rule) There exist values zM , zL and zD, where

0 ≤ zL ≤ zD ≤ zM ≤ 1, that constitute an equilibrium in symmetric, stationary threshold

strategies, if and only if λ ∈ (0, λ∗).

In an equilibrium with a small trade-at rule, dark orders have higher transaction costs to

investors when compared to visible limit orders. For dark orders to be used in equilibrium,

professional liquidity providers must compensate investors for these higher transaction costs

by ensuring that the fill rate of their dark orders, Pr(DLS∗) is greater than the fill rate of

visible market orders, Pr(MS∗).

3 Impact of Dark Markets on Market Quality

In this section, I analyze the impact of dark trading on market quality and welfare nu-

merically. I do so by introducing a dark market with either a small or large trade-at rule

alongisde a visible limit order market. The classification of trade-at rule level is relative

to the benchmark trade-at rule, λ∗. In my numerical analysis, I assume the distribution of

innovations, f(δ) and private values g(y) to be uniform. The following subsections focus on

aspects of market quality; Section 4 discusses price efficiency and welfare.

3.1 Trading Volume and Market Participation

Trading volume in the context of my model has two components: visible and dark market

volume. Visible market volume is measured by the probability that an investor submits

either a buy or sell market order to the visible market (these orders are always filled).

Orders submitted to the dark market, however, have some level of execution risk. Dark

market volume is therefore measured by the probability that an investors submits an order
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to the dark market, discounted by the likelihood that the order will be filled. Total trading

volume at period t is thus measured as,

Trading Volumet = 2× (Pr(MBt) + Pr(DLSt−1)× Pr(DBt)) (27)

where the factor of 2 accounts for sell orders. Market participation measures the likelihood

that an investor who arrives at the market in period t submits an order of some type (i.e

does not abstain from trading), which is measured by,

Market Participationt = 2× (Pr(MBt) + Pr(DBt) + Pr(LBt)) (28)

I summarize the numerical findings graphically in Figure 4.

Numerical Observation 1 (Volume and Market Participation) If a dark market with

a large trade-at rule is introduced alongside a visible market, total volume and market par-

ticipation increases; a dark market with a small trade-at rule is decreasing in total volume,

and non-monotonic in market participation.

Numerically, I find that when a dark market competes with the visible market by setting

a large trade-at rule, trading volume and market participation improves. Intuitively, by

offering an order type with lower transaction costs than visible limit orders, participation

increases from investors who would otherwise abstain from the market. As visible limit order

submitters with lower valuations switch to the cheaper dark market, limit orders themselves

become more expensive. This effect ripples to higher-valuation limit order submitters who

now find visible market orders more desirable, further increasing trading volume. While

such a move increases the price of both visible market orders and dark orders, thereby

counteracting these changes to some extent, the numerical results suggest that the former

effects dominate. A dark market that competes by offering a small trade-at rule (which in

turn leads to lower execution risk than visible limit orders) has mixed results for volume and

market participation.

By separating volume into visible and dark market volume, I can also address whether

volumes migrates from visible to dark markets, or whether dark markets facilitate trades
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that otherwise would not have occurred. See Figure 4 for a graphical illustration.

Numerical Observation 2 (Volume Creation vs. Volume Migration) If a dark mar-

ket with a large trade-at rule is introduced alongside an visible market, the dark market creates

(net) new volume; a small trade-at rule results in volume migrating to the dark market.

3.2 Bid-Ask Spread and Price Impact

I also consider the impact of a dark market on visible market liquidity 9. The results are

illustrated graphically in Figure 5.

Numerical Observation 3 (Quoted Spread / Price Impact) If a dark market with a

large trade-at rule is introduced alongside a visible market, the quoted spread tightens (market

order price impact declines); a dark market with a small trade-at rule widens the quoted

spread (market order price impact increases).

Here, a dark market with a large trade-at rule adds to the market by ‘making’ increasingly

attractive (i.e., inexpensive) liquidity for low valuation investors. Moreover, limit order

submitters (who have lower valuations compared to visible market order submitters) switch

to visible market orders, thereby tightening the spread and reducing price impact. Increasing

the attractiveness of a dark market with a small trade-at rule through lower execution risk,

on the other hand, ‘takes’ from the visible market: market order submitters migrate to the

dark market, increasing the average informativeness of visible market orders, thus widening

the spread.

9In this framework, the bid-ask spread is synonymous with the price impact of a market order, as the
spread measures the adverse selection costs due to information of a trade on the visible market, which
occurs when a visible market order is placed. For better illustration, I use the quoted half-spread measure
(symmetry implies that the bid-ask spread is equal to twice the quoted half-spread)
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4 Price Efficiency and Social Welfare

In this section, I describe how dark market trade-at rules impact price efficiency and social

welfare. I analyze price efficiency by measuring the difference between the conditional ex-

pected innovation and the investor’s price impact in a given period. For social welfare, I use

a measure of allocative efficiency. That is, I measure how trade-at rules improve gains from

trade for uninformed investors. Because information-based trading is a zero-sum game, there

are no additional gains from trade to be made by improving their trading prospects. Instead,

I look at how these trade-at rules impact the ability of uninformed investors to realize their

private valuation.

4.1 Price Efficiency

Price impact measures the post-trade impact on the public expectation of the security.

However, because of noise from uninformed investors, the change in the public expectation

does not coincide with the change in the true value of the security (the innovation). Thus,

one can think of price efficiency in this framework as the ex ante difference, between the

conditional expected innovation’s value and the investor’s expected price impact (per period).

More formally (for buy orders),

∫ 1

0

δf(δ)

2
dδ − E[δ | buy] =

∫

MB

δ − ((1− µ) + µf(δ))× E[δ | MB]

2
dδ (29)

+

∫

LB

δ − ((1− µ) + µf(δ))× E[δ | LB]

2
dδ

+

∫

DB

δ − Pr(DLS)× ((1− µ) + µf(δ))× E[δ | DB]

2
dδ

How does the introduction of a dark market affect price efficiency, and does the effect depend

on the pricing of dark orders? I find that, regardless of the trade-at rule, (i.e., λ) the

introduction of dark orders decreases price efficiency. The numerical observation below
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summarizes these findings, and Figure 6 presents them graphically.10

Numerical Observation 4 (Price Efficiency) Price efficiency always decreases with the

introduction of dark market trading.

