ECO 426 (Market Design) - Lecture 10

Ettore Damiano

December 5, 2015

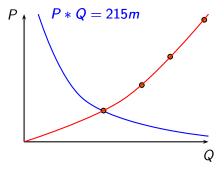
Ettore Damiano ECO 426 (Market Design) - Lecture 10

Multi-item auctions

- In the auction models considered so far, there is a single object for sale
- In a multi-item auction: two or more objects are for sale
 - bidders might want just a single object (unit demand);
 - an ad on a google search page
 - bidders might be willing to buy more multiple objects
 - a combination of radio spectrum licenses
- Examples of multi-item auctions abound
 - treasury bills
 - radio spectrum
 - CO₂ emissions
 - landing slots
 - MBA classes
 - wine auctions

- oil and gas leases
- bus routes
- sponsored search
- condo sales
- auto auctions

- When there are multiple objects sold simultaneously (rather than one at the time in sequence), the auction could specify that:
 - each object is sold at the same price uniform price auction
 - price per object might be different discriminatory price auction


• UK Emissions Trading Scheme.

- a voluntary emissions trading system created as a pilot prior to the mandatory European Union Emissions Trading Scheme
- Started in 2002
- The voluntary trading scheme recruited participants from UK industries and organisations
- Participants promised to make reductions in their carbon emissions, in return they received a share of a £215 million "incentive fund" from the Department for Environment, Food and Rural Affairs (DEFRA)
- How much each participant would reduce their emission and how much money they would receive in exchange was determined through a "clock auction"

Clock auction

- Auction starts with a sufficiently high price
 - **price** is the amount of money a firm would receive per unit of reduction in emissions (unit = 1 metric ton of *CO*₂ emissions)
- Bidders state the amount of *CO*₂ emissions they would abate at current price
- The auctioneer calculate total cost (i.e. tons of CO₂ abatement times price)
 - If total cost >£215m, the price is lowered
 - If total cost \leq £215m, price (and auction) stops
- When price stops, allocation is implemented
 - bidders reduce emissions by their stated amount
 - bidders receive a subsidy = emissions reduction*final price
- Auction results:
 - total emissions reduction = 4m metric tons of CO_2 emissions
 - price per metric ton $\pounds 53.75$
 - 34 firms received a subsidy (and reduced their emissions)

• A clock auction traces out the aggregate supply of emission reductions

• Clock auction price = competitive price

Q demanded = Q supplied

Sealed bid supply function auction

- Each bidder bids a "supply function"
 - a schedule of a quantity of emission reductions at each price
- Bids are open
- Individual supply functions are aggregated
- Auction price = market clearing price
- Emission reduction amounts are assigned to each bidder given the auction price and their submitted supply functions.
- Question: Are the clock auction and the sealed bid supply function auction strategic equivalent?
 - Yes if, in the clock auction, bidders only observe current price
 - No if, in the clock auction, bidders observe more information (e.g. competitor supply decisions at each price)

$(K+1)^{th}$ price auction

- There are K identical objects to sell (i.e. bidders do not care about the exact object they receive)
- Bidders have unit demand (i.e. they only want to purchase one object)
- There are N > K bidders
- (Independent) private values
- Each bidder submits a sealed bid
- Bids are open
 - K highest bidders each receive one object
 - Winning bidders pay a price equal to $(K+1)^{th}$ highest bid
- Question: What should bidders bid?
 - Theorem: It is a dominant strategy, for a bidder with unit demand, to bid her valuation.
 - Same argument as in second price private value auction

Demand reduction

- Question: What if bidders want more than one unit?
- Example: Three (identical) objects for sale, four bidders
 - Bidder 1: wants one object, values it \$120
 - Bidder 2: wants one object, values it \$110
 - Bidder 3: wants one object, values it \$100
 - Bidder 4: wants two objects, values each \$105
- If every bidder bids own value bids are: 120, 110, 100, 105, 105 (bidder 4 submits a 105 bid for two objects)
 - Bidders 1, 2, and 4 win one object each
 - Auction price is 105
 - Bidder 4 profit is 0
- If Bidder 4 reduces his demand to one object bids are: 120, 110, 100, 105
 - Same allocation
 - Auction price is 100
 - Bidder 4 profit is 5

Discriminatory pricing

- Question: Is there an "auction mechanism" that
 - makes it a dominant strategy for the bidders to submit truthful bids (i.e. honestly report their valuations)
 - lead to an efficient allocation of the objects (i.e. objects are assigned to the bidders who value them the most)?
- Vickrey action:
 - Objects are assigned to highest bidders
 - Each bidders pay a price equal to the value of the displaced bidder/s
 - (using submitted bids) calculate the aggregate value of the auction allocation to all bidders but n, V_{-n}
 - calculate total value of the allocation of an hypothetical auction where bidder *n* does not participate, $\hat{\mathcal{V}}_{-n}$
 - price paid by bidder $n = \hat{\mathcal{V}}_{-n} \mathcal{V}_{-n}$
- bidders pay different prices (discriminatory pricing)
- the price each bidder pays equals to the negative externality his participation imposes on all other bidders
- bidding truthfully is a dominant strategy

