ECO 426 (Market Design) - Lecture 1

Ettore Damiano

September 14, 2015

Ettore Damiano ECO 426 (Market Design) - Lecture 1

Market: A medium that allows buyers and sellers of a specific good or service to interact in order to facilitate an exchange.

- markets are institutions that determine how resources are allocated
- competitive markets
 - allocation problem is solved by a price system
 - products are exchanged for a price
 - prices adjust so that supply=demand

Competitive Markets are "good" institutions for the exchange of "commodities"

- the price is the only relevant variable in the economic decision to exchange
 - the identity of the counterparty is irrelevant
- commodity markets are "liquid"

Sometimes prices are not "all that matter"

- job finding (allocating jobs to workers)
 - being willing to work for an employer offering a given wage does not guarantee employment
 - being willing to hire a worker demanding a given wage does not guarantee hiring
- college admissions (allocating students to colleges)
 - being willing to pay ongoing tuition does not guarantee admission
 - admitting a student does not guarantee enrollment

Sometimes prices do not "matter at all"

- marriage "market"
 - social norms (sometimes) prevent contracting on a price for the exchange
- kidney transplants (allocating kidneys from donors to patients)
 - legal (and moral) constraints prevents exchanges for valuable consideration

Sometimes prices are the relevant variable in the transaction but markets are "illiquid"

- allocation of radio spectrum (both supply and demand side are "thin") - also seller's objective might be different from max profit
- trading fine art (thin supply side of van Gogh's Starry Night)

Need institutions different from competitive markets to address their shortcomings

- matching markets: do not use (only) prices as allocation mechanism
- auction markets: allocation (and price formation) mechanism for "thin markets"

- Market participants are divided into two separate groups (two-sided market)
 - A set of "men" M, with a typical man $m \in M$
 - A set of "women" W, with a typical woman $w \in W$
- Allocation: each man can be matched to one woman (or stay single), and vice-versa (one-to-one matching)

• A matching is a collection of pairs such that:

- each individual has one partner (m, w) or
- has no partner (m, m) (m is "matched with self")
- A matching can be described by a function

$$\mu: M \cup W \to M \cup W$$

such that:

- if µ(m) ≠ m then µ(m) ∈ W (each man is either single or matched to a woman)
- if µ(w) ≠ w then µ(w) ∈ M (each woman is either single or matched to a man)
- $\mu(\mu(x)) = x$ (if $\mu(x)$ is x's partner, then x is $\mu(x)$'s partner)

- Each agent has a (strict) preferences over "acceptable" partners
 - matching with an acceptable partner is preferred to staying unmatched
- Example: $M = \{m_1, m_2, m_3, m_4\}$ and $W = \{w_1, w_2, w_3\}$
 - m_1 preferences $w_2 \succ w_3 \succ w_1 \succ m_1$ (or simply w_2, w_3, w_1)
 - w_1 preferences $m_1 \succ m_3 \succ w_1$ (or simply m_1, m_3)

"Equilibrium"

- A matching μ is stable if
 - no agent is matched to an unacceptable mate individual rationality
 - there is no pair of agents who would prefer to match with each other rather then their assigned partner no blocking
- Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$
 - Both m_1 and m_2 prefer w_1 to w_2
 - Both w_1 and w_2 prefer m_1 to m_2
 - The matching (m_1, w_2) , (m_2, w_1) is not stable m_1 and w_1 prefer each other to their assigned partner
 - The matching $(m_1, w_1), (m_2, w_2)$ is the unique stable matching

Stable matchings examples

• Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_1 to m_2 and w_2 prefers m_2 to m_1
- The matching $(m_1, w_1), (m_2, w_2)$ is the unique stable matching
- Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$
 - m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
 - w_1 prefers m_2 to m_1 and w_2 prefers m_1 to m_2
 - The matching $(m_1, w_1), (m_2, w_2)$ is stable
 - The matching $(m_1, w_2), (m_2, w_1)$ is also stable
 - Note both men prefer the first matching and the opposite is true for the women
- Question: can we always find a stable matching?

- Round 1
 - Each man proposes to his most preferred woman
 - Each woman reject all but the most preferred proposal received
 - Most preferred proposal is "held" not accepted
- Round 2
 - Each man rejected in the previous round proposes to the most preferred woman who has not yet rejected him
 - Each woman rejects all but the most preferred among new and held proposals
 - Most preferred proposal is "held" not accepted
- ۲
- ٩
- Round T no proposal is rejected
 - algorithm ends
 - each woman is matched to the currently held proposal

Gale and Shapley '62 - deferred acceptance algorithm

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$									
m_1	<i>w</i> ₁	<i>W</i> ₂	W3	W1	m_1	<i>m</i> ₂	m_3		
	W3			W2	m_1	<i>m</i> ₂	m_3		
<i>m</i> 3	w ₁	W3	<i>W</i> ₂	W ₃	<i>m</i> 3	m_1	m_2		

m_1	m_2	<i>m</i> 3
w ₁	W3	w_1
w_1	W ₃	Ø
		W3
<i>w</i> ₁	Ø	W3
	<i>w</i> ₁	
<i>w</i> ₁	Ø	W3
	<i>m</i> ₂	
w ₁	<i>m</i> ₂	W ₃
w ₁	<i>m</i> 2	W3

The deferred acceptance (DA) algorithm end in finitely many rounds

- No man ever proposes twice to the same woman
- The outcome of the DA algorithm is a matching

Theorem. The outcome of the DA algorithm is a stable matching.

- The proposal "held" by each woman improves (weakly) in each round
 - Each woman is matched to the most desirable man who has ever proposed to her
- Every time he makes a new proposal, a man proposes to the next most desirable woman
 - Each man has proposed to, and has been rejected by, all women more desirable than his match
- For each man *m*, every woman more desirable than his match prefers her current match to *m*.

- Existence of a stable matching relies on the two-sided nature of the market
- Example (the roomate problem) Three students A, B, C can form a pair to share a two-people room
 - A prefers sharing with B to sharing with C to not sharing
 - B prefers sharing with C to sharing with A to not sharing
 - C prefers sharing with A to sharing with B to not sharing
 - there is no stable matching

• When multiple stable matching exist, the DA algorithm with man proposing yields a different outcome from the DA algorithm with women proposing

multiple stable matching - conflicting preferences

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ m_1 W_1 W2 W3 W_1 m_1 m_2 m_3 W1 W2 W3 m_2 W2 m_1 m_3 m_2 m_3 W1 W3 W_2 W3 m_1 m_2 m_3 m_1 m_2 m_3 W2 W_1 W3 W_1 W1 W_1 m_1 m_1 m_1 Ø Ø Ø Ø W_1 m_1 DA w -DA m W₂ W₃ m_3 m_2 W_1 W_2 W3 m_1 m_3 m_2 W1 W₂ W3 m_1 m_2 **M**3

• Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ m_1 W_1 W2 Wз W1 m_1 m_2 m_3 $m_2 | w_1 | w_2 | w_3$ W_2 m_1 m_3 m_2 W_1 Wз m_3 Wo Wз m_1 m_2 m_3

- DA men proposing: $(m_1, w_1), (m_2, w_2), (m_3, w_3)$
- DA women proposing $(m_1, w_1), (m_2, w_3), (m_3, w_2)$
- all men prefer (weakly) the DA men proposing outcome
- all women prefer (weakly) the DA women proposing outcome
- Theorem For two stable matchings μ, μ', all men (weakly) prefer μ if and only if all women (weakly) prefer μ'.
- The DA algorithm with men proposing yields the best stable matching for men and the worst stable matching for women.