As the general usage of dark orders increases, price efficiency falls because investors

migrate from visible orders, to an order that only impacts prices when it is filled. Moreover,

in both cases, the mass of investors that migrate to the dark market is larger than those

who would participate only in a market with dark market trading (they previously made no

contribution to price efficiency). Therefore, price efficiency declines.

4.2 Social Welfare

Uninformed investors earn gains from realizing their private valuation. Following the work of

Bessembinder, Hao, and Lemmon (2012), I use private valuations to define social welfare as

a measure of allocative efficiency. If a transaction occurs in period t, then the social welfare

gain is given by the private valuation of a buyer minus the private valuation of a seller.

A trade occurs when the period t investor submits either a market order to the visible

market, or the investor submits an order to the dark market and the order gets filled. By

symmetry, total expected welfare per period is twice this amount. To assess the expected

gains from trade in period t, I measure the expected private valuation of the investor sub-

mitting the market order and the expected welfare of the counter-party, discounted by the

probability of an order being filled. Thus, the total expected welfare in period t is given by,

Wt = 2 · Pr(MBt) · (E[yt | Ht,MBt]− Pr(LSt−1) · E[yt−1 | Ht−1,MBt,LSt−1]) (30)

+2 · Pr(DBt) · Pr(DLSt−1) · E[yt | Ht,DBt]

Expression (30) describes total expected welfare per period as the expected private value

realized in period t, conditional on a visible or dark trade, and discounted by the likeli-

10Figure 6 uses zero as the informationally efficient benchmark, and larger deviations from zero, correspond
with less informationally efficient prices.
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hood of each trade type. The first term describes the (discounted) total expected welfare

of a visible market trade: the expected private valuation from the market order submitter,

and the expected private valuation of the limit order submitter (which is non-zero in ex-

pectation for the investor, but zero for a professional liquidity provider). The second term

describes the (discounted) total expected welfare of a dark market trade. The factors of two

in expression (30) account for the symmetry of buyer and seller trades.

I find that introducing dark market trading alongside the visible market has the following

effect on expected social welfare, W (t). (See also Figure 7).

Numerical Observation 5 (Social Welfare) If a dark market with a large trade-at rule

is introduced alongside a visible market, social welfare improves; a dark market with a small

trade-at rule reduces social welfare.

A dark market that offers a large trade-at rule (i.e., smaller transaction costs than a

visible limit order) has a positive effect on welfare. It does so by encourages greater use of

visible market orders from investors who use visible limit orders (implying more frequent

trades). This occurs because the transaction costs of a limit order increases when the low-

valuation limit order submitters migrate to the dark market. Moreover, the dark market

attracts investors who would otherwise not trade in a purely visible market. Hence, private

valuations are realized more frequently per order (more visible market orders) and more

frequently overall (higher market participation). This result suggests that when dark orders

have low costs, it is socially beneficial to have professional liquidity providers as the specialists

in passive orders, and for investors to assume the role of liquidity takers (whether on the

visible or dark market).

I find that not all dark markets are welfare-improving, however. A dark market with a

small trade-at rule leads to fewer visible market orders in equilibrium. Then, despite more

limit order submitters now migrating to the dark market (where execution risk is lower),

the likelihood that an investor’s private valuation is realized, declines. While more investors

are able to participate in the market because of the availability of dark market trading, the
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decline in visible market volume exceeds the increase in market participation, leading to the

decline in social welfare.

5 Policy Implications and Empirical Predictions

In sections 3 and 4, my model predicts that the impact of dark trading on visible market

quality and social welfare depends on the dark market trade-at rule, and as such, a minimum

trade-at rule has the potential to improve welfare and visible market quality. A minimum

trade-at rule of λ = λ∗ would make it unprofitable for a dark market to attract moderate

valuation investors with a small trade-at rule (which implies low execution risk). However,

it would be profitable for the dark market to attract low valuation investors with a large

trade-at rule, a dark market that would contribute positively to both market quality and

welfare.

The minimum trade-at rule discussion has important implications for equity markets

in Canada and Australia. On October 15th, 2012, the Investment Industry Regulatory

Organization of Canada (IIROC) implemented a trade-at rule that requires most dark orders

to provide a meaningful price improvement of one trading increment (or in the case of a one

tick spread, half the spread).11 Australia followed suit with a similar rule on May 26th,

2013. Since many liquid securities in global equity markets operate at a spread of one or

two ticks, the minimum trade-at rule effectively implies dark orders must trade at midpoint.

The security that I model is reflective of this type of security, as investors trade in single

units (i.e., never walk the book), and professional liquidity providers ensure that the book

is always full.

My model predicts that a minimum trade-at rule requiring dark pools to execute orders at

midpoint would eliminate all dark trading from the market. At midpoint, liquidity providers

vanish from the dark market. It is indeterminable from this model whether a market without

a minimum trade-at rule would lead to a dark market that harms market quality and welfare

11See Investment Industry Regulatory Organization of Canada (2011)

27



or one that improves both. However, setting a less-restrictive minimum trade-at rule would

lead liquidity providers to provide only the amount of liquidity that results in the dark

market being beneficial to market quality and welfare.

For securities where market makers are present but spreads are wider than one or two

ticks, a fixed tick size trade-at rule does not restrict the pricing behavior of dark markets

the way it restricts more liquid securities, as the fixed trade-at rule is smaller as a fraction

of the spread. In those cases, the larger spread weakens the rule, allowing for dark markets

with high-price-for-high-fill regimes to participate. In this way, a fixed tick trade-at rule

potentially widens the liquidity gap between more and less liquid stocks. Securities whose

spreads imply that the effective minimum trade-at rule as a percentage of the spread is λ > λ∗

(more liquid stocks) allow only spread-tightening dark markets to participate. Securities

with spreads that imply λ < λ∗ (less liquid stocks) would allow both spread-tightening and

spread-widening dark markets to enter the market.

