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Abstract. This paper derives conditions under which preferences and technology

are nonparametrically identified in hedonic equilibrium models, where products are

differentiated along more than one dimension and agents are characterized by sev-

eral dimensions of unobserved heterogeneity. With products differentiated along a

quality index and agents characterized by scalar unobserved heterogeneity, single

crossing conditions on preferences and technology provide identifying restrictions.

We develop similar shape restrictions in the multi-attribute case and we provide

identification results from the observation of a single market. We thereby extend

identification results in Matzkin (2003) and Heckman, Matzkin, and Nesheim (2010)

to accommodate multiple dimensions of unobserved heterogeneity. With an exclu-

sion restriction or multiple market data, we further show identification of marginal

effects, when the distribution of unobserved tastes for quality is unspecified.
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1. Introduction

Recent years have seen renewed interest in hedonic models, particularly their iden-

tification and estimation. Hedonic models were initially introduced to analyze price

responses to quality parameters of differentiated goods. Among these: (1) Given

the fact that the amenities offered by cars constantly evolve over time, how can one

construct a price index measuring the evolution of the car prices? (2) How can one

explain price differentiation in wine, art, luxury goods, professional sports wages?

(3) What does the correlation between the wage differentials and the level of risk

associated to a given job reveal about individuals’ valuation for their own life? (4)

How can one analyze individual preferences for environmental features?

These questions gave rise to a vast literature, which aims at modeling implicit

markets for quality differentiated products. There are two layers to this literature.

The first layer is the literature on “hedonic regressions,” which aims at estimating

consumer willingness to pay for quality, while correcting for the standard endogeneity

issue that consumers with greater taste for quality will consume more of it. The

second layer, which concerns us here, has broader scope: the literature on “hedonic

equilibrium models” incorporates a supply side with differentiated productivity over

various quality parameters and studies the resulting equilibrium. This approach dates

back at least as far as Tinbergen (1956); and Rosen (1974) provides a famous two-step

procedure to estimate general hedonic models and thereby analyze general equilibrium

effects of changes in buyer-seller compositions, preferences and technology on qualities

traded at equilibrium and their price. Following the influential criticism of Rosen’s

strategy in Brown and Rosen (1982) and the inadmissibility of supply side observable

characteristics as instruments in structural demand estimation as discussed in Epple

(1987) and Bartik (1987), it was generally believed that identification in hedonic

equilibrium models required data from multiple markets, as in Epple (1987), Khan
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and Lang (1988) and, more recently, Bajari and Benkard (2005) and Bishop and

Timmins (2011).

Ekeland, Heckman, and Nesheim (2004) show, however, that hedonic equilibrium

models are in fact identified from single market data, under separability assumptions,

as in Ekeland, Heckman, and Nesheim (2004), or shape restrictions, as in Heckman,

Matzkin, and Nesheim (2010). The common underlying framework is that of a per-

fectly competitive market with heterogeneous buyers and sellers and traded product

quality bundles and prices that arise endogeneously in equilibrium. Preferences are

quasi-linear in price and under mild semicontinuity assumptions, Ekeland (2010) and

Chiappori, McCann, and Nesheim (2010) show that equilibria exist, in the form of a

joint distribution of product and consumer types (who consumes what), a joint dis-

tribution of product and producer types (who produces what) and a price schedule

such that markets clear for each endogenously traded product type. Equilibrium ex-

istence results are valid in hedonic markets for multi-attribute products, but existing

single market identification strategies restrict attention to a single quality dimension

and scalar unobserved heterogeneity in consumer preferences and production technol-

ogy. Ekeland, Heckman, and Nesheim (2004) require marginal utility (resp. marginal

product) to be additively separable in unobserved consumer (resp. producer) charac-

teristic. Heckman, Matzkin, and Nesheim (2010) show that demand is nonparamet-

rically identified under a single crossing condition and that various additional shape

restrictions allow identification of preferences without additive separability.

The objective of these papers and ours is to recover structural preference and tech-

nology parameters from the observation of who trades what and at what price. In the

identification exercise, price is assumed known, as are the distributions characterizing

who produces and consumes which good. Since price is observed and the environment

is perfectly competitive, identification of preferences and identification of technology

can be treated independently and symmetrically. Take the consumer problem, for

instance. Under a single crossing condition on the utility function (also known as
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Spence-Mirlees in the mechanism design literature), the first order condition of the

consumer problem yields an increasing demand function, i.e., quality demanded by

the consumer as an increasing function of her unobserved type, interpreted as un-

observed taste for quality. Assortative matching guarantees uniqueness of demand,

as the unique increasing function that maps the distribution of unobserved taste for

quality, which is specified a priori, and the distribution of qualities, which is observed.

Hence demand is identified as a quantile function, as in Matzkin (2003). Identifica-

tion, therefore, is driven by a shape restriction on the utility function. We show that

similar shape restrictions on the utility function also yield identification conditions

in the case of non scalar characteristics and unobserved heterogeneity. In the special

case, where marginal utility is additively separable in the unobservable taste vec-

tor, concavity yields nonparametric identification of the utility function, according

to the celebrated Brenier Theorem of optimal transport theory (Theorem 3.8 of Vil-

lani (2003)). More generally, a generalization of single crossing known as the Twist

Condition in optimal transport theory and a generalized convexity shape restriction

yield identification of the utility function in hedonic equilibrium models with multiple

quality dimensions. The distribution of unobserved heterogeneity is fully specified a

priori and cannot be identified from single market data. However, we show that addi-

tional restrictions or data from multiple markets provide identifying power when the

distribution of unobserved tastes is unknown. We derive specific identification results

when marginal utilities are additively separable in consumer and good characteristics,

on the one hand, and when a variable (market index) shifts quality distributions and

prices, but is excluded from preferences, on the other hand.

