ECO 426 (Market Design) - Lecture 5

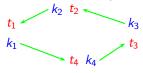
Ettore Damiano

October 19, 2015

Exchanging Kidneys

- Two types of kidney exchanges
 - Pairwise kidney exchange: exchange kidney with another patient-donor pair

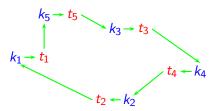
 Exchange to list: donate kidney to patient on waiting list in exchange of a better spot on waiting list

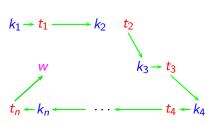

Looks similar to YRMH-IGYT

Kidney exchange problem

- A Kidney exchange problem consists of:
 - A set of donor-patient pairs $\{(t_1, k_1), \dots, (t_n, k_n)\}$
 - For each patient, t_i , a set of compatible kidneys $K_i \subseteq K = \{k_1, \dots, k_n\}$
 - For each patient, t_i , a (strict) preference ordering over the set of compatible kidneys K_i and the option of exchanging own kidney, k_i for priority w on the waiting list
- Question: How do we organize a kidney exchange program such that
 - The outcome is Pareto efficient, it is not possible to improve further the welfare of all
 - For each patient, the outcome is never worse than not participating in the mechanism, ensures broad participation, no donor kidney is un-necessarily "wasted"
 - The mechanism is strategy proof, patients have incentive to disclose their preferences honestly

Kidney exchange - model

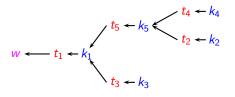

- Assumptions:
 - Multi-way exchanges: No constraint on the number of patient-donor pairs that can participate in an exchange (i.e. multi-way exchanges are allowed)



- List exchanges: Exchange to list are possible (i.e. exchanging a kidney for a better spot on the wait-list)
- Strict preferences: No patient is indifferent between any two (compatible) alternatives (i.e. strict preferences over: compatible kidneys + trading donor for wait list + remaining with own donor)
- Interpreting live donors' kidneys as "owned" by their respective patients, the problem resembles one of house allocation with existing tenants
 - Maximizing "supply" of live donors as maximizing participation

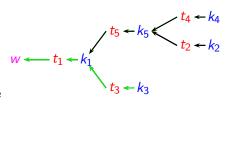
TTC(and C)

- TTC mechanism key properties
 - Each patient points to favorite kidney or the waiting list
 - Each kidney donor points to his/her patient
- In a given round
 - A cycle might form
 - each patient in the cycle receives the best compatible kidney available
 - A cycle might not form
 - some patient point to wait-list
 - If there is no cycle there must be at least a w-chain

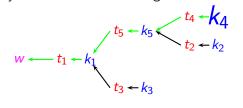


TTC(and C)

Top Trading Cycles and Chains mechanism: key ideas


- When a cycle form:
 - Carry out exchange
 - Remove kidneys and patients in cycle and restart
- When no cycle form
 - There can be more than one chain

- Multiple chains can be in "competition" with each other
 - Need a chain selection rule


chain selection

- Examples of chain selection rules
- Choose based on length
 - longest chain
 - minimal chain
- Choose based on donor-patient priority
 - Choose chain with the highest priority donor-patient pair (e.g. t_3 , k_3)

"tail kidney"

 The "tail kidney" in a chain (i.e. the kidney of the last patient receiving a transplant in the kidney exchange) is not strictly needed for the exchange

- The tail kidney can be
 - Assigned to some compatible patient on wait list (i.e. list exchange) (might have welfare consequences, Pareto efficiency is not guaranteed)
 - Remain available to remaining patients on the kidney exchange program (guarantees Pareto efficiency)

chain selection

Combining chain selection and tail kidney options

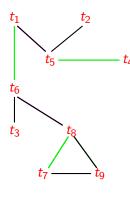
- Choose longest chain and remove tail kidneys (not strategy proof, not Pareto efficient)
- Choose longest chain and keep tail kidney (not strategy proof, Pareto efficient)
- Choose minimal chain and keep tail kidney (strategy proof, Pareto efficient)
- Choose chain starting with highest priority patient-donor pair and remove tail kidney (Strategy proof, not Pareto efficient)
- Choose chain starting with highest priority patient-donor pair and keep tail kidney (Strategy proof, Pareto efficient) equivalent to YRMH-IGYT
 - Key properties
 - Minimal chains for strategy proofness
 - Keep kidney for Pareto efficiency

Constrained kidney exchange

Practical shortcomings:

- Multi-way exchanges can be difficult to implement
 - Being illegal to enter a contractual agreement for a "kidney exchange" all surgeries must be performed simultaneously to ensure compliance with the agreed exchange
 - Pairwise kidney exchange requires four "simultaneous" surgeries (two nephrectomies two kidney transplants)
 - Trilateral exchange requires six "simultaneous" surgeries etc.
- Preferences are "in practice" not strict
 - Compatibility is treated as a binary variable (0-1)
- List exchanges pose a "selection" problem
 - Most common blood type is O-type
 - Most likely donor kidney exchanged to wait-list will be O-type incompatible (otherwise the donating patient would have it)
 - List exchanges may harm O-type patient on wait-list

Pairwise Kidney exchange with binary preferences


- A constrained bilateral Kidney exchange problem with binary (compatibility based) preferences consists of:
 - A set of donor-patient pairs $\{(t_1, k_1), \dots, (t_n, k_n)\}$
 - For each patient, t_i , a set of compatible kidneys $K_i \subseteq K = \{k_1, \dots, k_n\}$
- The set of agents N and a compatibility matrix, R, suffice to describe the problem
 - R is an $N \times N$ matrix with

$$r_{i,j} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are compatible} \\ 0 & \text{otherwise} \end{cases}$$

 Objective: Find a collection of bilateral kidney exchange among mutually compatible donor-patient pairs

Priority Mechanism

- Order donor-patient pairs according to priorities Example: Nine patient-donor pairs $\{t_1, t_2, ..., t_9\}$ priority ordering $\{1, 8, 4, 2, 6, 3, 7, 9, 5\}$
 - medical priority and/or random
- match top priority patient if possible (i.e. if there is a patient-donor pair mutually compatible with the priority 1 patient-donor pair), else skip
- match priority 2 patient, if possible, in conjunction with priority 1 agent else skip priority 2 agent
- ...
- match priority n patient, if possible, in conjunction with all earlier priorities, else skip

Priority Mechanism

- The priority mechanism is
 - Pareto efficient
 - Strategy proof
- Limits:
 - Allowing tri-lateral exchanges can make many more transplants possible
 - Additional benefits from more complex multi-lateral exchanges decline rapidly
- Example: Blood incompatible pairs (O-B,O-A,A-B,A-B,B-A);
 HLA incompatible pairs (A-A,A-A,A-A,B-O)
 - Only bilateral exchanges: (A-B,B-A) (A-A,A-A) (O-B,B-O)
 - Bilateral and trilateral: (A-B,B-A) (A-A,A-A,A-A) (B-O,O-A,A-B)

Kidney exchange programs

- New England Program for Kidney Exchange (2004)
 - Priority mechanism
 - up to 4-lateral exchanges
 - list exchanges allowed
 - altruistic donor exchanges (i.e. chains starting from an altruistic live donor, rather than a list exchange)
- Ohio Living Kidney Donor Program
 - Performed a Six-way paired kidney exchange (September 2011)
- National program under construction

NEAD

NEAD: Never Ending Altruistic Donor Chain

• Alliance for Paired Donation - 10 kidney transplant chain

National Kidney Registry - 30 kidney transplant chain