6 Concluding Remarks

In this paper, I study how trade-at rules in dark markets impacts market quality and investor

welfare in equity markets. I construct a model where both informed and uninformed investors

can access a dark market and a visible limit order market. Moreover, the pricing decision for

limit orders is simplified, as both markets are monitored by professional liquidity providers

that ensure competitive limit order pricing.

The main result is that the trade-at rule in dark markets matters, the effects of which

depend on whether the trade-at rule is large or small. A dark market that competes with a

visible market by offering a large trade-at rule improves market quality and social welfare.

These dark markets trade-off their discount pricing with higher execution risk. Because they

offer lower transaction costs than visible limit orders (when price impact and pick-off risk are

combined), the dark market attracts investors from both the pool of investors that submit

28



limit orders, as well as investors who would otherwise abstain from trading. By setting a

small trade-at rule such that the price of a dark order is higher than a visible limit order,

professional liquidity providers supply more liquidity to the dark market than in the large

trade-at rule case. In equilibrium, the execution risk in the dark is lower than with limit

orders, and this leads to order migration from investors with moderate valuations. Investors

migrate from both the pools of visible market orders submitters and visible limit orders.

Consequently, market quality and social welfare decline. In terms of price efficiency, I find

that introducing a dark market alongside a visible market results in lower price efficiency,

irrespective of the trade-at rule.

These results have implications for minimum trade-at rule regulation. My model predicts

that the impact of dark trading on visible market quality and social welfare depends on the

trade-at rule of the dark market, and as such, a minimum trade-at rule has the potential

to improve welfare and visible market quality. A minimum trade-at rule of equal to the

benchmark trade-at rule would prevent dark markets from attracting investors with moderate

valuations, as liquidity providers would not be willing to provide liquidity with that level of

intensity (it would be unprofitable). However, it would be profitable for the dark market to

attract low valuation investors by setting a large trade-at rule, an as such, the dark market

would contribute positively to both market quality and welfare.

The minimum trade-at rule discussion has important implications for equity markets

in Canada and Australia. On October 15th, 2012, the Investment Industry Regulatory

Organization of Canada (IIROC) implemented a minimum trade-at rule that requires most

dark orders to provide a meaningful price improvement of one trading increment (or in the

case of a one tick spread, half the spread).12 Australia followed suit with a similar rule on

May 26th, 2013. Because many liquid securities in global equity markets operate at a spread

of one or two ticks, the minimum trade-at rule effectively implies dark orders must trade at

midpoint. My model predicts that a minimum trade-at rule that requires orders to be filled

12See Investment Industry Regulatory Organization of Canada (2011)

29



at the midpoint of the spread would eliminate all dark trading from the market, as liquidity

providers would vanish from the dark market.

For securities where spreads are wider than one or two ticks, the fixed-tick trade-at rule

imposed by IIROC and ASIC does not restrict the pricing behavior of dark markets in the

same way, as orders are not required to fill at midpoint. In this way, a fixed-tick price

improvement rule opens the possibility for dark markets to worsen the liquidity of relatively

illiquid stocks. If these illiquid securities have spreads are not too wide, then the presence of

a dark market improves liquidity. To remedy this issue, a trade-at rule that pegs the trade-

at rule to a percentage of the spread would be more equitable across securities of different

liquidity levels.
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A Appendix

The appendix contains all proofs and figures not presented in the text.

A.1 Proofs: Lemmas

Proof. (Lemma 1).

I prove this lemma by showing that, in equilibrium, for every type of sell order, there

is a buy order that is preferred by investors with valuations zt ≥ 0. It then follows that

investors non-negative valuations do not use sell orders in any equilibrium with symmetric

and stationary strategies. Time subscripts are dropped, as I focus on stationary equilibria.

Let investor j have a valuation equal to zj ≥ 0. An investor j prefers a market buy order

to a market sell order if,

πMB(zj) ≥ πMS(zj) ⇐⇒ zj ≥
E[δ | MB∗] + E[δ | MS∗]

2
= 0 (31)

where the last equality follows by symmetry. Thus, an investor does not use market sell

orders if their valuation is positive.

An investor j prefers a limit buy order to a limit sell order if,

πLB(zj) ≥ πLS(zj) ⇐⇒ zj ≥
Pr(MS∗)E[δ | LB∗] + Pr(MB∗)E[δ | LS∗]

Pr(MB∗) + Pr(MS∗)
= 0 (32)

where the last equality follows by symmetry. Thus, an investor does not use limit sell orders

if their valuation is positive.

An investor j prefers sending a buy order over a sell order to the dark if,

πDB(zj) ≥ πDS(zj) ⇐⇒ zj ≥ (1− 2λ)
Pr(DLS∗)E[δ | MB∗] + Pr(DLB∗)E[δ | MS∗]

Pr(DLB∗) + Pr(DLS∗)
= 0 (33)

where the last equality follows by symmetry. Thus, an investor does not send sell orders to

the dark if their valuation is positive.

The argument for investors not using buy orders when zj ≤ 0 follows by symmetry.
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Proof. (Lemma 2).

Recall that the general payoff function is given by,

execution probability × (zt − transaction costs)

What I will show is that, for each buy order type, the transaction costs are equal to the

price impact, and that the price impact is positive.

The lemma holds trivially for a market buy order, as the investor’s payoff (2) is

vt + zt − askt = vt + zt − vt − E[δt | MBt] (34)

= zt − E[δt | MBt] (35)

and hence the price impact, E[δt | MBt] is equal to the transaction costs of a market buy

order.

For limit orders, simplifying the investor’s payoff function (3) yields,

πLB = ρPr(MS∗)(E[Vt+1 | LBt,MSt+1]− bidt+1) (36)

= ρPr(MS∗)(vt + zt + E[δt+1 | LBt,MSt+1]− vt − E[δt | LBt]− E[δt+1 | LBt,MSt+1])

= ρPr(MS∗)(zt − E[δt | LBt])

and hence the price impact, E[δt | LBt] is equal to the transaction costs of a limit buy order.

