ECO 426 (Market Design) - Lecture 2

Ettore Damiano

September 21, 2015

Ettore Damiano ECO 426 (Market Design) - Lecture 2

• In U.S., Canada and other countries, doctors work as "hospital residents" after completing medical school

- In U.S., Canada and other countries, doctors work as "hospital residents" after completing medical school
- Before 1952 medical students found residencies through a decentralized process

- In U.S., Canada and other countries, doctors work as "hospital residents" after completing medical school
- Before 1952 medical students found residencies through a decentralized process
- Main problem experienced was one of early contracting

- In U.S., Canada and other countries, doctors work as "hospital residents" after completing medical school
- Before 1952 medical students found residencies through a decentralized process
- Main problem experienced was one of early contracting
 - hospital and medical students rushing to sign up residency contracts very early, for fear of not being able to form a match if waiting

- In U.S., Canada and other countries, doctors work as "hospital residents" after completing medical school
- Before 1952 medical students found residencies through a decentralized process
- Main problem experienced was one of early contracting
 - hospital and medical students rushing to sign up residency contracts very early, for fear of not being able to form a match if waiting
 - costly in terms of match quality

- In U.S., Canada and other countries, doctors work as "hospital residents" after completing medical school
- Before 1952 medical students found residencies through a decentralized process
- Main problem experienced was one of early contracting
 - hospital and medical students rushing to sign up residency contracts very early, for fear of not being able to form a match if waiting
 - costly in terms of match quality
- Other potential inefficiencies with decentralized matching
 - holding offers for long time and then rejecting after the market has cleared

- In U.S., Canada and other countries, doctors work as "hospital residents" after completing medical school
- Before 1952 medical students found residencies through a decentralized process
- Main problem experienced was one of early contracting
 - hospital and medical students rushing to sign up residency contracts very early, for fear of not being able to form a match if waiting
 - costly in terms of match quality
- Other potential inefficiencies with decentralized matching
 - holding offers for long time and then rejecting after the market has cleared
 - exploding offers (i.e. offers with a very short deadline)

 Hospitals decided to change the system by adopting a central clearinghouse: National Residency Matching Program (NRMP)

- Hospitals decided to change the system by adopting a central clearinghouse: National Residency Matching Program (NRMP)
 - medical students submit a list of preferences over hospitals
 - hospitals submit a list of preferences over students

- Hospitals decided to change the system by adopting a central clearinghouse: National Residency Matching Program (NRMP)
 - medical students submit a list of preferences over hospitals
 - hospitals submit a list of preferences over students
 - the NRMP comes out with a matching on the basis of the inputed preferences

- Hospitals decided to change the system by adopting a central clearinghouse: National Residency Matching Program (NRMP)
 - medical students submit a list of preferences over hospitals
 - hospitals submit a list of preferences over students
 - the NRMP comes out with a matching on the basis of the inputed preferences
- It turns out that the NRMP uses the Gale-Shapley algorithm (since 1952)

- Hospitals decided to change the system by adopting a central clearinghouse: National Residency Matching Program (NRMP)
 - medical students submit a list of preferences over hospitals
 - hospitals submit a list of preferences over students
 - the NRMP comes out with a matching on the basis of the inputed preferences
- It turns out that the NRMP uses the Gale-Shapley algorithm (since 1952)
- NRMP has been successful and persisted with few modifications, the stability property might help explain the program's success (Roth 1984)

- Hospitals decided to change the system by adopting a central clearinghouse: National Residency Matching Program (NRMP)
 - medical students submit a list of preferences over hospitals
 - hospitals submit a list of preferences over students
 - the NRMP comes out with a matching on the basis of the inputed preferences
- It turns out that the NRMP uses the Gale-Shapley algorithm (since 1952)
- NRMP has been successful and persisted with few modifications, the stability property might help explain the program's success (Roth 1984)
 - The algorithm was changed in the late 90s from hospital proposing to students proposing

• Alternative centralized matching mechanism: Priority Matching

▶ 《 문 ▶ 《 문 ▶ .