Related work. Beyond Ekeland, Heckman, and Nesheim (2004), Heckman, Matzkin,

and Nesheim (2010) and other contributions cited so far, this paper is closely related

to the growing literature on identification and estimation of nonlinear econometric
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models with multivariate unobserved heterogeneity on the one hand, and to the em-

pirical literature on matching models where agents match along multiple dimensions

on the other hand. The quantile identification strategy of Matzkin (2003) was recently

extended to non scalar unobserved heterogeneity using the Rosenblatt (1952)-Knothe

(1957) sequential multivariate quantile transform for nonlinear simultaneous equa-

tions models in Matzkin (2013) and bivariate hedonic models in Nesheim (2013).

Chiappori, McCann, and Nesheim (2010) derive a matching formulation of hedonic

models and thereby highlight the close relation between empirical strategies in match-

ing markets and in hedonic markets. Galichon and Salanié (2012) extend the work

of Choo and Siow (2006) and identify preferences in marriage markets, where agents

match on discrete characteristics, as the unique solution of a programming problem,

as in the present paper. The strategy is also applied in Chiong, Galichon, and Shum

(2013) for identification of dynamic discrete choice problems.

Organization of the paper. The remainder of the paper is organized as follows. Sec-

tion 2 sets the hedonic equilibrium framework. Section 3 gives an account of the

main results on nonparametric identification of preferences in single attribute hedonic

models, mostly drawn from Ekeland, Heckman, and Nesheim (2004) and Heckman,

Matzkin, and Nesheim (2010). Section 4 is the main section of the paper and shows

how these results and the shape restrictions that drive them can be extended to the

case of multiple attribute hedonic equilibrium markets. Section 5 shows how multiple

market data can be brought to bear on identifying the distribution of unobserved

heterogeneity. The last section concludes and discusses future research directions.

Proofs of the main results are relegated to the appendix, as are background results

on optimal transport theory and hedonic equilibrium theory.
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2. Hedonic equilibrium and the identification problem

We consider a competitive environment, where consumers and producers trade a

good or contract, fully characterized by its type or quality z. The set of feasible

qualities Z ⊆ R
dz is given, but the qualities actually traded arise endogenously in

the hedonic market equilibrium, as does their price schedule p(z). Producers are

characterized by their type ỹ ∈ Ỹ ⊆ R
dỹ and consumers by their type x̃ ∈ X̃ ⊆ R

dx̃ .

Type distributions Px̃ on X̃ and Pỹ on Ỹ are given exogenously, so that entry and exit

are not modelled, except in the possibility of non participation, which is modelled by

adding isolated points to the sets of types and renormalizing distributions accordingly

(see Section 1.1 of Chiappori, McCann, and Nesheim (2010) for details). Consumers

and producers are price takers and maximize quasi-linear utility U(x̃, z) − p(z) and

profit p(z) − C(ỹ, z) respectively. Utility U(x̃, z) (respectively cost C(ỹ, z)) is upper

(respectively lower) semicontinuous and bounded and normalized to zero in case of

nonparticipation. In addition, the set of qualities Z(x̃, ỹ) that maximize the surplus

U(x̃, z)−C(ỹ, z) for each pair of types (x̃, ỹ) is assumed to have a measurable selection.

Then, Ekeland (2010) and Chiappori, McCann, and Nesheim (2010) show that an

equilibrium exists in this market, in the form of a price function p on Z, a joint

distribution Px̃,z on X̃×Z and Pỹ,z on Ỹ ×Z such that their marginal on Z coincide,

so that market clears for each traded quality z ∈ Z. Uniqueness is not guaranteed,

in particular prices are not uniquely defined for non traded quantities in equilibrium.

Purity is not guaranteed either: an equilibrium specifies a conditional distribution Pz|x̃

(respectively Pz|ỹ) of qualities consumed by type x̃ consumers (respectively produced

by type ỹ producers). The quality traded by a given producer-consumer pair (x̃, ỹ) is

not uniquely determined at equilibrium.

Ekeland (2010) and Chiappori, McCann, and Nesheim (2010) further show that

a pure equilibrium exists and is unique, under the additional assumption that type

distributions Px̃ and Pỹ are absolutely continuous and gradients of utility and cost,
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∇x̃U(x̃, z) and ∇ỹC(ỹ, z) exist and are injective as functions of quality z. The latter

condition, also known as the Twist condition in the optimal transport literature,

ensures that a consumer of a given type x̃ (respectively producer of a given type ỹ)

will always consume (respectively produce) the same quality z at equilibrium. This

will turn out to be a crucial aspect of the identification strategy as discussed next.

The identification problem consists in the recovery of structural features of pref-

erences and technology from observation of traded quantities and their prices in a

single market, in a first stage, and with data from multiple markets, in a second

stage. Given observability of prices and the fact that producer type ỹ (respectively

consumer type x̃) does not enter into the utility function U(x̃, z) (respectively cost

function C(ỹ, z)) directly, we may consider the consumer and producer problems sepa-

rately and symmetrically. We focus on the consumer problem and on identification of

utility function U(x̃, z). Under assumptions ensuring purity and uniqueness of equi-

librium, the model predicts a deterministic choice of quality z for a given consumer

type x̃. Hence, to preclude outright rejection of the model with any data set, where

identical observable types consume different goods, we assume, as is customary, that

consumer types x̃ are only partially observable to the analyst. We write x̃ = (x, ε),

where x ∈ R
dx is the observable part of the type vector, and ε ∈ R

dε is the unobserv-

able part. The observable and unobservable types will be assumed independant and

we shall make a separability assumption that will allow us to specify constraints on

the interaction between consumer unobservable type ε and good quality z in order to

identify interactions between observable type x and good quality z.

Assumption 1 (Unobservable heterogeneity). Consumer type x̃ is composed of ob-

servable type x with distribution Px on R
dx and unobservable type ε with a priori

specified distribution Pε on R
dε. Observable and unobservable types are independent

and the utility of consumers can be decomposed as U(x̃, z) = U(x, z) + ζ(x, ε, z).
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Assumption 1 includes independance of observable and unobservable types, which,

although a strong requirement, is necessary in identification strategies that extend

the quantile identification of Matzkin (2003). Specification of Pε is a necessary nor-

malization, which also stems from quantile identification. Note that the separability

assumption added here is vacuous until restrictions on the function ζ are specified.

We shall work throughout under the following condition on the distribution of

traded qualities.