The price impact of sending an order to the dark market requires the equilibrium condition

of liquidity providers to the dark market. In equilibrium, the price of an order filled in the

dark at period t, (1− 2λ)× askt, is equal to E[Vt | DBt, Ht−1], which simplifies to,

askt − λ× (askt − bidt) = E[Vt | DBt, Ht] (37)

⇐⇒ vt + (1− 2λ)× E[δt | MBt] = vt + E[δt | DBt] (38)

I can now write the investor’s payoff to a dark order (4) as,
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πDB = Pr(DLS∗)(vt + zt − vt − (1− 2λ)× E[δt | MBt]) (39)

= Pr(DLS∗)(zt − E[δt | DBt])

which implies that the (post-trade) price impact of a dark order, E[δt | DBt] is equal to the

transaction costs of a dark buy order.

Finally, by Lemma 1, only investors with zt ≥ 0 submit buy orders. Thus, E[δt | buyt] ≥ 0.

The argument for sell orders is symmetric.

Proof. (Lemma 3).

Let γI denote the execution probability of an order type, I, and let pI denote I’s trans-

action costs. I will show that in any symmetric, stationary equilibrium where all order types

are used, if γJ ≥ γK , then investors use a threshold strategy where zJ ≥ zK for all pJ , pK .

Suppose there is an order type J such that γJ ≥ γK and pJ < pK . Let order type K be

used by some investor, t, in equilibrium (investor t earns non-zero profits). Then, the profit

of investor t from using order type K is,

πt
K = γK × (zt − pK) < γJ × (zt − pJ) = πt

J (40)

for all zt. Thus, for an order to be used in equilibrium, it must be that it dominates another

order type in either execution probability or transaction costs.

Thus, we must have that for three order types such that γI ≥ γJ ≥ γK ≥ 0, it must be

the case that pI ≥ pJ ≥ pK ≥ 0.

This also implies that,

γIpI ≥ γJpJ ≥ γKpK ≥ 0 (41)

Because the general payoff function for an order type i is of the form,

πi = γi × (zt − pi)

we can see that the function is linear in zt, and that the order with the highest execution
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probability also has the lowest intercept, −γipi. The linearity of πi in zt implies that since

γI ≥ γJ ≥ γK ≥ 0, if the profit function of order I crosses the profit functions of J and K

at some zI , it remains above them for all zt > zI .

Then, the relation in 41 implies that for I to be used in equilibrium, it must cross J

and K. Thus, investors with zt ≥ zI use order I.Likewise, if J crosses K, it is above K for

all zt ≥ zJ . Then, for J to be used in equilibrium, πJ must cross πK before πI crosses πJ .

Thus, zJ ≤ zI . Lastly, πK crosses the no-trade threshold, πNT = 0 before πJ and πI , but at

a positive zt = γKpK . Hence, zK > 0.

A.2 Proofs: Existence Theorems and Propositions

This section contains the proofs of the existence theorems and proposition 1. I conduct the

existence proofs in similar steps. I select a single threshold to be the reference threshold,

showing that all other thresholds exist and are unique for all values of the reference threshold,

making use of the intermediate value theorem, Lemma (3), and the implicit function theorem.

Then, using the intermediate value theorem, I show that there exists a value of the reference

threshold that such that the equilibrium exists. As a remark on notation, I drop the time

subscripts in all proofs, because of the stationarity condition.

Preliminaries. In the proofs to follow, the conditional expectation over the innovation,

δ, plays a prominent role. The expectation over δ, conditional on a ≤ z ≤ b is given by,

E[δ | a ≤ z ≤ b] =
µ
∫ b

a
δf(δ)dδ

µ
∫ b

a
f(δ)dδ + (1− µ)(b− a)

(42)

where z represents the informed investors and uninformed investors who have valuations in

[a, b]. For example, a market buy would have [a, b] = [zM , 1]. Expression (42) is continuous:

it is the quotient of two continuous functions (f is continuous on δ ∈ [0, 1]) where the
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denominator is never zero, and by l’Hopital’s rule,

lim
b→a

E[δ | a ≤ z ≤ b] =
µ · af(a)

µf(a) + (1− µ)
6= 0 (43)

lim
a→b

E[δ | a ≤ z ≤ b] =
µ · bf(b)

µf(b) + (1− µ)
6= 0 (44)

the limits exist for all µ ∈ (0, 1). Moreover, because the denominator of (42) is continuously

differentiable, then so is (42).

Proof. (Theorem 1).

To prove existence of a symmetric, stationary equilibrium in threshold strategies of this

form, I first prove the existence of an equilibrium in an environment without a dark market,

and then show that introducing a dark market that satisfies λ = λ∗ to trading on the visible

market has no effect on the equilibrium thresholds.

The market order and limit orders indifference conditions are given by,

zM − E[δ | MB∗] = ρPr(MS∗)× (zM − E[δ | LB∗]), (45)

zL = E[δ | LB∗] (46)

where an investor submits a market buy over a limit buy as long as zt ≥ zM , submits a limit

buy if zM > zt ≥ zL, and abstains from trading otherwise. To show existence of a threshold

equilibrium, I need to show existence of thresholds zM and zL.

I proceed in 3 steps. In step 1, I show that for any given zM ∈ [0, 1] there exists a unique

zL that solves (46). In Step 2, I show that there exists a zM that solves (45).

Step 1: Existence and Uniqueness of zL∗ (z
M )

Take the function Z l = zL − E[δt | LBt]. To show that Z l only crosses zero once from below

on zL ∈ [0, zM ], first note that,
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Z l(0) = 0− E[δ | LB∗] < 0 (47)

Z l(zM) = zM − E[δ | LB∗] > zM − E[δ | MB∗] ≥ 0 (48)

where the last inequality in (48) follows from the participation constraint of market order

users. Thus, zL∗ exists. Let E[δ | LB∗] = numL/prL. Then, differentiating Z l by zL∗,

Z l
zL∗ = 1−

∂E[δ | LB∗]

∂zL∗
(49)

= 1−
µg(zL∗)zL∗prL + (µg(zL∗) + (1− µ)numL

pr2L

In equilibrium, zL∗ = E[δ | LB∗], so (49) can be simplified to,

Z l
zL∗ = 1−

(1− µ)E[δ | LB∗]

pr2L
(50)