- Alternative centralized matching mechanism: Priority Matching
 - agents submit preference lists

< 注入 < 注入 :

- Alternative centralized matching mechanism: Priority Matching
 - agents submit preference lists
 - a pair of agents is given a "priority" depending on their mutual ranking

- Alternative centralized matching mechanism: Priority Matching
 - agents submit preference lists
 - a pair of agents is given a "priority" depending on their mutual ranking
 - pairs with highes priority are formed first and agents taken out of the market

- Alternative centralized matching mechanism: Priority Matching
 - agents submit preference lists
 - a pair of agents is given a "priority" depending on their mutual ranking
 - pairs with highes priority are formed first and agents taken out of the market
 - priorities are re-assigned after exit of agents and matching process continues...

- Alternative centralized matching mechanism: Priority Matching
 - agents submit preference lists
 - a pair of agents is given a "priority" depending on their mutual ranking
 - pairs with highes priority are formed first and agents taken out of the market
 - priorities are re-assigned after exit of agents and matching process continues...
- Example: priority equal to the product of mutual rankings (i.e. couples that rank each other first have highest priority, couples with mutual ranking 1-2 have second highest priority etc. etc.)

・ロト ・ ア・ ・ ヨト ・ ヨト ・

- Priority Matching has been used in real life centralized matching
 - UK residency matching in Newcastle adopted in 1967

- Priority Matching has been used in real life centralized matching
 - UK residency matching in Newcastle adopted in 1967
- Less successful than the NRMP
 - By the early 80s most participants in the Newcastle matching program were submitting just one choice (medical students and hospital were pre-contracting before formally participating in the matching program)
 - priority matching is no longer in use in Newcastle

- Priority Matching has been used in real life centralized matching
 - UK residency matching in Newcastle adopted in 1967
- Less successful than the NRMP
 - By the early 80s most participants in the Newcastle matching program were submitting just one choice (medical students and hospital were pre-contracting before formally participating in the matching program)

• priority matching is no longer in use in Newcastle

• Is stability of the matching outcome important for the success of a centralized matching program?

Market	Stable	Still in use (halted unraveling)
American medical markets		
NRMP	yes	yes (new design in '98)
Medical Specialties	yes	yes (about 30 markets)
British Regional Medical Markets		
Edinburgh ('69)	yes	yes
Cardiff	yes	yes
Birmingham	no	no
Edinburgh ('67)	no	no
Newcastle	no	no
Sheffield	no	no
Cambridge	no	yes
London Hospital	no	yes
Other healthcare markets		
Dental Residencies	yes	yes
Osteopaths (<'94)	no	no
Osteopaths (≥'94)	yes	yes
Pharmacists	yes	yes
Other markets and matching processes	6	
Canadian Lawyers	yes	yes (except in British Columbia since 1996)
Sororities	yes (at equilibrium)	yes

TABLE I Stable and Unstable (Centralized) Mechanisms

From: Roth, 2002, "The economist as engineer: game theory, experimentation, and computation as tools for economic design;" *Econometrica*, 1341--1378

Strategic incentives

Ettore Damiano ECO 426 (Market Design) - Lecture 2

🗇 🕨 🔹 🖹

▶ < Ξ > ...

1

• A centralized matching mechanism uses participants' preferences to determine a matching

- A centralized matching mechanism uses participants' preferences to determine a matching
- Preferences are subjective and private information to the participants

- A centralized matching mechanism uses participants' preferences to determine a matching
- Preferences are subjective and private information to the participants
- Preference elicitation problem

- A centralized matching mechanism uses participants' preferences to determine a matching
- Preferences are subjective and private information to the participants
- Preference elicitation problem
 - Question: will the participants have the incentive to honestly reveal their preferences?

- A centralized matching mechanism uses participants' preferences to determine a matching
- Preferences are subjective and private information to the participants
- Preference elicitation problem
 - Question: will the participants have the incentive to honestly reveal their preferences?
 - Answer: It depends on

- A centralized matching mechanism uses participants' preferences to determine a matching
- Preferences are subjective and private information to the participants
- Preference elicitation problem
 - Question: will the participants have the incentive to honestly reveal their preferences?
 - Answer: It depends on
 - the details of the centralized matching mechanism;

- A centralized matching mechanism uses participants' preferences to determine a matching
- Preferences are subjective and private information to the participants
- Preference elicitation problem
 - Question: will the participants have the incentive to honestly reveal their preferences?
 - Answer: It depends on
 - the details of the centralized matching mechanism;
 - possibly, on the behavior of other participants.