Assumption 2 (Distribution of traded qualities). For all x, Pz|x is absolutely con-

tinuous with respect to Lebesgue measure.

This assumption is not a primitive assumption on the distributions of producers and

consumers and as such. It can be relaxed somewhat to a weaker condition, namely

that Pz|x does not give mass to sets of Hausdorff dimension at most dz−1 in R
dz , but

it cannot be dispensed with altogether, as we see in the proof of Theorem 2. Primitive

conditions are given in Pass (2011) that ensure that the support of the distribution

of endogenously traded qualities has Hausdorff dimension dz.

The object of inference is the deterministic component of utility U(x, z). We shall

denote

V (x, z) = p(z)− U(x, z)

and focus on identification of the function V , since under observability of price, it

is equivalent to identification of the deterministic part of utility. We shall identify

U(x, z) up to a constant and use the following terminology.

Definition 1 (Nonparametric identification). The function U(x, z) will be called non-

parametrically identified if it exists and ∇zU(x, z), when it exists, is unique Pz|x-a.s.

for all x.

We shall work in stages, recalling first existing identification results in case of scalar

z and clarifying which features we intend to extend and how. The guiding principle
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will be the characterization of shape restrictions on the function V that emulate single

crossing and monotonicity restrictions in the scalar case and remain just identifying

in the multi-attribute case.

3. Single market identification with scalar attribute

We first recall and reformulate results of Heckman, Matzkin, and Nesheim (2010)

on identification of single attribute hedonic models. Suppose, for the purpose of this

section, that dε = dz = 1, so that unobserved heterogeneity is scalar, as is the quality

dimension. Suppose further (for ease of exposition) that ζ is twice continuously dif-

ferentiable in z and ε and that V is twice continuously differentiable in z. Consumers

take price schedule p(z) as given and choose quality z to maximize ζ(x, ε, z)−V (x, z).

We impose a single crossing condition on ζ .

Assumption 3 (Spence-Mirlees). For all x, ε, z of the domain of Px̃,z, ζεz(x, ε, z) > 0.

The first order condition of the consumer problem yields

ζz(x, ε, z) = Vz(x, z), (1)

which, under Assumption 3, implicitly defines an inverse demand function z 7→ ε(x, z),

which specifies which unobserved type consumes quality z. Combining the sec-

ond order condition ζzz(x, ε, z) < Vzz(x, z) and further differentiation of (1), i.e.,

ζzz(x, ε, z) + ζεz(x, ε, z)εz(x, z) = Vzz(x, z), yields

εz(x, z) = −
−Vzz(x, z) + ζzz(x, ε, z)

ζεz(x, ε, z)
> 0.

Hence the inverse demand is increasing and is therefore identified as the unique in-

creasing function that maps the distribution Pz|x to the distribution Pε, namely the

quantile transform. Denoting F the cumulative distribution function corresponding

to the distribution P , we therefore have identification of inverse demand according to
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the strategy put forward in Matzkin (2003) as:

ε(x, z) = F−1

ε

(

Fz|x(z|x)
)

.

The single crossing condition of Assumption 3 on the consumer surplus function

ζ(x, ε, z) yields positive assortative matching, as in the Becker (1973) classical model.

Consumers with higher taste for quality ε will choose higher qualities in equilibrium

and positive assortative matching drives identification of demand for quality. The

important feature of Assumption 3 is injectivity of ζz(x, ε, z) relative to ε and a

similar argument would have carried through under ζzε(x, ε, z) < 0, yielding negative

assortative matching instead.

Once inverse demand is identified, the function V (x, z), hence the utility function

U(x, z) = p(z)−V (x, z), can be recovered up to a constant by integration of the first

order condition (1):

V (x, z) =

∫ z

0

ζz(x, ε(x, z
′), z′)dz′.

Unlike the demand function, which is identified without knowledge of the surplus

function ζ , as long as the latter satisfies Assumption 3, identification of the prefer-

ence function U(x, z) does require a priori knowledge of the function ζ . This includes

existing results in this literature. Ekeland, Heckman, and Nesheim (2004) cover the

special case of linear marginal utility, where ζ(x, ε, z) = zε. In that case, ε(x, z)

increasing in z, maximizes, by the classical Hardy, Littlewood, and Pólya (1952) in-

equalities, E[zε|x] among all joint distributions for (z, ε), subject to the marginal

restrictions that z ∼ Pz|x and ε ∼ Pε. We thereby recover the efficiency property

of positive assortative matching and unlike positive assortative matching, the maxi-

mization of E[zε|x] has a natural extension in the multivariate linear marginal utility

case ζ(x, ε, z) = z′ε, where quality z and taste for quality ε are conformable vectors.
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We shall examine this case in the next section, before moving to the general exten-

sion with possibly nonlinear marginal utility in taste and arbitrary surplus function

ζ(x, ε, z).

4. Single market identification with multiple attributes

4.1. Linear marginal utility. We now turn to the main objective of the paper,

which is to derive identifying shape restrictions in the multi attribute case of quality

z ∈ R
dz and unobserved taste ε ∈ R

dε , with dz = dε > 1. We start with linear

marginal utility in taste.

Assumption 4 (Linear marginal utility). The surplus function ζ(x, ε, z) = z′ε.

Under Assumption 4, the consumer maximization problem is that of finding

V ∗(x, ε) = sup
z

{z′ε− V (x, z)}.

Under suitable regularity, the first order condition yields:

∇zV (x, z) = ε (2)

and the demand function ε 7→ V ∗(x, ε) is by definition the convex conjugate (also

known as Legendre-Fenchel transform) of V (x, z). According to convex duality theory,

the conjugate of V ∗(x, ε) is V (x, z) itself if and only if V (x, z) is convex. Convexity

of V will turn out to be the shape restriction that delivers identification in this linear

marginal utility case.

Assumption 5 (Convexity restriction). The function V (x, z) is convex in z for all x.