I want to show that the term (1−µ)E[δ|LB∗]
pr2

L

< 1. I do so using the following property of zL∗.

zL∗ =
µ
∫ zM

zL∗
δf(δ)dδ

µ
∫ zM

zL∗
f(δ)dδ + (1− µ)(zM − zL∗)

(51)

=

∫ zM

zL∗
δf(δ)dδ

∫ zM

zL∗
f(δ)dδ

·
µ
∫ zM

zL∗
f(δ)dδ

µ
∫ zM

zL∗
f(δ)dδ + (1− µ)(zM − zL∗)

> zM ×
µ
∫ zM

zL∗
f(δ)dδ

µ
∫ zM

zL∗
f(δ)dδ + (1− µ)(zM − zL∗)

Then, by adding zM to both sides, and rearranging, I have,

zM − zL∗ < zM ×

(
1−

µ
∫ zM

zL∗
f(δ)dδ

µ
∫ zM

zL∗
f(δ)dδ + (1− µ)(zM − zL∗)

)
(52)

= zM ×
(1− µ)(zM − zL∗)

prL

⇐⇒ prL > zM × (1− µ) > zL∗ × (1− µ)

where the last line in (52) implies that ∂E[δ|LB∗]
∂zL∗

< 1 for all zM , and thus Z l
zL∗

> 0. I have

thus shown that Z l only crosses 0 once on [0, zM ], for any zM . Thus, there exists a unique
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zL∗ that solves the indifference equation for the marginal limit buy order submitter, for all

zM ∈ [0, 1].

Step 2: Existence of zM

With a similar approach, I show that for the function Zm crosses zero from below.

Zm(0) = 0− E[δ | MB∗]− ρPr(MS∗)× (0− 0) < 0 (53)

Zm(1) = 1− E[δ | MB∗]− 0× (1− zL∗) > 0 (54)

Because Zm is continuous in zM , the intermediate value theorem implies the existence of a

zM ∈ [0, 1] that crosses zero from below for all zL∗(zM). This holds for zL∗ by the implicit

function theorem, as Z l is continuous for all zM , and Z l
zL∗

6= 0. Therefore, an equilibrium

exists in threshold strategies with zM and zL such that zM ≥ zL.

Proof. (Proposition 1).

The expected payoff for liquidity providers sending sell limit orders to the dark market

(conditional on execution) satisfies,

πDLS = (1− 2λ)× E[δ | MB∗]− E[δ | DB∗] (55)

By Lemma 1, E[δ | DB∗] > 0 and E[δ | MB∗] > 0. Then, for all λ ≥ 1/2, (1 − 2λ) ≤ 0,

implying that the premium paid to a professional liquidity provider is (1 − 2λ) × E[δ |

MB∗] ≤ 0. Therefore, any dark trade earns the liquidity provider a negative payoff. Thus,

in equilibrium, no limit orders are sent to the dark market (i.e., Pr(DLS) = Pr(DLB∗) = 0).

Proof. (Proposition 2). Consider a market where investors can send an order to the

visible market, or a dark market that offers a trade-at rule λ such that,

(1− 2λ∗)× E[δ | MB∗] = E[δ | LB∗] (56)

To show that such a trade-at rule exists, consider the expression,
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Zλ = (1− 2λ)× E[δ | MB∗]− E[δ | LB∗] (57)

Now evaluate expression (57) at the endpoints λ = {0, 1}. We then have,

λ = 0 ⇐⇒ Zλ = E[δ | MB∗]− E[δ | LB∗] > 0

λ = 1 ⇐⇒ Zλ = −E[δ | MB∗]− E[δ | LB∗] < 0

which implies, by the intermediate value theorem, that there exists a λ∗ such that (57) holds

for all zL∗ and zM∗. Moreover, Zλ
λ∗ = −2× E[δ | MB∗] < 0, λ∗ is unique.

Then, given λ∗ as in (57), the level of liquidity provision to the dark market equal to

Pr(DLS) = ρPr(MS∗) implies that πL = πD, for all investors. Thus, no investor deviates

from the equilibrium actions determined by the zM and zL thresholds above, as investors

stay with the incumbent visible market if they are indifferent between the visible market and

the dark market (by assumption). Moreover, given zM and zL and λ∗, liquidity providers

earn zero profits submitting limit orders to the dark market. Thus, they have no incentive

to deviate from the liquidity provision strategy Pr(DLS) = ρPr(MS∗).

Proof. (Theorem 2).

Similar to the proof of Theorem 1, I proceed by showing the existence and uniqueness of

zL∗, zD∗ and Pr(DLS∗) for all zM , and then show that zM∗ exists, for all λ ∈ (λ∗, 1/2). I do

so using the functions below, derived from indifference conditions (19)-(22)),

Zm = zM − E[δ | MB∗]− ρ · Pr(MS∗)×
(
zM − E[δ | LB∗]

)
(58)

Zγ = ρ · Pr(MS∗)×
(
zL − E[δ | LB∗]

)
− Pr(DLS)×

(
zL − (1− 2λ)× E[δ | MB∗]

)
(59)

Zd = zD − (1− 2λ)× E[δ | MB∗] (60)

Z l = (1− 2λ)× E[δ | MB∗]− E[δ | DB∗] (61)

Moreover, the condition λ∗ < λ < 1/2 implies that (1− 2λ)×E[δ | MB∗] < E[δ | LB∗]. Steps

1-4 show the existence of an equilibrium where 0 < zD < zL < zM < 1 for λ ∈ (λ∗, 1/2). In
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step 5, I show that an equilibrium does not exist when λ ∈ (0, λ∗).

Step 1: Existence and Uniqueness of zD∗(zM )

I first show that there exists a unique zD ∈ [0, zL] that solves (60) for all zM ∈ [0, 1].

Evaluating Zd at the end points of zD,

zD = 0 ⇒ Zd = 0− (1− 2λ)× E[δ | MB∗] < 0

zD = zL ⇒ Zd = zL − (1− 2λ)× E[δ | MB∗] > 0

where the last inequality holds because in equilibrium, zL > E[δt | LBt] > (1− 2λ)E[δ | MB∗]

for all λ ∈ (λ∗, 1/2). Thus by the intermediate value theorem, zD∗ exists. Then, because

Zd
zD∗

= 1 > 0, the function Zd only ever crosses zero from below, and thus it can only do so

once, implying that zD∗ is unique for all zM .