- A centralized matching mechanism uses participants' preferences to determine a matching
- Preferences are subjective and private information to the participants
- Preference elicitation problem
 - Question: will the participants have the incentive to honestly reveal their preferences?
 - Answer: It depends on
 - the details of the centralized matching mechanism;
 - possibly, on the behavior of other participants.

• Formalize the preference elicitation problem

∢ ≣ ≯

Formal strategic model

• Formalize the preference elicitation problem as a strategic game with ordinal preferences

Formal strategic model

- Formalize the preference elicitation problem as a strategic game with ordinal preferences
 - Players: the matching market participants -
- Formalize the preference elicitation problem as a strategic game with ordinal preferences
 - Players: the matching market participants $M \cup W$

- Formalize the preference elicitation problem as a strategic game with ordinal preferences
 - Players: the matching market participants $M \cup W$
 - Actions: for each player the collection of all possible preference orderings (rank ordered lists (ROL)) over matches -

- Formalize the preference elicitation problem as a strategic game with ordinal preferences
 - Players: the matching market participants $M \cup W$
 - Actions: for each player the collection of all possible preference orderings (rank ordered lists (ROL)) over matches - Q^M and Q^W or Q

- Formalize the preference elicitation problem as a strategic game with ordinal preferences
 - Players: the matching market participants $M \cup W$
 - Actions: for each player the collection of all possible preference orderings (rank ordered lists (ROL)) over matches - Q^M and Q^W or Q
 - Outcomes: determined by the matching mechanism chosen,

- Formalize the preference elicitation problem as a strategic game with ordinal preferences
 - Players: the matching market participants $M \cup W$
 - Actions: for each player the collection of all possible preference orderings (rank ordered lists (ROL)) over matches - Q^M and Q^W or Q
 - \bullet Outcomes: determined by the matching mechanism chosen, ${\cal H}$

- Formalize the preference elicitation problem as a strategic game with ordinal preferences
 - Players: the matching market participants $M \cup W$
 - Actions: for each player the collection of all possible preference orderings (rank ordered lists (ROL)) over matches - Q^M and Q^W or Q
 - \bullet Outcomes: determined by the matching mechanism chosen, ${\cal H}$
 - A matching mechanism is a function that maps a profile of reported preferences q into a matching H(q)

- Formalize the preference elicitation problem as a strategic game with ordinal preferences
 - Players: the matching market participants $M \cup W$
 - Actions: for each player the collection of all possible preference orderings (rank ordered lists (ROL)) over matches - Q^M and Q^W or Q
 - \bullet Outcomes: determined by the matching mechanism chosen, ${\cal H}$
 - A matching mechanism is a function that maps a profile of reported preferences q into a matching H(q)
 - Preferences: for each player a "true" preference ordering over partners -

- Formalize the preference elicitation problem as a strategic game with ordinal preferences
 - Players: the matching market participants $M \cup W$
 - Actions: for each player the collection of all possible preference orderings (rank ordered lists (ROL)) over matches - Q^M and Q^W or Q
 - \bullet Outcomes: determined by the matching mechanism chosen, ${\cal H}$
 - A matching mechanism is a function that maps a profile of reported preferences q into a matching H(q)
 - Preferences: for each player a "true" preference ordering over partners - P_m for a typical man m and P_w for a typical woman w, P for all players

- Formalize the preference elicitation problem as a strategic game with ordinal preferences
 - Players: the matching market participants $M \cup W$
 - Actions: for each player the collection of all possible preference orderings (rank ordered lists (ROL)) over matches - Q^M and Q^W or Q
 - \bullet Outcomes: determined by the matching mechanism chosen, ${\cal H}$
 - A matching mechanism is a function that maps a profile of reported preferences q into a matching H(q)
 - Preferences: for each player a "true" preference ordering over partners P_m for a typical man m and P_w for a typical woman w, P for all players
- The triplet: i) *M* ∪ *W*; ii) *H*; and iii) *P*; define a strategic game with ordinal preferences.