Convexity of V in the univariate case of the previous section is equivalent to mono-

tonicity of demand, or assortative matching, delivered by the single crossing shape

restriction on ζ . As discussed in Section 3, positive assortative matching (monotonic-

ity of demand) is difficult to extend to the multi-attribute case, but not the efficiency
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result that comes with positive assortative matching. Imagine a social planner maxi-

mizing total surplus over the distribution of heterogeneous customers. The planner’s

problem is to maximize E[z′ε|x] over all possible allocations of qualities z to con-

sumer types ε, i.e., over all pairs of random vectors (z, ε) under the constraint that

the marginal distributions Pε and Pz|x are fixed. One of the central results of optimal

transport theory, Brenier’s Theorem (Theorem 3.8 in Villani (2003)), shows precisely

that such a planner’s problem admits a unique pure allocation as solution, which

takes the form of the inverse demand function ε = ∇zV (x, z) with V (x, z) convex

in z. We see thereby that convexity of V (x, z) in z is the shape restriction that de-

livers identification as summarized in the following theorem, formally proved in the

appendix.

Theorem 1 (Identification for linear marginal utility). Under Assumptions 1, 2, 4

and 5, U(x, z) is nonparametrically identified.

As in the more general case investigated below, V (x, z) can also be shown to be the

convex solution to the minimization of E[V (x, z)|x]+E[V ∗(x, ε)], where V ∗ is the con-

vex conjugate of V . This fact provides efficient computation strategies for inference

on U(x, z), as shown for instance in Aurenhammer, Hoffmann, and Aronov (1998).

The identification result of Theorem 3 has implications beyond hedonic equilibrium

models, as it provides identification conditions for a general nonlinear nonseparable

simultaneous equations econometric model of the form z = f(x, ε), where the vector

of endogenous variables z has the same dimension as the vector of unobserved het-

erogeneity ε. Theorem 3 shows that in such models, f is nonparametrically identified

within the class of gradients of convex functions.

Corollary 1 (Nonlinear simultaneous equations). The simultaneous equations model

z = f(x, ε), with z, ε ∈ R
dz and x ∈ R

dx, is nonparametrically identified under the

following conditions.

(1) f is the gradient of a convex function.
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(2) The errors ε are independent of regressors: ε ⊥⊥ x.

(3) Pε is known and Pz|x is absolutely continuous with respect to Lebesgue measure.

In the univariate case, gradients of convex functions are the increasing functions,

so that our identifying shape restriction directly generalizes monotonicity in Matzkin

(2003).

4.2. Nonlinear marginal utility. The identification result of Theorem 3 can be

easily extended to allow for variation in the quality-unobserved taste interaction with

observed type x as in ζ(x, ε, z) = φ(z)′ψ(x, ε), where φ and ψ are known functions

and φ is invertible. Going beyond this requires mild regularity conditions on the

function ζ specifying the quality-unobserved taste interaction as a function of x.

Assumption 6. For all x, ζ(x, ε, z) satisfies the following: (i) ζ(x, ε, z) is continuous

as a function of (ε, z) and bounded above; (ii) ζ(x, ε, z) is everywhere subdifferentiable

as a function of z for all ε; and (iii) ζ(x, ε, z) is locally Lipschitz as a function of z

uniformly in ε.

In the appendix, definitions are recalled (Definitions 6 and 7) and the assump-

tion discussed, including some simple sufficient conditions. Recalling our notation

V (x, z) = p(z) − U(x, z), the consumer’s program is to choose quality vector z to

maximize

sup
z

{ζ(x, ε, z)− V (x, z)}. (3)

In the one dimensional case, single crossing condition ζεz(x, ε, z) > 0 delivered iden-

tification of inverse demand. We noted that the sign of the single crossing condition

was not important for the identification result, rather the following implication of

single crossing was.

Assumption 7 (Twist condition). For all x and z where it is defined, the gradient

∇zζ(x, ε, z) of ζ(x, ε, z) in z is injective as a function of ε.
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Assumption 7, unlike the single crossing condition, is well defined in the multivari-

ate case, and we shall show, using recent developments in optimal transport theory,

that it continues to deliver the desired identification in the multivariate case. Before

stating the theorem, we provide more intuition by further developing the parallel

between this general case and the univariate and multivariate linear marginal utility

cases covered so far.

Consider, as before, the hedonic market from the point of view of a social planner,

who allocates qualities z to tastes ε in a way that maximizes total consumer surplus.

The distribution of consumer tastes is Pε and the distribution of qualities traded

at equilibrium is Pz|x. For fixed observable type x, the variable surplus of a match

between unobserved taste ε and quality z is ζ(x, ε, z). Hence, the planner’s problem

is find an allocation of qualities to tastes, in the form of a joint probability µ over the

pair of random vectors (ε, z), so as to maximize Eµ[ζ(x, ε, z)|x] under the constraint

that ε has marginal distribution Pε and that z has marginal distribution Pz|x. This

planner’s problem

max
µ

Eµ[ζ(x, ε, z)|x] subject to ε ∼ Pε, z ∼ Pz|x (4)

is equal to its dual

min
V,W

E[W (x, ε)|x] + E[V (x, z)|x] subject to W (x, ε) + V (x, z) ≥ ζ(x, ε, z) (5)

and both primal (4) and dual (5) are attained under the conditions of the Monge-

Kantorovitch Theorem (Theorem 1.3 of Villani (2003), see also Rachev and Rüschendorf

(1998) for an account). Notice that the constraint in (5) can be written as

W (x, ε) = V ζ := sup
z

{ζ(x, ε, z)− V (x, z)} (6)

so thatW (x, ε) is a candidate for the demand function mapping tastes ε into qualities

z derived from the consumer’s program (3). (6) defines a generalized notion of convex

conjugation, discussed in the Appendix, which can be inverted, similarly to convex
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conjugation, into:

(

V (x, z)ζ
)ζ

= sup
ε

{ζ(x, ε, z)− V ζ(x, ε)}. (7)

Definition 2 (ζ-convexity). A function V is called ζ-convex if and only if
(

V ζ
)ζ

= V .

ζ-convexity, therefore, is a shape restriction that directly generalizes the convexity

restriction of Assumption 5 of the linear marginal utility case.