Step 2: Existence and Uniqueness of zL∗(zM )

I now show that there exists a unique zL ∈ [zD∗, zM ] that solves (61) for all zM ∈ [0, 1].

Preliminarily, I show two important monotonicity results. Differentiating E[δ | DB∗] by zL∗,

∂E[δ | DB∗]

∂zL∗
= −

µf(zL∗)zL∗ − (µf(zL∗) + (1− µ))× E[δ | DB∗]

Pr(DB)2
(62)

which is positive for all zM by the following argument. Rearranging expression (62),

E[δ | DB∗] <
µf(zL∗)zL∗

µf(zL∗) + (1− µ)

⇐⇒ E[δ | DB∗] < lim
zD→zL∗

µ
∫ zL∗

zD∗
δf(δ)dδ

µ
∫ zL∗

zD∗
f(δ)dδ + (1− µ)(zL∗ − zD∗)

(63)

The right-hand side of (63) is the upper limit of E[δ | DB∗]. For all f(δ) ≥ 0, the result

is immediate. If f(δ) < 0, then there exists a point at which the density function for the
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innovation falls below the uniform distribution of the private values. If this point occurs

within (zD∗, zL∗), then it is possible that,

E[δ | DB∗] > lim
zD→zL∗

µ
∫ zL∗

zD∗
δf(δ)dδ

µ
∫ zL∗

zD∗
f(δ)dδ + (1− µ)(zL∗ − zD∗)

But this implies that E[δ | DB∗] > E[δ | LB∗] > E[δ | MB∗]. In equilibrium, however, it must

be the case that E[δ | LB∗] < E[δ | MB∗], a contradiction. Thus, (63) must hold. A similar

argument applies for ∂E[δ|DB∗]
∂zD∗

> 0.

To show that zL∗ exists, I evaluate Z l at the end points of zL,

zL = zD∗ ⇒ Z l = zD∗ − E[δ | zD∗ ≤ z ≤ zD∗]

= zD∗ ×

(
1−

µf(zD∗)

µf(zD∗) + (1− µ)

)
> 0 (64)

zL = zM ⇒ Z l = (1− 2λ)× E[δ | MB∗]− E[δ | zD∗ ≤ z ≤ zM ]

the sign for the expression of Z l(zL = zM ) depends on the value of λ∗ ∈ (λ∗, 1/2). For

λ = 1/2, Z l = −E[δ | DB∗] < 0. However, if λ = λ∗(= E[δ | LB∗]),

Z l(zL = zM ) = E[δ | z ∈ (zL = zM , zM )]− E[δ | z ∈ (zD∗, zM )] > 0 (65)

since (∂E[δ | DB∗]/∂zD∗) > 0 on [0, zL = zM ]. Then, because (1 − 2λ) × E[δ | MB∗] is

decreasing in λ, there must exist a λ̄ > λ∗ such that Z l(zL = zM ) < 0 for all λ ∈ (λ̄, 1/2),

implying that zL∗ exists.

Finally, Z l
zL∗

= −∂E[δ|DB∗]
∂zL∗

< 0, and thus the function Z l only ever crosses zero from

above, implying that it can only cross zero once. Thus, I have shown that zL∗ is unique for

all zM , for all λ ∈ (λ̄, 1/2).

Step 3: Existence and Uniqueness of Pr(DLS∗)(zM)

I now show that there exists a unique Pr(DLS∗) ∈ [zD∗, zM ] that solves (59) for all zM ∈ [0, 1].

43



Pr(DLS∗) = 0 ⇒ Zγ = ρPr(MS∗) ·
(
zL∗ − E[δ | LB∗]

)
> 0

Pr(DLS∗) = Pr(MS∗) ⇒ Zγ = ρPr(MS∗) · ((1− 2λ)E[δ | MB∗]− E[δ | LB∗]) < 0

where the last inequality holds by the fact that in equilibrium, E[δt | LBt] > (1− 2λ)E[δt | MBt]

for all λ ∈ (λ̄, 1/2). Thus, Pr(DLS∗) exists. Then, because,

Zγ

Pr(DLS∗) = −
(
zL∗ − (1− 2λ)× E[δ | MB∗]

)
< 0

the function Zγ only ever crosses zero from below. Since it can only do so once, we have

that Pr(DLS∗) is unique for all zM .

Step 4: Existence of zM

Lastly, I show that there exists a zM ∈ [0, 1] that solves expression (58).

zM = 0 ⇒ Zm = −E[δ | MB∗]− ρ · Pr(MS∗)× 0 < 0

zM = 1 ⇒ Zm = 1− E[δ | MB∗]− ρ · 0× (1− E[δ | LB∗]) > 0

The last inequality arises from the fact that at zM = 1, the measure of market order sub-

mitters is zero, and thus, Pr(MS∗) = 0. Hence, there exists a zM ∈ [0, 1] that solves

expression (58) given zL∗, zD∗ and Pr(DLS∗), for all λ ∈ (λ̄, 1/2).

Step 5: No Equilibrium when λ ∈ (0, λ∗)

If λ ∈ (0, λ∗), then (1− 2λ)E[δ | MB∗] > E[δ | LB∗]. If ρPr(MS∗) > Pr(DLS∗), submitting a

limit order strictly dominates sending an order to the dark, as a limit order yields both lower

execution risk and lower transaction costs. Hence trading with the dark market is never an

equilibrium strategy for any investor, which violates the supposition that 0 < zD < zL.

If ρPr(MS∗) < Pr(DLS∗), then Lemma (3) implies that zD > zL must hold. Hence, for

all λ such that (0, λ∗), there can be no equilibrium where 0 < zD < zL < zM < 1.