・ロト ・回ト ・ヨト ・ヨト

• A strategy for a player m is a preference ordering over matches, $q_m \in Q^M$

- A strategy for a player *m* is a preference ordering over matches, *q_m* ∈ *Q^M*
- A strategy for a player w is a preference ordering over matches, q_w ∈ Q^W

- A strategy for a player m is a preference ordering over matches, $q_m \in Q^M$
- A strategy for a player w is a preference ordering over matches, q_w ∈ Q^W
- A strategy profile, q, is a collection of a strategy for each player

- A strategy for a player *m* is a preference ordering over matches, *q_m* ∈ *Q^M*
- A strategy for a player w is a preference ordering over matches, q_w ∈ Q^W
- A strategy profile, q, is a collection of a strategy for each player
 - We use q_{-x} to denote a profile of strategies for all but player x

- A strategy for a player *m* is a preference ordering over matches, *q_m* ∈ *Q^M*
- A strategy for a player w is a preference ordering over matches, q_w ∈ Q^W
- A strategy profile, q, is a collection of a strategy for each player
 - We use q_{-x} to denote a profile of strategies for all but player x
- Definition (Best response) A strategy q_x is a best response to a strategy profile profile q_{-x} for player x if the matching $\mathcal{H}(q_x, q_{-x})$ is (weakly) preferred by x to the matching $\mathcal{H}(q'_x, q_{-x})$ for any other strategy q'_x available to x.

Definition (Dominant strategy) A strategy q_x is a (weakly) dominant strategy for player x if it is a best response to all possible strategy choices by the other players (i.e. it is a best response to all q_{-x} ∈ Q_{-x}.)

- Definition (Dominant strategy) A strategy q_x is a (weakly) dominant strategy for player x if it is a best response to all possible strategy choices by the other players (i.e. it is a best response to all $q_{-x} \in Q_{-x}$.)
- Whether a player has a dominant strategy depends on the matching mechanism (*H*), as well as on the agent's true preferences.

- Definition (Dominant strategy) A strategy q_x is a (weakly) dominant strategy for player x if it is a best response to all possible strategy choices by the other players (i.e. it is a best response to all $q_{-x} \in Q_{-x}$.)
- Whether a player has a dominant strategy depends on the matching mechanism (*H*), as well as on the agent's true preferences.
- If for a mechanism *H*, *P_x* is a dominant strategy for player *x*, then player *x* has no reason (i.e. he/she never gains) to misreport her preferences within that mechanism.

Ettore Damiano ECO 426 (Market Design) - Lecture 2

∢ 臣 ▶

• A matching mechanism is strategy proof if for every agent x, and for any profile of true preference, P_x is a dominant strategy.

- A matching mechanism is strategy proof if for every agent x, and for any profile of true preference, P_x is a dominant strategy.
 - In a strategy proof mechanism, preference elicitation is not a problem

- A matching mechanism is strategy proof if for every agent x, and for any profile of true preference, P_x is a dominant strategy.
 - In a strategy proof mechanism, preference elicitation is not a problem
 - Is there any strategy proof mechanism?

- A matching mechanism is strategy proof if for every agent x, and for any profile of true preference, P_x is a dominant strategy.
 - In a strategy proof mechanism, preference elicitation is not a problem
 - Is there any strategy proof mechanism?
 - Yes. Example: random matching independent of reported preferences

- A matching mechanism is strategy proof if for every agent x, and for any profile of true preference, P_x is a dominant strategy.
 - In a strategy proof mechanism, preference elicitation is not a problem
 - Is there any strategy proof mechanism?
 - Yes. Example: random matching independent of reported preferences
 - But the outcome can be inefficient i.e. every agent could be made better off by some other matching

A matching mechanism is Pareto efficient, if H(q) is a pareto efficient matching with respect to the preference profile q for any q ∈ Q.

- A matching mechanism is Pareto efficient, if $\mathcal{H}(q)$ is a pareto efficient matching with respect to the preference profile q for any $q \in Q$.
 - If a matching mechanism is both strategy proof and pareto efficient, preference elicitation is not a problem and the outcome is pareto efficient (with respect to the true preferences)

- A matching mechanism is Pareto efficient, if $\mathcal{H}(q)$ is a pareto efficient matching with respect to the preference profile q for any $q \in Q$.
 - If a matching mechanism is both strategy proof and pareto efficient, preference elicitation is not a problem and the outcome is pareto efficient (with respect to the true preferences)
 - Is there any strategy proof and pareto efficient mechanism?