Assumption 8 (ζ-convexity). V (x, z) is ζ-convex as a function of z for all x.

Under Assumptions 1, 6, 7 and 8, we show with optimal transport theory (mainly

Theorem 10.28 of Villani (2009)), that there exists a unique allocation of quali-

ties to tastes z 7→ ε(x, z) that maximes the consumer problem (7). Moreover,

this allocation is such that markets clear, since ε(x, z) is distributed according to

Pε when z is distributed according to Pz|x. The following heuristic application of

the envelope theorem explains why this is so. By the envelope theorem applied to

V (x, z) = supε{ζ(x, ε, z)−V
ζ(x, ε), for a small variation δV ζ of V ζ , the variation in V

is δV (x, z) = −δV ζ(x, ε(x, z), z). Plugging the latter into the first order condition for

(5) yields E[δV ζ(x, ε)] = E[δV ζ(x, ε(x, z))]. The latter holds for any small variation

δV ζ , so that the distribution of allocation ε(x, z) is the same as the exogenously given

distribution of unobserved tastes Pε, so that the market clears.

Finally, once the allocation (inverse demand function) ε(x, z) is identified, V (x, z)

satisfies the first order condition

∇zV (x, z) = ∇zζ(x, ε(x, z), z), Pz|x-almost surely , for every x.

The latter determines V (x, z), and therefore U(x, z), up to a constant. We are now

ready to state our main theorem, relating the Twist condition and the ζ-convex shape

restriction to nonparametric identification of preferences.

Theorem 2 (Identification of preferences). Under Assumptions 1, 2, 6, 7 and 8,

U(x, z) is nonparametrically identified.
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As before, efficient computation of U(x, z) = p(z)− V (x, z) is based on the identi-

fication of V as the solution to the optimization problem infV [EV (x, z) +EV ζ(x, ε)],

where V ζ is defined in (6). Again, the identification result of Theorem 2 has ram-

ification beyond the framework of hedonic equilibrium models. Indeed, it provides

the just identifying shape restriction for general consumer problems with multivari-

ate unobserved preference heterogeneity, where consumers choose within a universe

of goods, differentiated along more than one dimension. Theorem 2 tells us that the

shape of interactions between good qualities and unobserved tastes governs the shape

restriction that just identifies the utility function.

5. Identification with exclusion restrictions

The identification results in the previous section rely on observations from a single

price schedule and the structural functions are just identified under normalization of

the distribution of unobserved heterogeneity. Although U(x, z) is not identified with-

out such a normalization, or additional restrictions, there are features of preferences

that are identified. Consider the linear marginal utility model of Assumption 4.

U(x, ε, z) = U(x, z) + z′ε.

From Theorem 7, the inverse demand ε(x, z) = ∇z

[

p(z)− U(x, z)
]

satisfies the fol-

lowing. For all bounded continuous functions ζ ,

∫

ζ(ε)fε(ε)dε =

∫

ζ
(

∇zp(z,m)−∇zU(x, z)
)

fz|x,m(z|x,m)dz. (8)

Hence, taking ζ equal to the identity in (8) and assuming only that Pε has mean

zero, instead of fixing the whole distribution, yields identification of averaged partial

effects
∫

∇zU(x, z)fz|x,m(z|x,m)dz from the fact that p(z) and fz|x are identified.

Theorem 3 (Identification of averaged partial effects). Under Assumptions 2, 4, 5

and zero mean unobserved heterogeneity ε, averaged partial effects are identified by
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the following.

E
[

∇zU(x, Z)|X = x
]

= E [∇p(Z)|X = x] .

We now go beyond averaged partial effects and show that some features of prefer-

ences may now be identified without normalization of the distribution of unobserved

heterogeneity, with an exclusion restriction.

We consider hedonic equilibrium under the assumption of additively separable mar-

ginal utility.

Assumption 9 (Additively separable marginal utilities). The consumer’s preferences

are given by U(x, z, ε) = U(x, z)+z′ε, with U(x, z) := z′α(x)+β(z) so that ∇z[p(z)−

U(x, z)] = b(z)− α(x), with b(z) = ∇z[p(z)− β(z)].

In the scalar case, Ekeland, Heckman, and Nesheim (2004) identify preferences

based on the equality:

Fz|x(z|x) = Fε(∇z[p(z)− U(x, z)]). (9)

Differentiation with respect to x and to z respectively allows to eliminate the un-

known Fε and identify α and β. In the multivariate case, (9) no longer holds and has

to be replaced with the Monge-Ampère equation, see page 126 of Villani (2003). We

need the following extra regularity assumptions to allow change of variables between

ε and z.

Assumption 10 (Regularity). The functions x 7→ α(x) and z 7→ b(z) are contin-

uously differentiable, and the density of observed qualities fz|x(z|x) is differentiable

with respect to x and z.

Assumption 11 (Strict convexity shape restriction). The function p(z) − β(z) is

strictly convex.
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Lemma 1 (Monge-Ampère). Under Assumptions 9, 10 and 11 the following holds.

fz|x(z|x) = fε(∇z[p(z)− U(x, z)]) det D2[p(z)− U(x, z)].

In the Monge-Ampère equation, additive separability in individual and good char-

acteristics in consumer preferences ensures that individual characteristics do not ap-

pear in the Jacobian for the change of variables from ε to z. Hence, differencing or

differentiating the Monge-Ampère equation with respect to x eliminates the Jaco-

bian term, so that further differentiation eliminates the unknown unobserved taste

distribution fε.

The Monge-Ampère equation yields:

fz|x(z|x) = fε(∇z[p(z)− U(x, z)]) det D2[p(z)− U(x, z)]

= fε(b(z)− α(x)) det Jb(z).

From the latter, we have identification of:

fε(b(z)− α(x1))

fε(b(z)− α(x2))
=
fz|x(z|x1)

fz|x(z|x2)
(10)

for each x1, x2 such that the denominators are positive, and by differentiation with

respect to x, we have identification of:

Jα(x)
∇fε(b(z)− α(x))

fε(b(z)− α(x))
= ∇x ln fz|x(z|x). (11)

Finally, differentiating (10) with respect to z yields identification of the following.

