Misallocation and Productivity in Agriculture

Diego Restuccia University of Toronto

Southern Workshop in Macroeconomics Auckland, New Zealand March 7, 2014

2014 1 / 51

-∢ ≣ →

Motivation

- Large differences in GDP per capita between rich and poor countries mostly explained by differences in labor productivity and in particular total factor productivity
- Resource (mis)allocation across heterogeneous production units a key determinant of aggregate productivity
 - ▶ Restuccia and Rogerson (2008, RED), Hsieh and Klenow (2009, QJE)
- Key questions:
 - What specific policies/institutions/frictions cause misallocation?
 - How do they affect productivity at the industry level?
- Focus:
 - Industry \rightarrow Agriculture
 - \blacktriangleright Specific Policy/Friction \rightarrow Land reforms and imperfect land markets

イロト イポト イヨト イヨト

Why agriculture?

э

Agricultural Labor Productivity

• Poor countries are particularly unproductive in agriculture ...

Source: Restuccia, Yang, and Zhu (2008, JME), PWT, FAO

Diego Restuccia ()

Agricultural Employment Shares

• ... and poor countries devote most of their labor to agriculture.

Source: Restuccia, Yang, Zhu (2008, JME), FAO

Diego Restuccia ()

2014 5 / 51

< ロ > < 同 > < 回 > < 回 >

Motivation

- Understanding labor productivity gap in agriculture is key. Several explanations ...
- Adamopoulos and Restuccia (forthcoming, AER)
 - Integrates literatures on misallocation and agricultural productivity differences
 - Poor countries characterized by institutions, market frictions, and policies creating misallocation in agriculture
 - These features manifest themselves through farm size
 - Can be quantitatively important in thinking about agricultural productivity

- 4 同 6 4 日 6 4 日 6

Two Specific Applications

(1) "Land Reform and Productivity: A Quantitative Analysis with Micro Data" (with Tasso Adamopoulos)

Land Reforms

- Typically involve redistribution of farm land above a given ceiling from land-rich to land-poor
- Often coupled with a "shutting down" of land sales and/or rental markets
- Prevalent in developing countries in the second half of the 20th century

Some Land Reforms

Country	Change in	Land Reform	Ceiling on
	AFS (%)	Period	Land Size (Ha)
Bangladesh	-49.1	1984	8
Ethiopia	-44.1	1975	10
India	-25.8	by early 1970s	by province: 4-53
Korea	-21.5	1950	3
Pakistan	-11.5	1972, 1977	61, 40
Sri Lanka	-26.2	1972	10-20
Philippines	-29.6	1988	5

• AFS drops after all these reforms against the tendency for AFS to increase over time

.

Research Questions

- What are the effects of land reforms on farm size and agricultural productivity?
- ② Through what channels do these effects manifest themselves?

- Focus on a particular land reform (Philippines)
- Use micro data to study the decisions of operators at the farm-level before and after the reform

What We Do

- Develop an industry model that features a non-degenerate distribution of farms and a technology choice at the farm level
- 2 Calibrate the model to pre-reform farm-level data in the Philippines
- **③** Use the quantitative model to measure the effects of:
 - land reform alone
 - land reform alongside other changes

What We Find

- The land reform reduces productivity by 17% and farm size by 34%, it also reduced the share of landless by 20%
- These effects due to both misallocation and selection (distortion to occupational and technology choices)
- One of the second se
- **(**) A market-based redistribution yields less than 1/3 of these effects
- Other changes occurring alongside the reform can mask the effects of the reform

Land Reform in the Philippines

- 1988 land reform in the Philippines: Comprehensive Agrarian Reform Program (CARP)
- imposed ceiling of 5 Ha on all agricultural holdings
- severely restricted transferability of the redistributed farm lands
- targeted 80% of total farm land
- 80% of targeted farmland redistributed by mid-2000s

• Restrictiveness ratio
$$= \frac{ceiling}{pre-reform AFS} = 1.75$$

Micro Data - Philippines

Decennial Agricultural Censuses (1981, 2002)

- Complete enumeration of farms
- $\circ~$ No outputs or inputs other than land, labor

2 Philippines Cash Cropping Project (1984, 2003), IFPRI

- Survey data: Island of Mindanao, Bukidnon province
- Can calculate productivity at the farm-level

Average Farm Size - Census Data

- pre-reform (1981) AFS = 2.85 Ha
- post-reform (2002) AFS = 2.01 Ha
- AFS dropped by 29.6%

Changes in Size Distribution of Farms - Census Data

2014 17 / 51

Agricultural Labor Productivity - Industry Accounts

2014 18 / 51

Micro Data - IFPRI

- Household survey data
- 448 households interviewed in 4 round over 1984-85
- Original households and their children interviewed again in 5 rounds over 2003-04
- Precise and detailed measurement of inputs and outputs at the parcel and farm level
- Food crops: corn, rice; Cash crops: sugarcane (mainly), coconut, coffee, rubber