- A matching mechanism is Pareto efficient, if $\mathcal{H}(q)$ is a pareto efficient matching with respect to the preference profile q for any $q \in Q$.
 - If a matching mechanism is both strategy proof and pareto efficient, preference elicitation is not a problem and the outcome is pareto efficient (with respect to the true preferences)
 - Is there any strategy proof and pareto efficient mechanism?
 - Yes. Example: (random) serial dictatorship. Agents choose in a given order, each agent "picks" the favorite partner among those still available at moment of choosing.

- A matching mechanism is Pareto efficient, if $\mathcal{H}(q)$ is a pareto efficient matching with respect to the preference profile q for any $q \in Q$.
 - If a matching mechanism is both strategy proof and pareto efficient, preference elicitation is not a problem and the outcome is pareto efficient (with respect to the true preferences)
 - Is there any strategy proof and pareto efficient mechanism?
 - Yes. Example: (random) serial dictatorship. Agents choose in a given order, each agent "picks" the favorite partner among those still available at moment of choosing.
 - Real life example: NFL draft

- A matching mechanism is Pareto efficient, if $\mathcal{H}(q)$ is a pareto efficient matching with respect to the preference profile q for any $q \in Q$.
 - If a matching mechanism is both strategy proof and pareto efficient, preference elicitation is not a problem and the outcome is pareto efficient (with respect to the true preferences)
 - Is there any strategy proof and pareto efficient mechanism?
 - Yes. Example: (random) serial dictatorship. Agents choose in a given order, each agent "picks" the favorite partner among those still available at moment of choosing.
 - Real life example: NFL draft
 - But the outcome can be **not stable**

 A matching mechanism is stable, if H(q) is a stable matching with respect to the preference profile q for any q ∈ Q.

- A matching mechanism is stable, if H(q) is a stable matching with respect to the preference profile q for any q ∈ Q.
 - If a matching mechanism is both strategy proof and stable, then preference elicitation is not a problem and the outcome is stable (and pareto efficient) with respect to the true preferences

- A matching mechanism is stable, if H(q) is a stable matching with respect to the preference profile q for any q ∈ Q.
 - If a matching mechanism is both strategy proof and stable, then preference elicitation is not a problem and the outcome is stable (and pareto efficient) with respect to the true preferences
 - Is there any strategy proof **and** stable mechanism?

- A matching mechanism is stable, if H(q) is a stable matching with respect to the preference profile q for any q ∈ Q.
 - If a matching mechanism is both strategy proof and stable, then preference elicitation is not a problem and the outcome is stable (and pareto efficient) with respect to the true preferences
 - Is there any strategy proof and stable mechanism? No

impossibility of strategy proof and stable mechanism

Ettore Damiano ECO 426 (Market Design) - Lecture 2

< 注 ▶

impossibility of strategy proof and stable mechanism

Example $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$

Ettore Damiano ECO 426 (Market Design) - Lecture 2

医下颌 医下颌

impossibility of strategy proof and stable mechanism

Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $m_1 \mid w_1 \quad w_2$
 $m_2 \mid w_2 \quad w_1$
Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $m_1 \mid w_1 \quad w_2 \quad w_1 \mid m_2 \quad m_1$
 $m_2 \mid w_2 \quad w_1 \quad w_2 \mid m_1 \quad m_2$

▶ < 문 > _ 문

Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $m_1 \mid w_1 \quad w_2 \quad w_1 \mid m_2 \quad m_1$
 $m_2 \mid w_2 \quad w_1 \quad w_2 \mid m_1 \quad m_2$

• Two stable matching given the true preferences

< ∃ > _

Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $m_1 \mid w_1 \quad w_2 \quad w_1 \mid m_2 \quad m_1$
 $m_2 \mid w_2 \quad w_1 \quad w_2 \mid m_1 \quad m_2$

- Two stable matching given the true preferences
 - $(m_1, w_1), (m_2, w_2)$ is favorite by men

Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $m_1 \mid w_1 \quad w_2 \quad w_1 \mid m_2 \quad m_1$
 $m_2 \mid w_2 \quad w_1 \quad w_2 \mid m_1 \quad m_2$