Jb(z)

[

∇fε(b(z)− α(x1))

fε(b(z)− α(x1))
−

∇fε(b(z) − α(x2))

fε(b(z)− α(x2))

]

= ∇z[ln fz|x(z|x1)− ln fz|x(z|x2)]. (12)

(11) and (12) together yield identification of the following, when properly defined.

Jb(z)
[

Jα(x1)
−1∇x ln fz|x(z|x1)− Jα(x2)

−1∇x ln fz|x(z|x2)
]

= ∇z[ln fz|x(z|x1)− ln fz|x(z|x2)]. (13)
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Identification of Jb requires inverting (13), hence a final assumption.

Assumption 12. There exists a collection of values of consumer characteristics

(x1
1
, . . . , xdz

1
, x1

1
, . . . , xdz

1
), not necessarily all distinct, such that the dz × dz matrix

Aα with column vectors:

Jα(x
j
1
)−1∇x ln fz|x(z|x

j
1
)− Jα(x

j
2
)−1∇x ln fz|x(z|x

j
2
), with j = 1, . . . , dz,

is well defined and invertible.

Under Assumption 12, denoting h(z) the vector with coordinates ∇z[ln fz|x(z|x1)−

ln fz|x(z|x2)], Jb is identified as Jb(z) = A−1

α h(z). Since prices of good qualities are

observed, identification of Jb(z) is equivalent to identification of the Hessian matrix

of β, so that we can summarize the discussion above with the following theorem.

Theorem 4. Under Assumptions 9, 10, 11 and 12, the cross partial effects

∂2β(z)

∂zi∂zj
, i, j = 1, . . . , dz,

are identified, when the effect α(x) of consumer characteristics (x1i , . . . , x
dz
i ), for i =

1, 2, on preferences is known.

(13) can also be viewed as a partial identification result, as it delivers partial

identification of the pair (Jα, Jb), from which Theorem ?? is obtained as a cut of the

identified set at the known Jα.

6. Appendix

Throughout the appendix, when there is no ambiguity, we drop the conditioning variable x from

the notation and consider the theory of optimal transportation of distribution Pz of quality vector

z ∈ R
d to distribution Pε of vector of unobserved tastes ε ∈ R

d.
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Kantorovich problem. We first consider the Kantorovich problem, which is the probabilistic allo-

cation of qualities to tastes so as to maximize total surplus, where the surplus of a pair (ε, z) is

given by the function ζ(ε, z), and the marginal distributions of qualities Pz and tastes Pε are fixed

constraints. We therefore define the set of allocation that satisfy the constraints.

Definition 3 (Probabilities with given marginals). We denote M(Pε, Pz) the set of probability

measures on R
d × R

d with marginal distributions Pε and Pz.

With this definition, we can formally state the Kantorovitch problem as follows.

(PK) = sup
π∈M(Pε,Pz)

∫

ζ(ε, z)dπ(ε, z).

If we consider the special case of surpluses that are separable in ε and z and dominate ζ(ε, z), i.e.,

of the form W (ε) + V (z) ≥ ζ(ε, z), the integral yields
∫

W (ε)dPε(ε) +
∫

V (z)dPz(z). We denote Φζ

the set of such functions.

Definition 4 (Admissible set). A pair of function (W,V ) on R
d belongs to the admissible set Φζ if

and only if W ∈ L1(Pε), V ∈ L1(Pz) and W (ε) + V (z) ≥ ζ(ε, z) for Pε almost all ε and Pz almost

all z.

The integral over separable surpluses

(DK) = inf
(W,V )∈Φζ

∫

W (ε)dPε(ε) +

∫

V (z)dPz(z)

will in general yield a weakly larger total surplus than (PK), but it turns out that under very weak

conditions, the two coincide.

Theorem 5 (Kantorovich duality). If ζ is upper semi-continuous, then (PK)=(MK) and there

exists an allocation π ∈ M(Pε, Pz) that achieves the maximum in (PK).

A proof of the Kantorovich duality theorem can be found in Chapter 1 of Villani (2003). We give

here the intuition of the result based on the exchange of infimum and supremum operations. First,

we notice that under the conditions of Assumption 6 in the main text, ζ is a continuous function,

so that the mapping µ 7→
∫

ζdµ is continuous in the weak-∗ topology. Since M(Pε, Pz) is weak-∗

compact, the maximum in (PK) is achieved for some π by the Weierstrass Theorem. Hence, an

optimal allocation exists. however, continuity of ζ is not necessary.
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To see the duality result, denote χA(x) = 0 if x ∈ A and −∞ otherwise. Then, we verify that

χM(Pε,Pz) = inf
(W,V )

{
∫

W (z)dPε(ε) +

∫

V (z)dPz(z)−

∫

(W (ε) + V (z)) dπ(ε, z)

}

,

where the infimum is over all integrable functions, say. Now we can rewrite (PK) as follows:

(PK) = inf
π

{
∫

ζ(ε, z)dπ(ε, z) + χM(Pε,Pz)(π)

}

,

where the supremum is taken over all joint probability measures. Assuming the infimum and supre-

mum operations can be switched yields:

(PK) = inf
(W,V )

sup
π

{
∫

ζ(ε, z)dπ(ε, z)

+

∫

W (z)dPε(ε) +

∫

V (z)dPz(z)−

∫

(W (ε) + V (z)) dπ(ε, z)

}

= inf
(W,V )

{
∫

W (z)dPε(ε) +

∫

V (z)dPz(z)

− inf
π

∫

(W (ε) + V (z)− ζ(ε, z)) dπ(ε, z)

}

.

Consider the second infimum in the last display. If the functionW (ε)+V (z)−ζ(ε, z) takes a negative

value, then, choosing for π the Dirac mass at that point will yield an infimum of −∞. Therefore,

we have:

inf
π

∫

(W (ε) + V (z)− ζ(ε, z)) dπ(ε, z) = χΦζ
(W,V ),

so that

(PK) = inf
(W,V )

{
∫

W (z)dPε(ε) +

∫

V (z)dPz(z)− χΦζ
(W,V )

}

= (DK)

as required.

