ECO 426 (Market Design) - Lecture 11

Ettore Damiano

December 7, 2015

Ettore Damiano ECO 426 (Market Design) - Lecture 11

Sponsored search auctions

Google, Yahoo etc.. sell ad spaces linked to keyword searches

Ettore Damiano

sponsored search auctions

- Bidders (advertisers) submit bids on a keyword (e.g. diamond ring, used cars, legal services, auto insurance, etc.)
- A bid typically is a
 - price per "click," or
 - price per "impression,"
- Multiple ads are shown after each keyword search (multi-unit auction)
 - Bidders only submit one bid (unit demand)
 - Bids order determine the ad position within the web-page
- An auction is for one query of one keyword

efficient allocation

Example:

- Two positions on a web-page:
 - A generates 200 clicks per-day,
 - B generates 100 clicks per-day.
- Three advertisers, have different per-click "values"
 - Firm 1 value is \$10 per-click
 - Firm 2 value is \$4 per-click
 - Firm 3 value is \$2 per-click
- Efficient allocation?
 - Firm 1 gets position A
 - Firm 2 gets position B
- Total value = $200 \times \$10 + 100 \times \$4 = \$2,400$

competitive equilibrium prices

- In a "competitive equilibrium" the two position prices, p_A and p_B , and such that demand = supply
 - Exactly one firm demands position A and one firm demands position B
- Competitive equilibrium prices?
 - *p_A* = \$4 and *p_B* = \$2 YES
 - Firm 3 demands nothing
 - Firm 2 demands B
 - Firm 1 demands A (10-4) * 200 > (10-2) * 100
 - $p_A = $5 \text{ and } p_B = 3 YES
 - Firm 3 demands nothing
 - Firm 2 demands B
 - Firm 1 demands A
 - $p_A =$ \$7 and $p_B =$ \$3 NO
 - Firm 3 demands nothing
 - Firm 2 demands B
 - Firm 1 demands B (10 7) × 200 < (10 3) × 100

competitive equilibrium prices

Finding all competitive equilibrium prices

- Competitive equilibrium allocation are efficient
 - Firm 3 must demand nothing
 - *p*_A, *p*_B ≥ 2
 - Firm 2 must demand position B
 - *p*_B ≤ \$4
 - $(4 p_B) \times 100 \ge (4 p_A) \times 200 \Rightarrow p_A \ge 2 + p_B/2$
 - Firm 1 must demand position A
 - $p_A \le 10$ • $(10 - p_A) \times 200 \ge (10 - p_B) \times 100 \Rightarrow p_A \le 5 + p_B/2$

pay-your-bid auction

- Example. Two positions: *A* generates 200 clicks per-day, *B* generates 100 clicks per-day. Three advertisers: values \$10, \$4 and \$2 per-click respectively.
- Pay-your-bid auction
 - Firm 3 bids up to \$2 per-click
 - Firm 2 can get position *B* for \$2.01
 - Firm 1 can get position A for \$2.02
 - Firm 2 would want to top 1's offer and get A (e.g. \$2.03)
 - Price escalates until it reaches \$3.01 at which point firm 2 wants to revert back to paying \$2.01 for position B
 - Firm 1 wants to lower its bid to \$2.02
 -start over....
- pay-your-bid auctions were used in the 1990's (Overture, Yahoo, MSN)

pay-your-bid auction

- Example. Two positions: A generates 200 clicks per-day, B generates 100 clicks per-day. Three advertisers: values \$10, \$4 and \$2 per-click respectively.
- In a Vickrey auction it is a dominant strategy to bid own valuation. (i.e. Firm 1 bids \$10, firm 2 bids \$4 and firm 3 bids \$2)
 - Allocation: Firm 1 gets A firm 2 gets B, firm 3 gets nothing (efficient)
 - Prices:
 - Firm 3 pays nothing
 - Firm 2 displaces firm 3 for 100 clicks \Rightarrow pays $2 \times 100 = 200$
 - Firm 1 displaces firm 3 for 100 clicks and firm 2 for 100 clicks \Rightarrow pays $2 \times 100 + 4 \times 100 = 600$
 - Revenue = \$800

• Vickrey prices are lowest competitive equilibrium prices

Google, generalized second price auction

Google GSP auction

- Bidders submit per-click bids
- Ad positions are allocated following the order of bids (top bidder gets top position, second bidder gets second position,
 ...)
- Each bidder pays a price equal to the next lower bid (i.e. top bidder pays second highest bid, second bidder pays third highest bid, ...)