Size and Productivity By Crop - Panel

	1984-85	2003-04	% change
All Farms			
Average Farm Size	3.7	3.1	-17.6
Value Added Per Work Day	257.5	372.7	44.7
Cash Crop Farms			
Average Farm Size	4.6	3.7	-19.8
Value Added Per Work Day	298.2	386.1	29.5
Food Crop Farms			
Average Farm Size	2.1	1.3	-39.0
Value Added Per Work Day	101.2	201.0	98.7

• In 1984-85 cash crop farms are larger and more productive

2014 20 / 51

Exiting and Continuing Farms

Average Farm Size and Productivity

	Exiting Farms	Continuing Farms
All		
Farm Size	2.3	3.5
Productivity	242.4	254.3
Top 10%		
Farm Size	5.2	6.7
Productivity	529.5	556.7

 Productivity drop not explained by most productive farmers leaving agriculture after reform

< 日 > < 同 > < 三 > < 三 >

Economic Environment

- Industry model of agriculture production side
- Build from Lucas (1978) span-of-control model of firm size \implies non-degenerate distribution of farms
- In addition, operators face a cropping technology choice (cash vs. food crop)

Production - Agriculture

- Production unit is a farm, that requires the input of an operator (farmer) with managerial skills s, land input (l), and hired labor (n)
- There are two types of crops, cash crops (c) and food crops (f)
- Farmer of ability s produces crop i ∈ {c, f} according to the decreasing returns to scale technology,

$$y_i = (A\kappa_i s)^{1-\gamma} (\ell^{\alpha} n^{1-\alpha})^{\gamma}$$

- *A* = economy-wide productivity (TFP)
- $\kappa_i = \text{crop-specific productivity parameter}$
- $\gamma = \text{span-of-control parameter}$

Farmer Problem

Farmer of ability s, operating technology i ∈ {c, f} maximizes profits given prices (w, q, p_i),

$$\max_{\ell,n} \left\{ p_i y_i - wn - qI - p_i C_i \right\}$$

- $C_i = \text{crop-specific fixed cost of operation}$
- p_i = price of crop $i \in \{c, f\}$ (fixed)

Farmer Problem

Optimal scale of farm operation determined by farmer ability,

$$\ell_i(s) = \left(\frac{\alpha}{q}\right)^{\frac{1-\gamma(1-\alpha)}{1-\gamma}} \left(\frac{1-\alpha}{w}\right)^{\frac{\gamma(1-\alpha)}{1-\gamma}} (\gamma p_i)^{\frac{1}{1-\gamma}} A \kappa_i s,$$

• Optimal land and hired labor demands $[\ell(s), n(s)]$ imply,

$$\frac{n(s)}{\ell(s)} = \frac{(1-\alpha)}{\alpha} \frac{q}{w},$$

• Given input demands and output functions profits are,

$$\pi_i(s) = (1 - \gamma)p_i y_i(s) - p_i C_i.$$

Occupational Choice and Crop Choice

- Farmers are heterogeneous in their managerial ability, s ~ F(s) with support in S = [s_{min}, s_{max}]
- There are two thresholds that determine the fraction of farmers being hired workers, cash crop farmers, and food crop farmers
- Denote occupational choice by $o_i(s)$, with $o_i(s) = 1$ if $\pi_i \ge \max{\pi_{-i}(s), w}$

Occupational Choice and Crop Choice: Example

Suppose that $C_c > C_f$ and $\kappa_c > \kappa_f$.

 \underline{s} is the cutoff for hired workers vs. operators

 $\pi_f(\underline{s}) = w$

 \overline{s} is the cutoff for food crop vs. cash crop operators

$$\pi_f(\overline{s}) = \pi_c(\overline{s})$$

Illustration

 २०१४
 २०९२

 2014
 28 / 51

<ロ> (日) (日) (日) (日) (日)

Calibration I

- Strategy: Calibrate benchmark economy (BE) to pre-reform Philippines
- Distribution of farmer ability F(s) approximated by a log-normal distribution, with mean μ and variance σ , chosen to match the distribution of farm sizes from the survey data

Calibration II

- Normalize the relative price of cash to food crops p_c/p_f to 1
- Normalize A and κ_f to 1
- Set span-of-control parameter to $\gamma=0.7$
- Choose $\alpha = 0.3$ to match a land income share of 0.2
- Aggregate land endowment *L* chosen to match an average farm size of 3.7 Ha (survey data)

- Solve the model for (C_f, C_c, κ_c) to match three targets from the 1984-85 survey data:
 - (a) share of hired labor in total farm labor of 61.1%
 - (b) share of cash crop operators in total operators of 61.7%
 - (c) disparity of average output per worker between cash crops and food crops of 2.95

Model vs. 1984-85 Survey Data

2014 32 / 51

Model vs. 1984-85 Survey Data

Value added per worker by size

Hired labor per hectare by size

Land Reform I

- Model land reform as a government-mandated redistribution program.
- Farmland in excess of the effective ceiling is redistributed to the landless and smallholders.
- Land market is not operative.
- Redistributed land constitutes an endowment for each recipient (cannot be adjusted).