ζ-convexity theory. In the dual formulation (DK) of the Kantorovich problem, the constraint (W,V ) ∈

Φζ can be rewritten

W (ε) = sup
z

(ζ(ε, z)− V (z)) . (14)

In the special case, where ζ(ε, z) = ε′z, W (ε) := supz (ε
′z − V (z)) defines the Fenchel-Legendre

transform of V . W is a convex function, and as such, it is also known as convex conjugate of V ,

denoted V ∗. V is convex if and only if V (z) = V ∗∗(z) := supε (ε
′z − V ∗(ε)).

Similarly, a generalized notion of convex duality can be defined from the Kantorovich problem.

A function is called ζ-convex if and only if it can be written in the form (14).
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Definition 5 (ζ-convexity). A function W is called ζ-convex if and only if there exists V such that

(14) holds. The ζ-transform of W is the function W ζ defined by:

W ζ(z) = sup
ε

(ζ(ε, z)−W (ε)) .

We can state the definition of ζ-convexity given in the main text as a straightforward characteri-

zation.

Lemma 2. A function V is ζ-convex if and only if V ζζ = V .

Proof of Lemma 2. By definition, we have

W ζζζ(ε) = sup
z

inf
ε̃
sup
z̃

(ζ(ε, z)− ζ(ε̃, z) + ζ(ε̃, z̃)−W (z̃)) .

Choosing ε̃ = ε yields W ζζζ(ε) ≤ W ζ(ε), while choosing z̃ = z yields W ζζζ(ε) ≥ W ζ(ε). Hence

W ζζζ(ε) = W ζ(ε). If W is ζ-convex, then there is a V such that W = V ζ , hence W ζζ = V ζζζ =

V ζ =W . Conversely, if W =W ζζ , then W is ζ-convex as the ζ-transform of W ζ . �

Returning to the Kantorovich duality result, we now see that the dual is also achieved.

Theorem 6 (Kantorovich duality (continued)). If (PK)<∞ and there exist integrable functions ζε

and ζz such that ζ(ε, z) ≥ ζε(ε) + ζz(z), then there exists a ζ-convex function V such that
∫

V ζ(ε)dPε(ε) +

∫

V (z)dPz(z)

achieves (DK). In addition, if π is an optimal allocation, i.e., achieves (PK), and (V ζ , V ) is an

optimal ζ-conjugate pair, i.e., achieves (DK), then

V ζ(ε) + V (z) = ζ(ε, z), π-a.s. .

Idea of the proof. The proof can be found in Chapter 5 of Villani (2009). The last statement of

Theorem 5 is easy to see. If π achieves (PK) and (V ζ , V ) achieves (DK), then, as (PK)=(DK) by

Theorem 4, we have
∫

[V ζ(ε) + V (z) − ζ(ε, z)]dπ(ε, z) = 0. The integrand is non negative, since

(V ζ , V ) ∈ Φζ . Hence, V
ζ + V = ζ, π-almost surely, as desired. The proof of existence of an optimal

pair of ζ-convex functions achieving (DK) revolves around the notion of cyclical monotonicity.

In view of the above, if (φ, ψ) achieve (DK) and a sequence of pairs (εi, zi)i=1,...,m belong to the

support of the optimal allocation π, then φ(εi) + ψ(zi) = ζ(εi, zi) for each i = 1, . . . ,m. On the

other hand, since (φ, ψ) ∈ Φζ , we have φ(εi) + ψ(zi+1) ≥ ζ(εi, zi+1) for each i = 1, . . . , n − 1, and

φ(εm) + ψ(z) ≥ ζ(εm, z) for an arbitrary z. Substracting and adding up yields ψ(z) ≥ ψ(z1) +
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[ζ(εm, z) − ζ(εm, zm)] + . . . + [ζ(ε1, z2) − ζ(ε1, z1)]. Since the functions in the pair (φ, ψ) are only

determined up to a constant, normalize ψ(z1) = 0 and define V as the supremum of all functions ψ

satisfying ψ(z) ≥ [ζ(εm, z)− ζ(εm, zm)]+ . . .+ [ζ(ε1, z2)− ζ(ε1, z1)] over all choices of (εi, zi)i=1,...,m

in the support of π and all m ≥ 0. It turns out that V ζ(ε)+V (z) = ζ(ε, z), π-almost surely, so that

integration over π yields the fact that (V ζ , V ) achieves (DK) as desired. �

Let us now look more closely at the regularity properties of ζ-convex functions, as they drive our

identification results. First recall definitions of the regularity conditions of Assumption 6.

Definition 6 (Lipschitz continuity). Let U be an open subset of Rd and f a function on U . (i) f

is said to be Lipschitz if there exists L < ∞ such that for all x, z ∈ U , |f(z) − f(x)| ≤ L‖z − x‖.

(ii) f is said to be locally Lipschitz if, for any x0 ∈ U , there is a neighborhood of x0 on which f is

Lipschitz.

Locally Lipschitz functions on R
d are differentiable almost everywhere according to a celebrated

result known as Rademacher’s Theorem. A proof can be found in Villani (2009) Theorem 10.8(ii).

Theorem 7 (Rademacher). Let U be an open subset of Rd and f a function on U . If f is locally

Lipschitz, then it is differentiable almost everywhere.

Definition 7 (Subdifferentiability). Let U be an open subset of Rd and f a function on U . f is

said to be subdifferentiable at x ∈ U with subgradient p if

f(z) ≥ f(x) + p′(z − x) + o(‖z − x‖).

The (convex) set of subgradients at x is called subdifferential of f at x and denoted ∂−f(x). Su-

perdifferentiability, supergradients and superdifferentials are defined symetrically.

Proposition 1 (Differentiability). Let U be an open subset of Rd and f a function on U . If f is

sub- and superdifferentiable at x ∈ U , or equivalently, if f has a subgradient and a supergradient at

x, then f is differentiable at x, or equivalently, the subgradient and supergradient are unique and

equal to the gradient denoted ∇f(x).