GSP auction equilibria

- Bidding own value is NOT a dominant strategy
 - Example: Two positions 100 and 200 clicks. Value 10 per click. If competing bids are 5 and 9, winning second position at price 5 generates more profit than winning first position at price 9.
- Bidding own value can be an equilibrium
 - Example. Two positions: A generates 200 clicks per-day, B generates 100 clicks per-day. Three advertisers: values \$10, \$4 and \$2 per-click respectively.
 - The three firms bidding own value is a Nash equilibrium
 - Allocation is efficient
 - Prices are $p_A = \$4, p_B = \2 (> Vickrey prices)
 - Revenue = \$1,000 > Vickrey

- Example. Two positions: A generates 200 clicks per-day, B generates 100 clicks per-day. Three advertisers: values \$10, \$4 and \$2 per-click respectively.
 - Profile of bids (\$2, \$3, \$10) is also a Nash equilibrium (Vickery prices) revenue \$800
 - Profile of bids (\$3, \$5, \$8) is also a Nash equilibrium revenue \$1,300
 - Profile of bids (\$3, \$7, \$3.30) is also a Nash equilibrium (inefficient)

Model

- *K* positions with click rate $x_1 > x_2 > \cdots > x_K$
- N bidders with per-click values $v_1 > v_2 > \cdots > v_N$
- Full information
- Auction format: GSP
- Efficiency: an allocation is efficient if it is "positive assortative" (i.e. the highest **value** bidder gets top position, and so on...)

equilibrium

- A strategy profile is a vector of bids $b = (b_1, \ldots, b_N)$
 - b^k is the k^{th} highest bid
 - v^k is the per-click value of the k^{th} highest bidder
- Given a strategy profile b, payoff to the k^{th} highest bidder is

$$v^{k}x^{k} - b^{k+1}x_{k} = (v^{k} - b^{k+1})x_{k}$$

• A strategy profile b is a Nash equilibrium if for each k

$$(v^k-b^{k+1})x_k\geq (v^k-b^{m+1})x_m$$
 for $m>k$

$$(v^k - b^{k+1})x_k \ge (v^k - b^m)x_m$$
 for $m < k$

- Definition: An equilibrium is local envy-free if no bidder can increase his payoff by "swapping" bids with the player who bid just above him.
 - k^{th} highest bidder swapping bids with $k 1^{th}$ highest bidder
 - wins $k 1^{th}$ position (click rate x_{k-1})
 - pays the k^{th} highest bid b^k
 - payoff $(v^k b^k)x_{k-1}$
 - local envy free requires

$$(v^k - b^{k+1})x_k \ge (v^k - b^k)x_{k-1}$$

local envy-free and stability

- Two-sided one-to one matching analogy
 - advertisers: payoff = profit
 - positions: payoff = revenue
 - Given a strategy profile b, position k 1 is assigned to the $k 1^{th}$ highest bidder who pays the k^{th} highest bid (b^k) . Revenue

 $b^k x_{k-1}$

• If an equilibrium is **not** local envy-free

$$(v^k - b^{k+1})x_k < (v^k - b^k)x_{k-1}$$

- Paying a little more than b^k for position k-1, the bidder is still strictly better off, and position k-1 gets more revenue
- k^{th} bidder and position k-1 block the matching (unstable)
- local envy-free is sufficient for stability

stability and competitive equilibrium

- Stable assignment (specify both matching and payments "transfers")
 - matching is efficient: higher value bidders get higher positions (positive assortative matching)
 - position prices (p_1, \ldots, p_K) satisfy

$$(v_k - p_k)x_k \ge (v_k - p_m)x_m$$
 for all m

otherwise "bidder k" and position m block the assignmentsame as competitive equilibrium

- efficient allocation
- o demand=supply

stability and competitive equilibrium

 Theorem: The outcome of a locally envy-free equilibrium of the GSP auction is a stable assignment (= competitive equilibrium allocation). Further, provided N > K, any stable assignment (=competitive equilibrium allocation) is an outcome of a locally envy-free equilibrium of the GSP auction.

equilibrium ranking

- Theorem: There is a "bidder-optimal" competitive (GSP envy-free) equilibrium and a "seller-optimal" competitive (GSP envy-free) equilibrium.
 - "bidder-optimal" equilibrium generates same revenue as Vickrey auction
 - "seller-optimal" equilibrium