Land Reform II

Implement government-mandated redistribution using four parameters:

- legistlated land ceiling I_{max}.
- probability θ that farmers above the ceiling retain their previous farm size (enforcement).
- fraction of landless β that receive land
- \bullet fraction ψ of smallholders that receive land

These parameters fully determine the post-reform distribution of land (farms).

Philippine Land Reform

Experiment

- take the benchmark economy calibrated to (pre-reform) Philippines
- consider the above government-mandated land redistribution
 - $\circ~$ feed in ceiling of 5 Ha
 - $\circ~{\rm pick}~\theta$ to roughly match farm distribution $>5~{\rm ha}$
 - $\circ\,$ pick (β,ψ) to roughly match farm distribution for bins 0 1 ha, 2 3 ha.

Land Reform vs. 2003-04 Survey Data

Share of land by size

Aggregate Effects of Land Reform

	Government-mandated	Market-based	
	Land Redistribution	Land Redistribution	Data
Farm Size	-34.2	-9.3	-29.6
Productivity	-17.0	-5.0	-11.6
Landless (%)	-20.0	-4.0	-19.0

▲ □ ▶ ▲ □ ▶ ▲

Degree of Enforcement of Reform

	Enforcement			
	$\theta = 0.8$	$\theta = 0.4$	$\theta = 0.1$	$\theta = 0$
Average Farm Size	-34.2	-39.2	-42.5	-46.5
Ag. Labor Productivity	-17.0	-22.6	-27.5	-34.2

• Enforcement of reform ceiling is quantitatively important for the magnitude of size and productivity drop

Importance of Vehicle of Redistribution

- Land market "shut-down" key for magnitude of productivity decline
- Consider market-based redistribution
 - o only restriction is the ceiling
 - land market is allowed to work
- Ceiling with land market reallocation compresses the farm and land distribution creating smaller size and productivity effects

Aggregate Effects of Land Reform

	Government-mandated	Market-based	
	Land Redistribution	Land Redistribution	Data
Farm Size	-34.2	-9.3	-29.6
Productivity	-17.0	-5.0	-11.6
Landless (%)	-20.0	-4.0	-19.0

• Market-based redistribution generates less than 1/3 of the effects

Market-based Redistribution vs. 2003-04 Survey Data

• Does not capture the reality of reform in the Philippines

	_		
liego	Rost	LICCIA I	
	I COL	uccia	
			•

2014 42 / 51

Productivity Decomposition

	Government-mandated	Market-based
	Land Redistribution	Land Redistribution
Total Effect	-17.0	-5.0
Misallocation Effect	-1.1	-3.0
Selection Effect	-15.9	-2.0

• Misallocation effect roughly similar, but selection effect much larger under government-mandated redistribution

Two Specific Applications

(2) "Land Misallocation and Productivity" (with Raul Santaeulalia-Llopis)

Land Misallocation in Malawi

- Large, representative micro data with excruciating detail on agricultural production and productivity
- Land markets largely undeveloped in Malawi
 - more than 70% of land is inherited
 - almost none of the land comes with a title
 - almost no rentals
- Land fairly evenly distributed across households at very low operational scales
 - more than 70% of households operate less than 2 acres of land

Distribution of Farm Productivity in Malawi

2014 46 / 51

Dispersion of Farm and Plant Productivity

Statistic	Malawi 2010	USA 1977	China 1998	India 1987
SD	0.86	0.85	1.06	1.16
75-25	1.08	1.22	1.41	11.55
90-10	2.14	2.22	2.72	2.77
Ν	10,000	164,971	95,980	31,602

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Farms by Productivity

• Capital and land size not related to productivity!

2014 48 / 51

Farms by Productivity

Land productivity increases with farm TFP, indicative of misallocation!

```
Diego Restuccia ()
```

Misallocation and Productivity in Ag.

2014 49 / 51

Counterfactual

- Q: What would the agricultural productivity increase be of land reallocation across existing farmers to maximize output?
- The reallocation involves reallocating land to equalize yields (land productivity) across farmers
- A: Agricultural productivity would increase by a factor of 4-fold!
- The increase would be much larger if the number of farms is adjusted via general equilibrium effects (average farm size increase) and if there is selection into the farm exit
- Efficiency of land markets key

Final Remarks

- Measurable land reform policies generate land misallocation
- Redistributive land policies affect operational farm scales through limited or not well functioning land markets
- Implied land misallocation generates substantial negative effects on agricultural productivity
 - Land reform in Philippines generates a 17% drop in productivity, a very large effect for a single policy
 - Eliminating land misallocation in Malawi among existing farmers can generate a 4-fold increase in productivity
- These result emphasize the importance of developing efficient land markets

・ロト ・同ト ・ヨト ・ヨト