Proof of Proposition 2. Let p (resp. q) be a sub- (resp. super-) gradient of f at x. By definition,

f(z)−f(x) ≥ p′(z−x)+o(‖z−x‖) and f(z)−f(x) ≤ q′(z−x)+o(‖z−x‖), so that (p−q)′(z−x) ≤

o(‖z − x‖). Hence:

lim
z→x;z 6=x

(p− q)′
z − x

‖z − x‖
= 0.



24 VICTOR CHERNOZHUKOV, ALFRED GALICHON AND MARC HENRY

Since the vector (z − x)/‖z − x‖ can take arbitrary values on the unit sphere as z → x, it follows

that p = q as desired. �

We now turn to a specific regularity properties of ζ-convex functions, which are ingredients in the

proof of Theorem 2.

Lemma 3 (Differentiability of ζ-convex functions). Suppose ζ satisfies Assumptions 6 and 7, then

any ζ-convex function is almost everywhere differentiable.

Proof of Lemma 3. Since ζ is locally Lipschitz uniformly in ε, for any neighborhood U of any z0,

there is L < ∞ such that, for all ε, all z ∈ U , |ζ(ε, z) − ζ(ε, z0)| ≤ L‖z − z0‖. If V is a ζ-convex

function, then V (z) = supε{ζ(ε, z)−V
ζ(ε)} and |V (z)−V (z0)| ≤ L‖z−z0‖, so V is locally Lipschitz.

By Theorem 6, V is differentiable almost everywhere. �

The quadratic case and Brenier’s Theorem. In the special case of Assumption 4, where ζ(ε, z) = z′ε,

the planner’s program (PK) writes

sup
π∈M(Pε,Pz)

∫

z′εdπ(ε, z)

and the set Φζ becomes

Φ = {(W,V ) : W (ε) + V (z) ≥ z′ε}.

The pair (V ∗, V ) ∈ Φ defined by

V ∗(ε) = sup
z
{z′ε− V (z)},

V (z) = sup
ε
{z′ε− V ∗(ε)}

achieves the minimum in the dual problem (DK). Notice that V and V ∗ are standard Fenchel-

Legendre convex conjugates of each other and that V = V ∗∗ and is hence convex.

In this case, ∇V (z) = ∇ζz(ε, z) simplifies to ∇V (z) = ε, which guarantees uniqueness and purity

of the optimal assignment ε = ∇V (z), where V is convex. As a corollary, ∇V is a Pz-almost surely

uniquely determined gradient of a convex function.

Theorem 8 (Brenier). Suppose Pz is absolutely continuous with respect to Lebesgue measure and

that Pε and Pz have finite second order moments. Then, there exists a Pz-almost surely unique map

of the form ∇V , where V is convex, such that
∫

z′∇V (z)dPz(z) achieves the maximum in (PK) with

ζ(ε, z) = z′ε. Moreover, (V ∗, V ) achieves the dual program (DK).
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Note that Theorem 7 is not a direct corollary of Theorem 2 since the boundedness condition of

Assumption 6 doesn’t hold. The proof can be found in Chapter 2 of Villani (2009).

Proof of Theorem 3. This follows directly from Theorem 7. �

Proof of Theorem 2. The proof is adapted from Chapter 10 of Villani (2009). By Theorem 5, there

exists a ζ-convex function V such that (V ζ , V ) solves the dual Kantorovich problem (DK). Let π

be an allocation that solves the primal Kantorovich problem (PK). We know from Theorem 5 that

any (ε0, z0) in the support of π (quality z0 is consumed by type ε0 with non zero probability at the

optimal allocation) satisfies V ζ(ε0) + V (z0) = ζ(ε0, z0). Moreover, we also know that (V ζ , V ) ∈ Φζ ,

so for any other z, V ζ(ε0) + V (z) ≥ ζ(ε0, z). Hence V (z)− V (z0) ≥ ζ(ε0, z)− ζ(ε0, z0). Fix w and

choose a sequence z(η) = z0 + ηw for η ∈ [0, η0). Write V (z(η)) − V (z0) ≥ ζ(ε0, z(η)) − ζ(ε0, z0),

divide through by η and take the limit. Assume z0 is a point of differentiability of V . We then

obtain the following:

∇V (z0)
′w = lim

η→0

1

η
(V (z(η))− V (z0)) ≥ lim

η→0
inf

1

η
(ζ(ε0, z(η))− ζ(ε0, z0)).

The latter display shows that ∇V (z0) is a supergradient of ζ(ε0, z) (as a function of its second

argument) at z0. By Assumption 6, ζ is subdifferentiable, so it is both sub- and superdifferentiable

at z0, hence differentiable, by Proposition 2.

Hence, we shown that ζ(ε, z) is differentiable (as a function of its second argument) at z0 and

that the gradient ∇zζ(ε, z0) at z0 of ζ(ε, z) relative to its second argument is equal to ∇V (z0).

By Lemma 3, the latter reasoning is true for almost every z0 (hence Pz-almost every z0 under

Assumption 2), and all ε0 such that (ε0, z0) is in the support of an optimal allocation π.

By Assumption 7, ∇zζ(·, z0) is injective for each z0 where it is defined. Call (∇zζ)
−1

(·, z0)

the inverse of ∇zζ(·, z0) defined on the range of the latter. By the previous result, we have ε0 =

(∇zζ)
−1

(∇V (z0), z0) for almost all z0 and all ε0 such that (ε0, z0) is in the support of the optimal

assignment π. Hence, there is a deterministic map z0 7→ (∇zζ)
−1

(∇V (z0), z0) relating ε0 to z0 on

the support of π, which implies that the joint probability π is concentrated on the graph of the latter

map. The optimal assignment is pure. Uniqueness comes from the observation that the reasoning

above does not depend on the particular choice of optimal assignment π at the outset.

Finally, calling z0 7→ ε0(z0) = (∇zζ)
−1 (∇V (z0), z0) the unique inverse demand mapping identified

above, ∇V (z0) is a random variable with the same distribution as the uniquely defined random
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variable ∇zζ(ε0(z0), z0). As such, it is uniquely determined Pz-almost surely, as desired. This

completes the proof. �
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