Proof. (Theorem 3).
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Similar to the proof of Theorem 2, I proceed by showing the existence and uniqueness of

zL∗, zD∗ and Pr(DLS∗) for all zM , and then show that zM∗ exists for all λ ∈ (0, λ∗). I do so

using the functions below, derived from indifference conditions (23)-(26),

Zm = zM − E[δ | MB∗]− Pr(DLS)×
(
zM − (1− 2λ)× E[δ | MB∗]

)
(66)

Zγ = Pr(DLS)×
(
zD − (1− 2λ)× E[δ | MB∗]

)

−ρ · Pr(MS∗)×
(
zD − E[δ | LB∗]

)
(67)

Z l = zL − E[δ | LB∗] (68)

Zd = (1− 2λ)× E[δ | MB∗]− E[δ | DB∗] (69)

Further, the condition 0 < λ < λ∗ implies that (1 − 2λ)× E[δ | MB∗] > E[δ | LB∗]. In step

5, I show that an equilibrium does not exist when λ ∈ (λ∗, 1/2).

Step 1: Existence and Uniqueness of zL∗(zM )

I now show that there exists a unique zL ∈ [0, zD] that solves (69) for all zM ∈ [0, 1].

zL = 0 ⇒ Z l = 0− E[δ | LB∗] < 0

zL = zD ⇒ Z l = zD − zD ×
µf(zD)

µf(zD) + (1− µ)
> zD ×

(1− µ)

µf(zD) + (1− µ)
> 0

Thus, zL∗ exists. Then, from step 1 of the proof of Theorem 1,

Z l
zL∗ = 1−

∂E[δ | LB∗]

∂zL∗
> 0

we have that the function Z l only ever crosses zero from below, and thus it can only do so

once, implying that zL∗ is unique for all zD.

Step 2: Existence and Uniqueness of zD∗(zM )

I first show that there exists a unique zD ∈ [zL∗, zM ] that solves (68) for all zM ∈ [0, 1].

Evaluating Zd at the end points of zD,
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zD = zL∗ ⇒ Zd = (1− 2λ)× E[δ | MB∗]− E[δ | zL∗ ≤ z ≤ zM ] ≥ 0 (70)

zD = zM ⇒ Zd = (1− 2λ)× E[δ | MB∗]− E[δ | zM ≤ z ≤ zM ] ≤ 0

where the inequalities hold simultaneously for some λ ∈ (0, λ∗). To see this, note that

Zd = E[δ | MB∗]− E[δ | DB] > 0 for λ = 0, and that at λ = λ∗,

(1− 2λ)× E[δ | MB∗] = E[δ | LB∗] < E[δ | DB∗]

Then, because

E[δ | zM ≤ z ≤ zM ] > E[δ | zL∗ ≤ z ≤ zM ]

there must exist a (subset of) λ ∈ (0, λ∗) such that both inequalities in (70) are strict. Thus,

zD∗ exists. Then, differentiating Zd by zD∗,

Zd
zD∗ = −

∂E[δ | DB∗]

∂zD∗
= −

(µf(zD∗) + (1− µ))× E[δ | DB∗]− µf(zD∗)zD∗

Pr(DB)2
(71)

which is negative for all zM by an argument similar to step 2 of the proof of Theorem 2.

Rearranging expression (71), Zd
zD∗

is negative if the following holds:

E[δ | DB∗] >
µf(zD∗)zD∗

µf(zD∗) + (1− µ)

⇐⇒ E[δ | DB∗] > lim
zM→zD∗

µ
∫ zM

zD∗
δf(δ)dδ

µ
∫ zM

zD∗
f(δ)dδ + (1− µ)(zM − zD∗)

(72)

The right-hand side of (72) is the lower limit of E[δ | DB∗]. For all f ′(δ) ≥ 0, the result

is immediate. If f ′(δ) < 0, then there exists a point at which the density function for the

innovation falls below the uniform distribution of the private values. If this point occurs

within (zD∗, zM ), then it is possible that,

E[δ | LB∗] < E[δ | DB∗] < lim
zM→zD∗

µ
∫ zM

zD∗
δf(δ)dδ

µ
∫ zM

zD∗
f(δ)dδ + (1− µ)(zM − zD∗)

But this implies that E[δ | DB∗] > E[δ | MB∗]. In equilibrium, however, it must be the case

that E[δ | DB∗] < E[δ | MB∗], a contradiction.

46



Thus, (72) must hold, implying that Zd < 0 for all zM , Hence, the function Zd only ever

crosses zero from above, and thus it can only do so once, implying that zD∗ is unique for all

zM , and all λ ∈ (0, λ∗) such that (70) is satisfied.

Step 3: Existence and Uniqueness of Pr(DLS∗)(zM)

I now show that there exists a unique Pr(DLS∗) ∈ [Pr(MS∗), 1] that solves (66) for all

zM ∈ [0, 1]. At Pr(DLS∗) = ρPr(MS∗),

Zγ = ρPr(MS∗)× (E[δ | LB∗]− (1− 2λ)E[δ | MB∗]) < 0

Now, let Pr(DLS∗) = 1. In equilibrium, because (1 − 2λ) × E[δ | MB∗] < E[δ | MB∗], all

investors prefer dark market orders to visible market orders. Thus, Pr(MS∗) = 0. Then, we

have that:

Zγ = (1− ρPr(MS∗)) · zD∗ − (1− 2λ)× E[δ | MB∗] + ρPr(MS∗) · E[δ | LB∗]

> zD − (1− 2λ)× E[δ | DB∗] > 0

Thus by the intermediate value theorem, Pr(DLS∗) exists. Then, differentiating Zγ by

Pr(DLS∗), we have,

Zγ

Pr(DLS∗) =
(
zD∗ − (1− 2λ)× E[δ | MB∗]

)
> 0

which implies that the function Zγ only ever crosses zero from below, and hence can only

cross once). Thus, Pr(DLS∗) is unique for all zM , and λ ∈ (0, λ∗) such that (70) is satisfied.

Step 4: Existence of zM

Lastly, I show that there exists a zM ∈ [0, 1] that solves (66).

zM = 0 ⇒ Zm = −E[δ | MB∗]× (1− Pr(DLS∗) · (1− 2λ)) < 0

zM = 1 ⇒ Zm = 1− Pr(DLS∗)− E[δ | MB∗]× (1− Pr(DLS∗) · (1− 2λ)) > 0
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The last inequality arises from the fact that at zM = 1, the measure of market order submit-

ters is zero, and thus, Pr(MS∗) = 0. Pr(DLS∗) = 0 by condition (67) evaluated at zM = 1.