- Two stable matching given the true preferences
 - $(m_1, w_1), (m_2, w_2)$ is favorite by men
 - $(m_1, w_2), (m_2, w_1)$ is favorite by women

Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $\begin{array}{c|c}m_1 & w_1 & w_2 & w_1 & m_2 & m_1 \\ m_2 & w_2 & w_1 & w_2 & m_1 & m_2\end{array}$

- Two stable matching given the true preferences
 - $(m_1, w_1), (m_2, w_2)$ is favorite by men
 - $(m_1, w_2), (m_2, w_1)$ is favorite by women
- If m₁ claims that w₂ is an unacceptable partner (and everybody else reports honestly)

Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $\begin{array}{c|c}m_1 & w_1 & w_2 & w_1 & m_2 & m_1 \\ m_2 & w_2 & w_1 & w_2 & m_1 & m_2\end{array}$

- Two stable matching given the true preferences
 - $(m_1, w_1), (m_2, w_2)$ is favorite by men
 - $(m_1, w_2), (m_2, w_1)$ is favorite by women
- If m₁ claims that w₂ is an unacceptable partner (and everybody else reports honestly)

m_1	<i>w</i> ₁		W1	m_2	m_1
m_2	<i>w</i> ₂	w_1	<i>W</i> ₂	m_1	m_2

Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $m_1 \mid w_1 \quad w_2 \quad w_1 \mid m_2 \quad m_1$
 $m_2 \mid w_2 \quad w_1 \quad w_2 \mid m_1 \quad m_2$

- Two stable matching given the true preferences
 - $(m_1, w_1), (m_2, w_2)$ is favorite by men
 - $(m_1, w_2), (m_2, w_1)$ is favorite by women
- If m_1 claims that w_2 is an unacceptable partner (and everybody else reports honestly)

Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $\begin{array}{c|c}m_1 & w_1 & w_2 & w_1 & m_2 & m_1 \\ m_2 & w_2 & w_1 & w_2 & m_1 & m_2\end{array}$

- Two stable matching given the true preferences
 - $(m_1, w_1), (m_2, w_2)$ is favorite by men
 - $(m_1, w_2), (m_2, w_1)$ is favorite by women
- If m_1 claims that w_2 is an unacceptable partner (and everybody else reports honestly)

• If w_1 claims that m_1 is an unacceptable partner (and anybody else report honestly,) the only stable matching is the one favorite by women

Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $m_1 \mid w_1 \quad w_2 \quad w_1 \mid m_2 \quad m_1$
 $m_2 \mid w_2 \quad w_1 \quad w_2 \mid m_1 \quad m_2$

< 注 ▶

Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $m_1 \mid w_1 \quad w_2 \quad w_1 \mid m_2 \quad m_1$
 $m_2 \mid w_2 \quad w_1 \quad w_2 \mid m_1 \quad m_2$

 Regardless of which stable matching H selects when everybody report their true preferences some agent has an incentive to deviate i.e. the mechanism cannot be strategy strategy proof if it is stable.

Example
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$
 $m_1 \mid w_1 \quad w_2 \quad w_1 \mid m_2 \quad m_1$
 $m_2 \mid w_2 \quad w_1 \quad w_2 \mid m_1 \quad m_2$

- Regardless of which stable matching H selects when everybody report their true preferences some agent has an incentive to deviate i.e. the mechanism cannot be strategy strategy proof if it is stable.
- Is the dominant strategy requirement too restrictive?

- Regardless of which stable matching H selects when everybody report their true preferences some agent has an incentive to deviate i.e. the mechanism cannot be strategy strategy proof if it is stable.
- Is the dominant strategy requirement too restrictive?
 - The example also shows that there is no Nash equilibrium where all players report their true preferences as long as the mechanism is stable

- Regardless of which stable matching H selects when everybody report their true preferences some agent has an incentive to deviate i.e. the mechanism cannot be strategy strategy proof if it is stable.
- Is the dominant strategy requirement too restrictive?
 - The example also shows that there is no Nash equilibrium where all players report their true preferences as long as the mechanism is stable
 - Relaxing the requirement that reporting the true preferences is a dominant strategy, and only requiring that everybody reporting honestly is a Nash equilibrium does not help