Vickrey auction - example

• Example: Three (identical) objects for sale, four bidders

- Bidder 1: wants one object, values it \$120
- Bidder 2: wants one object, values it \$110
- Bidder 3: wants one object, values it \$100
- Bidder 4: wants two objects, values each \$105
- Bidding own values, bids are: 120, 110, 100, 105, 105
 - Bidders 1, 2, and 4 win one object each
 - Removing bidder 1: 2 wins one object and 4 wins two objects
 - Bidder 1 price is 105 (displaces one unit of bidder 4)
 - Removing bidder 2: 1 wins one object and 4 wins two objects
 - Bidder 1 price is 105 (displaces one unit of bidder 4)
 - Removing bidder 3: same allocation
 - Bidder 3 price is 0 (displaces nobody)
 - Removing bidder 4: 1, 2 and 3 win one object each
 - Bidder 4 price is 100 (displaces bidder 3)
- Bidder 4 has no incentive to reduce demand

Vickrey auction - example

• Example: Three (identical) objects for sale, four bidders

- Bidder 1: wants one object, values it \$120
- Bidder 2: wants one object, values it \$110
- Bidder 3: wants one object, values it \$100
- Bidder 4: wants two objects, values each \$115
- Vickrey pricing
 - Bidder 1 pays 110 (displaces bidder 2)
 - Bidder 4 pays a total of 210 (displaces bidder 2 and 3)
 - No incentive to change bids
- Uniform price (4th price auction)
 - price is 110
 - bidder 4 gains by reducing demand to 1 unit

Multi-item auctions with different goods

- Multiple objects for sale, K
- Objects are different
 - spectrum licenses in different regions
 - landing slots at different time of the day
 - different bus routes
 - different MBA classes
- N bidders
- A bidder *n*
 - has a vector of valuations for each of the objects, (v_n^1, \ldots, v_n^K)
 - only wants one of the objects (unit demand)

a simple example of ascending auction

- Example: Three bidders, three objects
 - Bidder A valuations: 3.1, 5.2, 7.3
 - Bidder B valuations: 4.3, 3.2, 6.1
 - Bidder C valuations: 6.2, 2.1, 5.3
- propose a price for an object to maximize profit
 - $\bullet\,$ A and B offer 0 for good 3, C offers zero to good 1
- sellers "hold" one highest price offer and rejects all others

• good 3 rejects B's offer

• rejected bidders make new proposals (min price increase: 1)

- B offers \$1 to good 3 \Rightarrow good 3 rejects A's offer
- A offers \$1 to good $3 \Rightarrow$ good 3 rejects B's offer
- B offers \$0 to good $1 \Rightarrow$ good 1 rejects B's offer
- B offers \$2 to good $3 \Rightarrow$ good 3 rejects A's offer
- A offers \$2 to good $3 \Rightarrow$ good 3 rejects B's offer
- B offers \$1 to good $1 \Rightarrow$ good 1 rejects C's offer
- C offers \$1 to good $1 \Rightarrow$ good 1 rejects B's offer
- B offers \$0 to good 2

• A gets 3 at \$2, B gets 2 at \$0, C gets 1 at \$1

Ascending auction - preference lists

- More generally,
 - Bidders have preferences over (object-price) pairs Example: Bidder 1's valuations 3.1, 5.2, 7.3 \Rightarrow preferences (3,\$0) \succ (3,\$1) \succ (3,\$2) \succ (2,\$0) \succ (3,\$3) \succ (2,\$1) \succ (3,\$4) \succ (2,\$2) \succ (1,\$0) $\succ \dots$
 - Sellers prefer the highest offer
 - Bidders propose to objects following their preference list
 - Sellers "hold" the highest offer and reject all others
 - Rejected bidders make next offer on their preference list
 - Process ends when no offer is rejected
- Have we seen this before?
 - Deferred acceptance with bidders proposing

Ascending auction - properties

- Unit demand \Rightarrow one-to-one matching
 - each bidder receives at most one object
 - each object is assigned at most to one bidder
- With one-to-one matching, the DA bidder proposing algorithm
 - yields a stable matching
 - is strategy proof for the bidders (i.e. it is a dominant strategy to report preference list honestly / bid truthfully)
- Stable matching means that at the final auction prices
 - each object is demanded by at most one person
 - not demanded objects have zero price (price only grows if more than one person demands it)
- Auction prices are such that
 - either demand = supply, or
 - demand=0<1=supply and price is zero
 - competitive equilibrium
 - same as Vickrey prices (strategy proof)