Hence, zM exists for all λ ∈ (0, λ∗) such that (70) is satisfied.

Step 5: No Equilibrium when λ ∈ (λ∗, 1/2)

If λ ∈ (λ∗, 1/2), then E[δ | LB∗] > (1 − 2λ)E[δ | MB∗]. If ρPr(MS∗) < Pr(DLS∗), sending

an order to the dark market strictly dominates limit orders, as an order in the dark market

yields both lower execution risk and lower transaction costs. Hence, limit orders are not

used in equilibrium, which violates the supposition that zL < zD (i.e., there is some investor

that uses limit orders).

For the second case, Lemma (3) implies that if ρPr(MS∗) > Pr(DLS∗), then zL > zD

must hold. Hence, for all λ such that E[δt | LBt] ≥ (1 − 2λ)E[δ | MB∗] holds, there can be

no equilibrium where 0 < zL < zD < zM < 1.

A.3 Out-of-Equilibrium Limit Orders and Beliefs

The equilibrium concept I employ in this paper perfect Bayesian equilibrium. On-the-

equilibrium-path, investors submit limit orders with competitive limit prices. However,

I require an appropriate set of out-of-equilibrium beliefs to ensure that competitive limit

prices strategically dominate any off-equilibrium-path deviations in the limit price. Intu-

itively, any limit order that is posted at a price worse than the competitive equilibrium price

is strategically dominated by the competitive price, as professional liquidity providers react

to the non-competitive order by undercutting it. For non-competitive limit orders that un-

dercut the competitive price (i.e., a price inside the competitive spread), however, it is not

immediate that the competitive price strategically dominates this set of prices.

Perfect Bayesian equilibrium prescribes that investors and professional liquidity providers

update their beliefs by Bayes rule, whenever possible, but it does not place any restrictions

on the beliefs of market participants when they encounter an out-of-equilibrium action.
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To support competitive prices in equilibrium, I assume (similar to Brolley and Malinova

(2014)) that if a limit buy order is posted at a price different to the competitive equilibrium

bid price bid∗t+1, then market participants hold the following beliefs regarding this investor’s

knowledge of the period t innovation δt.

If a limit buy order is posted at a price b̂id < bid∗t+1, then market participants assume

that this investor followed the equilibrium threshold strategy, but “made a mistake” when

pricing his orders. A professional liquidity provider then updates his expectation about δt

to the equilibrium value and posts a buy limit order at bid∗t+1. The original investor’s limit

order then executes with zero probability.

If a limit buy order is posted at a price b̂id > bid∗t+1, then market participants believe

that this order stems from an investor with a sufficiently high valuation (e.g., zt = 1) and

update their expectations about δt to E[δt | b̂id] accordingly.The new posterior expectation

of Vt equals to pt−1 + E[δt | b̂id]. A professional liquidity provider is then willing to post a

bid price bid∗∗t+1 ≤ pt−1 + E[δt | b̂id] + E[δt+1 | MSt+1]. With the out-of-the-equilibrium belief

of δt = 1 and with the bid-ask spread< 1, a limit order with the new price bid∗∗t+1 outbids

any limit buy order that yields investors positive expected profits.

The beliefs upon an out-of-equilibrium sell order are symmetric. The above out-of-

equilibrium beliefs ensure that no investor deviates from his equilibrium strategy. I empha-

size that these beliefs and actions do not materialize in equilibrium. Instead, they can be

loosely thought of as a “threat” to ensure that investors do not deviate from their prescribed

equilibrium strategies.
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Figure 2: Entry and Order Submission Timeline

This figure illustrates the timing of events upon the arrival of an investor at an arbitrary period, t, until their departure from the market.
Value yt is the private valuation of the period t investor and δt is the innovation to the security’s fundamental value in period t.

t
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enters market,

learns yt and δt

Period t investor

submits order (if any)

Period t− 1 limit orders either

trade against the period t market order
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Period t dark market
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Period t− 1 investor leaves market

(if still present)

Professional liquidity providers post limit
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with probability Pr(DLSt−1)

t+1

Period t+ 1 investor

enters market,
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Period t investor leaves market
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Figure 3: Equilibrium Thresholds

The panels below depict equilibrium valuation thresholds zM , zL and zD as a function of the trade-at rule (λ < λ∗ on the left, λ > λ∗ on the
right). A vertical dashed line marks λ∗; the horizontal dashed line indicates the visible market only benchmark value. Parameter µ = 0.5.
Results for other values of µ are qualitatively similar.
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Figure 4: Volume, Market Participation

The panels below depict volume (visible market and total), and market participation as a function of the trade-at rule (λ < λ∗ on the
left, λ > λ∗ on the right). A vertical dashed line marks λ∗; the horizontal dashed line indicates the visible market only benchmark value.
Parameter µ = 0.5. Results for other values of µ are qualitatively similar.
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Figure 5: Quoted Half-Spread

The panels below depict the quoted half-spread (also price impact) as a function of the trade-at rule (λ < λ∗ on the left, λ > λ∗ on the
right). A vertical dashed line marks λ∗; the horizontal dashed line indicates the visible market only benchmark value. Parameter µ = 0.5.
Results for other values of µ are qualitatively similar.
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Figure 6: Informational Efficiency

The panels below depict informational efficiency as a function of the trade-at rule (λ < λ∗ on the left, λ > λ∗ on the right). Higher
values than the benchmark are less efficient. A vertical dashed line marks λ∗; the horizontal dashed line indicates the visible market only
benchmark value. Parameter µ = 0.5. Results for other values of µ are qualitatively similar.
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Figure 7: Total Expected Welfare

The panels below depict total expected welfare as a function of the trade-at rule (λ < λ∗ on the left, λ > λ∗ on the right). A vertical
dashed line marks λ∗; the horizontal dashed line indicates the visible market only benchmark value. Parameter µ = 0.5. Results for
other values of µ are qualitatively similar.
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